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Off-axis points encoding/decoding 
with orbital angular momentum 
spectrum
Jiaqi Chu1, Daping Chu1 & Quinn Smithwitck2

Encoding/decoding off-axis points with discrete orbital angular momentum (OAM) modes is investigated. 
On-axis Laguerre-Gaussian (LG) beams are expanded into off-axis OAM spectra, with which off-axis 
points are encoded. The influence of the mode and the displacement of the LG beam on the spread 
of the OAM spectrum is analysed. The results show that not only the conventional on-axis point, but 
also off-axis points, can be encoded and decoded with OAM of light. This is confirmed experimentally. 
The analytical result here provides a solid foundation to use OAM modes to encode two-dimensional 
high density information for multiplexing and to analyse the effect of mis-alignment in practical OAM 
applications.

Optical encoding/decoding, transmission of data and rendering of information have benefited from multiplexing/
demultiplexing schemes. Taking advantage of light’s various degrees of freedom, there have been time-division1,2, 
polarization-division3 and wavelength-division4,5 multiplexing, based on which transmission capacity can be 
increased.

The last few decades have seen the use of orbital angular momentum (OAM) as an additional degree of free-
dom in the transfer of information6–11. It has been known from the Maxwell’s theory that electromagnetic fields 
can carry both energy and momentum. An exchange of momentum can involve linear momentum and angular 
momentum. Poynting12 suggested that circularly polarized light should have angular momentum, which was 
demonstrated by Beth13 with the rotation motion of a birefringent wave plate. This spin component of angular 
momentum arising from spin of photons has a value of ± ħ per photon. Multiple units of ħ are required for 
higher-order transitions14,15, which are corresponding to the other component of angular momentum, OAM. In 
the 1990s16, helically phased beams were experimentally generated and shown to possess a well-defined OAM of 
multiple of ħ.

While polarization-division multiplexing can double the transmission capacity with two polarization states17, 
OAM mode-division multiplexing can potentially increase the capacity greatly with theoretically unbounded 
state space of OAM. By encoding and decoding data as amplitude of OAM beams, capacity of optical links can 
reach Gbits/s, and Tbits/s when orthogonality of OAM modes is used in combination with other degrees of 
freedom7,8.

So far, OAM beams that conserved rotational symmetry and used for OAM multiplexing were considered 
to be reliable only in on-axis communication18. Inasmuch as information of only the on-axis point is encoded 
with an OAM beam, and off-axis points are not coded, information density coded with OAM beams is hitherto 
limited. In some applications, encoding and decoding information should not be subject to zero-dimensional 
(point) coding19–21. Therefore, we investigated the possibility of encoding and decoding information with OAM 
two dimensionally22,23. This paper shows how off-axis points are encoded/decoded with an OAM spectrum so 
that they can be multiplexed in transmission.

Results
Encoding an off-axis point with OAM of light. Expanding an on-axis Laguerre-Gaussian (LG) beam. In 
order to analyse misaligned OAM beams, researchers have expanded an off-axis OAM beam into a summation of 
on-axis OAM beams which suggests a discrete OAM spectrum24. From another perspective, we wish to expand 
an on-axis Laguerre-Gaussian (LG) beam into a summation of OAM beams centred at a different reference axis, 
which would be helpful to encoding and decoding off-axis points. Here we demonstrate that encoding an on-axis 
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LG beam with an off-axis point is equivalent to encoding a discrete OAM spectrum reference to the axis at the 
off-axis point.

We use an on-axis LG beam, one widely used form of helically phased beams, to encode off-axis points. A 
LG beam with a radial mode index and an azimuthal mode index is given by Yao15. Considering a LG beam with 
radial mode index 0, the distribution at the beam waist is given by
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where l is the azimuthal mode index, (ρ, ϕ) is the cylindrical coordinate system, and w0 is the beam waist of the 
on-axis LG beam.

Figure 1 shows the plane transverse to the propagation direction of a LG beam at the beam waist. The point P 
is an off-axis point to be encoded and decoded, which is also the origin of the (ρ′ , ϕ′ ) cylindrical coordinate sys-
tem. We expand an on-axis LG beam referenced at the original coordinate (ρ, ϕ) into an off-axis OAM spectrum 
referenced to an off-axis point P. The spiral term can be expanded using binomial decomposition. Because of the 
Fourier relationship between the angle and OAM25, the Gaussian term can be expanded into an OAM spectrum 
comprising infinite modes. An on-axis LG beam can therefore be written as a weighted summation of infinite 
off-axis OAM beams
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for on-axis LG beams with azimuthal mode indices l ≠  0, where
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for the on-axis Gaussian beam, where
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In the equations, C l
n are binomial coefficients, and Im(x) is the modified Bessel function of the first kind.

Figure 1. Schematic of coordinate systems. The coordinate system (ρ, ϕ) is the cylindrical coordinate system 
where the initial encoded on-axis LG beam is described. The displaced coordinate system (ρ′ , ϕ′ ) is centred at 
the off-axis point P, which is described as (δ, θ) in the original coordinate system. P′  is another off-axis point to 
be coded with the on-axis LG beam.
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Encoding an off-axis point with an OAM spectrum. Equations (2) and (3) contain a spiral term and a Gaussian 
term referenced to an off-axis point, which is origin of the coordinate system (ρ′ , ϕ′ ). The equations suggest that a 
LG beam as defined on-axis can be considered to possess an infinite set of OAM modes as referenced to a different 
axis. Reference to the off-axis point P, there is always an OAM spectrum comprising infinite modes m represent-
ing the on-axis LG beam. The on-axis LG mode l can be expanded into a superposition of off-axis LG modes m as
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for l =  0.
Therefore, encoding an off-axis point with an on-axis LG beam can be achieved by encoding the off-axis point 

with an OAM spectrum. The amplitude of an expanded OAM beam in the spectrum is rotationally symmetric. 
It is a function of charge l and beam waist w0 of the on-axis LG beam, and displacement δ of the off-axis point.

Figure 2(a) shows amplitude and phase profiles of an on-axis LG beam with mode l =  3. Figure 2(b) shows 
amplitude and phase profiles of the summation of nine largest components ranging from m =  − 1 to 7 of the 
expanded OAM beams, which confirms the expansion is a good representation.

Spread of an OAM spectrum changes with (1) the original on-axis LG mode l, and (2) ratio of displacement 
of the off-axis point to beam waist of the original on-axis LG mode δ/w0. For different ratio of displacement to 
beam waist δ/w0, Fig. 2(c–h) shows normalized power of the expanded OAM spectrum for l =  3 and l =  − 12 as 
defined by
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Reconstructing the off-axis point. Among the encoded OAM spectrum, each spiral phase component 
can be further expanded back to the (ρ, ϕ) coordinate system. For an on-axis LG beam with azimuthal mode 
index l ≠  0,
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For the on-axis LG beam (Gaussian beam) with azimuthal mode index l =  0,
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By further expanding the spiral phase terms into an OAM spectrum as defined along the original (ρ, ϕ) coor-
dinate system, eqs (10) and (11) indicate that each phase component in the OAM spectrum that encoded with the 
off-axis point can be decoded with a summation of on-axis phase components. Decoding the modes n′  from 0 to 
|m| for a specified Am,l would decode the component corresponding to the mode m, which contains part of the 
encoded information. Decoding Am,l from m =  − ∞  to ∞  would further decode the encoded point entirely. The 
process is similar to convolution.

As Am,l =  Am,−l and ′ =′ ′ −A An m n m, , , when a point is encoded with an on-axis LG mode with the mode index  
+ l or − l, amplitude of each component in the encoded spectrum is the same, while the phase is complementary 
with respect to each other. By decoding with a complementary on-axis spiral phase characterized by − l, each 
expanded component specified by mode (|lm|/lm)n′ , and a complementary component specified by the mode  
− (|lm|/lm)n′  can be applied to decode one of the components in the encoded spectrum. Summing together, the 
decoded components would reconstruct the encoded off-axis point. As a result, the off-axis point P can be 
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reconstructed when a spiral phase mode complementary with respect to the encoding mode is applied to decode. 
The decoding spiral phase should reference to the same axis as the encoding LG beam, with the same number of 
intertwined helices but different handedness.

Minimization of noise. Decoded spectrum. Figure 3 shows the case that an off-axis point P is encoded with 
the on-axis LG beam with azimuthal mode l1 and decoding with the on-axis spiral phase with mode index l2. Both 
of the encoded and the decoding spiral phase expand a spectrum at the decoding point P, where ρ′  =  0. Expanded 
modes | | | | = −∞ ∞~l l m l l m( / ) , ( / )1 1 1 2 2 2  comprise the encoded and decoding OAM spectra.

Each expanded mode | |l l m( / )1 1 1 in the encoding OAM spectrum would act with each component | |l l m( / )2 2 2 
in the decoding OAM spectrum, forming an updated OAM beam with updated OAM mode index 
| | + | |l l m l l m( / ) ( / )1 1 1 2 2 2. The entire decoded pattern referenced in the (ρ′ , ϕ′ ) coordinate system is therefore the 

summation of the infinite set of updated OAM beams expanded from an on-axis LG mode with updated azi-
muthal mode index l =  l1 +  l2.

Noise of encoding/decoding an off-axis point. When an on-axis point is encoded with a LG beam and decoded 
with a complementary mode, the point is reconstructed. When a non-complementary mode is applied, the ampli-
tude of the on-axis point is 0 because of the orthogonality of OAM modes. However, this is not necessarily the 
case when an off-axis point is encoded.

In an expanded OAM spectrum, each mode m corresponds to an OAM beam. Figure 4 shows the change of 
weight of selected expanded modes with respect to different displacement and on-axis LG beams. The amplitude 

Figure 2. (a) Amplitude and phase profiles of an on-axis LG beam with the azimuthal mode index l =  3.  
(b) Amplitude and phase profiles of the reconstructed beam summed from expanded OAM beams corresponding  
to modes m =  − 1 to 7. (c–e) Normalized power of expanded modes m =  − 1 to 7 for the on-axis LG beam with 
azimuthal mode index l =  3. (f–h) Normalized power of expanded modes m =  − 18 to − 6 for the on-axis LG 
beam with azimuthal mode index l =  − 12.
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of the OAM beam is a vortex or a Gaussian distribution, with the inner radius increasing with the absolute value 
of the mode index |m|. At point P, the OAM beam with mode index m =  0 would introduce noise. Figure 4(c) 
shows the normalized power of the OAM beam corresponding to the mode m =  0 in the OAM spectrum of the 
on-axis LG beams l =  0, 3, and − 12. For a fixed updated azimuthal mode index = +l l l1 2  and beam waist of 
an on-axis LG beam, the noise introduced by the expanded mode m =  0 increases when the ratio of the displace-
ment increases.

Additionally, as the absolute azimuthal mode index of the on-axis LG beam = +l l l1 2  increases, the weight 
of the expanded OAM mode m =  0 decreases. Therefore, when decoded by a non-complementary on-axis mode, 
a larger absolute value of the encoding and decoding mode = +l l l1 2  would also minimize the noise at the 
coded point P.

Encoding/decoding multiple points. When multiple points are encoded and decoded, the entire OAM 
spectrum would contribute to noise. Though an OAM spectrum comprises infinite modes theoretically, some 
of them have smaller weight and are less effective. Because each expanded mode is corresponding to a vortex, 
the condition of a different off-axis point can be encoded and decoded is that the point is placed within all of the 
effective vortices. As inner radius of the vortices decreases with decreased absolute value of the expanded mode 
|m|, the largest displacement of off-axis points that can be encoded and decoded depends on the smallest effective 
mode |me|.

Here we consider the expanded modes effective if they are near the mode m= l and summation of their energy 
covers 90% of the entire energy. For different original on-axis LG modes l and ratio of displacement to beam waist 
δ/w0, Fig. 5(a) shows width of an OAM spectrum |l −  me|+  1. Based on the width, Fig. 5(b) shows the smallest 
effective mode me. When me >  0, it creates a crosstalk vortex where off-axis points can hide in so that they can be 
encoded and decoded. In Fig. 5(c), the contour shows the largest displacement of an off-axis point that can hide 
in the crosstalk vortex in terms of its ratio to the beam waist of the original on-axis LG beam. The largest displace-
ment is defined at the original (ρ, ϕ) coordinate system, and the inner radius of an expanded vortex is defined 
at the first 1/e of the maximum amplitude. Using this ratio one can find the largest displacements of off-axis 
points that can be encoded and decoded with ≤ 10% of the crosstalk noise introduced from another off-axis point 
encoded by different on-axis LG mode l, and they are represented by the star symbols in Fig. 5(c).

Encoding/decoding images. A two-dimensional (2D) image contains an on-axis point and multiple 
off-axis points. Coding multiple off-axis points with OAM spectra allows encoding and decoding of 2D images. 
Figure 6(a) shows the experimental setup that is used to encode and decode a 2D image. Two lenses (L1 and L2) 
are used to expand light emitting from a HeNe laser. An image mask (Img) imprints a 2D image onto the pro-
jected beam. This image is then encoded with an OAM mode by a fixed spiral phase plate26,27 (SPP) and decoded 
by another OAM mode generated on a phase-only liquid crystal on silicon (LCoS) spatial light modulator (SLM). 
Lenses L3 and L4 are used to relay the beam and the lens L5 is used to project the 2D image. In order to ensure 
perpendicular incidence to the LCoS SLM, a beam splitter (BS) is used. Because the light diffracted from the LCoS 
SLM contains high orders, an adjustable aperture (AA) is used to filter out them and keep the first diffraction 
order only. The intensity profiles of the decoded patterns are recorded using a CMOS image sensor chip directly.

Figure 6(b) is the projected image with encoding or decoding. Figure 6(c) is the reconstructed image encoded 
with an on-axis OAM mode l1 =  − 8 and decoded with the complementary on-axis OAM mode l2 =  + 8. When 
the image-carrying OAM beam is decoded with a non-complementary OAM mode, the decoded image contains 
bright patterns in the vortices, as shown in Fig. 6(d–e). As the reconstructed image would appear at the vortices, 
these bright patterns are crosstalk introduced by smaller expanded modes in the coded OAM spectrum. The 
crosstalk can be reduced by increasing the mode separation, i.e. the summation l =  |l1 +  l2|. In Fig. 6(d), the sum-
mation of mode indices l =  |l1 +  l2| is not large enough to spatially remove crosstalk terms from a reconstructed 
image. While in Fig. 6(e), the updated OAM mode is large enough to separate the reconstructed image and the 
vortex, which indicates that encoding 2D information using OAM modes is promising for multiplexing in a single 

Figure 3. Sketch of an off-axis point P at ρ′ = 0 encoded with the on-axis LG beam with spiral phase 
characterized by azimuthal mode index l1 and decoding with the on-axis spiral mode l2. Both of the 
encoding and decoding LG modes expand a spectrum centred at the off-axis point P, comprising an infinite set 
of weighted modes m1, m2 =  − ∞  ~ ∞  of the encoding/decoding OAM spectra.
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optical channel. Note that although the OAM beam we generated in this experiment is not a pure LG beam, the 
observed trend confirms to that shown in Fig. 5(c).

Discussion
In this study, we confirmed that not only the on-axis point, but also off-axis points can be encoded and decoded 
with OAM under certain conditions. By expanding an on-axis LG beam into an off-axis OAM spectrum, an 
off-axis point is encoded with the OAM spectrum. Each OAM beam in the expanded OAM spectrum is then fur-
ther expanded back into an on-axis OAM spectrum, which suggests that the off-axis point can be reconstructed 
using an on-axis OAM beam when it is encoded with an on-axis LG beam. Modes with the same number of heli-
ces but opposite handedness are complementary modes to encode and reconstruct a point.

We further investigate the OAM spectrum when an off-axis point is encoded for multiplexing purpose. 
OAM multiplexing benefits from orthogonality of theoretically unlimited number of different OAM modes and 
has potentially unlimited information capacity. In the traditional case, where an on-axis point is encoded and 
decoded, the orthogonality of OAM modes makes the amplitude at the encoded point become zero when the 
point is decoded with a non-complementary OAM mode. In the case of encoding/decoding an off-axis point, 
the amplitude cannot be rigorously zero. Because the expanded OAM spectrum comprises an infinite modes, 
there are always infinite pairs of expanded modes m1 and m2 in the encoding/decoding spectra which fulfil 
(|l1|/l1)m1 +  (|l2|/l2)m1 =  0 and introduce crosstalk at the encoded point. When decoding OAM spectrum is cho-
sen to be separable from the encoding OAM spectrum, the weight of the crosstalk components will be sufficiently 
small, and a reconstructed off-axis point can be separable from the crosstalk due to multiplexing of the signals 
generated by off-axis points encoded by different OAM modes.

We evaluate the crosstalk via relative power terms. Spread of an OAM spectrum changes with the expanded 
LG mode, as well as the off-axis displacement from the origin. We find that larger separation of encoded/decoded 
modes, and smaller ratios of off-axis displacement to the beam waist would reduce the crosstalk.

When multiple points are encoded and decoded, the entire OAM spectrum which comprises infinite terms 
would contribute to crosstalk. The crosstalk terms are off-axis vortices. Because the energy of an expanded OAM 
spectrum is centralized, hiding off-axis points within inner radius of effective crosstalk vortices would allow 

Figure 4. Normalized power of the expanded off-axis OAM modes (a) m =  l, (b) m =  l ±  1, and (c) m =  0 for 
the on-axis LG beam of the OAM modes l =  0, 3 and − 12, respectively.

Figure 5. (a) Width of spectra that covers 90% of the entire energy. (b) The smallest effective expanded mode. 
(c) The contour shows largest displacement of an-off-axis point that can hide in the effective expanded vortices 
and the star symbols show the largest displacement which an on-axis LG mode can encode/decode with ≤ 10% 
of the crosstalk noise from another off-axis points.
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OAM spectra for multiplexing. The displacement of off-axis points that can be encoded/decoded increases as the 
sum of the encoding/decoding LG modes increases. For absolute summations up until |l1 +  l2| =  30, we analysed 
the maximum displacements that can be encoded and decoded in terms of their ratio to the beam waist.

Experimentally we encode a 2D image with an on-axis spiral phase plate of a given mode, and decode the 
encoded image with on-axis spiral phase plates of different modes. The image is reconstructed when it is decoded 
by a complementary mode. When decoded by a non-complementary mode, it shows a noisy image due to cross-
talk and the level of crosstalk reduces as the sum of the encoding and decoding mode indices increases, which 
confirms the theory.

All together the mathematical derivations and experimental findings reveal that off-axis image points can be 
encoded and reconstructed with appropriate OAM modes. Choosing encoding/decoding LG modes and dis-
placement of off-axis points carefully allow encoding of different OAM modes for multiplexing in a single trans-
mission channel with minimum crosstalk in the reconstructed images.

Furthermore the development in rendering and transmitting information can contribute to the areas such 
as communications and image displays. In communications, OAM modes stand out as an additional degree of 
freedom in increasing channel capacity with theoretically infinite number of different modes. The data encoded 
with OAM modes can now be a temporal point or a 2D array. For displays, three-dimensional (3D) images can be 
mimicked by showing multiple 2D images simultaneously for 3D perceptions. Without reducing the resolution 
of the images, 3D displays have benefited from polarization multiplexing by using the two polarization states 
to encode two views of 2D images. With more views of 2D images encoded with different OAM modes, it is 
expected that smoother parallax and high resolution can be achieved at the same time.

Finally our results can also help to understand the mis-alignment effect in different practical applications, such 
as the coupling of OAM modes to an off-axis plasmonic structure28 and to bounded electrons29.

Methods
Expanding an on-axis LG mode into an OAM spectrum. The coordinate system contains 
N ×  N =  1001 ×  1001 points (Fig. 2a,b). Energy of the original LG beam (Fig. 2a) is normalized according to the 
normalization constant as described in eq. (1).

OAM spectrum analysis. 25 expanded modes m for Fig. 4 and 21 for Fig. 2c–h are calculated to show that 
the sum of energy of the components in the spectrum equals that of the original LG beam.

Original 2D images. The original 2D image is a chrome mask imprinted on glass. The imprinted dice is 
divided in 400 ×  400 pixels, with a pixel size 5 micron.

Laser. We use a 632.8 nm linearly polarized HeNe laser. The power is 5 mW and the beam diameter is 0.81 mm.

Figure 6. (a) Optical Setup. (b) Projected image without encoding/decoding. (c–e) Recorded intensity 
when the image is encoded with on-axis spiral phase plate l1 =  − 8 and decoded with l2 =  + 8, + 16, and + 29, 
respectively.
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Generation of OAM beam. We generate an OAM beam by the use of a commercially available spiral phase 
plate. A spiral phase plate is a transparent phase modulation device with its thickness increases with azimuthal 
angle26,27.

Reconstructed/decoded 2D images. A liquid crystal on silicon (LCoS) device assembled in house is used 
to decode images. The LCoS has 1280 ×  720 pixels with a pixel pitch of 15 μ m.

Recoding intensity profiles. Intensity profiles of the images and decoded patterns are directly recorded 
using a CMOS sensor from Nikon D7000. All the intensity profiles are recorded using the same imaging setup.
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