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Abstract

A method for identifying and classifying ordered phases in large chemically
and thermally disordered atomistic models is presented. The method uses
Steinhardt parameters to represent local atomic configurations and develops
probability density functions to classify individual atoms using naive Bayes.
The method is applied to large molecular dynamics simulations of super-
saturated Ni-20 at% Al solid solutions in order to identify the formation of
embryonic 7/-NizAl. The composition and temperatures are chosen to promote
precipitation, which is observed in the form of ordering and is found to occur
more likely in regions with above average Al concentration producing ‘clus-
ters’ of increasing size. The results are interpreted in terms of a precipitation
mechanism in which the solid solution is unstable with respect to ordering and
potentially followed by either spinodal decomposition or nucleation and
growth.

Keywords: atomistic simulation, supervised learning, ~+' precipitation,
superalloys

(Some figures may appear in colour only in the online journal)

1. Introduction

Classical atomistic simulations involving more than a million atoms are now commonplace,
in one extreme case with up to 4.125 x 10'? particles [1]. They are used to probe the structure
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and kinetics of materials on a scale that is usually not feasible from first principles and can
access phenomena such as intergranular fracture, surface adsorption, dislocation dynamics,
grain growth and precipitation. Most of these processes are straightforward to understand
using standard visualisation or animation techniques even when the computational cell is
large. This is not the case for early stage precipitation where the nuclei form on the sub-
nanometre scale and are embedded deep within a matrix material. Identifying where and when
the nuclei form, as well as their size, shape and distribution is of fundamental importance in
the theory of phase transformations. As the precipitates grow and affect the macroscopic
properties of a material, such as creep and fracture strength, they become of increasing
technological interest. A well-known example is the nucleation and growth of ~/-Ni3;Al
precipitates in Ni-base superalloys [2]. Here the L1, ordered precipitates (7') impede the
motion of dislocations in the y (fcc) solid solution matrix thereby strengthening the alloy such
that it can be used in extreme environments such as those found in a turbine engine [3]. In the
early stage of precipitation in a Ni—Al alloy the precipitates are thought to be roughly
spherical and then as they coarsen they become cuboidal [4, 5]. Cubes form to minimise the
precipitate /matrix lattice mismatch and create coherency.

In this work we are concerned with the embryonic stage of the precipitation where small
ordered clusters form acting as precursors for the later decomposition process on a large scale.
While precipitation on the large scale is quite well understood there are still uncertainties
about the process on the atomic level shortly after annealing and during quenching. Generally
precipitation depends on the temperature treatment and the concentration profile. It has been
clear for some time that chemical clustering and ordering are interdependent during pre-
cipitation [6]. This interdependency can be explained with a graphical method based on
geometrical considerations of the free energy curve of the observed phases [7]. Using the free
energy curves the method distinguishes between heterogeneous ordering (the solid solution is
metastable with respect to ordering) and homogeneous ordering (the solid solution is unstable
with respect to ordering). Heterogeneous ordering is followed by spinodal decomposition
whereas homogeneous ordering is followed by spinodal decomposition or nucleation and
growth depending on the second derivative of the free energy with respect to the con-
centration. This approach successfully explains experimental observations such as the con-
ditional spinodal which is a spinodal decomposition process that requires prior ordering [8].
The method also agrees with theoretical predictions based on mean field and phase field
theory [9-12]. Studies using atom probe and electron microscopy show that the precipitation
process is very fast and already takes place during the quenching process. In this case
precipitation forms interconnected fluctuations of the concentration profile suggesting che-
mical ordering and spinodal decomposition [13-15]. However, because of the time con-
straints in the experiments, it is not perfectly clear in which order chemical ordering and
spinodal decomposition really happens. This assumes that the observed Ni-based alloys are
systems that are in fact unstable with respect to ordering. An objective of this study is
therefore to shed light on precipitation at the atomic level using classical molecular dynamics
(MD), investigating the process during quenching.

In this work we study the initial stages of precipitation by simulating binary Ni-20 at% Al
single crystal systems in the 7/ + + two-phase region, which are unstable with respect to
ordering. For the simulations we use an empirical potential [16] of the embedded atom
method (EAM) type [17]. In order to distinguish chemically ordered from disordered regions
we describe the local neighbourhood of individual atoms and the resulting geometrical
‘bonds’ with Steinhardt parameters [18]. Additionally we make these Steinhardt parameters
sensitive to the chemical environment and use them as input for a naive Bayes classifier that
we train. We demonstrate that the classifier is highly robust, identifying ordered regions
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correctly under significant chemical and thermal disorder. More importantly, we observe
ordering in all our simulations, particularly in regions with above average Al concentration.
We interpret this finding as confirmation of the proposed homogeneous ordering which
precedes possible spinodal decomposition for the simulated system.

2. Theory

Identifying local atomic configurations via numerical algorithms requires a representation of
those configurations. Of importance in this case is a representation that is robust enough to
capture rotation symmetries of configurations subject to significant noise. Current ways of
representing atomic configurations include bond angle cosines, so-called Steinhardt para-
meters, bond orders, Voronoi analysis and common neighbours [19]. These methods can be
used to distinguish between liquids, simple crystal structures (fcc, bec, hep, diamond cubic)
and various kinds of defects [19-21].

For this work Steinhardt parameters [18] are chosen since they are known to provide a
good basis for distinguishing various lattice types. Once parameters are found that capture the
local configuration corresponding distributions can be obtained, e.g. for the fcc lattice type.
Here the Steinhardt parameters will be made sensitive to the chemical surroundings, similar to
a previous study on connectivity in damaged ceramics [22]. Then a decision rule is needed to
classify local atomic configurations and for this naive Bayes is chosen. The combination of
both the normalised parameter distributions and the decision is referred to here as the
‘classifier’.

2.1. Steinhardt parameters

Steinhardt parameters are calculated by selecting individual atoms and their surroundings up
to a threshold distance or threshold number of neighbours N [18]. These thresholds determine
the possible resolution of the atomic configurations that are identified. Including all atoms in
the calculation of the Steinhardt parameters, i.e. using an infinite cut-off radius, yields a bulk
description of the system [21].

The Steinhardt parameters g, utilised in this paper are given by

47 oo ’
E . . m b 1
q, \/21 i ]n§l|Ql, | 1)
where
_ 1 XN
Ql,m = _ZY[’" (0,1, an) (2)
Nn:l

Y/" represents spherical harmonic functions of degree [ and order m € [—I, I] with polar angle
0 € [0,27] and azimuth angle ¢ € [0, 7]. The definition in equation (2) provides a local
average for fixed m and [ and the quantities Q;,, can be interpreted as vectors for a fixed /.
This makes ¢, in equation (1) the corresponding norm which is calculated for each atom in the
current atomic assembly. Note that the g, parameters are only a subset of the Steinhardt
parameters.

Besides the usefulness of the Steinhardt parameters in identifying crystal structures they
have also been used in MD simulations as collective variables biasing given potentials for
Umbrella sampling or Metadynamics simulations [23, 24].
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2.2. Classification of atoms with naive Bayes

The classification of atoms here makes use of distinct distributions of Steinhardt parameters
for chemically ordered and disordered systems. This technique has been used before to
distinguish between fcc, bee and hep lattice types or structures [18, 21, 25]. Normalising these
distributions yields conditional probability density functions (PDFs) P(neighbourhood |
phase) which can be used for classification using the Bayesian framework. Given a certain
phase the conditional PDF P(neighbourhood | phase) returns a probability for an atom based
on its neighbourhood. Note that when we refer to ‘phase’ in the context of classification we
mean the local atomic arrangement and not the phase in the thermodynamic limit. The
advantage of a Bayesian approach for the classification of atomic structures is that it is not
limited to Steinhardt parameters. Given that one has a PDF for each phase of interest, the
following Bayesian decision rule can be used for classification:

Phase = argmaxphasecphasesP (neighbourhood|phase) P (phase), 3)

where the neighbourhood here is a list of Steinhardt parameters for each atom based on its
neighbourhood. Then a value for P(phase) has to be chosen, the prior probability of a phase.
Due to a lack of knowledge about which phase should be more likely to appear a priori, we
assume a so-called uniform prior P(phase) = 1/number of phases. This makes equation (3)
the naive Bayes decision rule. In order to distinguish between chemically ordered and
disordered configurations for the same lattice type, we slightly modify the calculation of the
Steinhardt parameters. Based on the chemical element of the current atom being processed
this modification selects the surroundings using three filters: (1) ‘all’ elements, (2) only ‘like’
elements and (3) only ‘unlike’ elements. This selection is done after the neighbourhood has
been searched using either a cut-off radius or maximum number of nearest neighbours. This
scheme results in two additional Steinhardt parameters per atom and /. To distinguish them
they are denoted as g, .1, g jie a4 G ke Here g e and gy . are particularly useful for
identifying the 4/ phase.

3. Method

In order to apply the naive Bayes decision rule for the classification of atomic configurations
we need to obtain the conditional PDFs. The ‘classifier’ here is then the combination of
conditional PDFs and the naive Bayes decision rule. These conditional PDFs should be very
accurate under significant chemical and thermal noise and therefore care needs to be taken in
their construction. For this we use, in the present case, single crystal examples of v Ni-20 at%
Al and perfectly stoichiometric +/, as described section 3.1. Since the purpose of the
developed conditional PDFs is to differentiate between chemical order and disorder during
annealing we include a cross-validation step to test the resulting classifier. The cross-vali-
dation process is addressed in section 3.2.

3.1. Obtaining conditional PDFs

To produce conditional PDFs, which yield a robust classifier, we use different degrees of
lattice distortion for the given phases to produce ‘samples’ with which to train. Two methods
were used to obtain samples for the classification of atoms into different ‘phases’: (1)
annealing in MD and (2) using artificial noise created with a random number generator. Both
methods introduce distortions into ideal crystals. We found that the latter method is sur-
prisingly successful and we will therefore focus on that one in the following.
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Table 1. Comparison between temperature (7) and the degree of distortion (7)) for the 7/
phase in terms of the root mean square displacement (RMSD) averaged over all frames.
The model used contained 10 x 10 x 10 unit cells and the RMSD values are in
fractional coordinates with respect to the supercell.

n RMSD T (K) RMSD

10°° 0.00170 0.1  0.00073
107 0.00541 500 0.006 99
107 0.01688 1500 0.017 00

The Steinhardt parameters were calculated after the neighbourhood search. Two common
criteria for the neighbour selection are the cutoff radius and the number of neighbours.
Testing both, we found that for phases having a fcc lattice a fixed number of 18 neighbours
(i.e. including all first and second nearest neighbours), leads to clearer parameter distributions
when considering a range of temperatures up to 1500 K.

In order to obtain a classifier which is stable against chemical disorder and able to
efficiently identify ~/ particles, we found it sufficient to create one conditional PDF for 4/ and
one for ~, for each species filter. Each conditional PDF is created incorporating three different
degrees of lattice distortion, n = 1073, 10~* and 1073, These lattice distortions were used to
calculate the entries Ax; of the diagonal covariance matrix for the multivariate normal dis-
tribution as Ax; = 7 - a;, with @; the length of the unit cell in dimension i. In this case the
same 7) was applied to all spatial dimensions. The unit cells of both v/ and  are cubic and
hence Ax; is the same in all directions. This leads to an increase in the distortion of the ideal
lattice position with increasing 7, thus simulating higher thermal fluctuations. This approach
may seem quite simple but has been found to work surprisingly well and permits quick
generation of multiple classifiers combining different phases and distortions. It is particularly
useful in cases where the relevant empirical potentials for use in MD simulations are una-
vailable. Table 1 compares 7 with temperature via the root mean square displacement
(RMSD) averaged over all frames for +/. It is seen that the maximum distortion correlates with
a temperature of about 1500 K.

Once the samples for the phases were generated, the Steinhardt parameters using all three
chemical ‘filters’ (all, like and unlike chemical elements) were calculated forl =4 and [ = 6
which are particularly useful for fcc, bee and hep structures [18]. Since their values are limited
by definition to be between 0 and 1 they were multiplied by a factor of 10 to improve
processing within the developed software. Then normalised histograms (the conditional
PDFs) were created for each phase and degree of distortion and filter. Thus we obtain three
normalised histograms for a single phase with a given degree of distortion, one for each filter
‘all’, ‘like’ and ‘unlike’. Since we want to create only two sets of conditional PDFs, one set
for each phase containing conditional PDFs for the three filters, we need to combine the
normalised histograms with different degrees of distortion. Here we used the same weighting
for all degrees of distortion. Thus the conditional PDF for the ‘all’ filter for 4/ corresponds to

N
P(data |y') = ;)wniP(data hi/)’ 4
where N is the number of degrees of distortions, w;, the weight and P (data |'y;]_) is the

conditional PDF for distortion of degree 7;. Experimenting with different combinations of
distortions reveals that using only high degrees of distortion are detrimental to the overall
accuracy of classification. On the other hand using only low degrees of distortion leads to
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Figure 1. Conditional probability density functions for the fcc, bee and hep structures
as a function of the Steinhardt parameters ¢, (! = 4 and / = 6) shown in red, green and
blue respectively.

very poor results at high distortions even though the accuracy of classification at low
temperatures is good. It is found that the optimal solution is to use either an exponential
function for the weights if the lattice distortions are chosen on a linear scale or to use an
exponential distribution of distortions directly, as done in the present work for selecting the
degrees of distortion. Hence the weights w;, here are all equal to 1. Choosing distortions on a
linear scale here means, for example, carrying out MD simulations with a linear sequence of
temperatures. A weighting function which decays with increasing degree of distortion appeals
intuitively since we are interested in finding a phase at high temperatures, for example 7/,
which we know quite well from low temperatures. Hence we require a strong representation
of the distribution of Steinhardt parameters from low distortions with also some corrections to
that distribution at high distortions. Three conditional PDFs generated this way are shown in
figure 1 for fce, bee and hep structures using the same degrees of distortion as are used for +/
and . The figure demonstrates, with its separated peaks, why Steinhardt parameters are so
successful at distinguishing between these structures even at high temperatures.

3.2. Cross-validation

In order to test the reliability of the developed classifier we created two kinds of atomic
models where we embedded a spherical v/ precipitate of radius 10 A in both pure fcc Ni and
Ni-20 at% Al. These models are chosen since they reflect what we will be looking for in our
search for ordering in our -y single crystals annealed over a long period. It is expected that the
classifier does better for the Ni + +/ system than for the v + + system since there is less
uncertainty regarding the chemical ordering present. The classification of these atomic models
is then combined with binary classification scores that quantify what previously was only
loosely defined as ‘accuracy’. For this we use parameters quite common in statistics, the so-
called ‘true positive’ (¢,), ‘true negative’ (f,), ‘false positive’ (f,), ‘false negative’ (fy),
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Figure 2. F1 score measuring the ability of the classifier to correctly identify 4/ within
pure Ni and ' Ni-20 at% Al, for three different levels of lattice distortions 7. The F1
score is computed comparing two frames of the same degree of distortion.

Figure 3. Atoms (Ni blue and Al pink) identified as +/-like in a model of v Ni-20 at%
Al containing a pre-existing spherical 4/ precipitate. The system has been annealed
using MD at 1500 K for 20 ps.

‘precision’ (P), ‘recall’ (R) and ‘F1 score’. In short ‘true positive’ refers to the case where the
classifier correctly identifies an atom as belonging to a phase we are looking for. On the other
hand ‘false positive’ refers to the case that the classifier falsely identifies an atom as belonging
to our phase. The other parameters #, and f,, behave accordingly. The remaining parameters
are combinations of the previous four parameters aimed at creating a score which yields a
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balanced image of the classifier’s performance, i.e. only taking #, as a measure to be max-
imised could lead to a classifier which simply predicts all atoms to be of the phase we are
looking for causing a large f,, value. The ‘recall’ R is defined as R = #,/(t, + f,) and ‘pre-
cision” as P = t,/(t, + f,) which are combined in the ‘F1 score’ as F1 = 2RP/(R + P).
Hence the aim is to maximise the F1 score, which is limited to the interval between 0 and 1, to
obtain a good classifier.

Next we take the above definition for the F1 score and apply it to our two cross-
validation cases of a spherical v/ precipitate embedded in both pure Ni and v Ni-20 at% Al.
The F1 score to correctly identify +' is calculated for each model for each degree of distortion
comparing two configurations. The resulting behaviour is shown in figure 2. We can see for
both cases that the F1 score decreases almost linearly with increasing degree of distortion. We
also see that the F1 score for embedding +/ in pure Ni is always higher than for the embedding
~’in ~. This is to be expected since chemical disorder is not present in pure Ni, increasing the
certainty of encountering +'.

Also, we have annealed an atomistic model (14 x 14 x 14 unit cells) containing a
spherical ~ precipitate of radius 10 A embedded in y Ni-20 at% Al for 20 ps at 1500 K. The
MD was performed using the LAMMPS code [26] and a NPT barostat. This is to test the
classifier’s performance with respect to actual thermal distortions during MD simulations. The
resulting classified final snapshot is shown in figure 3. As expected, we find some random
single atoms together with the spherical 4/ precipitate that we inserted in the initial config-
uration. The single atoms could be false positives or actually +/-like atoms caused by the
random arrangements within -y phase. The «/ sphere we find has smaller radius than the
expected 10 A. We understand this in terms of the 18 nearest neighbours contributing to the
Steinhardt parameters for each atom and in terms of the classification process rather than a
consequence of MD relaxation. Approaching the ~/+' interface the value of the ‘like’ and
‘unlike’ Steinhardt parameters change due to a change in the local chemical symmetry. The
classification then assigns a phase to both ‘like’ and ‘unlike’ filters for each atom, allowing for
four distinct filter label combinations. If the neighbourhood for ‘like’ and ‘unlike’ filters is
identified as +/ the atom is identified as +/, and similarly for +. If on the other hand, both filters
return both 4 and y then the atom neighbourhood is in some intermediate state. The atoms in
the interface between the ' precipitate and the 4 host is a mix of v and the intermediate
states. This can be interpreted as a slight bias of the classifier towards ~ over 4/, which here is
desirable for reducing the false positives of 4. Though the MD relaxation certainly con-
tributes to the specific form of the interface observed in figure 3, it is unlikely to be the main
reason for the apparent reduction in the precipitate size since this effect persisted in this work
when testing a range of classifiers on ideal and MD relaxed structures.

4. Results - ordering within a single crystal

A single crystal of v Ni-20 at% Al was annealed at 1300, 1400 and 1500 K using MD as
implemented in LAMMPS [26] with a NPT barostat. The model contained 108 000 atoms
with thermal vacancies but no pre-existing +/ precipitate. The simulations were performed for
100 ns with time steps of 2 fs and used the Ni-Al EAM-type potentials of [16]. The number of
thermal vacancies (9 at 1300 K, 23 at 1400 K and 49 at 1500 K) was determined using
literature values (Hf,Ni = 1.56 eV, Hf,Al = 0.775 eV, Sf,Ni =33 kB’ Sf,Al =26 kB) [27] of
the vacancy formation enthalpies Hy and entropies St of pure Ni and Al as follows:
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Figure 4. Concentration of atoms identified as ~/-like for annealed single crystals of
108 000 atoms over a period of 100 ns at 1300 and 1500 K.

ey a1 oniHin
Nyac = Natoms X exp( — ——— + cuSral + CNiSf,Ni)v (5)
kgT kgT

where Nyoms 18 the total number of atoms in the model and c,; and cy; are the concentrations
of Al and Ni respectively. Note that for Hy and St the literature values were averaged when
multiple values were available. After the simulations completed the Steinhardt parameters for
| = 4 and | = 6 were calculated for all frames for all three filters (‘all’, ‘like’ and ‘unlike’).

In order to confirm whether chemical ordering occurs beyond thermally induced false
classifications, the global measure of the number of atoms classified as +/ at 1300 K and
1500 K was calculated and shown in figure 4. The following effects can be seen: (1) for both
temperatures the curves show a trend, (2) the concentration of +'-like atoms increases with
time and (3) the concentration of +/-like atoms is higher at higher temperature. Additionally,
all curves start from non-zero amounts of v because there will always be a small percentage
of atoms that are, by chance, in a 7/ environment initially. The exact thermal contribution to
false classifications is not known, but we think it is fair to assume that it would not lead to a
systematic increase or decrease, as observed in figure 4, and rather contribute in the form of
white noise, which is also observed and found to be small in comparison. After observing that
there is a global increase in the 4/ content it is of interest to understand if any spatially
localised structures emerge. Clusters of +/ precipitate can be constructed by linking +/-like
atoms that are less than 4 A apart to include 2nd nearest neighbours. Decreasing this distance
leads to an increase in the frequency of small clusters and a decrease in the frequency of large
clusters, whereas an increase in clustering distance produces the opposite effect. However, the
changes are small and do not affect the overall shape of the cluster size distribution. In
figures 5(a)—(c)) the resulting cluster size distributions before and after 100 ns annealing at
1300, 1400 and 1500 K are shown. The cluster sizes appear to follow near-exponential
distributions (as seen in figure 5(c)) that shift to higher frequencies with increasing
temperature.
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Figure 5. (a) linear and (c) log scale size distributions of +/ clusters before and after
100 ns annealing. Shown are the initial distribution (blue) and the final distributions at
1300 K (magenta), 1400 K (green) and 1500 K (red). (b) Linear cluster-size distribution
as shown in figure 5(a) for the single crystal of 7/ Ni-20 at% Al annealed at 1300 K
using MD together with fitted functions which solve the Becker—Doehring (B-D)
equation.

The kinetics of cluster formation and evolution during phase transformations can be
described by Becker—Doehring theory [28]. This theory derives the diffusion equation for the
temporal change in cluster-size distribution. Therefore the simulated evolution of the cluster-
size distributions from MD can be tested by solving the Becker—Doehring equation using the
calculated initial boundary conditions (see appendix for details). Tested were a constant
diffusion coefficient and a diffusion coefficient that varies with cluster size. It was found that
a constant diffusion coefficient best describes the simulations with values of
0.0029 atoms ns~ ', 0.0052 atoms ns ™' and 0.0057 atoms ns~ " at 1300 K, 1400 K and 1500 K
respectively. The derived model at 1300 K is compared to the distribution simulated with
MD, see figure 5(b). Fits to the data for 1400 and 1500 K look similar and are generally good
though the formation of larger clusters tends to be underestimated. This is likely due to the
quite simple assumptions of constant and linear functions for the diffusion coefficient.

The advantage of MD simulations is that they enable the atomic level dynamics of
ordering to be investigated using local measures. For example, to resolve the effect of
composition on ordering we can examine the concentration profiles of Al (ca;) and v/ (c.y) as a
function of time. This can be done as a projection along one axis since the effects are similar
along other axes. Figure 6 shows ca; and c., along the x-axis as a function of time at 1300 and
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Figure 6. c,; (left (a) and (c)) and c. (right (b) and (d)) concentration profiles as a
function of annealing time along the x-axis at 1300 K (top (a) and (b)) and 1500 K
(middle (c) and (d)). Part (e) displays the Pearson correlation coefficient between the
initial c4; and the ¢, at 1500 K, with ¢,/ varying over the simulation time.
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Ly

Figure 7. Two clusters of atoms are shown which are classified as -like after
annealing with MD for 100 ns at 1500 K. Pink atoms represent Al and blue Ni. The
superimposed cubes indicate ' unit cells which are in an antiphase orientation.

1500 K. The bin width along x is taken to be 2 A. The ca profiles (figures 6(a) and (c)) show
hill and valley type behaviour along x which is expected since the initial distributions were
created randomly. The ~/ profiles (figures 6(b) and (d)) show an increase in concentration with
time which becomes localised along x during the simulation period. This is particularly
evident at 1500 K. Furthermore, the increase in 4/ seems to be correlated with above average
Al concentrations in the calculated profiles.

In order to study the correlation between ca; and ¢ along the dimension x we use the
Pearson correlation coefficient, which is defined as p = cov(Y},Y,)/oy; oy, with cov(Yy,Y>)
the covariance of the random variables Y; and Y, and o the standard deviation. In figure 6(e) p
is shown as the correlation between the initial cA; and the time dependent c.. It can be seen
that p fluctuates around a value of 0.16 (at 1500 K) which indicates a small positive corre-
lation. Although not shown, a similar trend can be found when using the time dependent c4;
instead of fixing to the initial profile.

The kinetics of the ordering process produces clusters such as shown in figure 7. In this
example two clusters of +/-like atoms are shown. It can be seen that the clusters contain
characteristic (100) rows of Al atoms. The formation of these rows aids the ordering process.
In figure 7 one can also see that the two clusters are in antiphase orientation, as indicated by
the superimposed cubes connecting Al atoms along the edges of the +/ unit cell.

5. Discussion

In the previous sections we classified atoms according to the geometry and chemistry of their
neighbourhood. This led us to find systematic changes on the atomic scale as well in the
concentration profiles of +/ and the formation of clusters. In this section we are going to
discuss our method and the results in more detail and how they relate to phase transformations
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in Ni-based superalloys in particular and the differentiation of phases in atomistic simulations
in general.

5.1. Classification

The problem of classifying local atomic configurations was approached in this work using a
supervised learning method. Classifications can be performed using a large variety of algo-
rithms such as artificial neural networks, support vector machines and others [29]. In this
work we chose to use naive Bayes. This is because we wanted to have direct access to the
conditional PDFs and the option of extending the basis of recognisable phases without having
to re-train the classifier. The application of naive Bayes using a uniform prior for the phases is
justified by the task itself, to find individual atoms with /-like surroundings. If for example
an iterative update of the prior given the neighbourhood probabilities had been applied, a
subsequent smoothing would remove details we are interested in, such as small clusters.

The downside of the current approach is that effects from extended defects such as grain
boundaries are inseparable from the matrix leading to convoluted signals and therefore
convoluted conditional PDFs. Hence with the current approach a separation into individual
classes, such as of host and defect, is not straightforward. However, a defect such as an
antiphase boundary may still be discernable even though the respective atoms may not be
directly classified as such. But this shortcoming can be addressed as will be shown in a
forthcoming study. Despite being quite simple the current approach of using conditional
PDFs based on distorted ideal forms of the phases of interest with naive Bayes turns out to be
quite robust. We have demonstrated that it is quite capable of accurately distinguishing
between +/ and . This is promising particularly when one is interested in quickly studying the
behaviour of phases in given simulations without having to run additional calculations to
generate samples. Furthermore, this method should be directly extendable to other ‘features’
of local atomic configurations than Steinhardt parameters.

5.2. Clustering and ordering

As we have seen in figures 6(b) and (d), vacancy assisted ordering clearly takes place in the
simulated single crystal of Ni-20 at% Al. Using a semi-grand canonical ensemble approach
for modelling precipitation in alloys [30] we estimate that the two-phase 7' + ~y region of the
phase diagram lies between 17.6 at% Al and 23.5 at% Al, putting the simulated systems in
this work right into the middle. This position in the two-phase region provides the driving
force for the observed ordering. It may be surprising that the amount of +/ found increases
faster to higher levels with increasing temperature even though the driving force should be
higher at lower temperatures. This can be explained by the atomic mobilities, which are
higher at higher temperatures allowing for faster sampling of configuration space and
accelerated ordering and the higher concentration of thermal vacancies. However, longer
simulations would be expected to result in higher +/ concentrations in the order
1300K > 1400 K > 1500 K. At 1400 K after a long time we would expect 40.6 at% ~’ to be
present using the lever rule. Comparing figures 6(b) and (d) with (a) and (c) shows that
ordering is correlated with above average Al concentrations but in a non-deterministic way.
The non-deterministic behaviour may stem from the motion of the vacancies themselves and
their limited supply and mobility. In figure 6(e) we see that the initial ca; profile is positively
correlated with the time dependent c., profile. The correlation is found to increase from 1300
to 1500 K, where the significance of ordering increases as well. Hence we think that the
observed ordering can be interpreted as homogeneous ordering [7] which can precede or
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appear concomitantly with Al concentration profile changes and therefore ordering the phase
without decomposition. Possible continuations of the observed process could be spinodal
decomposition, also called ‘conditional spinodal’ [8], or nucleation and growth [7, 11, 12].
This leads us to believe that it is the onset of spinodal decomposition that is seen here, which
is consistent with experimental observations [13—15]. In order to clearly confirm spinodal
decomposition much longer simulations would be required.

In addition to the concentration profiles, we simulated cluster-size distributions and
modelled them using the Becker—Doehring theory. We created clusters by linking +/-like
atoms within 4 A of one another. This way of constructing clusters possibly explains the
slightly overestimated cluster frequency compared to that predicted by the theory. This is
because the theory assumes an attachment/detachment rate for a given cluster size implying
that their shape is not too dissimilar. This, however, is subject to the definition of a cluster. In
the present case the clusters can be quite spongy, as found previously in simulations of
ordering in a bce binary alloy [31]. More compact clusters were observed during simulations
of liquid-solid transitions [23, 32]. We suggest that by modifying the function used for the
diffusion coefficient a better fit may be possible and this would be useful for predicting of the
development of the cluster-size distribution for times longer than simulated with MD. Also, a
detailed investigation of the vacancy-cluster interaction for the observed ordering would be of
interest.

Lastly, we note that the formation of rows of Al atoms seems to be a relevant, possibly
rate limiting, step in the precipitation of v clusters since the global Al concentration is lower
than the equilibrium +' concentration. We anticipate that continued ordering will depend
strongly on the interaction of clusters as they grow and coalesce and that antiphase clusters, as
shown in figure 7, will probably slow down the overall growth process.

6. Conclusion

In this study we applied Steinhardt parameters using naive Bayes in a supervised learning
scheme to classify local atomic configurations in annealed single crystals of v Ni-20 at% Al
obtained from large MD simulations. The ordered structure 7/-Ni3Al (L1,) was characterised
with Steinhardt parameters sensitive to the chemical surroundings, separating them into ‘like’
and ‘unlike’ according to the species neighbouring a given atom.

The method developed allows for accurate differentiation between the v and + phases
under significant chemical and thermal distortion. It has enabled us to gain insight into the
evolution of local atomic arrangements in disordered Ni-20 at% Al systems using MD up to
1500 K and in doing so observe homogeneous ordering and the formation of 4/ clusters in
regions where there is above average Al concentration indicating the beginning of spinodal
decomposition. The simulated cluster size distributions increase both in time and with
temperature. This evolution obeys the Becker—Doehring theory which when parameterised
only slightly underestimates the cluster frequencies at large cluster sizes.

Lastly, the method used to generate a classifier based on artificial lattice distortions of
ideal versions of the phases of interest was found to be quick and reliable. It should be useful
for a range of phases other than ~ or 4/ which need to take into account the chemical
surrounding.
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Appendix

Becker-Doehring theory and the cluster-size distribution evolution

Here we model the cluster-size distribution on the basis of Becker—Doehring theory as
described in [28]. Adopting the same notation as in [28] we describe the cluster-size dis-
tribution Z, , as dependent on time ¢ and cluster size n. The central model equation is then

n

0 Zns = 0(q, 0nOnZns) + an(zvnqnonzn,zan(Ni)), (A1)

where g, is the probability of an atom attaching to a cluster of size n, O, is the cluster surface,
N, is the equilibrium cluster-size distribution and 0, = 0/0n. Neglecting the second term one
obtains the well-known heat equation 0,Z,, = 9,(D, 0,Z,,,) which is equivalent to

8tzn,z = Canzn + daflzm (A.2)

where D, = ¢,0, assuming time independence and ¢ = 8,D, and d = D,.

Equation (A.2) can be solved numerically given the observed cluster-size distributions
from MD using implicit Euler or ‘implicit diffusion’, [33]. The problem is discretised with
n € {0, N} and hence N + 1 grid points. An is 1 in all the cases considered. In the indices of
Z and D the quantity An is replaced by 1 for sake of clarity. The initial condition Z, q is taken
from the cluster-size distribution from the MD simulations after identifying and clustering +'-
like atom configurations.

The boundary condition Z, is set knowing that the number of smallest clusters will be
subject to change over time Z; , = g(t), decreasing or increasing depending on the atomic
interactions. Depending on whether D,, is constant or not with respect to n one can choose two
discrete forms of equation (A.2). When D, = D = constant we obtain the discrete form of
equation (A.2) as

ZAn: - izn,t-km +dZn-1sn0 = 2Znsnr + Zngresan) (A.3)
with the boundary condition using Zy,4a, = g(t + At) = g forn =1

LZI ot L(81 = 2Zy a0t Zogin) = 2

ar (An)® ’ ’ At

and Zy ;4 a, = 0 forn = N—1

! d Z,(ny_1)
AL ) s e ) = sy ) = L0y,

If on the other hand D, varies with n, equation (A.2) can be represented as ‘implicit
diffusion’, [33]
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1
At

c d
(Zpiv1— Zny) = E(Zn+l,t+l —Zpiy) t —= @101 — 2201 + Zng 10405

and for

An?
(A4)
with boundary condition for n = 1
1 dg, ( c 2d 1 ) ( c d )
—Zi ===+ =+ —|Zi - |— + |22,
AT AR n A2 AT A ARz )
n=N-1
1 d c 2d 1
—ZN_1: = ——=2Zn- +|—+ + —|Zn- .
AN A2 N2t (An A At) N—1,1+1

In order to describe the cluster-size distribution (equation (A.2)), the two finite difference

equations for D and D,, have to be solved using equations (A.3) and (A.4) respectively.
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