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Abstract

The pre-Silurian alluvial rock record is dominatedaccumulations of laterally-extensive, sheet-like
sandstone strata with minimal mudrock; a deposiiatyle frequently explained as representing
fluvial processes particular to “pre-vegetation” rtha While the sedimentological and
geomorphological influence of Palaeozoic embryoptiyand other higher vegetation has been
commonly inferred, the influence of the non-marmirobial matgrounds that preceded them has
been less well studied. The ?Ediacaran-CambrigiesSRouge of northern France and the Channel
Islands is a rare example of a predominantly adllusuccession which exhibits both pre-vegetation
sedimentary motifs and evidence for the existerfceemestrial microbial mats. The latter include
likely microbial sedimentary surface textures, émgmatic matground “pseudofossilatistophycus
and Arumberig and probable mat fragments and mat-related neixtates preserved in argillaceous
sediment. The sedimentological characteristicshef $eries Rouge are described and analysed in
order to assess the role of microbial influencepmvegetation alluvial systems. Near ubiquitgusl
trough-cross bedded sheet-braided facies, withyrgreserved channel-forms, indicate that alluvial
sedimentation was dominated by in-channel duneatan, and depositional-strike exposures reveal
the periodic downstream migration of complex bardfs. Lateral accretion elements and minor
discontinuous lenses of more argillaceous matargllocally present. Thus, despite the evidence for
matgrounds, sedimentary architecture was essgntiddlotic’. Using this evidence from the Series

Rouge, we argue that the surficial cohesion pralibe matgrounds did not exceed thresholds for



26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

reworking by hydrodynamic processes thus havinlg ldr no effect on their preserved sedimentary

architecture.

Keywords:Precambrian, fluvial, alluvial, architectural argify MISS, biofilm

1. Biotic influences on pre-vegetation river system

In modern rivers, vegetation strongly influencasrithl styles and processes through the moderation
of weathering rates, sediment supply, and the ptiomaf increased channel stability and surface
roughness (e.g., Schumm, 1968; Thornes, 1990;nkhPaola, 2007; Moor et al., 2017). In contrast,
ancient rivers that operated prior to the existenfcland plants were exempt from such influences.
By combining these understandings with physicatiente from the geological record it has been
demonstrated that the facies and architecture laeBzoic alluvium exhibit a stepwise evolution of
characteristics, stratigraphically aligned to etiolary advances in terrestrial vegetation (Cotter,
1978; Davies and Gibling, 2010a; Davies et al.,120&ibling et al., 2014). Complex heterolithic
architectures are far more common in rocks of Bilerian or younger age, reflecting how the
evolution of rooted tracheophytes provided noveanseof floodplain stabilization and the retention
and production of finer sediment (e.g., Algeo actiegkler, 1998; Gensel et al., 2001; Hillier et al.
2008). In contrast, alluvial sedimentary rocks o-Bilurian age exhibit a distinct suite of ‘pre-

vegetation’ characteristics (Table 1).

Despite the distinct nature of pre-vegetation allmy it is now recognised that the landscapes in
which such deposits were lain down were not whdlyiotic. Prior to their ‘greening’ by
embryophytes and other higher land plants, Eartbismarine environments likely hosted abundant
microbial mats and biofilms (e.g., Horodyski andakith, 1994; Noffke, 2010; Wellman & Strother,
2015). In light of this, an increasing number ofeet studies have postulated that microbiota may
have influenced geomorphic stability and processéxecambrian and early Palaeozoic rivers (e.g.,
Medaris et al., 2003; Sarkar et al., 2005; Erikssbal., 2009; Bose et al., 2012; Petrov, 20145201
lelpi, 2016; Santos and Owen, 2016). These asasrivere primarily made by combining (1) the

2
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recognition that mats would have been present énpite-vegetation realm, with (2) reference to
observations of microbial influences on sedimentancesses in modern environments or laboratory
experiments.  Such modern observations includeodstrations of how extracellular polymeric
substances (EPS), secreted by microbiota, altethtlesholds of sediment entrainment, transport and
deposition (e.g., Vandevivere and Baveye, 1992hiist et al., 2002; Friend et al., 2008; Malarkey e
al., 2015), or observations of how microbial matsigng substrate stabilization under moving fluids,
prior to their catastrophic failure (Krumbein et, d994; Hagadorn and McDowell, 2012; Vignaga et

al., 2013).

Understanding exactly how a microbial influence rhaye been exerted on pre-vegetation rivers is
currently hampered by a paucity of studies thavigedirect supporting physical evidence from the
geological record. In part this is because Precamltand early Palaeozoic alluvial strata only Isare
preserve fossil evidence for the presence of miatohats during deposition (Schieber, 1999; Noffke
et al., 2001; Davies and Gibling, 2010; Davies let 2011, 2016). Our survey of pre-vegetation
fluvial units includes only 9 formations which siltaneously host evidence for microbial life (Prave,
2002; Parizot et al., 2005; Yeo et al., 2007; Rasmn et al., 2009; Sheldon, 2012; Beraldi-Campesi
et al., 2014; Wilmeth et al., 2014; Petrov, 20181%). Even fewer studies have directly used
sedimentary geological evidence to support assertid how these ancient mats may have influenced

fluvial processes.

Petrov (2015) interpreted a microbial mat influencefluvial landscapes in the 1.58 Ga Mukun Basin
of Russia, but the sedimentary architecture ofafsociated strata was not detailed, and many of the
‘microbial-related structures’ within the fluviahéies are more parsimoniously interpreted as abioti
features (adhesion marks, ladder ripples, accratjodunes and soft sediment deformation; see
Davies et al., 2016). Santos and Owen (2016) [adstlithat the development and preservation of
Precambrian fine-grained meandering rivers coulgH@een promoted by microbial mats. This was
supported by the presence of one 8 metre-thickdimaied interval (including heterolithic lateral
accretion) within a 3000 metre-thick succession otfierwise sheet-braided sandstones of the

Neoproterozoic Applecross Formation in Scotlan@nt8s and Owen (2016) noted that no physical
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evidence for microbial mats is present anywherdénApplecross Formation. Medaris et al., (2003)
used petrological evidence from the Palaeoprotécd2araboo Quartzite (northern USA) to infer a
microbial influence on pre-vegetation alluvium. ejtsuggested that the supermature nature of these
fluvial sandstones may have been promoted by iatehemical weathering of interfluves, stabilized

for prolonged periods by hypothesised microbial cists.

With these notable exceptions, most other repoftsa omicrobial influence on Precambrian
sedimentation are wholly hypothetical (e.g., Bosalg 2012) and there is thus a knowledge gap
arising from a scarcity of studies which directlyeusedimentary geological evidence to support or
contend assertions of microbial influence on prgetation rivers. The present study, attempts to
redress this with reference to the Ediacaran-CambiSeries Rouge” of northwest France, which
provides an excellent opportunity to study theraté&ons between matgrounds, pre-vegetation river
systems, and preserved alluvial architecture. Jéres Rouge is well-suited for such a purpose in
that it contains both well-exposed outcrop of akinarchitecture, in addition to multiple lines of
evidence for former microbial mat colonies. Thiéger is organised as follows: (i) an introduction t
the geological context of the Series Rouge; (iijpaalysis of the lines of evidence for microbié i
within the succession; (iii) an analysis of theiseghtary architecture and facies of the succession;
and (iv) a discussion of how microbial life (evided in Section 3) influenced the sedimentary

characteristics of the Series Rouge (evidence@atiGh 4).

2. Geological Context of the Series Rouge

Neoproterozoic and lower Palaeozoic red bed suicressdeposited during the terminal stages of the
Cadomian Orogeny, crop out across northwest Framgk the Channel Islands (Renouf, 1974;
D’Lemos et al., 1990; Went and Andrews, 1990). tijraphic nomenclature of the red beds is
confused, in part due to the scattered nature wirapl in isolated geological inliers and outliens,
islands, and in part due to the cross-border spoféaslitcrop in northern France and on the UK
Channel Islands of Alderney and Jersey (Fig. 1p $tnatigraphic terminology used for the French

outcrops is localized to each individual outcrojt,beut they are informally grouped as the “Séries
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Rouges du Golfe Normano-Breton”. The British Gedaab Survey recognises the Alderney
Sandstone and Rozel Conglomerate (Jersey) astéiscegping units, but does not relate them to one
another or to the French outcrops. Here we uséethe ‘Series Rouge’ to group the geographically-
proximal red-bed outcrop areas on both the Chamsiahds and French mainland. Formal
stratigraphic correlation is presently impossille ¢o a lack of reliably dated markers, but wethse
term to refer to all the unfossiliferous sandstoresglomerates, and mudstones that share a common
basal unconformity above deformed Neoproterozosdeshand volcanic rocks (the Brioverian Series)
or plutonic igneous complexes in the region (sunisedrin Fig. 2). The precise age of the Series
Rouge is still subject to discussion. Red-bed secg® in Normandy unambiguously underlie
Cambrian Stage 3 (521 — 514 Ma) limestones (dagdtidopresence of the trilobiigotina (Pillola,
1993)) and pre-trilobite marine siliciclastics frabambrian Stage 2 (529 — 521 Ma). The red beds in
northern Brittany are less well constrained strapyically, but are lithologically similar to the
Normandy red beds. The French Geological Survegiderns them Early Ordovician, on the basis of
radiometric data obtained from the intercalatedufNo-Plouezec andesitic volcanics (Auvray et al.,
1980). However, field relationships exhibited bye thndesites indicate the radiometric date is
undiagnostic (Went, 2016) and palaeogeographic idersions render an Early Ordovician age
implausible. Palaeocurrent data demonstrate thatial strata of the Series Rouge were derived from
the west § = 84°; n = 431), but there is no potential Earid@rician source for such sediments in
this direction, where well-dated marine shelf sezhis (the Gres Armoricain) were being lain down
during this interval (Paris et al., 1999; Dabardakt 2007, 2009). The weight of evidence thus
suggests that the Series Rouge were deposited dretilve latest Ediacaran and earliest Cambrian —
although even if they were Early Ordovician theywdostill unambiguously represent pre-vegetation
strata. Deposits included in the Series Rouge cawvange of depositional environments (Fig. 2). At
Goélo, the lower Port Lazo Formation passes upwaots alluvial fan-alluvial plain deposition into

a subtidal setting, before transitioning into beaidluvial deposition of the Roche Jagu Formation
(Went, 2016). At Baie de St-Brieuc, with the exéaptof a 30 m interval of mature marine quartzites
representing nearshore marine environments (W@it3)2 braided alluvium predominates. Alluvial
fan conglomerates dominate the stratigraphy oneyef@é/ent et al., 1988; Went, 2005), whereas

5
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coeval sandy alluvium (and subordinate marine dand¥ comprises the Alderney succession (Todd
and Went, 1991; lelpi and Ghinassi, 2016). Couvitl@mation conglomerates and arkoses most

likely have an alluvial origin (Doré, 1994).

3. Evidence for microbial life in the Series Rouge

A suite of circumstantial evidence for microbideliin the Series Rouge consists of petrographic
evidence, the presence of sedimentary surface résgtuand two enigmatic ‘pseudofossils’,
Aristophycusand Arumberia The following sections critically discuss thdises of evidence from
the Fréhel and Port Lazo Formations (Fig. 2), comtbiwith previously reported evidence from the

Rozel Conglomerate in Jersey (Bland, 1984).

3.1. Petrographic Evidence

Positive identification of microbial mat featureerh petrographic thin sections can be challenging
because they share similarities with other lamuhatieuctures produced by purely physical means
(e.g., differential compaction of anisotropic sedih(Schieber, 1999)). Despite this, circumstantial
petrographic evidence for the presence of matgeuhding deposition exists within fine-grained
alluvial sedimentary rocks of the Fréhel Formatiwhjch occur either as discontinuous layers, or as
red or white blocky intraformational mud clasts sandstones. Such mudstones and siltstones
contribute <1% of the thickness of the formatioat, where these have been sampled, they always
contain features in thin sections that may be dtarstic of former microbial mats, including

abundant detrital mica and probable carbonaceoteriaa

Detrital biotite mica is a near ubiquitous compdnehboth red and white mudstones of the Fréhel
Formation (Fig. 3). The biotite micas are most camiy weathered and degraded, and present as
aligned, near-isotropic (due to alteration to fewkide), <0.5 mm flakes with little or no obserieab
cleavage (Fig. 3A). The weathered biotite contrestis locally-present fresher biotite, which exltgoi

a pale green colour and characteristic cleavageeplgFig. 3B). Mica flakes vary in abundance
between sampled mudstones, either displaying an digtribution across the sample (Fig. 3A), or
occurring as discrete, dense layers in which maee$§ surround grains in an anastomosing fashion

6
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(Fig. 3C, 3D). The segregation of mica results fregttling velocities that are much lower than for
quartz grains of similar size (Doyle et al., 1983)r this reason they tend to float and accumulate
preferentially in quiet water settings along witlitss and clays. Such low energy fluvial
subenvironments (such as floodplain ponds) are muigtd to matground development. Here, mica
may avoided resuspension and become trapped amdl wthese environments due to the secretion
of EPS by microbial matgrounds, termed the ‘fly grapffect’ (e.g., Gerdes and Krumbein, 1987;
Schieber, 1999, 2004; Schieber et al., 2007). d$sociation between densely packed mica and
microbial matgrounds is further suggested by ahrgtvex-upward features within mica layers (Fig.
3B, 3C). This morphology is frequently described"aavy-crinkly’ (e.g., Gerdes and Krumbein,
1987; Schieber, 1999, 2004) and is sometimes eseevidence for microbial mats where present in
the sedimentary record (Schieber, 1999; Sur eR@06; Deb et al., 2007; Samanta et al., 2011), on
the basis that modern microbial mat laminae regutiisplay a similar morphology (Horodyski et al.,

1977; Krumbein and Cohen, 1977).

Fragments of possible carbonaceous material acepassent in petrographic thin sections of the
Fréhel Formation, and may represent comminuted aliat mats. Carbonaceous material is
predominantly isotropic (Fig. 3E, 3F, 3G). Carbataes material occurs in two ways: (1) as elongate
laminae, potentially representimng situ matgrounds (Fig. 3E); or, (2) more commonly, a50nm
long stringers, potentially representing reworkeagients of matgrounds (Fig. 3F). In instances
where the material is present as laminae, thesallysaccur in isolation and are separated by up to
0.5 mm of background sediment (Fig. 3E). Carbonasdaminae are particularly common in thin
sections made from intraformational mud clasts,ralieey exhibit discrete internal laminae that may
have strengthened the clasts against physicatiaitr{Fig. 3G). In contrast, stringers occur in
isolation, with evidence for internal cohesion aiwidity, such that they were able to bend and fold
prior to and during deposition; some carbonacedrisgers are differentially compacted around

isolated quartz grains (Fig. 3F) (Schieber et2f11,0).

Caution is required in distinguishing carbonaceftalees from degraded biotite. Detrital biotite tend

to fray at its margins, break along cleavage plaras become isotropic when altered to iron oxide
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(Fig. 3H) (Fordham, 1990). In the Fréhel Formatioatbonaceous stringers may be distinguished
from detrital biotites by (1) lower relief (Fig. 3 Fig. 3E), (2) more continuous laminae (Fig. 3E),

and (3) a lack of evidence for cleavage planes.

3.2. Sedimentary Surface Textures

Mudrocks within the braided alluvium of the Fréfk@rmation and the probably marine-influenced
alluvial plain deposits of the Port Lazo Formataiaplay a variety of sedimentary surface textures.
Some of these may be related to microbial processdsvould thus be referred to as referred to as
‘microbially induced sedimentary structures’ or MBISsensu Noffke et al.,, 2001). Obtaining
conclusive proof of a microbial origin for a partiar sedimentary surface texture in the ancient
record during initial field observation can be gashatic, as many abiotic mechanisms can produce
MISS-like textures (Davies et al., 2016). As aute®ach surface texture described below is assign
a sedimentary surface texture category, indicatigdegree of certainty of a microbial formation
mechanism (Davies et al., 2016). Category B arenitigely biotic (microbial) and category A are
definitively abiotic. Category Ba is assigned ftnustures with evidence for a biotic origin, but an
abiotic origin cannot be ruled out (Ab for the cerse situation). Surface textures with a plausible

biotic origin, but where there is no clear evideaoe classed ab.

3.2.1. Transverse wrinklggb); (Fréhel and Port Lazo Formations): Wrinklsgr{suDavies et al.,
2016) may have abiotic or microbial origins. Withime Fréhel Formation, wrinkles are irregular,
broadly subparallel and occur superimposed onuteegnm-relief topographic highs that are spaced
approximately 1 cm apart (Fig. 4A). The long axethese structures trend E-W, perpendicular to the
predominant eastward flow orientation observed frwss-strata and rippled surfaces. Within the
Port Lazo Formation, wrinkles display strong, platahlignment, have mm-scale spacing and are
highly discontinuous (individual ridges are predoamitly < 2.5 cm long) (Fig. 4B). The strike lines
are highly variable (unlike those in the FréhelrRation). Individual ridges are spaced 1 — 1.4 mm

apart and have heights < 0.5 mm.
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3.2.2. ‘Bubble’ texturdab); (Fréhel Formation): Multiple, circular, epirdlibubbles’ are no more
than 1 mm in diameter and have a patchy distrinutioross the surface, but when present occur as
densely spaced clusters (Fig. 4C). They differpioedief bulges (Section 3.2.3) by being smalled an
more densely packed. The structures have a nefarmngize distribution and rarely overlap. Similar
textures may be formed by a respiring matgroundfiddcet al., 1996), though abiotic origins cannot
be ruled out. For example, within modern intertidatiments, air-escape bubbles frequently form
near the strandline during falling tide, as wellb@neath clay veneers (De Boer, 1979; Davies et al.

2016).

3.2.3. Epirelief bulge¢Ba); (Fréhel Formation): Simple isolated bulges ocmamumerous bedding
planes (Fig. 4D). They occur as sub-circular dopreserved in positive epirelief, typically 2 - 4 mm
in diameter. The formation of similar bulges hasrbpreviously attributed to gas release from within
a microbial surface (Dornbos et al., 2007; Ger@08,7). Oxygen-rich bubbles may remain stable for
weeks or months if they are not disturbed, perngtiihem to become enmeshed by filamentous

cyanobacteria (if present), and potentially presériBosak et al., 2010).

3.2.4. Ruptured dome®Ba) (Port Lazo Formation): Ruptured domes occur adadegyArumberia

(Section 3.3.2) on desiccated surfaces withithe Port Lazo Formation lower Member. These are
discoidal ring shaped bulges no more than 30 mrdidameter and 3 mm in height. Each dome
contains a central depression (Fig. 4E). Shapeevdrom circular to fairly elongate. Domes are
typically clustered. Ruptured domes are probabdyrdsult of burst bubbles that could occur either

within a matground or clay veneer.

3.2.5. ‘Elephant skin texturgBa); (Port Lazo Formation): The term ‘elephant skixttre' has
become a bucket term for many different texturesjrig been consistently misapplied in recent years
(Davies et al., 2016), but the Port Lazo Upper Memiontains infrequent examples of the texture
that match the original description of Runnegar Badonkin (1992). The texture consists of a tight
network of reticulate ridges (Fig. 4F). Width offividual polygons within the network is < 5 mm.

Orientation of individual ridges are highly irregul The origin of the structure is uncertain, lhtas
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been described from multiple microbial matgroundida, particularly in Ediacaran strata (e.g.,

Gehling, 1999; Steiner and Reitner, 2001).

3.2.6. Curved shrinkage crackab) (Port Lazo Formation): Curved cracks with tapgreadges are
preserved in the Port Lazo Formation (upper Menalody) (Fig. 4G). It has been proposed that such
cracks require a microbial binding of surface seitrto form (Gerdes, 2007; Harazim et al., 2013),

though abiotic explanations also exist (Allen, 1,98&tin and Rogers, 1991; Pratt, 1998).

3.2.7. Reticulate marking¢Ba) (Port Lazo Formation): Reticulate markings arecastonally
associated wittArumberiain the Port Lazo Formation (Fig. 4H). Such markimgay develop on a
microbial mat when filamentous bacteria glide, idelland amalgamate (Shepard and Sumner, 2010),

or from the tangling of algal filaments (Daviesaét 2016).

3.2.8. Assessing microbial origins for the sediragnsurface textures

Interpretations of microbial origins for these seentary surface textures are made with a caveat of
reasonable uncertainty. The majority of the surfas¢ures described above can be classified as ‘ab’
(Davies et al., 2016) as there is no unambiguoigeaee to support either a definite biotic or aioiot
formation mechanism. However, the high abundance diversity of enigmatic ab and Ba
sedimentary surface textures within close spatiaimity may lend support to a microbial origin for
at least some of the textures because (1) microbgds broaden the potential range of interaction
between physico-chemical processes and a sedimenudace; (2) and can be interred at different
stages of their morphological development (Schieb@89; Gehling and Droser, 2009; Davies et al.,
2016, 2017).

3.3 “Pseudofossils”

3.3.1.Aristophycus

Two examples of the enigmatic branching strucnistophycugOsgood, 1970; Davies et al., 2016)

occur on a single bedding plane of very coarseagrhitrough cross-stratified alluvial sandstong.(Fi
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5A), 50 metres above the base of the Fréhel Foomgfig. 2). The sediment immediately overlying
the structures is considerably finer (fine to medsand) and more micaceous (Fig. 5E). Petrographic
evidence demonstrates that the composition of #ieed Aristophycusstructure is predominantly
qguartz and feldspar (Fig. 5B), but the sandstorderdying the branching structure hosts densely
packed detrital mica flakes (Fig.5D). Detrital misdess common within the host sandstone at greate

distances, both laterally (Fig. 5C) and verticéfig. 5D) from theAristophycusstructures.

Three hypotheses féwristophycudormation have been proposed: (i) Expulsion ofpwater through
burrow cavities (Seilacher, 1982); (ii) Dewaterioigunconsolidated sands beneath an impermeable
clay seal (Knaust and Hauschke, 2004) (iii) The ement of fluidized sediment trapped beneath an
impermeable microbial mat (Seilacher, 2007; Kumad &hmad, 2014). The sandstones of the
Fréhel Formation pre-date terrestrial burrows sofitst hypothesis can be rejected in this instance
The two described examples Afistophycusare interpreted as dewatering structures incoripgyat
elements of hypotheses ii and iii above. Expeflecte fluid appears to have been unable to migrate
vertically upwards through the micaceous sandstomkinstead moved laterally from a point source
in the very coarse sandstone along a conduit belffesgpating into a small number of breach points i
the overlying bed. ThusAristophycuss interpreted to mark the route of water escapeutih this
locally heterogeneous system. The isolated stegifgc occurrence of the structure is explained by
the fact that the bulk of the Fréhel Formation rdsomore high energy fluvial deposition, and is
unsuited to the formation @fristophycusdy virtue of being homogenous with regard to pexiiléy.

The role of mats in the origin is inferred from tlensely packed detrital mica immediately

underlyingAristophycugFig. 5D) (see Section 3.1).

3.3.2.Arumberia

Multiple red or reduced drab mudstones within tloet Razo Formation contain examples of the
enigmatic sedimentary surface textubeumberia(Fig. 6). The most prominedrumberialocation
occurs near the top of the Lower Member of the Reto Formation at Bréhec (Fig. 2), where
multiple examples are spread extensively acrose0an§ desiccated surface within a heterolithic

mottled red bed succession that records probataéhtiinfluenced alluvial plain facies (Went, 2016)
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Previous reports have also noaimberiawithin basal red mudstones of the Rozel Congloteeat
Téte des Hougues, Jersey and in red mudstoneyiogetthe Erquy Conglomerate at Pointe des Trois

Pierres, Brittany (Bland, 1984).

Arumberiawas originally interpreted as an Ediacaran metad@laessner & Walter, 1975) before
being reinterpreted as a physical sedimentary tstre¢Brasier, 1979), and is now more commonly
described as a microbially-induced sedimentaryctire (Mcllroy & Walter, 1997). It comprises a
series of parallel or sub-parallel, occasionalfyfgiating rugae (< 1 mm relief), spaced ¢c. 1 - 3 mm
from one another (Fig. 6A, 6B). In the vast mdjodf instances, the rugae are seen as paraléd,lin
often in association with small 'spheroid impressioBland, 1984), 0.5-1.5 mm in diameter and < 1
mm in relief (Fig. 6C). Petrographic thin sectiatemonstrate that carbonaceous laminae occur in
close association with th&rumberia (Fig. 6D, 6E). The structure remains enigmatid, ik tight
global stratigraphic range between 630 - 520 MaariB] 1984), association with carbonaceous
laminae, desiccated nature within subaerially-eeddacies, and morphological complexity suggest
that it likely represents a preserved fossilizedgmaind organism (Kolesnikov et al., 2012; Davies e

al., 2016).

3.4. Microbial Landscapes of the Series Rouge

With the possible exception éfrumberig none of the characteristics described in the alsections

are definitive proof of microbial matgrounds, whaken in isolation. However, taken together, the
co-occurrence of a variety of lines of circumstahtevidence, including petrographic signals,
sedimentary surface textures, and discrete psessitsfplend support to the contention that the
depositional environments of the Series Rouge wetenized by matgrounds. There is a strong
facies-dependency to these signatures. Withirdedaglluvial facies (Fréhel Formation), evidence
for matgrounds is restricted to more quiescent esubronments, rather than higher energy sandy
channels. In coastal alluvial plain facies (Porzd.d&ormation), a variety of sedimentary surface
textures, Arumberig and petrographic signatures all occur in closedpnity within desiccated,

subaerially exposed mudstones. Thus it appeatsitieas operating in the Series Rouge depositional
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319 environments would have had the potential to imtewdath microbial mats in both quiescent parts of
320 their channel belts, and within their distal cohstaches. The effect that these mats had on
321 hydrodynamic processes is assessed below throudh st the sedimentary architecture of the Series

322 Rouge alluvium.

323 4. Sedimentary Characterisitcs of the Fréhel Formabn

324  Detailed accounts of the sedimentary facies of3éees Rouge have previously been published and
325 are summarised in Figure 2 (Doré, 1972; Todd andit\991; Went and Andrews, 1991; Went et
326 al., 1988; Went, 2005, 2013, 2016) but the sediargrairchitecture has been less comprehensively
327 studied (lelpi and Ghinassi, 2016). Detailed evumaof sedimentary architecture requires high
328 quality, extensive exposures. The most suitableosxes in the Series Rouge occur in the Fréhel

329 Formation.

330 The Fréhel Formation is characterised by repetistzecked 0.2 - 1.0 metre thick cosets of trough
331 cross-stratified sandstone, separated by eroslmmatding surfaces (Fig. 7, Fig. 8A). The spacing
332  between bounding surfaces decreases up throughoth®tion concomitant with a decrease in
333  average cross-set size. Conglomerates are commandahe base of the formation, but higher up the
334  section they are limited to laterally discontinudeisses or layers overlying down-flow dipping bar-
335 form reactivation surfaces (Fig. 8B). Fine argilaas sandstone and mudstone are scarce, restricted
336 to very thin, discontinuous lenses and contribut&#%o of total thickness. Palaeocurrents display a
337 strongly unimodal eastwards palaeoflow directiOn=( 84°; n = 431; variance = 021 165),

338  consistent with previous studies (Went and Andrei99.1).

339  4.1. Architectural Analysis of the Fréhel Formation

340 Coastal and quarry exposures of the Fréhel Formgieymitted analysis of: (1) the dimensions,
341 geometry and composition of constituent sedimendids) (2) stacking patterns and lateral
342  relationships from depositional-strike successi@psrpendicular to palaeoflow), where a greater
343  quantity of accretion macroforms were readily idetile; (3) local downstream variation from

344  depositional-dip successions (parallel to palaggflevhich were better suited for revealing detafls
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lateral terminations and stacking patterns of iitlial bar-forms, channel-fills, and inclined latera
accretion surfaces.

Photomosaics of laterally-extensive strata weresttanted during a reconnaissance visit and later
used in the field so that beds could be accurdtalyed and locations of palaeoflow measurements
and architectural elements precisely recorded, iptmm a three-dimensional reconstruction of
alluvial deposits (Allen, 1983; Miall, 1985, 1996png, 2006, 2011). Within the most extensive
exposures, coset boundaries were seen to changenminence laterally, passing into boundaries
separating individual sand-bodies. In outcrop, sti@nsitions can be picked out by variable
weathering expressions of the bounding surface asiséd because larger bar-forms can separate into
numerous smaller bars down-section (Allen, 1983)as been suggested that annotation of bounding
surfaces should leave no ‘hanging lines’ (Miall9&® but as the lateral transitions in these irestan
reflect original depositional processes, connediimgs is considered potentially misleading.

The cliff sections provide good lateral exposures@dimentary architecture, but often at the expense
of vertical access. However, coastal outcropsoatt® aux Chévre (Fig. 1) permitted detailed study
of a c. 49 m thick vertical succession. The stdpp&ture of the exposure meant that architectural
elements could still be accurately mapped laterdta collection was repeated for multiple

vertically-stacked bar-forms, giving an indicatiofithe temporal evolution of fluvial style.

4.1.1. Observed Architectural Elements vs. Interpreed Architectural Elements

Subdividing ancient alluvium into architectural ralents permits the interpretation of past fluvial
processes (Miall 1985). Such elements, within tlegieS Rouge, include sandy-bedforms (SB),
downstream accretion (DA), downstream-lateral d@mme(DLA), lateral accretion (LA), upstream
accretion (UA), Fines (F) and Channels (CH) (eMiall, 1985; Long, 2011) (Fig. 9). Whilst sound in
theory, the practical application of this in naturack outcrops has limitations because confident
differentiation of bar-forms and channel-fills rés large, clearly-weathered three-dimensional
exposures that are not always available. For ebagripe term accretion macroforrnencompasses
all elements where cross-bed sets/cosets are galhetelated to their underlying surface (e.g.,,DA

DLA, LA, UA elements (Fig. 9)). Conversely, the titiguishing characteristic of sandy-bedforms
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(SB) is that they are not genetically related teirttunderlying surfaces (Miall, 1985). However
accurately distinguishing SB from low sinuosity @ton macroforms (DA, DLA) can only be
achieved where there is both good outcrop quality arientation in relation to flow direction.
Depending on the balance of depositional-dip/-strikxposures in an outcrop belt, exposure
orientation can impose an observation bias on amysus of architectural elements within a
succession. A further discordance between theatedind practical architectural element analysis is
that, in the field, many natural exposures of cimsdded facies cannot be directly related to déposi
of macroforms. This may be because fields of ripplled dunes are genuinely genetically unrelated to
their underlying surfaces, but often it may simjly because the vagaries of outcrop exposure
prohibit an accurate understanding of the relatignbetween inclined foresets and their underlying

surface.

In order to mitigate against any inherent uncetyaiimvolved in the study of natural rock outcros,
this study we differentiate between those archirettelements that we can classify definitivelygd an
those which can only be identified with a degre@ntdrpretation. To avoid conflation of observation
and interpretation, if an accretion macroform wagrpreted only and not directly measured, it was
given the prefix ‘i’ (e.g., iDA, iLA) (Fig. 9). Th prefix was also assigned to ‘sandy-bedforms’,
which are here distinguished into two categoriely: Those unambiguously unrelated to their
underlying surface (SB); (2) Those which may or may be genetically related, but where exposure
prohibits an understanding of the relationship leetwinclined foresets and the underlying surface

(iSB).

Within the Series Rouge, the vast majority of eletedn depositional-strike successions, and the

majority in depositional-dip successions were i§gg. 9).

4.2. Sheet-braided architecture of the Fréhel Fornt#on

Sedimentary bodies in the Fréhel Formation eitlteupnassimple sheetéGibling, 2006), with aspect
ratios regularly exceeding 75:1 (determining precatios is usually constrained by exposure), mostl

recording in-channel dune migration, or as mweplex bar-formsrepresenting both the migration
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of accretion macroforms and in-channel dunes. maprity of simple sheetsonsist of 1 — 3 stacked
sets of trough cross-stratification, with planad daterally extensive set, co-set and sand-body
bounding surfacesComplex bar-formsre differentiated from simple-sheets by the preseof low-
angle, inclined surfaces representing the increahegitowth of individual bars. These accretion
macroforms comprise different elements: whilst DAamoforms are by far the most abundant (Fig.
8C, Fig. 10A, Fig. 11C; Fig. 13), LA, DLA and UA mforms also occur (Fig. 10, Fig. 11; Fig. 13).
Co-set and set boundaries are typically inclinedgi@ater angles than underlying incremental

surfaces, and the lateral extent of individual aces is far less than in simple sheet-sandstones.

4.2.1. Stacked bar-forms at Pointe aux Chévres

Stacked bar-forms crop out in coastal sectionsntated parallel to depositional dip at Pointe aux

Chevres (Fig. 10). Fig. 10A shows accretion macrofowithin 20 successive bar-forms.

Low-sinuosity accretion macroforms (DA, DLA) domiadhis succession. Lateral-accretion surfaces
(non-heterolithic) are apparent but uncommon. Sbareforms display significant morphodynamic
variation. For example, Figure 11A displays a prnesg bar-form within which the mode of bedform
migration can be seen to transition from net DLAclined cosets 30 - 60° from the underlying

surface) to net DA (inclined cosets 0 - 30° frora timderlying surface) over a distance of 15 m.

Depositional-strike exposures were also studidelaitite aux Chévre. These most commonly display
sheet-braided architecture (aspect ratios >20: dtté€; 1978)), with thin, tabular sand-bodies
extending laterally for at least 55 m. Channelgies are notably rare (2 occurrences), but where
present they exhibit < 1 m in erosional relief sav@ gently-dipping. Subordinate discontinuous
bedding is apparent (Fig. 12), typically charastdi by planar cross-stratification which diminishes
in thickness towards sand-body margins. In oneaits, discontinuous bedding is succeeded by a
thin (<10 cm) red mudstone (possible bar-top holfthv (Fig. 12C). In thin section, this mud bore

carbonaceous material and abundant detrital msésak Section 3; Fig. 12D).

4.2.2. Oblique to depositional-strike architectureat Sables d’Or Quarry

16



423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

Quarry faces at Sables d’Or provide intermittenia$itional-dip and depositional-strike exposure of
both simple sheets and complex bar-forms, extentliBdgm in total and >125 m continuously (Fig.
1). Sand-bodies are 1 — 3.5 m thick and commonteed exposure width; suggesting deposition as
thin, narrow-broad sheetsgnsuGibling, 2006). No fine grained horizons were oledr but mud

clasts are common.

Typical sand-body architecture is presented in f@diB. Vertical cliff exposures were inaccessible i
their upper levels; palaeocurrents were not estcthith these levels as they could not be directly

measured.

Trough cross-stratification is near-ubiquitous, hwitross-set thickness displaying no upwards
decrease within individual bodies. No facies traoioccurs across major surfaces, even on inclined
surfaces representing bar-form growth. Major emaidounding surfaces are dominantly planar.
Reactivation surfaces bounding co-sets vary sicpnifily in their lateral extent. In simple sheétgse
surfaces are predominantly planar, and regulartgrek laterally for over 60 m. Within bar-forms,
gently dipping accretion surfaces rarely exceedn8®efore terminating against major erosional
surfaces (Fig. 13). Gently inclined erosional seoalso dissect individual sand-bodies, possibly
representing fluctuating stages and bedform aligrimeéthin the overall system (e.g., Fahnestock,

1965; Cant and Walker, 1978; Miall, 2010).

Sandy-bedforms are the dominant element in depasitistrike/oblique exposures. Clear DA and
DLA macroforms are discernible in places, but arevitably less prominent than in depositional-
strike successions. Inclined surfaces represemisgible sandy lateral accretion (iLA) are present
but have minimal contribution to the overall arebiure (Fig. 13). Preserved channel margins aee rar

(4 occurrences) (Fig. 13). Maximum dip of channealgins varies from 5 - 18°
4.2.3. Depositional-strike architecture at Tlot Sait-Michel

Figure 14 shows the interpreted architectural efésim a section from near the top of the formation

at Tlot Saint-Michel. The section is orthogonalstightly oblique to palaeoflow and shows numerous
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low angle inclined surfaces here interpreted as dml iDLA elements. The figure also displays

discontinuous mudstone deposits.

4.3. Interpretation of fluvial style

The Fréhel Formation almost exclusively consiststacked, sandstone sheets, typically 1 — 2 m
thick, with sedimentation dominated by in-channghel migration, and with rarely observed channel
margins less than 0.5 m high. Stacked accretiomof@ens (Fig. 11C) demonstrate that not all sand-
bodies were deposited in single episodes of flapdmflow may have been perennial (Bristow, 1987;

Best et al., 2003).

Mudrock is scarce in the Fréhel Formation (thougbdmes marginally more common up section).
This may relate to the poor preservation of bar aop floodplain facies: most sandbodies are
erosionally truncated, indicating only partial preation of alluvium during river aggradation.
Alternatively the paucity of mudrock may reflectisaent bypass (due to highly variable discharge or
aeolian winnowing; Long, 1978; Dalrymple et al. 859 Aspler and Chiarenzelli, 1997; Went, 2005)
or a lack of mud in the system (i.e., inherenthy lmud production due to the absence of vegetation-
mediated weathering; Davies & Gibling, 2010). Thes discontinuous mud lenses that are present

are interpreted to have been deposited in slackwatés of the channel belt.

Bar-form orientations indicate that there was aaral low-sinuosity to the sand-dominated fluvial

system, with the majority of identified accretioraenoforms only migrating O - 30° relative to

underlying, down-flow dipping surfaces. The neaiquity of trough cross-stratification throughout

the sequence can be seen to be the result of narrohannel sedimentation dominated by migrating
sinuous-crested dunefare sandy lateral accretion surfaces likely réfleteral accretion on

longitudinal bars within this low sinuosity syst¢Bristow, 1987).

The predominant sedimentary style of the Fréheination is thus one of sheet-braided architecture
with very low mud content, likely reflecting sedintation from a large, low-sinuosity, perennialt(bu
possibly seasonally-variable) braided river. Amgéa-scale morphological variability, which is only
ever apparent in exceptionally extensive exposwegpre-vegetation alluvium (e.g., lelpi and
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Rainbird, 2016), cannot be assessed here due ltelFférmation exposure constraints. However, the
sedimentary characteristics of the formation amstent with typical pre-vegetation sandy alluvial
successions, which typically present sheet-braglehlitecture(sensuCotter, 1978) at normal outcrop
scale (e.g., Long, 1978, 2006; Fedo and CoopelQ;1R8inbird, 1992; McCormick and Grotzinger,
1993; Nicholson, 1993; MacNaughton et al., 1991kdSon et al., 1998; Koykka, 2011; Marconato et

al., 2014; lelpi and Rainbird, 2015).

5. Reasons to doubt matgrounds as stabilizing agent

The meso-scale sheet-braided architecture of thleeFFormation (Section 4) demonstrates that there
is no evidence suggesting that matgrounds (Se8jaifered any level of landscape stability to the
Series Rouge fluvial systems that could be compstrdtat provided by land plants in Silurian and
younger counterparts. This is contrary to studied have hypothesised that microbial mats might
have fulfilled a similar role to land plants, asog®rphic stabilizers, on pre-vegetation Earth (e.qg.
Bose et al., 2012; Petrov, 2014, 2015; Santos & rOWwO16; lelpi, 2016). However, this is perhaps
unsurprising as, in order for biostabilization tgnificantly affect fluvial deposits, it is vitahat any
biological cohesion exceeds physical erosive forcEeur lines of evidence suggest that microbial
mats do not and could not have provided such rgguevels of cohesion, and are discussed in the

following sections.

5.1. Matgrounds are surficial features

One key difference between matgrounds and higmek pdants is that the latter have deep substrate
anchorage, accentuated by palimpsesting of multipieerations of roots. The increased cohesion
associated with such underground roots has beemrddrated to provide reinforcement of bank

sediments (e.g., Smith, 1976; Bridge, 1993), insirepthe critical shear stress of river banks and
limiting undercutting. In a classic study, Smit®{6) demonstrated that, within the Alexandra Valley

(Canada), grass roots on the floodplain margingvef channels accumulated down to depths of 7.6
metres; far in excess of the depth required tofeeie banks against caving (in this instance, 3.5

metres — the depth of the adjacent channel). Cealygermodern microbial mats attain maximum
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thicknesses of several centimetres and only pareatthe substrate surface (de Beer and Kiihl,)2001
due to their rapid decomposition following burial éven thin event layers of sediment (e.g. Black,

1933; Krumbein and Stuart, 1983; Chafetz and Buslzayr1992; Konhauser, 2007).

Considering that the limited root penetration af garliest embryophytes (Edwards et al., 2015)had
limited effect on alluvial architecture, and thaink stabilization by roots did not develop untieder
rooting near the Siluro-Devonian boundary (e.g.ng&¢ et al., 2001; Hillier et al., 2008; Davies &
Gibling, 2010; Kennedy et al., 2012), it is unsising that even less-penetrative surficial matsrief
evidence for having any effect on bank stabilityictdbial mats can offer no protection against the
undercutting of substrates on which they restpgek undercutting is the primary erosive mechanism

of lateral fluvial channel migration.

A further difference between microbial mats anddlaants is the latter frequently alter surface

microtopograhy which in turn reduces flow velodiBouma et al., 2013; Moor et al., 2017).

5.2. Matground properties change when emergent

A further difference between microbial mats anddlgmhants is that the latter have the capacity to
develop structure above the water-table and doneogessarily undergo changes to their physical
properties (as mechanical components of the flisyiatem) whether they are submerged, wet, or dry.
In contrast, matgrounds exist in an elastic stdtermwthey are respiring, but only respire when tirey
submerged in water. When they dry out and stopiniag, they behave in a brittle fashion and may
easily become detached from a substrate througiecd¢ien, shrinkage and curling. The bulk of
studies that have looked at the sedimentologidhlances of microbiota are usually only concerned
with mats in their elastic state (e.g., Gerdes,72®fagadorn and McDowell, 2012; Vignaga et al.,
2013). Even when substrates are wet, matgroungisstitiadetach (1) if the physical forces acting on
them exceed their biological cohesiveness (Moulial.e 2008; Graba et al., 2010, 2013, 2014); dr (2
by autogenic buoyancy-mediated detachment procéBsetetreacet al., 2006; Mendoza-Lera et al.,

2016).
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As river channel migration occurs primarily througidercutting oemergensubstrates, it should be
expected that those mats on raised banks adjazetive channels would usually comprise dried,
surficial microbial mats that would provide nedtilg reinforcement against bank erosion (although

biological soil crusts may be an exception).

5.3. There are no modern analogues of matground-didized rivers

To our knowledge, there are no published studiesafern rivers that suggest that microbial mat or
biological soil crust communities can stabilizeeribanks. Modern rivers that exist in the complete
absence of any form of vegetation are rare or nstent at the present day (Davies et al., 2011).
However, partial analogues may be seen in rivess ¢éiist in climatic extremes, and glaciofluvial
braidplains have been considered to have some bisece to pre-vegetation rivers (Cotter, 1982;
Davies et al.,, 2011; lelpi and Rainbird, 2016). gufe 15 illustrates examples of microbial
communities living in and adjacent to such a braidpof the Mimer River in Spitsbergen. Biofilms
exist in slackwater or sluggish lotic conduits after and chute channels on braid bars, but areabse
in the main trunk channels. Isolated exampleshefdyanobacteri®ivularia are seen co-exisiting
with mosses on top of subaerial bar forms. Neitbfethese microbiota are well-anchored to the
substrate and would become readily detached anoveminwhen the river entered spate during spring
melt. The margins of the braidplain (and soméhefrore elevated bar tops) have been colonized by
communities of biological soil crusts, as well aal®w rooted tracheophytes. However, these can be
seen to be being actively unroofed by undercuftiogn flowing water in adjacent trunk channels, and
the integrity of unroofed clasts of soil crust &dely maintained by plant roots. These modern

observations attest to the limited resistanceuwdl erosion offered by microbiota.

5.4. There is no physical evidence in the rock rembfor matground stabilized rivers

There are relatively few records of observed mialolnatground fabrics within pre-vegetation
alluvial strata (e.g., Sheldon, 2012; Beraldi-Casnpt al., 2014; Wilmeth et al., 2014); although
some studies have speculated on a hypothesisedadlnicrobiota (e.g., Santos and Owen, 2016).

The modern examples of microbiota from the sparselyetated Mimer River (Fig. 15) provide a
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potentially analogous explanation for this pauatynatground evidence in ancient alluvium. If their
pre-vegetation counterparts occupied similar rescfi@ncient braidplains, it should be expected tha
they would have very limited preservation potenimathe rock record: lacking the capacity to resist
physical reworking, they essentially occupy eroalpnather than depositional, subenvironments of
the fluvial system. Their occurrence in the roekard is thus limited to fortuitous instances where
components of such subenvironments have only underpartial erosion (e.g., the rare mud horizons
or intraformational clasts of the Fréhel Formation)

The limitations of microbial mats as pre-vegetatstabilizers of alluvial landscapes are further
revealed by the global stratigraphic record of olgally-induced sedimentary structures. In a table
demonstrating previously-published reports of MI&6d the facies from which they were recorded,
Davies et al. (2016, their Table 1) listed onlynStances of pre-vegetation fluvial MISS (8.2% af th
total Precambrian to mid Silurian records acrosgssetlimentary environments), compared to 11
instances of post-vegetation MISS (31.4% of thalttdte Silurian to Cretaceous records). This
suggests that, while MISS were present in Earlbigdl environments since at least the Proterozoic,
they were far more commonly preserved after thdutiom of land plants. That is, once the more
muddy and quiescent fluvial subenvironments mostmonly colonized by microbial mats
(floodplains, etc.) began to become deeply stadulliby roots, less prone to wholesale reworking
during deposition, and more readily preserved artick record. This observation provides further
circumstantial evidence that the stabilization, amdservation potential, of certain fluvial facies
afforded by terrestrial vegetation was several rdd magnitude greater than that afforded by

microbial mats alone.

6. Conclusion

The Series Rouge of northwest France contains #iwafandividual circumstantial lines of evidence
for the presence of microbial mats which, combirmdygest that the fluvial systems active during
deposition operated within a ‘microbial landscapBespite this, there is no evidence that microbial

mats increased the stability of any componentshef ftuvial system. The fluvial deposits are

22



578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

characterised by repetitively stacked beds of thozrgpss-stratified sandstone representing depnositio
from migrating sinuous crested dunes in low sinyoshannels and on predominantly downcurrent-
dipping compound bars. Frequent channel-switcteagtd selective preservation of deep channel-bar
deposits such that the preserved sedimentary ectinie is sheet-braided at outcrop scale; the aypic

stratigraphic record of many other pre-vegetationidl systems.

Through a critical understanding of the ways in ahhmicrobial mats may affect sedimentation,
coupled with partial modern analogues and referg¢acthe global stratigraphic record of alluvial
microbially induced sedimentary structures, it i®wn that microbial mats alone were very weak
agents of geomorphic stabilization. In the preetaon world, they were several orders of
magnitude less effective at buffering against emosvhen compared to the land plants that began to
share their nonmarine habitats from the Palaeazoicards (Figure 16). The influence of microbial
mats on the sedimentary characteristics of pretatiga alluvium is thus shown to have been
negligible. With such ineffective biotic feedbaakriver functioning, pre-vegetation fluvial system
were perpetually trapped in the simplest geomorgiiiase of fluvial biogeomorphic succession
(sensuCorenblit et al., 2014). As a result, the stramic sedimentary record is biased in only

preserving a record of the dominant purely phygicatesses in such systems.

Despite this, microbiota did apparently leave maptaller scale clues to their presence and activity
within pre-vegetation systems. In the Series Rptlgese include a suite of potential microbial
sedimentary surface textures, distinct “pseudofgissiuch asAristophycusand Arumberig and
petrographic indicators, such as biotite accumaatiand associated carbonaceous laminae. This
indicates that some of the oldest communitiesfefdn land were able to bestow an influence on the
long-term rock record, even though they lacked @sygstem engineering capacity to geomorphically

sculpt the landscapes that they once inhabited.
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Typical Values

Pre-vegetated

Post-Vegetated

Reasons

Sand-body aspect Extremely High; Dominant Highly Variable (e.g., Vegetation decreases sedimgnt
ratio sheet-braided architecture gt Channeled-braided, Sheet- erodibility and increases ban
normal outcrop scale braided, Ribbon) stabilization
Number/% of Fms 11 occurrences (references |n 37.5% of VS3, 50% Vegetation promotes the
with >10% Mud table caption) of VS4, 85.7% of VS5, 94.1% production and preservation of
content of VS6' muds, with fines bypassing
pre-vegetation systems
through fluvial and aeolian
transport
Sand-body Petrology Largely arkose and Quartzarenite, arkose and| Physical transport processes in
quartzarenite groups litharenite groups commonly pre-vegetation environmentg
described described may have enabled the rapid
transport of unweathered
feldspar, resulting in commo
arkosic sandstones
Grain size Almost entirely medium- High range of grain-size Vegetation can decrease the
distribution coarse sand (or greater) commonly recorded proportion of sediment
transported as bedload
Stratification type Trough- and planar-cross and Trough and planar cross- Transverse and linguoid
horizontal stratification stratification, ripple cross- bedforms occur in a wide
common lamination and horizontal | variety of both pre-vegetatior
stratification common and post-vegetation fluvial
settings
Sandy-Bedforms Abundant Abundant Fields and trains of individual
bedforms occur across a
variety of fluvial settings
Preserved channel- Rare Common Frequent channel switching|in
forms pre-vegetation systems resulfs

in poor preservation

Low-sinuosity
Elements (e.g., DA)

Fairly Common

Fairly Common

occur within major sand-

bodies in both pre-vegetatiorn

and post-vegetation fluvial
systems.

Low sinuous bar-complexes

Heterogeneous lateral
accretion sets

Unusual but present

Fairly Common

Expansion of wetants
increased overall river
sinuosity, although pre-

vegetation alluvial networks
still contained higher-sinuosity
portions within predominantly
low-sinuosity systens

Heterolithic lateral
accretion sets

One described example

Fairly Common

Major expansion of
meandering rivers as rooted
plants stabilized river banks

Palaeosols

Very rare

Common

Terrestrial vegetation is
suggested to have promoted
diversification and increased

complexity of pedogenic
deposits

Coal/Charcoal

Absent

Present from Devonian

Coals became abunttant
the evolution of plant
arborescencée

Interpreted Fluvial
Styles

Dominantly low-sinuosity,
bed-load dominated system

Extremely Variable

Vegetation alters mechanis
of fluvial flow and depositioh

S
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Table 1.Characteristic sedimentary products of both prgetation and post-vegetation alluvium: 1. Davied an
Gibling, 2010. VS = Vegetation Stage; 2. Santos@unen, 2016. Pre-vegetation formations with >10%imu
content; Harrison, 1979; Germs, 1983; Sweet, 1888;1995; Kemp, 1996; Tirsgaard and @xnevad, 1998;

Driese et al., 2011; Koykka, 2011; Marconato et2014; Went, 2016.
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Figure 1. (A) Location of Series Rouge ‘Red Beds’. Numbereadsoindicate location of presented architecturadepsa 1.

Sables d’Or Quarry (Fig. 13); 2. Pointe aux ChéyFég. 10); 3. Tlot Saint-Michel (Fig. 14)

Figure 2. Top: Lithostratigraphic correlation of formatioosnstituting Series Rouge. Formations comprisingeSdrouge
boxed. Summaries of sedimentology presented ind@edt Carteret Formation fauna from Doré, 1994udvray, (1979); 2.
Miller et al., (2001); 3. D’lemos et al., (2001);Magstrum et al., (1980); 5. Pasteels & Doré, 2)98. Auvray et al., 1980; 7.
Pillola, 1993. *Saint-Jean-de-la-Riviére FormatiBottom: Typical outcrops and interpreted environtsdor Series Rouge

members

Figure 3. Petrographic evidence for matground colonisatiothéFréhel FormatiorfA) Detrital biotite mica with approximately
aligned long-axes (red arrow indicates wavy-crinkigrphology); (B) Pale green biotite with cleavadgnes; (C-D) Wavy-
crinkly morphology exhibited by detrital biotite cai (examples arrowed); (E) Fréhel Formation mudsteith interpreted
carbonaceous stringers; (F) Differential compactiboarbonaceous stringers surrounding suspendaizcqgrain; (G)
Petrographic thin section of mud clast hosting cagzeous material present; (H) Delaminating oxilisietite mica fraying

towards its lateral margin

Figure 4. (A) Transverse wrinkles. Fréhel Formation. Diametecoin is 24 mm; (B) Transverse wrinkles. Paazb Formation.
Diameter of coin is 27 mm; (C) ‘Bubble-texture’ élRel Formation; (D) Epirelief bulges. Fréhel Forimat Diameter of coin is
24 mm; (E) Ruptured domes. Port Lazo FormationE[Ephant skin texture. Port Lazo Formation; (G)ywed shrinkage cracks.
Port Lazo Formation. Diameter of coin is 24 mm; Béticulate markings (pimple structures to righirodge associated with

ArumberiaFig. 6. Port Lazo Formation.

Figure 5. (A) Aristophycusstructures. Fréhel Formation. Pen lid is 38 mm j@By Petrographic thin section éfistophycus
(C) Petrographic thin section of sandstone horimmmediately adjacent tAristophycus(D) Petrographic thin section of
sandstone horizon immediately underlyfugstophycus(E) Vertical log ofAristophycusearing section; (F) Schematic line of

section acrosAristophycus.

Figure 6. (A-B) Arumberiarugae. Diameter of coin is 21 mm; (C) Dimple-Pimsgtieictures in association wikrumberig (D)
Carbonaceous material (arrowed) draped over muihésen(E) Petrographic thin section of drab mudstoostingArumberia

showing clearly deformed mud laminae and carbonsemterial. All images from Port Lazo Formation.

Figure 7. Vertical log through Fréhel Formation. Locatiorigooesented architectural element analysis areated.

Figure 8. (A) Trough-cross stratification; (B) Conglomeragin above down-flow dipping reactivation surfa@g@) Example of
downstream accretion macroform. Percentage vaingsr rose indicate scale of external ring. Dadimed indicate interpreted

bar-form top and bottom surfaces. All Fréhel Foiorat
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Figure 9. Observed and interpreted architectural elementsimihis study (after Miall, 1985, 1996; Long, 2006

Figure 10.(A) Architectural analysis of Fréhel Formation gping out at Point aux Chévres. Successive sangkdddentified

by number. The displayed data shows the relatipniséiween set/co-set inclinations (red arrowshéirtrespective underlying
surfaces (strike-lines represented by blue barbgrétion macroforms are mapped on in their exdetdhposition within the
respective sandbody (horizontal scale). No verscale intended. Acronyms relate to inferred aedhitral element (Fig. 9).
Sandy-bedforms are not included in diagram; (B)c8asion presented in (A); (C) Rose plots of saniisadom (A). Blue

arrows show dip direction of genetically relatedfaces (presented as strike-lines in (A)). Pergmtalues under rose diagrams

display circumference scale. Measurements: Palagéf= 116; Bounding surfacés= 51

Figure 11.(A) Proximal down-flow variations of accretion Wih individual bar-form. Person is 187 cm tall. M@t lines denote
lower and upper surfaces of interpreted bar-foi); Example of a downstream-lateral accretion maerof Person is 187 cm
tall; (C) Downstream accretion macroform; (D) Schdémdiagram of prograding stack of downstream etatg macroforms; (E)

Trough-cross stratification. All images from FréRelrmation, Series Rouge.

Figure 12.(A) Discontinuous sandstone body within along-&rdection at Pointe aux Chevre, Fréhel Formaticetréfrule for
scale; (B) Interpretative line drawing of 12A; (Thin mudstone layer highlighted in 12B. Compasgettieter is 10.5 cm long;

(D) Petrographic thin section of mudstone in 12i6pldying wavy-crinkly laminae constituted by dtttimica.

Figure 13.Architecture of braided alluvium at Sables d’Or gqyaPanel demonstrates the high lateral continnityand-bodies.
Blue arrows represent palaeoflow orientations measfrom cross-bed foresets. Blue pins repres@endlidéctions of set/coset
boundaries. The directions indicated by the arramg pins have been corrected for tectonic tilt, aedorganized with respect to
the architectural panel so that arrows pointingnaficate dip directions away from the observer, #im$e pointing down indicate
dip directions towards the observer. Procedure hfiag, 2006. Accretion macroforms annotated (ilogoversion, lines denote

accretion macroform type: Yellow, DA; Orange, DLBIIA; Pink, LA/ILA; Green, Channel; Black, SB/iSB)

Figure 14.Architectural panel at Tlot Saint-Michel. Note thateral accretion surfaces adjacent to scale iseetty measurable
and as such are labelled LA. Accretion macroforighédr in the cliff-face, such that measurementdataot be obtained, are

given the prefix ‘i’ (see Section 4.1.1). Palaewfloear directly out of cliff face.

Figure 15. Sparsely vegetated braidplain of the Mimer Ri&pitsbergen (78° 39’ 07" N, 16° 10’ 47" E) as atjgh modern
analogue to a pre-vegetation river, showing distidn of microbial features and their ineffectiveaén buffering against
physical processes. A) Incipient patches of youngsi{examples arrowed) on a bar top, acting agdociolonization by

cyanobacterial individuals of the genus Rivulaniesét). B) Recently emergent biofilm on drying giarof shallow bar-top
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drainage channel, showing bubble formation in BR&ck arrow) and sediment cavities arising from ggsulsion by respiring
microbiota (white arrow). C) Biological soil crustiso colonized by tracheophytes, on the margianadctive trunk channel.
Undercutting of soil crust by fluvial channel ispagpent (white arrow) and clasts of soil crust hbgeome unroofed (black
arrow), maintaining their integrity due to bindibg tracheophyte roots. Note absence of evidenceitrobiota in fast flowing,
sediment-laden water of the main channel. D) Biofn sluggish lotic water of small bar-top draieathannel. Note that
biofilm does not adhere to the substrate as aandtthat the fastest flowing water has carved agugsthrough the biofilm along
its thalweg (arrowed in direction of water flow).

Figure 16.Schematic reconstruction of relationships betwé&g¢matgrounds and unvegetated river channels; Q)rigophytes

and other higher land plants and river channel
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Fig. 16

PRE-VEGETATION

Above ground: No topography; matground
attains maximum thickness of several centimetres

1.

Above ground: when emergent,
matground loses elasticity (prone to
brittle mechanical failure)

D.

&

Below ground: limited Undercutting of subsurface
subsurface penetration; mats  sands causes bank collapse

quickly decompose when
interred below substrate

POST-VEGETATION

Above ground: plant structures act as microtopographic obstacles
that modify near-surface flow conditions (and experience little
change in mechanical properties when submerged).

Below ground: plant structures
(roots) may penetrate metres

and persist prior to decay (multicohort
palimpsests of former generations)

Active and relict roots
promote bank strength;
buffering against
undercutting

Clasts of microbially-bound sediment
incorporated into flow
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