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Abstract In a previous paper (Syrjänen et al., 2014), we reported the first structural

characterisation of a synaptonemal complex (SC) protein, SYCP3, which led us to propose a model

for its role in chromosome compaction during meiosis. As a component of the SC lateral element,

SYCP3 has a critical role in defining the specific chromosome architecture required for correct

meiotic progression. In the model, the reported compaction of chromosomal DNA caused by

SYCP3 would result from its ability to bridge distant sites on a DNA molecule with the DNA-

binding domains located at each end of its strut-like structure. Here, we describe a single-molecule

assay based on optical tweezers, fluorescence microscopy and microfluidics that, in combination

with bulk biochemical data, provides direct visual evidence for our proposed mechanism of SYCP3-

mediated chromosome organisation.

DOI: 10.7554/eLife.22582.001

Introduction
The synaptonemal complex (SC) is a dynamic proteinaceous ultra-structure that mediates the synap-

sis of homologous chromosomes pairs during meiotic prophase I (Cahoon and Hawley, 2016;

Fraune et al., 2016; Yang and Wang, 2009; Zickler and Kleckner, 2015). Morphologically, the SC

is composed of three parts: lateral elements, transverse filaments and a central element. Lateral ele-

ments are protein scaffolds that extend along the entire length of each chromosome axis. They

become linked together by transverse filaments, which connect the chromosomes in a homologous

pair to the midline central element, to induce chromosome synapsis (Schücker et al., 2015). The tri-

partite SC ultra-structure provides an essential three-dimensional scaffold for meiotic progression

and its absence or defective formation can lead to failure of meiotic progression and infertility (Bol-

cun-Filas et al., 2007, 2009; de Vries et al., 2005; Hamer et al., 2008; Schramm et al., 2011;

Yang et al., 2006; Yuan et al., 2000).

The lateral element is the first part of the synaptonemal complex to assemble. In most organisms,

its formation coincides with the controlled induction of double-strand DNA breaks and subsequent

homology searches that bring homologous chromosomes into alignment (Baudat et al., 2013). It is

at this step that SYCP2 and SYCP3, the major protein components of the lateral element

(Lammers et al., 1994; Offenberg et al., 1998; Schalk et al., 1998), assemble on the chromosome

axis, in a manner dependent on each other and on the presence of meiosis-specific cohesin

(Fukuda et al., 2014; Llano et al., 2012; Pelttari et al., 2001; Winters et al., 2014; Yang et al.,

2006).

Correct SYCP3 function is crucial for fertility. Male mice lacking SYCP3 are infertile as their germ

cells undergo apoptosis due to failure in meiotic progression (Yuan et al., 2002). In contrast,
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females are sub-fertile, with increased aneuploidy leading to fetal deaths during gestation. SYCP3 is

regarded as an important architectural component of the lateral element, and its disruption in mice

has consequences for the morphology and structural integrity of the meiotic chromosome: in

SYCP3-deficient mice, the chromosome axis is twice the length of that in wild-type mice and cohesin

disassembles prematurely (Kouznetsova et al., 2005; Yuan et al., 2002).

The large-scale architecture of the meiotic chromosome consists of a regular array of DNA loops

that emanate from a chromosome axis consisting of conjoined sister chromatids (Zickler and Kleck-

ner, 1999). Sister chromatid cohesion is enforced at the loop base by meiotic ring-like cohesin com-

plexes (Rankin, 2015). In addition to SC components, other factors such as meiotic cohesins,

condensins and HORMAD proteins localise to the chromosome axis and contribute to its organiza-

tion (Novak et al., 2008; Wood et al., 2010; Zickler and Kleckner, 2015). Thus, it is likely that

SYCP3’s role is to provide local DNA compaction to modulate the existing axis-loop structure of the

meiotic chromosome, in the specific manner required for efficient recombination between

homologues.

Crystallographic analysis shows that SYCP3 adopts a highly elongated tetrameric assembly of

antiparallel a-helices, with flexible termini protruding from the helical core. The N-terminal sequen-

ces located at each end of the SYCP3 structure bind double-stranded (ds) DNA, suggesting that

SYCP3 can act as a 20 nm-long physical strut to hold distinct regions of DNA together. In addition,

SYCP3 can polymerise into regular supra-structures resembling the SC lateral element (Baier et al.,

2007; Syrjänen et al., 2014), in a self-assembly reaction that requires both N- and C-terminal motifs.

These findings provide the basis for a possible explanation of SYCP3’s role in shaping the architec-

ture of meiotic chromosomes, whereby concurrent DNA bridging and self-association by SYCP3

would explain the observed SYCP3-dependent DNA compaction that is required for full SC assembly

and meiotic progression.

To further assess this potential mechanism of SYCP3 function, we developed a single-molecule

assay based on optical tweezers and fluorescence microscopy in a microfluidics flow cell. The results

of the assay, in combination with bulk biochemical data, provide direct visual evidence for our pro-

posed model of SYCP3-mediated chromosome compaction.

Results
The crystal structure of SYCP3 showed a tetrameric assembly with N-terminal DNA-binding domains

located at both ends of the central helical core (Figure 1A). To investigate whether SYCP3 is able to

bind simultaneously to distinct DNA molecules as predicted by the structure, we analysed the elec-

trophoretic mobility of SYCP3-DNA complexes using different lengths of dsDNA (Figure 1B). To

study the mechanism of DNA binding separately from higher-order assembly and alleviate the lim-

ited solubility of the full-length protein, we used a version of SYCP3 missing the last six amino acids,

SYCP31-230(Baier et al., 2007; Syrjänen et al., 2014). Hereafter we will refer to this construct simply

as SYCP3, unless otherwise indicated.

Reconstitution of an SYCP3 complex with a DNA sample containing equal nucleotide concentra-

tions of dsDNA 32- and 60mer yielded a species of intermediate mobility relative to the slower

SYCP3-DNA 32mer and faster SYCP3-DNA 60mer complexes, consistent with the formation of an

SYCP3-DNA complex containing both lengths of dsDNA (Figure 1B). To provide further evidence of

multivalent DNA binding, we showed that SYCP3 can bridge between a fluorescently-labelled

dsDNA and a distinct biotin-labelled dsDNA immobilised on streptavidin-coated beads (Figure 1C).

To gain mechanistic insight into the mode and dynamics of DNA binding by SYCP3, we took a

single-molecule approach using an experimental setup that has been successfully used for the study

of protein-DNA interactions (Brouwer et al., 2016; Candelli et al., 2014; Heller et al., 2014a). In

this system, the biotinylated ends of a bacteriophage l DNA molecule are tethered between two

streptavidin-coated polystyrene beads that are controlled by focused laser beams acting as optical

tweezers. A unique advantage of the use of optical tweezers is the high degree of control over the

conformation and tension of the DNA. The experiment is performed in a multi-channel laminar flow

cell that allows tethering of DNA to optically-trapped beads and moving the tethered DNA to paral-

lel laminar-flow lanes containing, for example, the fluorescently-labelled components to be analysed

(Figure 2A). Beam-scanning confocal fluorescence microscopy is then used to image the labelled

DNA-bound proteins.
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Figure 1. SYCP3 can bind simultaneously to two molecules of dsDNA. (A) Model of DNA binding by the SYCP3

tetramer. The crystal structure for the helical core of the SYCP3 tetramer is shown in ribbon representation, with

each chain rainbow-coloured from the N- (blue) to the C-terminus (red). In the model, pairs of N-terminal SYCP3

regions form two distinct DNA-binding domains at both ends of the SYCP3 strut-like structure. (B) Result of the

Figure 1 continued on next page
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We exploited our knowledge of the SYCP3 structure and the absence of cysteines in its sequence

to replace solvent-exposed residue L138, located in the helical core and distant from the N-terminal

DNA-binding regions, with cysteine (Figure 2B). The engineered cysteine was linked to the fluores-

cent dye Alexa555 using maleimide chemistry (Figure 2C), yielding one fluorescent label per helical

chain, or four fluorophores per SYCP3 tetramer. Mass spectrometry confirmed that all SYCP3 mole-

cules were labelled with Alexa555, and that the majority of SYCP3 molecules had one label per heli-

cal chain (Figure 2D).

Binding of fluorescently-labelled SYCP3 to l DNA in the single-molecule setup was readily

observed by confocal fluorescence microscopy. Kymographs, acquired from repeated confocal line-

scans along the DNA, revealed binding and one-dimensional diffusive behaviour of SYCP3 on

dsDNA (Figure 3A). As a control, a construct lacking the N-terminal DNA-binding domain, SYCP391-

230, did not interact with l DNA. In ’DNA compaction’ experiments, we used the optical tweezers to

control the end-to-end distance of the DNA and test the DNA-binding and bridging behaviour of

SYCP3 on stretched versus conformationally relaxed DNA. We first incubated the DNA in the protein

channel for 30 s, returning subsequently the DNA into the buffer channel, to prevent binding of

additional SYCP3 molecules, where it was held in an extended conformation at a force of 5 pN and

an end-to-end distance near to 16 mm. Next, we relaxed the conformation of the DNA by moving

the beads closer together at constant speed of 0.6 mm/s, reducing the end-to-end distance to 8 mm.

The beads were held at reduced distance for a period of 5.5 s, after which the trap lasers were

moved apart, extending the DNA molecule again.

The single-molecule analysis highlighted a striking correlation between DNA-binding behaviour

of SYCP3 and the distance between the beads tethering the l DNA (Figure 3B). In the initial phase

of the compaction experiment, when l DNA is in an extended conformation, the majority of SYCP3

molecules interacted with DNA in a diffusive manner, displaying a one-dimensional sliding motion

along the DNA molecule. Mean-squared displacement analysis of diffusive trajectories revealed a

1D-diffusion constant of 0.16 ± 0.05 mm2/s (N = 8, see Materials and methods section ‘1D-Diffusion

coefficient analysis’). Intriguingly, when the DNA was temporarily relaxed and then pulled taut again,

a drastic alteration in SYCP3’s binding behaviour was observed: the majority of diffusing SYCP3 mol-

ecules co-localised in clusters that remained static and stable over time.

These findings indicate that SYCP3 has two different modes of binding to DNA. We hypothesise

that the diffusive binding mode reflects the interaction with the extended l DNA of a single DNA-

binding domain at one end of the rigid SYCP3 strut, allowing SYCP3 to slide along the DNA mole-

cule (first-binding mode). Upon relaxation of the DNA substrate, DNA-bound SYCP3 would engage

concurrently a distinct DNA site with its other DNA-binding domain, in a bridging interaction leading

to formation of a DNA loop (second binding-mode). This transient juxtaposition of distinct DNA seg-

ments would facilitate bivalent DNA interactions of neighbouring SYCP3 molecules, stabilising the

DNA loop and leading to the formation of a static cluster of DNA-bound SYCP3 molecules. Consis-

tent with the presence of SYCP3-dependent loops in the DNA that might resist extension, higher

forces were required to extend l DNA after the compaction step relative to naked DNA

(Figure 4A). In our experiments, SYCP3-dependent DNA bridges did not exhibit extensive and dis-

tinct bond-rupture events (Figure 4—figure supplement 1), as previously observed for DNA-bridg-

ing proteins H-NS and Alba1 (Dame et al., 2006; Laurens et al., 2012). The lack of pronounced

Figure 1 continued

electrophoretic mobility shift assay (EMSA) for SYCP3 bound to dsDNA molecules of different lengths. Lanes 1 and

2 show the electrophoretic migration of free dsDNA 32mer and 60mer, respectively. Lane 3 and 4 show the

mobility shifts of SYCP3-bound DNA 32mer and 60mer, respectively. Lane 5 shows the mobility shift of a SYCP3-

DNA complex in the presence of both DNA 32mer and 60mer species. (C) Result of the pull-down assay,

demonstrating DNA bridging by SYCP3. Above each gel lane, drawings illustrate sample content for each

pulldown experiment. The 5’ FAM-labelled DNA bound to SYCP3 was eluted from the beads in high salt and

visualised under UV light after agarose gel electrophoresis (lane 2). Lane 3 shows the background retention level

of fluorescently-labelled DNA due non-specific binding of the SYCP3-DNA complex to the streptavidin beads;

lane 4 shows that the N-terminal region of SYCP3, known to mediate DNA binding, is necessary for pull-down of

the fluorescently-labelled DNA.

DOI: 10.7554/eLife.22582.002
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Figure 2. Optical tweezers can be used to study the binding of SYCP3 to double-stranded DNA. (A) The focused trapping laser beams hold two

streptavidin-coated polystyrene beads in place, while the l DNA is tethered between the beads (right). A four-channel laminar flow cell on a mobile

platform was used to perform the single-molecule experiments. The streptavidin-coated polystyrene beads were trapped with the lasers in Channel 1

and biotinylated l DNA was then captured in Channel 2, by tethering its ends to two beads. The flow cell was subsequently moved to Channel 4, to

Figure 2 continued on next page
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rupture events suggests a comparatively high stability of SYCP3-compacted DNA, although further

quantitative analysis would require quadruple optical trapping experiments (Heller et al., 2016).

Figure 2 continued

allow fluorescently-labelled SYCP3 to bind l DNA and, after an incubation time of 30 s, the beads were moved into Channel 3 for visualisation and

analysis of DNA binding (left). (B) Residue L138 was replaced with cysteine for Alexa555-labelling of SYCP3 via maleimide chemistry. L138 was chosen

because it is exposed to solvent and distant from the DNA-binding domains in the SYCP3 structure. (C) SDS-PAGE analysis of purified L138C SYCP31-

230 both before (L138C sample) and after (L138C-A555 sample) conjugation to Alexa555. The proteins in the gel were visualized in the unstained gel

(left) and after staining with Coomassie blue (right). (D) Mass-spectrometry analysis shows that the majority of L138C SYCP31-230 contains one Alexa555

label.

DOI: 10.7554/eLife.22582.003
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Figure 3. A single-molecule DNA-compaction assay shows two modes of SYCP3 binding to dsDNA. Two representative kymographs are shown. (A)

The kymograph shows the diffusive behaviour observed when SYCP3 was bound to a l DNA molecule kept in extended conformation by the laser-

trapped beads. (B) The kymograph in the bottom panel shows clustering of SYCP3 in static aggregates upon relaxation of the l DNA molecule. The

smaller panel shows details of SYCP3’s diffusive behavior, over a period of 17.5 s and within a DNA region of 3750 nanometers.

DOI: 10.7554/eLife.22582.004
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Figure 4. Characterisation and analysis of DNA-bound SYCP3 in the DNA-compaction assay. (A) Force-distance curves measured for SYCP3-free l DNA

(blue curve), and during re-extension of SYCP3-compacted l DNA (purple curve). (B) Bee-swarm box plot showing the estimated number of SYCP3

tetramers present in the static SYCP3 clusters that form on l DNA during the compaction assay. The position of the box highlights the interquartile

(50%) range. The median, minimum and maximum values are indicated with horizontal lines (line widths are arbitrary).

DOI: 10.7554/eLife.22582.005

The following figure supplements are available for figure 4:

Figure supplement 1. High stability of SYCP3-compacted DNA.

DOI: 10.7554/eLife.22582.006

Figure supplement 2. Bleaching rate analysis.

DOI: 10.7554/eLife.22582.007

Figure 4 continued on next page
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The more intense fluorescence signal of the static SYCP3 clusters, relative to the diffuse fluores-

cence of the mobile SYCP3 molecules before DNA compaction, suggests that they are comprised of

numerous SYCP3 tetramers. To obtain a quantitative estimate of the number of SYCP3 tetramers in

a cluster, we measured the fluorescence of distinct DNA-bound SYCP3 traces after compaction, by

estimating the signal of a single Alexa555 fluorophore and assuming that each SYCP3 molecule

bound to DNA as a tetrameric species (see Materials and methods, section ‘SYCP3 cluster-size

determination’). After correction for bleaching (Figure 4—figure supplement 2), we determined

that the SYCP3 cluster size was distributed around a mean value of 67 tetramers per cluster, with

individual clusters showing a range of 20 to 160 tetramers (Figure 4B).

These figures highlight SYCP3’s propensity to self-assemble in large DNA-bound aggregates.

Combining the quantification of the number of SYCP3 tetramers in a cluster with a measure of the

reduction in DNA length caused by SYCP3-dependent compaction yielded an estimate of 2.7

nm ± 1.7 nm (N = 3) for the DNA-binding footprint of SYCP3 (see Materials and methods, section

‘SYCP3 footprint calculation’) (Figure 4—figure supplement 3). In a different set of experiments,

where flow drag was used to establish micrometer-long sections of DNA molecules bridged by

SYCP3 (Figure 4—figure supplement 4), we obtained an apparent footprint value of 3.6 ± 0.3 nm

(N = 13). This footprint value, close to the size of one helical turn of DNA, is in broad agreement

with the expected size of the SYCP3-binding site.

Discussion
Here we have provided direct visual evidence in support of our proposed mechanism of DNA orga-

nisation by human SYCP3 (Syrjänen et al., 2014). We have shown biochemically that SYCP3 is a mul-

tivalent DNA-binding protein and have developed a single-molecule assay to provide experimental

evidence consistent with a mechanism of DNA compaction based on non-sequence specific bridging

interaction by individual SYCP3 tetramers.

The observed tendency of SYCP3 to accumulate in discrete clusters on dsDNA might form the

basis of its ability to compact chromosomal DNA in meiosis. How would transient bridging events

account for the formation of stable SYCP3 clusters on dsDNA? Cooperative protein-protein interac-

tions between DNA-bound SYCP3 tetramers might play a role, even in the recombinant SYCP3 pro-

tein used for the experiment, which lacked 6 C-terminal residues that are important for self-

assembly in the absence of DNA.

Of note, formation of a transient DNA loop by a single bridging event would by itself facilitate

further bridging interactions of neighbouring SYCP3 tetramers, even in the absence of cooperative

protein-protein interactions (Figure 5). Such a mechanism of DNA compaction, driven by the

reduced entropic penalty of successive DNA-bridging events, has been predicted by molecular

dynamics studies (Brackley et al., 2013; Cheng et al., 2015). Apparently cooperative DNA-binding

behavior of DNA-bridging proteins has been attributed to the induced proximity of distinct protein-

bound DNA sites in previous studies (Dame et al., 2006). The observed footprint size of SYCP3, cor-

responding approximately to one helical turn of DNA, is similar to that of the DNA-bridging protein

H-NS that was found to bridge two parallel DNA molecules in register with the helical repeat

(Dame et al., 2006). A preferential DNA-binding orientation correlated to the DNA helix is further

supported by the observed value of the 1D-diffusion constant of SYCP3, which is in good agreement

with rotation-coupled 1D-sliding along the DNA helix (Blainey et al., 2009).

In cells, SYCP3-dependent compaction of the meiotic chromosome takes place in the context of

chromatin and in the presence of other essential components of chromosome architecture, such as

other SC proteins, meiotic condensins and cohesins, which likely concur to define the extent of

SYCP3-dependent DNA compaction during meiosis. Although here we limited ourselves to the study

of the binary SYCP3-DNA interaction, our single-molecule setup is well-suited for analysing systems

Figure 4 continued

Figure supplement 3. Calculation of the SYCP3 footprint size on DNA based on force - distance curves.

DOI: 10.7554/eLife.22582.008

Figure supplement 4. DNA-bridging experiments under flow.

DOI: 10.7554/eLife.22582.009
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of increasing complexity, including for instance the addition of lateral element protein SYCP2 and

core histones. The recent finding that the structure of mitotic chromosomes depends only on a lim-

ited number of protein components bodes well for future in vitro investigations of meiotic chromo-

some architecture (Shintomi et al., 2015).

Materials and methods

Mutagenesis, cloning, expression and purification
The human SYCP31-230 protein was prepared as described (Syrjänen et al., 2014). The construct

SYCP391-230 was PCR amplified from the full-length SYCP3 construct (Syrjänen et al., 2014) and

cloned into the bacterial expression plasmid pHAT4 (Peränen et al., 1996) using unique NcoI and

XhoI sites, for protein expression fused to a N-terminal TEV-cleavable 6xHis-tag. The SYCP3 mutants

L138C SYCP31-230 and L138C SYCP391-230 were generated using overlap extension PCR of the full-

length SYCP3 construct and cloned as above. All proteins were purified using an initial Ni-NTA cap-

ture step, followed by heparin affinity and ion-exchange chromatography, as previously described

(Syrjänen et al., 2014).

λ DNA

SYCP3, monovalent DNA-binding mode

SYCP3, DNA bridging mode

Figure 5. Model for the mechanism of l-DNA compaction by SYCP3, based on its observed behaviour in the single-particle experiments. According to

the model, SYCP3 has a diffusive DNA-binding mode, likely mediated by DNA interaction at one end of its strut-like structure, and a DNA-bridging

mode, where SYCP3 engages two distinct sites on the DNA with its two DNA-binding domains. DNA bridging by a single SYCP3 molecules can

nucleate a DNA loop, which facilitates successive DNA-bridging interactions by other SYCP3 molecules, leading to formation of a stable DNA-bound

SYCP3 cluster.

DOI: 10.7554/eLife.22582.010
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Electrophoretic mobility shift assay
Double-stranded DNA substrates were generated by annealing together complementary oligonu-

cleotides 60_for, 60_rev and 32_for, 32_rev:

60_for 5’-ATGGTGTGTGTAGGTTAATGTGAGGAGGAGAGGTGAAGAAGGA

GGAGAGAAGAAGGAGGC-3’

60_rev 5’-GCCTCCTTCTTCTCTCCTCCTTCTTCACCTCTCCTCCTCACAT

TAACCTACACACACCAT-3’

32_for 5’-ATGGTCTGTCTAGGTTACTGTGAGGAGGACGA-3’

32_rev 5’-TCGTCCTCCTCACAGTAACCTAGACAGACCAT-3’

SYCP31-230 was added to a final concentration of 6 mM (per tetramer) to DNA binding buffer (20

mM Tris-HCl pH 8.0, 150 mM KCl) containing 320 mM (per base pair) of linear dsDNA 32mer or

60mer, in a total volume of 10 ml. In the mixed DNA sample, 160 mM of both the 32mer and 60mer

were used, so that the total DNA concentration per base pair was 320 mM. DNA samples without

added protein were also analysed. 2 ml of 50% glycerol was added to the samples as a loading

agent. The electrophoretic mobility of the SYCP3 - DNA complexes were analysed by gel electro-

phoresis on a 1% (w/v) agarose gel in 0.5xTris-Borate running buffer (Invitrogen) at 4˚C at 50 V for

4.5 hr, and visualised by ethidium bromide staining.

Pull-down assay
The DNA substrates were generated by PCR amplification, to create 5’-FAM 187 bp and 5’-biotin 91

bp DNA molecules. The PCR products were purified using the Thermo Scientific GeneJET PCR puri-

fication kit, according to manufacturer’s guidelines. 10 ml of streptavidin-linked paramagnetic beads

(Dynabeads MyOne Streptavidin T1, ThermoFisher Scientific) were resuspended in 400 ml high-salt

buffer (20 mM Tris-HCl pH 8.0, 2 M KCl) and washed three times. The biotin-labelled DNA was

immobilised by washing the beads in 40 ml of immobilisation buffer (20 mM Tris pH 8.0, 0.6 mg/ml

BSA, 1 M KCl) and adding the biotinylated DNA to a final concentration of 0.1 mM (per molecule).

After 30 min incubation with mixing, the supernatant was removed and the beads were washed with

200 ml immobilisation buffer and then with 200 ml of DNA-binding buffer (20 mM Tris-HCl pH 8.0,

150 mM KCl, 0.6 mg/ml BSA). 40 ml of the binding reaction, containing 0.1 mM FAM-labelled DNA

and 0.5 mM SYCP31-230 per tetramer in DNA-binding buffer, were added to the beads and the sam-

ples incubated with mixing for 15 min, protected from light. The samples were washed twice in 40 ml

of DNA binding buffer, and the FAM-labelled DNA was then eluted by adding 40 ml of high-salt

buffer and incubating the samples for 30 min, with mixing and protected from light. The eluted DNA

was then buffer-exchanged into 10 mM Tris-HCl pH 8.0 using the Thermo Scientific GeneJET PCR

purification kit, 2 ml of 50% glycerol was added to 10 ml of sample and the samples were run on a

1% (w/v) agarose gel in 0.5xTris-Borate running buffer (Invitrogen). The result of the pull-down

experiment was visualised under UV light.

Alexa555-labelling of L138C SYCP31-230 and L138C SYCP391-230

The labelling buffer (50 mM Hepes-KOH pH 7.0, 250 mM KCl, 0.5 mM EDTA) was filtered and deox-

ygenated by bubbling with nitrogen gas for 30 min. The L138C SYCP31-230 protein was buffer-

exchanged into the deoxygenated labelling buffer using a NAP-5 column (GE Healthcare). The mal-

eimide derivative of Alexa555 (Thermo Fisher Scientific) in anhydrous DMSO was added drop-wise

at a ratio of 5:1 dye molecules to one SYCP3 protomer. The reaction was protected from light and

incubated for 2 hr at 4˚C with mixing. 10 mM DTT was added to stop the reaction. The labelled pro-

tein was then buffer exchanged into 20 mM Tris pH 8.0, 200 mM KCl buffer on a NAP-5 column.

Single-molecule setup and DNA-compaction assay
A single molecule of linear, double-stranded l DNA that had been labelled with biotin at both ends

was tethered between streptavidin-coated polystyrene beads using optical trapping in a four-chan-

nel laminar flow cell, as described previously (Heller et al., 2013). 20 mM Tris-HCl pH 8.0, 150 mM

KCl was used as the buffer in the flow cell; the protein channel was supplemented with 0.001 mg/ml

BSA. Alexa555 L138C SYCP31-230 was used at a concentration of 14.2 nM and Alexa555 L138C

SYCP391-230 was used at concentrations of 14.2 nM and 142 nM. Confocal fluorescence microscopy

and kymograph recording were performed as previously described (Heller et al., 2013)
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(Candelli et al., 2014). Force-distance data were recorded using custom software written in LabView

(National Instruments).

After capture of a single molecule of l DNA between the optically trapped beads, the flow-cell

stage was moved so that the beads were in the waypoint between the buffer and protein channels.

The protein channel was opened for 30 s to allow binding of SYCP3 molecules to the DNA, and the

flow cell was returned to the buffer channel for visualisation of DNA-bound SYCP3 molecules. Once

in the buffer channel, the DNA molecule was held in extended conformation at a force of 5 pN, cor-

responding to an end-to-end separation near to 16 mm. One of the lasers was then steered towards

its neighbour at a speed of 0.6 mm/s so that the beads moved closer to a distance of 8 mm, causing

conformational relaxation in the l DNA. The beads were kept at this separation for approximately

5.5 s and were then moved apart again at 0.6 mm/s to a separation of 16 mm. No flow was applied

during force-distance and fluorescence analysis.

SYCP3 cluster-size determination
Custom software written in MATLAB (MathWorks) was used to analyse the recorded kymographs

(available at http://www.nat.vu.nl/~iheller/download.html). The number of photons emitted per

Alexa555 fluorophore was determined by fitting a Gaussian distribution to the summed rows of

intensities in the bleaching step of a stable SYCP3 cluster. 34 bleaching steps in 10 DNA molecules

were analysed in total. The average decrease in amplitude of the Gaussian fit associated with bleach-

ing of a single Alexa555 was 1.5 photons (per confocal scan-line). This implies that the average

amplitude of a Gaussian fit for a SYCP3 tetramer is 6.0 photons.

To quantify the number of fluorescent SYCP3 molecules present as stable clusters after DNA

compaction, it was necessary to account for bleaching of the fluorophores. The total intensity in pho-

tons per pixel over the length of l DNA (Itotal) was measured at the start of the kymograph (time

t = 0) and at a time point when stable clusters had formed (time t), and the ratio Itotal,t=0/Itotal,t was

used as the bleaching correction factor. The correction makes the assumption that the observed

reduction in fluorescence was caused by bleaching, with no dissociation of SYCP3 from the DNA in

the experiment. Indeed, under experimental conditions of 6.4 mW excitation intensity, the experi-

ment is dominated by bleaching, with a typical rate of 5�10�5s�1
± 1�10�5 s�1 (sd) (Figure 4—figure

supplement 2). The number of SYCP3 tetramers in a stable cluster was determined by fitting a

Gaussian distribution to measure its fluorescence intensity, dividing the amplitude of the Gaussian fit

by 6.0 to account for the presence of 4 Alexa555 fluorophores in a tetramer and multiplying by the

bleaching correction factor. 15 clusters belonging to four different DNA molecules were analysed in

total.

SYCP3 footprint calculation
To estimate the SYCP3 footprint on DNA, several force-distance curves such as the one shown in

Figure 4A were analysed. For each DNA molecule, the distance between the beads in the presence

or absence of SYCP3 was measured at a force of 25 pN, which is sufficiently high to remove weaker,

non-specific interactions of SYCP3 with the DNA and the beads. Thus, the difference in distance val-

ues was assumed to be caused solely by the compaction in the DNA resulting from SYCP3’s DNA-

bridging interactions.

The DNA footprint of each SYCP3 DNA-binding domain was calculated by subtracting from the

length difference between free and SYCP3-bound DNA the DNA persistence length (50 nm) multi-

plied by the number of clusters present in the DNA (to account for the length of DNA at the end of

each SYCP3-dependent DNA loop), and dividing the result by the total number of tetramers on the

DNA molecule and by 2 (to account for two DNA-binding ends in each SYCP3 tetramer). The calcu-

lation was performed on 3 DNA molecules, and gave an average footprint length of 2.7 ± 1.7 nm

(sd), corresponding approximately to one turn of B-form dsDNA. The experimental values for DNA

length change, number of SYCP3 clusters per l DNA molecule and total number of SYCP3 tetramers

per l DNA molecule are reported in Figure 4—figure supplement 3.

1D-Diffusion coefficient analysis
To extract the 1D-diffusion coefficient from our kymograph data, we tracked the diffusive trajecto-

ries using tracking software custom-written in Matlab (Mathworks) (available at http://www.nature.
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com/nmeth/journal/v5/n8/extref/nmeth.1237-S5.zip). We performed a mean-squared displacement

analysis as described in Heller et al. (2014b) to obtain the 1D-diffusion constant D for each tracked

trajectory. We tracked eight trajectories to find a mean D of 0.16 ± 0.05 mm2/s (sd). The average

amplitude of a Gaussian fit to each scan line of the trajectories was 5 ± 2 photons (sd, N = 8). Using

the calibrated intensity of 1.5 photons for a single dye (see Materials and methods section ‘SYCP3

cluster-size determination’), this corresponds to 3.3 ± 1.6 dyes per diffusing trajectory (sd, N = 8),

consistent with the stoichiometry of a single tetramer, with a potential slight underestimation related

to photobleaching.

Rotation-coupled diffusion calculation
We used equation (1) from Blainey et al. (2009) to estimate the 1D-diffusion coefficient D assuming

rotation-coupled sliding along the DNA helix. A value of D = 0.16 mm2/s can be calculated using, for

example, a displacement per helical turn b = 3.4 nm, an average free energy barrier for sliding of

" = 1.33 kBT, and a protein radius of R = 10 nm, which results in a helical path with radius ROC= R +

RDNA = 11 nm. Even though this highly simplified model is based on a spherical protein, unlike the

elongated shape of SYCP3, the 1D-diffusion coefficient for pure translational motion along the DNA

is ~20 fold larger than that for rotation-coupled sliding.
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