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Abstract

A permutoid is a set of partial permutations that contains the identity and is such that partial
compositions, when defined, have at most one extension in the set. In 2004 Peter Cameron
conjectured that there can exist no algorithm that determines whether or not a permutoid based
on a finite set can be completed to a finite permutation group. In this note we prove Cameron’s
conjecture by relating it to our recent work on the profinite triviality problem for finitely presented
groups. We also prove that the existence problem for finite developments of rigid pseudogroups is
unsolvable. In an appendix, Steinberg recasts these results in terms of inverse semigroups.

2010 Mathematics Subject Classification: 20F10, 05C60, (20M18, 08A50)

1. Introduction

Across many contexts in mathematics, one encounters extension problems of the
following sort: given a set S of partially defined automorphisms of an object X ,
one seeks an object Y ⊃ X and a set of automorphisms Ŝ of Y such that each
s ∈ S has an extension ŝ ∈ Ŝ. In the category of finite sets, this problem is trivial
because any partial permutation of a set can be extended to a permutation of
that set. Less trivially, Hrushovski [14] showed that extensions always exist in
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M. R. Bridson and H. Wilton 2

the category of finite graphs. But if one requires extensions to respect (partially
defined) compositions in S, such existence problems become more subtle. In 2004
Cameron [8] conjectured that there does not exist an algorithm that can solve the
following extension problem.

PROBLEM 1.1. Given partial permutations p1, . . . , pm of a finite set X (that is,
bijections between subsets of X ) such that:

(1) p1 = idX ; and

(2) for all i, j with dom(pi) ∩ ran(p j) 6= ∅, there is at most one k such that pk

extends pi · p j ;

decide whether or not there exists a finite set Y containing X , and permutations fi

of Y extending pi for i = 1, . . . ,m, such that if pk extends pi · p j then fi ◦ f j = fk .

We shall prove that this problem is indeed algorithmically unsolvable by
relating it to our recent work on the triviality problem for finitely presented
profinite groups [6]. In order to achieve this, we develop some formalism: a
collection of partial permutations as in Problem 1.1 is called a permutoid; in
Section 2 we define morphisms, quotients, and developments of permutoids. In
this terminology, Cameron’s conjecture is that there does not exist an algorithm
that can decide whether or not a finite permutoid is developable. Cameron [8]
associated a permutoid to a finite group presentation (see Proposition 3.6) and
observed that if the group has no finite quotients then the permutoid is not
developable. If the converse were to hold, Cameron’s conjecture would follow
easily from the constructions in [6], but unfortunately it does not (see Remark 4.4).
It is to obviate this difficulty that we introduce quotient permutoids.

In the final section of this paper we shall explain how our main construction also
can be adapted to prove a similar undecidability result for rigid pseudogroups.

Lastly, in an appendix, Benjamin Steinberg explains how the results of this
paper can be recast in the language of inverse semigroups.

2. Partial permutations and permutoids

A partial permutation of a set X is a bijection between two nonempty subsets
of X . We denote the domain and range of a partial permutation p by dom(p)
and ran(p) respectively. By definition, q extends p if dom(p) ⊂ dom(q) and
q(x)= p(x) for all x ∈ dom(p). The composition p·q of two partial permutations
p, q on X is defined if ran(q) ∩ dom(p) is nonempty: p · q(x) = p(q(x)) for
x ∈ q−1(ran(q) ∩ dom(p)).
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Permutoids, pseudogroups, and undecidability 3

DEFINITION 2.1. A permutoid (Π; X) is a set Π of partial permutations of a set
X such that:

(1) Π contains 1X , the identity map of X ;

(2) for all p, q ∈ Π there exists at most one r ∈ Π such that r extends p · q
(if the composition exists).

The permutoid is finite if X is finite, and trivial if Π = {1X }.

A morphism of permutoids (Π; X)
(φ,Φ)
→ (Π ′; X ′) is a pair of maps φ :Π →Π ′

and Φ : X → X ′ so that:

(1) φ(1X ) = 1X ′ ;

(2) Φ(dom(p)) ⊆ dom(φ(p)) and φ(p)(Φ(x)) = Φ(p(x)) for all p ∈ Π and
x ∈ dom(p);

(3) if r extends p · q , with p, q, r ∈ Π , then φ(r) extends φ(p) · φ(q).

The morphism (φ,Φ) is an isomorphism if Φ and φ are bijections and φ(p) =
Φ ◦ p ◦Φ−1 for all p ∈ Π .

The morphism (φ,Φ) is a quotient map if Φ and φ are surjections.
The morphism (φ,Φ) is an extension if Φ is injective.

An extension (Π; X)
(φ,Φ)
→ (Π ′; X ′) is complete if Π ′ ⊆ Perm(X ′); in other

words dom(p′) = ran(p′) = X ′ for all p′ ∈ Π ′.
If a finite permutoid (Π; X) admits a finite complete extension, then (Π; X) is

said to be developable and (Π ′; X ′) is called a development.

REMARKS 2.2. (1) Cameron’s Conjecture asserts that there is no algorithm that
can determine the developability of a finite permutoid.

(2) If (Π; X)
(φ,Φ)
→ (Π ′; X ′) is an extension, then φ will fail to be injective

precisely whenΠ contains two distinct restrictions of some p ∈ Π ′. For example,
if Φ is the identity map on X and p is a permutation with at least two points x1,

x2 in its support, then we obtain an extension (Π; X)
(φ,id)
→ (Π ′; X) by defining

pi = p|xi ,Π = {id, p1, p2},Π
′
= {id, p} and φ(pi) = p.

DEFINITION 2.3. The universal group of a permutoid (Π; X) is

Γ (Π; X) := 〈Π | pq = r if r extends p · q 〉.
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M. R. Bridson and H. Wilton 4

LEMMA 2.4. (1) If (Π; X)
(φ,Φ)
→ (Π ′; X ′) is a morphism, then p 7→ φ(p) defines

a homomorphism of groups

φ∗ : Γ (Π; X)→ Γ (Π ′; X ′),

and if (φ,Φ) is a quotient morphism then φ∗ is surjective.

(2) If Π ⊆ Perm(X), then there is an epimorphism Γ (Π; X) → 〈Π〉 6
Perm(X).

(3) If a nontrivial finite permutoid (Π; X) is developable, then Γ (Π; X) has a
nontrivial finite quotient.

Proof. Parts (1) and (2) are immediate from the definitions. For (3), let

(Π; X)
(φ,Φ)
→ (Π ′; X ′) be a finite complete extension. Note that if p ∈ Π is

not idX then p(x) 6= x for some x ∈ X , and hence φ(p) 6= idX ′ . It follows that
the image of φ∗ is nontrivial, and so (3) follows from (2).

3. Cameron permutoids

A marked group is a pair (G, A) where G is a group and A is a generating set.
Let ρ be a positive integer. Let Bρ ⊂ G be the set of elements that can be expressed
as a word of length at most ρ in the generators and their inverses, and define B2ρ

similarly. Define p1 to be the identity map on B2ρ , and for each b ∈ Bρr{1} define
pb : Bρ → B2ρ to be the restriction of left multiplication by b; that is, pb(x) = bx .
Let Πρ = {pb | b ∈ Bρ}.

LEMMA 3.1. The pair (Πρ; B2ρ) is a permutoid. If A is finite then this permutoid
is finite.

Proof. Each element g ∈ G is uniquely determined by its action by left
multiplication on any point x ∈ G. Thus, for all b, b′ ∈ Bρ , if bb′ lies in Bρ then
pbb′ is the unique element of Πρ extending pb · pb′ , and if not then no element of
Πρ extends pb · pb′ .

DEFINITION 3.2. Given a marked group (G, A) and a positive integer ρ,
(Πρ; B2ρ) is called a Cameron permutoid (in recognition of the fact that Peter
Cameron considered these objects in [8]). If P ≡ 〈A | R〉 is a finite presentation
for a group G, then we write Bρ(P) to denote the Cameron permutoid (Πρ; B2ρ).
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Permutoids, pseudogroups, and undecidability 5

REMARK 3.3. It is important to note that, in order to construct Bρ(P) from a
finite presentation P , one needs to be able to calculate which words of length
at most ρ in the generators represent equal elements of the group, and for each
pair of such elements b, x , one needs to calculate bx . This can be achieved in an
algorithmic manner provided that one has a solution to the word problem in |P|.
And in order to achieve the construction for all ρ > 0 and all presentations in a
class P, one needs a uniform solution to the word problem for the groups in P.

We have arranged the definitions so that the following lemma is obvious.

LEMMA 3.4. For all presentations P ≡ 〈A | R〉 and P ′ ≡ 〈A | R′〉 with R ⊂ R′,
the natural epimorphism |P| π

→ |P ′| induces a quotient map of permutoids

Bρ(P)
(φ,Φ)
→ Bρ(P ′), where Φ is the restriction of π to B2ρ and φ(pb) = pπ(b).

If ρ is large enough then there is a natural isomorphism Γ (Bρ(P)) ∼= |P|. In
order to see this, we need the following well-known triangulation procedure.

LEMMA 3.5. Let P ≡ 〈A | R〉 be a finite presentation, let m be an integer greater
than half the length of the longest relation in R, let B be the set of elements of
G = |P| that can be expressed as words of length at most m in the free group
F(A), let T be the set of words w ∈ F(B) of length three that equal the identity
in G, and let T ≡ 〈B | T 〉. Then, the natural map A → B ⊂ G induces an
isomorphism |P| → |T |.

PROPOSITION 3.6. If ρ > 1, then there is a natural epimorphism of groups
Γ (Bρ(P))→ |P|, and if ρ is greater than half the length of the longest relator
in R, this is an isomorphism.

Proof. By definition,

Γ (Bρ(P)) = 〈pb (b ∈ Bρ) | pb1 pb2 = pb3 if b1b2 = b3 in |P|〉,

where Bρ is the ball of radius ρ about the identity in |P| (with word metric dA).
The homomorphism Γ (Bρ(P))→ |P| defined by pb 7→ b is onto (since ρ > 1
and the image of B1 generates |P|). And if ρ is greater than half the length of
the longest relator in R, then modulo an obvious change of notation this is the
isomorphism of Lemma 3.5.

We need one final fact.

LEMMA 3.7. For all marked groups (G, A) and all positive integers ρ > ρ ′ >

0, there is an extension of permutoids (Πρ′; B2ρ′) → (Πρ; B2ρ) given by the
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M. R. Bridson and H. Wilton 6

inclusion B2ρ′ ↪→ B2ρ and the map Πρ′ → Πρ that extends left multiplication
from Bρ′ to Bρ .

COROLLARY 3.8. If P is a finite presentation of a finite group G then, for all
positive integers ρ, the permutoid Bρ(P) is developable.

Proof. If ρ is sufficiently large then Bρ = B2ρ = G and Πρ < Perm(G) is the
subgroup consisting of left multiplications.

REMARK 3.9. A permutoid defines a pree in an obvious manner. By definition, a
pree is a nonempty set P with a partially defined binary operation, that is a subset
D ⊆ P × P and a map m : D → P . This terminology is due to Stallings [27]
(also [25]); Baer [3] had earlier used the term add to describe such objects. Both
Baer and Stallings established criteria that guarantee a pree will embed in the
associated group

G(P,m) := 〈P | pq = m(p, q) for all (p, q) ∈ D〉.

4. Finite completions and finite quotients

In the language of permutoids, Cameron’s Conjecture (Problem 1.1) is that
developability is an undecidable property.

THEOREM 4.1. There does not exist an algorithm that, given a finite permutoid
(Π; X), can determine whether or not (Π; X) is developable.

REMARK 4.2. It is clear that the isomorphism classes of finite permutoids form
a recursive set, and a naive search will eventually find a complete extension of a
finite permutoid if such exists. The content of the above theorem, then, is that there
is no algorithm that can enumerate the isomorphism classes of finite permutoids
that do not have a complete finite extension.

In [6, Theorem B] we constructed a recursive set of finite presentations for
biautomatic groups such that there is no algorithm that can determine which of
these groups has a nontrivial finite quotient. The class of (bi)automatic groups
admits a uniform solution to the word problem [10, pages 32, 112]. Theorem 4.1
therefore follows immediately from [6, Theorem B] and the next proposition.

PROPOSITION 4.3. Let P be a class of finite presentations for groups drawn from
a class in which there is a uniform solution to the word problem. If there were an
algorithm that could determine whether or not a finite permutoid was developable,
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Permutoids, pseudogroups, and undecidability 7

then there would be an algorithm that, given any presentation P ∈ P, could
determine whether or not the group |P| had a nontrivial finite quotient.

Proof. Given P ∈P, take ρ to be at least half the length of the longest relator and
use the solution to the word problem to construct Bρ(P) (see Remark 3.3). Then
list representatives Pi for the finitely many isomorphism classes of the nontrivial
quotient permutoids. The proposition now follows from the claim that |P| has a
nontrivial finite quotient if and only if one of the Pi is developable.

On the one hand, if one of the Pi is developable then Γ (Pi) has a finite quotient,
by Lemma 2.4(3), and hence, by Lemma 2.4(1), so does Γ (Bρ(P)), which, by
Proposition 3.6, is isomorphic to |P|. Conversely, if |P| has a nontrivial finite
quotient, with presentation P ′ = 〈A | R′〉 say, where R ⊂ R′, then Bρ(P ′) will be
a quotient permutoid of Bρ(P), and the Pi isomorphic to it will be developable,
by Corollary 3.8.

REMARK 4.4. The key observation that if Bρ(P) has a complete finite extension
then |P| has a nontrivial finite quotient is due to Cameron [8]. Note, however,
that the converse to this observation does not hold: in general Bρ(P) need not
inject into any finite quotient of |P|, even if such quotients exist. For instance, P
may present a noncyclic group whose finite quotients are all cyclic, such as the
example of Baumslag [4].

5. Rigid developments and pseudogroups

Pseudogroups play an important role in many geometric contexts. A
pseudogroup of local homeomorphisms on a topological space X is a collection
H of homeomorphisms h : U → V of open sets of X such that:

(1) if h : U → V and h′ : U ′ → V ′ are in H then h−1 and the composition
h′h : h−1(V ∩U ′)→ h′(V ∩U ′) belong to H;

(2) the restriction of h to any open subset of U belongs to H;

(3) idX ∈ H;

(4) if a homeomorphism between open subsets of X is the union of elements of
H, then it too belongs to H.

We shall concentrate on the case where X is a finite set with the discrete topology.
A set Π of partial permutations of a set X determines a pseudogroup denoted

HΠ , namely the pseudogroup generated by all restrictions of the elements p ∈ Π .
For example, the pseudogroup associated to a Cameron permutoid (Πρ; B2ρ)
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M. R. Bridson and H. Wilton 8

consists of all maps U → V , with U, V ⊆ B2ρ , that are restrictions of left
multiplications x 7→ g · x on G.

If (Π; X) is a permutoid, then by passing from Π to HΠ one loses the
crucial condition 1.1(2). Correspondingly, HΠ can always be embedded in the
pseudogroup HΠ ′ associated to a set Π ′ of permutations of X : take any choice of
extension p′ ∈ Perm(X) for p ∈ Π .

A more substantial analogue of Problem 1.1 in the context of pseudogroups
arises when one restricts attention to pseudogroups that are rigid in the sense that
maps are defined by their value at any point.

DEFINITION 5.1. A permutoid (Π; X) is rigid if for all p 6= q ∈ Π , there is no
x ∈ X such that p(x) = q(x).

A pseudogroup H is rigid if f ∪g ∈H whenever f, g ∈H and f (x) = g(x) for
some x ∈ X (equivalently, every element of H has a unique maximal extension).

A basic example of a rigid pseudogroup is the pseudogroup G n X associated
to a free action of a group on a space X (in our case a finite set with the
discrete topology). The elements of this pseudogroup are the restrictions of the
transformations in the action. In close analogy with Problem 1.1, one would like
to know, given a finite rigid pseudogroup, H on X , if one can embed X in a finite
set Y so that the elements of H are restrictions of transformations of Y in a free
action of a finite group G; in other words we wish to embed H in some G n Y .
When this can be done, we say that H is developable.

THEOREM 5.2. There does not exist an algorithm that can determine whether or
not a finite, rigid pseudogroup has a finite development.

The proof of this theorem is implicit in our earlier arguments; to translate them
we need the following lemma.

LEMMA 5.3. Let H be a rigid pseudogroup on a finite set X and let Λ ⊂ H be
the set of maximal elements.

(1) (Λ; X) is a rigid permutoid.

(2) HΛ = H.

(3) If H = HΠ for some permutoid (Π; X), then the map that assigns each
p ∈ Π to its maximal extension in H defines an extension of permutoids
(Π; X)→ (Λ; X).

(4) If H is developable, then so is (Λ; X) (and hence (Π; X)).
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Permutoids, pseudogroups, and undecidability 9

Proof. The first three items follow easily from the definitions. For example, if
p, q ∈ Π and q(x) ∈ ran(q) ∩ dom(p), then the unique maximal element r ∈ H
with r(x) = pq(x) is the unique element of Π such that r extends p · q .

(4) If G nY is a finite development of H, then each maximal element p ∈H is
the restriction of the action of a unique p̂ ∈ G, so r̂ = p̂q̂ if r extends p · q . Thus
Φ : X ↪→ Y and φ(p) := ĥ define a development of (Π; X).

Let G be a group with finite generating set A and let Br denote the ball of
radius r about 1 ∈ G in the corresponding word metric. Earlier, we considered
the permutoid Bρ(P) = (Πρ; B2ρ). The associated pseudogroup HΠρ consists of
all maps U → V , with U, V ⊆ B2ρ , that are restrictions of left multiplications
λg : G → G.

PROPOSITION 5.4. Let G be a group with finite presentation 〈A | R〉, let
ρ > 1

2 max{|r | : r ∈ R} be an integer and consider the permutoid Bρ(P) =
(Πρ; B2ρ). The following conditions are equivalent.

(1) G has a nontrivial finite quotient;

(2) Bρ(P) has a quotient permutoid that is developable;

(3) Bρ(P) has a quotient permutoid that has a rigid finite development;

(4) Bρ(P) has a quotient permutoid whose associated pseudogroup is rigid and
developable.

Proof. We proved the equivalence of (1) and (2) in the proof of Proposition 4.3.
(3) implies (2), trivially, and (1) implies (3) because if Q is a finite quotient of G,
then the action of Q by left multiplication on itself provides a rigid development
for some quotient P of Bρ(P).

Moreover, the rigid pseudogroup QnQ associated to this action (where Q acts
on itself by left multiplication) is a development of the pseudogroup defined by P ,
and therefore (1) implies (4). Finally, Lemma 5.3(4) tells us that (4) implies (3).

Proof of Theorem 5.2. We follow the proof of Proposition 4.3. Taking finite
presentations in a class P where there is a uniform solution to the word problem
but no algorithm that can determine if the groups presented have finite quotients or
not, we construct the permutoids Bρ(P) as above, list the finitely many quotients
of eachBρ(P), then pass to the pseudogroups defined by these quotients, retaining
only those pseudogroups that are rigid (an easy check). If there were an algorithm
that could determine developability for rigid pseudogroups, then we would apply
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M. R. Bridson and H. Wilton 10

it to the members of the resulting list and thereby (in the light of Proposition 5.4)
determine which of the groups with presentations in P have finite quotients. This
would contradict our choice of P, and therefore no such algorithm exists.

REMARK 5.5. The undecidability phenomena that we have articulated in the
language of permutoids and pseudogroups can equally be expressed in the
language of groupoids or inverse semigroups (see [17]). In the context of inverse
semigroups, Steinberg [30] has proved a result similar to Theorem 5.2 (see
Theorem A.1). See Theorem A.7 for a reformulation of Theorem 5.2 in the
language of inverse semigroups. (See also [12].) Also, instead of considering
finite sets, one could consider sets of partial automorphisms of simplicial
complexes, for example.
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Appendix A. Inverse semigroups

BENJAMIN STEINBERG1,2

The purpose of this appendix is to recast the above results in the language of
inverse semigroups, which is where I believe they are most naturally stated, and
to show how they fit into a body of literature already devoted to the subject.

Inverse semigroups were developed independently by Preston and Wagner to
handle partial symmetry in much the way that groups deal with symmetry. They
are algebraic structures abstracting pseudogroups of partial homeomorphisms of
a topological space. Formally, an inverse semigroup is a semigroup S such that,
for each s ∈ S, there exists a unique element s∗ ∈ S (called the inverse of s) such
that

ss∗s = s and s∗ss∗ = s∗.
1 Department of Mathematics, City College of New York, Convent Avenue at 138th Street,
New York, New York 10031, USA bsteinberg@ccny.cuny.edu
2 This work was partially supported by a grant from the Simons Foundation (#245268 to Benjamin
Steinberg), the Binational Science Foundation of Israel and the US (#2012080 to Benjamin
Steinberg), a PSC-CUNY grant and a CUNY Collaborative Incentive Research Grant.
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Permutoids, pseudogroups, and undecidability 11

A good reference on inverse semigroup theory is Lawson’s book [17]. Note
that s 7→ s∗ is an involution of S that satisfies the additional property that
ss∗t t∗ = t t∗ss∗ for all s, t ∈ S. Consequently, the set E(S) of idempotents of
S is a commutative subsemigroup of S.

Every group is an inverse semigroup. A fundamental example is the
pseudogroup IX of all partial homeomorphisms of a topological space X .
Formally, a partial homeomorphism of X is a homeomorphism f : U → V
between open subsets of X . The composition of partial homeomorphisms is
defined where it makes sense: if f : U → V and g : W → Z are partial
homeomorphisms of X , then their product in IX is the composition

f ◦ g : g−1(U ∩ Z)→ f (U ∩ Z).

If f : U → V is a partial homeomorphism of X , then f ∗ is the inverse mapping
f −1
: V → U . Bridson and Wilton term an inverse submonoid of IX closed under

taking restrictions a pseudogroup. Note that, unlike Bridson and Wilton, we allow
an empty partial homeomorphism, which is the zero element of IX . When X is
discrete, we call a partial homeomorphism of X a partial permutation. In this
case, IX is called the symmetric inverse monoid on the set X . The Preston–Wagner
theorem [17] asserts that every inverse semigroup can be faithfully represented as
a semigroup of partial permutations of its underlying set.

Inverse semigroups are closely connected to étale groupoids and have recently
played some role in the theory of C∗-algebras, in part due to this connection.
Also, inverse semigroups are precisely the ∗-semigroups of partial isometries of
a Hilbert space. Many naturally arising operator algebras, like Cuntz–Krieger
algebras, are generated by partial isometries. See, for instance, the book of
Paterson [24], the long paper of Exel [11] and the papers of Nica [23] and of
Khoshkam and Skandalis [16].

One of the fundamental problems in inverse semigroup theory is that of
extending partial permutations to permutations with some additional constraints.
This theme can be found in Lawson’s book [17], as well as papers like [1, 2, 9,
13, 14, 21, 29, 30], to name but a few. Many of these papers connect extending
partial permutations of a finite set to permutations of a bigger finite set, subject
to constraints, to the profinite topology on appropriate groups. The results in the
main body of this paper fit squarely into this body of work.

There is a natural partial order on any inverse semigroup S, generalizing the
restriction ordering on the pseudogroup IX . Namely, one puts s 6 t if and only
if s = te for some idempotent e ∈ E(S). Moreover, the multiplication and the
involution are order preserving. The product of two idempotents is their meet
in this order. To every inverse semigroup is associated a group G(S), called its
maximal group image or group of germs, defined by identifying two elements
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M. R. Bridson and H. Wilton 12

with a common lower bound. For instance, the group of germs of the inverse
monoid of isomorphisms between finite index subgroups of a group G is called
its abstract commensurator.

Let σ : S → G(S) be the canonical surjection. Clearly, E(S) ⊆ σ−1(1). One
says that S is E-unitary if σ−1(1) = E(S) or, equivalently, if s > e for some
idempotent e, then s is an idempotent. If S ⊆ IX is an inverse subsemigroup
closed under taking nonempty restrictions, then S is E-unitary if and only if each
element of S fixing a point of X fixes its entire domain.

An F-inverse monoid is an inverse monoid M such that each element m ∈ M is
below a unique maximal element of M . An F-inverse monoid is E-unitary since
1 is the unique maximal element above any idempotent and only idempotents are
below 1. Let max : M→ M be the map sending an element to the unique maximal
element above it. Then G(S) can be identified with max(M) equipped with the
product s � t = max(st). The free inverse monoid is an important example of an
F-inverse monoid [17].

Let us consider examples from other areas of mathematics. If X is an
irreducible algebraic variety, then the inverse monoid of isomorphisms between
open subvarieties of X is an F-inverse monoid and the group of birational
automorphisms of X can be identified with the group of germs of this monoid.
Examples of F-inverse monoids also occur in geometric group theory. Birget [5]
observed that Thompson’s group V is the group of germs of the F-inverse monoid
of all partial isomorphisms between finitely generated essential right ideals of a
free monoid on 2 letters.

An inverse semigroup S with a zero element cannot be E-unitary unless it
consists only of idempotents because s > 0 for all s ∈ S. Various attempts
have been made to extend the notion to the setting of inverse semigroups with
zero. The weakest notion is that of an E∗-unitary inverse semigroup. An inverse
semigroup with zero is E∗-unitary if s > e 6= 0 with e an idempotent implies that
s is an idempotent. (Note that earlier papers also used the term ‘0-E-unitary.’)
A pseudogroup S ⊆ IX is E∗-unitary if and only if each element of S that fixes
a point, fixes its entire domain. Equivalently, a pseudogroup is E∗-unitary if and
only if whenever two elements agree at a point, they agree on the intersection of
their domains.

The analogue of developability in inverse semigroup theory is the notion of
a strongly E∗-unitary inverse semigroup, introduced independently in [7, 18].
A good survey article on the subject is Lawson [19]. Let S be an inverse
semigroup with zero. Then a partial homomorphism from S to a group G is
a mapping ϕ : S\{0} → G such that ϕ(st) = ϕ(s)ϕ(t) whenever st 6= 0. It
is easily checked that E(S)\{0} ⊆ ϕ−1(1) and, consequently, ϕ is constant on
connected components of the Hasse diagram of S\{0}. One also checks that
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Permutoids, pseudogroups, and undecidability 13

ϕ(s∗) = ϕ(s)−1. We say that ϕ is idempotent pure if ϕ−1(1) = E(S)\{0}. An
inverse semigroup with zero is strongly E∗-unitary if it admits an idempotent
pure partial homomorphism to a group.

Every inverse semigroup S with zero has a universal group U (S), equipped
with a partial homomorphism θ : S\{0} → U (S), such that every other partial
homomorphism from S to a group factors uniquely through θ . One can construct
U (S) as the group generated by S\{0} with relations that put the word (s, t) equal
to the symbol (st) whenever st 6= 0 in S. See [19, 30] for details. It is easy to see
that S is strongly E∗-unitary if and only if the universal partial homomorphism θ

is idempotent pure. Strongly E∗-unitary inverse semigroups are clearly E∗-unitary
since if s > e 6= 0 with e ∈ E(S), then θ(s) = θ(e) = 1 and hence s ∈ E(S)
because θ is idempotent pure.

Alternatively, strongly E∗-unitary inverse semigroups can be described as Rees
quotients of E-unitary inverse semigroups by ideals (see [30]). An ideal I in a
semigroup S is a nonempty subset such that SI ⊆ I and I S ⊆ I . The Rees
quotient S/I is the quotient of S by the congruence which identifies I to a single
element (which will be the zero of the quotient).

We say that S is strongly E∗-unitary over a class C of groups if it admits an
idempotent pure partial homomorphism to a group in C.

Examples of strongly E∗-unitary inverse semigroups abound in C∗-algebra
theory. For instance, the graph inverse semigroups associated to Cuntz–Krieger
C∗-algebras [24] are strongly E∗-unitary, as are tiling semigroups [15] and
Toeplitz inverse semigroups [23]. The property of being strongly E∗-unitary for
an inverse semigroup is closely connected to representability of its associated
operator algebras as cross products or partial cross products of commutative
C∗-algebras with groups. See [22] for details.

The author’s paper [30] provides a connection with geometric group theory.
Following Stallings [28], a morphism of graphs ϕ : Γ → Γ ′ is an immersion
if it is injective on each star. Let A be a set. Then there is a bijection between
immersions over the bouquet of A circles and A-generated inverse semigroups of
partial permutations, as was pointed out by Margolis and Meakin [20]. The point
is that the monodromy action is only partially defined: each element of A has at
most one lift starting at any vertex under an immersion and the initial vertex is
sent to the terminal vertex of the lift, when defined, by the monodromy action.

In [30] the author shows that a connected graph immersion over a bouquet
can be extended to a regular covering map if and only if the corresponding
inverse semigroup generated by the monodromy action is strongly E∗-unitary
and the stabilizer of each vertex consists of idempotents. It was also shown that
a finite connected graph immersion over a bouquet can be extended to a finite-
sheeted regular covering if and only if the inverse semigroup generated by the
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M. R. Bridson and H. Wilton 14

monodromy action is strongly E∗-unitary over the class of finite groups and each
vertex stabilizer consists of idempotents.

The author proved in [30] the following theorem.

THEOREM A.1 (Steinberg). The following algorithmic problems are undecidable
for a finite E∗-unitary inverse semigroup S.

(1) Determining whether S is strongly E∗-unitary.

(2) Determining whether S is strongly E∗-unitary over finite groups.

(3) Determining whether S is a Rees quotient of an E-unitary inverse semigroup.

(4) Determining whether S is a Rees quotient of a finite E-unitary inverse
semigroup.

The proof of the first and third undecidability results use the undecidability of
the word problem for groups, whereas the proof of the second and fourth use the
undecidability of the uniform word problem for finite groups [26].

The analogue of F-inverse monoids in the context of monoids with zero was
first considered by Nica in his work on operator algebras [23] and also is featured
in the work of Khoshkam and Skandalis [16]. See also [19]. An inverse monoid
M with zero is an F∗-inverse monoid if each nonzero element of M is below
a unique maximal element. Since each nonzero idempotent of M is below 1, it
follows that F∗-inverse monoids are E∗-unitary. A pseudogroup is an F∗-inverse
monoid if and only if it is a rigid pseudogroup in the sense of Section 5.

The main results above can be viewed as proving the analogues of the
second and fourth items of Theorem A.1 in the context of F∗-inverse monoids
instead of E∗-unitary inverse semigroups. Since being F∗-inverse is a more
restrictive condition, this makes the results of Bridson and Wilton stronger than
Theorem A.1.

In the context of the fourth item, we need a definition. It is natural to
call an inverse monoid M with zero strongly F∗-inverse if there is a partial
homomorphism ϕ : M\{0} → G with G a group such that each nonempty
fiber of ϕ has a maximum element. (Lawson uses strongly F∗-inverse to mean
the conjunction of F∗-inverse and strongly E∗-unitary in [19], but our notion
seems more aptly named.) In this case, ϕ must be idempotent pure (since 1 is
maximal in its fiber) and M is both F∗-inverse and strongly E∗-unitary. The
operator algebras associated to strongly F∗-inverse monoids in our sense will be
strongly Morita equivalent to full cross products of a group with a commutative
C∗-algebra [16, 22], a feature not necessarily enjoyed by algebras of strongly
E∗-unitary inverse semigroups. If C is a class of groups, we say that M is strongly
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Permutoids, pseudogroups, and undecidability 15

F∗-inverse over C if it admits a partial homomorphism to a group in C such that
each nonempty fiber has a maximum element. The interest in strongly F∗-inverse
monoids over the class of finite groups stems from the following proposition.

PROPOSITION A.2. Let M be a finite inverse monoid with zero. Then M is
strongly F∗-inverse over the class of finite groups if and only if M is isomorphic
to a Rees quotient of a finite F-inverse monoid by an ideal.

Proof. Suppose first that M ∼= S/I with S a finite F-inverse monoid. Let σ : S→
G(S) be the maximal group image homomorphism. Note that G(S) is finite and
that each fiber of σ has a maximum element (see [17]). We can identify M\{0}
with the complement S\I of I . Then σ |S\I is a partial homomorphism (see [30])
and each nonempty fiber clearly still has a maximum element. Thus M is strongly
F∗-inverse over finite groups.

For the converse, let us suppose that M admits a partial homomorphism
ϕ : M\{0} → G with G a finite group such that each nonempty fiber contains
a maximum element. Put

S = ({0} × G) ∪ {(m, ϕ(m)) | m ∈ M\{0}}.

The reader easily verifies that S is a submonoid of M × G and I = {0} × G is
an ideal of M . Moreover, trivially M ∼= S/I . Of course, S is finite. It remains
to observe that S is an F-inverse monoid. We shall use that the natural partial
order on a group is equality, the natural partial order on a product is the product
order and that the natural partial order on a subsemigroup is induced by that of
the ambient semigroup. First note that if g /∈ ϕ(M\{0}), then clearly (0, g) is a
maximal element of S. If g ∈ ϕ(M\{0}), let max(g) be the maximum element
of ϕ−1(g). Then (max(g), g) is the unique maximal element of S above (0, g)
for g ∈ ϕ(M\{0}) and (max(ϕ(m)), ϕ(m)) is the unique maximal element above
(m, ϕ(m)) for m ∈ M\{0}. Thus S is an F-inverse monoid.

A minor modification of the proof shows that strongly F∗-inverse monoids are
precisely the Rees quotients of F-inverse monoids.

Let us next verify that a rigid pseudogroup S is developable in the sense of
Section 5 if and only if it is strongly E∗-unitary over the class of finite groups. We
say the development G n Y of S ⊆ IX is faithful if distinct maximal elements of
S are extended by distinct elements of G. Observe that if there is some element
x ∈ X common to the domain of all maximal elements of S, then the development
is automatically faithful. Indeed, if s and t are distinct maximal elements of S
extended by the same element g ∈ G, then sx = gx = t x . But then s|{x} = t |{x}
has two common maximal upper bounds, s and t , a contradiction.
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M. R. Bridson and H. Wilton 16

PROPOSITION A.3. Let X be a finite set and S ⊆ IX a rigid pseudogroup.
Then S is developable if and only if S is strongly E∗-inverse over finite groups.
Moreover, S is strongly F∗-inverse over finite groups if and only if S has a faithful
development.

Proof. Suppose first that S is developable and let Y ⊇ X be a finite set and G
a finite group acting freely on Y such that each element of S is a restriction
of an element of G. Because the action is free, for each s ∈ S\{0}, there is a
unique element ϕ(s) ∈ G such that s 6 ϕ(s) (that is, s is a restriction of ϕ(s)).
If s, s ′ ∈ S with ss ′ 6= 0, then ss ′ 6 ϕ(s)ϕ(s ′) and so ϕ(ss ′) = ϕ(s)ϕ(s ′). Thus
ϕ : S\{0} → G is a partial homomorphism. Suppose that s ∈ ϕ−1(1). Then s is
a restriction of the identity and hence an idempotent. Thus ϕ is idempotent pure
and so we may conclude that S is strongly E∗-unitary over finite groups. If the
development is faithful, then ϕ is injective on maximal elements of S\{0} and
hence each nonempty fiber of ϕ has a maximum element and so S is strongly
F∗-inverse over finite groups.

To prove the converse, assume that S is strongly E∗-unitary over finite groups
and let ϕ : S\{0} → G be an idempotent pure partial homomorphism with G a
finite group. Fix a transversal T to the set of orbits of S on X and let Y = G × T
with the action g′(g, t) = (g′g, t). Then Y is a finite set acted upon freely by G.
Define ψ : X → Y by ψ(st) = (ϕ(s), t) for t ∈ T and s ∈ S (using that X = ST ).
First we verify that ψ is well defined. If st = s ′t ′ with s, s ′ ∈ S and t, t ′ ∈ T ,
then we must have t = t ′ and so st = s ′t . Therefore, s, s ′ have a common upper
bound s̃ because S is rigid (namely the maximal element above s|{t} = s ′|{t}). But
then ϕ(s) = ϕ(̃s) = ϕ(s ′) and so ψ is well defined. To see that ψ is injective,
suppose that ψ(x) = ψ(y). Write x = st and y = s ′t ′ with s, s ′ ∈ S and t,
t ′ ∈ T . Then (ϕ(s), t) = (ϕ(s ′), t ′) and so t = t ′, ϕ(s) = ϕ(s ′). Note that s ′s∗x =
s ′s∗st = s ′t = y and so s ′s∗ 6= 0. Therefore, we have ϕ(s ′s∗) = ϕ(s ′)ϕ(s∗) =
ϕ(s ′)ϕ(s)−1

= 1. As ϕ is idempotent pure, we conclude that s ′s∗ is idempotent
and hence y = s ′s∗x = x as an idempotent partial permutation fixes its domain.

It remains to verify that ϕ(s ′) extends s ′ for s ′ ∈ S\{0}. So let x ∈ X belong to
the domain of s ′ and write x = st with s ∈ S and t ∈ T . Then s ′x = s ′st and so
s ′s 6= 0. Therefore, we have

ϕ(s ′)ψ(x) = ϕ(s ′)(ϕ(s), t) = (ϕ(s ′)ϕ(s), t)
= (ϕ(s ′s), t) = ψ(s ′st) = ψ(s ′x)

and so the action of ϕ(s ′) extends the action of s ′ (after identifying X with a
subset of Y via ψ). If, in addition, each fiber of ϕ has a maximum element,
then ϕ is injective on maximal elements of S\{0} and hence the development is
faithful.
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Permutoids, pseudogroups, and undecidability 17

Next we shall show that there is no real difference between studying rigid
pseudogroups and arbitrary F∗-inverse monoids in our context.

LEMMA A.4. Let T be an F∗-inverse monoid and let S be an inverse submonoid
with zero of T containing all the maximal elements of T . Then each partial
homomorphism ϕ from S to a group G extends uniquely to T . Moreover, if ϕ is
idempotent pure, then so is the extension and if ϕ is injective on maximal elements
of S\{0}, then the same is true for the extension.

Proof. Let max : T \{0} → T \{0} be the mapping sending a nonzero element of
T to the unique maximal element above it. By assumption, the image of max
is contained in S\{0}. Thus if Φ : T \{0} → G is an extension of ϕ, we must
have Φ(t) = Φ(max(t)) = ϕ(max(t)) and so Φ is unique, if it exists. We must
now show that Φ(t) = ϕ(max(t)) is a partial homomorphism. Suppose that t,
t ′ ∈ T \{0} with t t ′ 6= 0 and put s = max(t) and s ′ = max(t ′). Then 0 6= t t ′ 6 ss ′

and so max(t t ′) = max(ss ′). Thus

Φ(t)Φ(t ′) = ϕ(s)ϕ(s ′) = ϕ(ss ′) = ϕ(max(ss ′)) = Φ(t t ′)

as required.
Suppose, in addition, that ϕ is idempotent pure and Φ(t) = 1. Then

ϕ(max(t)) = 1 and so max(t) is an idempotent. Therefore, t is an idempotent
as the set of idempotents is an order ideal in an inverse semigroup. Thus Φ is
idempotent pure. Clearly, Φ separates the maximal nonzero elements if ϕ does as
S and T have the same maximal elements.

Now we show that every F∗-inverse monoid embeds into a rigid pseudogroup
satisfying the conditions of Lemma A.4.

PROPOSITION A.5. Let S be an F∗-inverse monoid. Then there is a rigid
pseudogroup T ⊆ IS\{0} such that S is an inverse submonoid with zero of T
containing all the maximal elements. In particular, S is finite if and only if T is
finite. Moreover, S is strongly E∗-unitary (respectively, strongly F∗-inverse) over
a class of groups C if and only if T is strongly E∗-unitary (respectively, strongly
F∗-inverse) over C.

Proof. The inverse monoid S acts faithfully on its underlying set via the Preston–
Wagner representation ρ : S → IS where ρ(s) : s∗sS → ss∗S is defined by x 7→
sx [17]. Clearly, 0 is fixed by each element of ρ(S). Thus S\{0} is invariant under
ρ(S) and the restricted representation ρ ′ : S→ IS\{0} is still faithful but has ρ ′(0)
the empty map. Let T be the pseudogroup of all restrictions of elements of ρ ′(S).
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M. R. Bridson and H. Wilton 18

Clearly, ρ ′(S) and T have the same maximal elements by construction and each
element of T is below a maximal element of ρ ′(S) (as S is an F∗-inverse monoid).
We claim that T is F∗-inverse, that is, a rigid pseudogroup. To see this, we need
to show that if s, s ′ ∈ S are distinct maximal elements, then ρ ′(s) and ρ ′(s ′) have
no common, nonempty restriction. Equivalently, we must show that ρ ′(s) and
ρ ′(s ′) do not agree on any element common to their domains. So suppose that
x ∈ S\{0} belongs to the domain of both ρ ′(s) and ρ ′(s ′) and they agree on x .
Then sx = s ′x 6= 0 and hence sxx∗ = s ′xx∗ 6= 0 (since s ′xx∗x = s ′x). As xx∗ is
an idempotent, we have that sxx∗ = s ′xx∗ is a common nonzero lower bound of
s and s ′ in S\{0}. This contradicts that S is an F∗-inverse monoid. We conclude
that T is a rigid pseudogroup. From now on we identify S with the submonoid
ρ ′(S) of T .

Clearly, if ϕ is partial homomorphism from T to a group G in C that is
idempotent pure (respectively, has maximum elements in nonempty fibers) then
the restriction of ϕ to S has the same property. Thus if T is strongly E∗-unitary
(respectively, strongly F∗-inverse) over C, then so is S. Conversely, if S admits a
partial homomorphism to a group in C that is idempotent pure (respectively, has
maximum elements in nonempty fibers), then so does T by Lemma A.4. This
completes the proof.

In light of Propositions A.3 and A.5, we can reformulate Theorem 5.2 in the
following equivalent way (contrast with Theorem A.1).

THEOREM A.6. It is undecidable whether a finite F∗-inverse monoid is strongly
E∗-unitary over finite groups.

The proof of Theorem 5.2 uses rigid pseudogroups whose maximal elements
are finite quotients of Cameron permutoids. These rigid pseudogroups have
the property that all maximal elements have the same domain. Thus they are
developable if and only if they have a faithful development by the remark
preceding Proposition A.3. Therefore, Theorem 5.2 and Proposition A.3 yield
the following undecidability result.

THEOREM A.7. It is undecidable whether a finite F∗-inverse monoid is strongly
F∗-inverse over finite groups.

Proposition A.2 lets us reformulate Theorem A.7 in a more appealing manner.

THEOREM A.8. It is undecidable whether a finite F∗-inverse monoid is a Rees
quotient of a finite F-inverse monoid by an ideal.
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