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a b s t r a c t

The capacity to flexibly respond to contextual changes is crucial to adapting to a dynamic

environment. Compulsivity, or behavioural inflexibility, consists of heterogeneous sub-

types with overlapping yet discrete neural substrates. The subthalamic nucleus (STN)

mediates the switch from automatic to controlled processing to slow, break or stop

behaviour when necessary. Rodent STN lesions or inactivation are linked with persevera-

tion or repetitive, compulsive responding. However, there are few studies examining the

role of latent STN-centric neural networks and compulsive behaviour in healthy in-

dividuals. We therefore aimed to characterize the relationship between measures of

compulsivity (goal-directed and habit learning, perseveration, and self-reported obsessive

e compulsive symptoms) and the intrinsic resting state network of the STN.We scanned 77

healthy controls using a multi-echo resting state functional MRI sequence analyzed using

independent components analysis (ME-ICA) with enhanced signal-to-noise ratio to

examine small subcortical structures. Goal directed model-based behaviour was associated

with higher connectivity of STN with medial orbitofrontal cortex (mOFC) and ventral

striatum (VS) and more habitual model-free learning was associated with STN connectivity

with hippocampus and dorsal anterior cingulate cortex (ACC). Perseveration was associated

with reduced connectivity between STN and premotor cortex and finally, higher obsessive

ecompulsive inventory scores were associated with reduced STN connectivity with

dorsolateral prefrontal cortex (PF). We highlight unique contributions of diffuse cortico-

striatal functional connections with STN in dissociable measures of compulsivity. These

findings are relevant to the development of potential biomarkers of treatment response in

neurosurgical procedures targeting the STN for neurological and psychiatric disorders.

© 2016 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The capacity to flexibly adapt to dynamic environments is a

crucial component of optimal daily functioning. The devel-

opment and emergence of rigid or inflexible behavioural pat-

terns is dimensionally relevant across multiple psychiatric

disorders, including addiction and obsessive-compulsive dis-

order. The construct compulsivity describes this tendency

towards repetitive, deleterious behaviours that persist despite

negative consequence (Robbins, Gillan, Smith, de Wit, &

Ersche, 2012). Compulsivity can be deconstructed into

several components, each detailing distinct cognitive contri-

butions to the behavior and associated with overlapping yet

distinct neural substrates.

The subthalamic nucleus (STN) is amajor relay structure in

the indirect pathway of the basal ganglia crucially involved in

the switch between automatic and controlled processing and

the balance between inhibition and executive control

(Jahanshahi, 2013). The STN receives afferents from cortical

regions involved in executive control (Haynes & Haber, 2013),

allowing hyper-direct control of basal ganglia output based on

frontal innervations. Direct cortical projections to STN,

particularly from the right inferior frontal cortex (Aron,

Behrens, Smith, Frank, & Poldrack, 2007) can usurp the

cortico-basal ganglia loops (Balaz, Bockova, Rektorova, &

Rektor, 2011) to slow, break or stop responding (Aron et al.,

2007), with the STN responding to stop cues whether actions

are cancelled or not (Schmidt, Leventhal, Mallet, Chen, &

Berke, 2013). In rodents, STN and medial prefrontal cortex

(PFC) disconnection via contralateral lesions (Chudasama,

Baunez, & Robbins, 2003) and STN lesion, stimulation and

inactivation (Baunez & Lardeux, 2011) enhances persevera-

tion, a repetitive, compulsive form of responding.

Deep brain stimulation (DBS) to the STN in humans pro-

vides insight into the role of the STN in behaviour, cognition

and disease states. DBS is delivered via electrodes inserted

into grey or whitematter and uses high frequency stimulation

to modulate network activity or pathological oscillatory ac-

tivity. STN DBS is effective for the symptomatic management

of Parkinson's disease (PD). Impairment's in task switching in

PD are improved by ventral STN DBS (but not dorsal)

(Greenhouse, Gould, Houser, & Aron, 2013) implicating limbic

and associative rather than motoric STN. Furthermore, STN

hyperactivity in PD is associated with more habitual behav-

iour as measured by random number generation that requires

habit suppression (Obeso et al., 2011), which is improved by

STN DBS in this group (Witt et al., 2004). STN DBS targeting

more limbic and associative regions has also been shown to be

effective in the management of obsessive-compulsive disor-

der (OCD) characterized by impairments in behavioural flexi-

bility such as enhanced habitual responding and impaired set

shifting behaviours (Fineberg et al., 2015). Together these

findings implicate the STN in habitual or inflexible behaviour

modulation.

Recent computational models suggest parallel, interactive

and dissociable systems of behavioural control: a fast, reactive

and model-free system that relies on habitual learning in

which previously reinforced behaviours are repeated; and a

slower, deliberative model-based system for more flexible
goal-directed behavior that takes into account the task-

structure or internalized task model. The relative influence

of each system on choice has been assessed with a two-step

task, demonstrating concurrent use of both systems in

healthy functioning (Daw, Gershman, Seymour, Dayan, &

Dolan, 2011), and a tendency towards habitual, model-free

learning in methamphetamine addiction, binge eating disor-

der and obsessive compulsive disorder (Voon et al., 2014). The

ventral striatum (VS) has been implicated as a key node in

both systems (Daw et al., 2011; Morris et al., 2015). The medial

orbitofrontal cortex (mOFC) (Morris et al., 2015) and dorsolat-

eral prefrontal cortex (dlPFC) (Smittenaar, FitzGerald, Romei,

Wright, & Dolan, 2013) have been implicated in the model-

based, goal-directed system. The two-step task also provides

a measure of perseveration. Whereas habitual behaviours are

defined as repeated choices of previously reinforced behav-

iours and are hence outcome sensitive, perseverative behav-

iors involve repetition of behaviour irrespective of the

outcome. The neural correlates of perseverative behaviours

are less well-understood.

Here we aimed to characterize the latent resting state

network of the STN and its relationship with inter-individual

variability in measures of behavioural inflexibility in healthy

individuals. We hypothesize that lower goal-directed behav-

iours are associated with lower functional connectivity be-

tween the STN and medial OFC and dlPFC.
2. Materials and methods

2.1. Participants

Healthy volunteers were recruited from community-based

advertisements in East Anglia. Psychiatric disorders were

screened with the Mini International Neuropsychiatric Inter-

view (Sheehan et al., 1998). Subjects were excluded if they had

a major psychiatric disorder, substance addiction or medical

illness or were on psychotropic medications. Subjects were

included if they were 18 years of age or over and had no his-

tory of regular or current use of other substances.

All participants completed the National Adult Reading Test

(Nelson, 1982) to assess verbal IQ. We used the self-reported

Obsessive Compulsive Inventory- Revised (OCI) (Foa, Kozak,

Salkovskis, Coles, & Amir, 1998) which measures subjective

distress related to obsessive and compulsive thoughts and

behaviours. Participants completed the behavioural measures

and resting state functionalMRIwithin the same day, with not

more than 4 h of delay between. Participants provided written

informed consent and were compensated for their time. The

study was approved by the University of Cambridge Research

Ethics Committee.
2.2. Tasks

2.2.1. Model-free model-based task
We employed a two-step choice task (Daw et al., 2011) shown

to elicit engagement of goal-directed (model-based) and

habitual (model-free) learning systems, as well as persevera-

tion (p). The task involved two stages. At stage 1, participants

http://dx.doi.org/10.1016/j.cortex.2016.12.018
http://dx.doi.org/10.1016/j.cortex.2016.12.018


c o r t e x 8 8 ( 2 0 1 7 ) 1 4 3e1 5 0 145
were offered a choice between two stimuli, each leading with

a fixed probability to one of two states at stage 2. At stage 2,

participants were offered another choice between two stimuli,

each leading, with differing probabilities, to monetary reward.

The probability of reward slowly shifts over the course of the

task. Participants received extensive, self-paced training

including practices demonstrating the concepts of stage

transitions and probability, lasting 15e20 min. Choice of one

stimulus at stage one led to one of two stimulus-pairs at stage

two with a fixed probability (P ¼ .70 or .30). Choice of the other

stimulus led to the same stage two but with the opposite fixed

probability (P¼ .30 or .70). Choice of a stimulus at stage two led

to an independently varying probability of reward (between

P ¼ .25 to .75). Participants had 2 s to make a decision and the

transition between stages was 1.5 sec. The chosen stimulus at

stage one remained on the screen during stage two of that trial

as a reminder. Participants completed 201 trials divided into

three sessions. The outcome was an image of £1. Habit

learning was modeled using a model-free reinforcement

learning algorithm. However, the goal-directed learning al-

gorithm takes into account the state transitions. A weighting

factor (w) was calculated for each individual, capturing the

relative contribution of either habitual model-free (w ¼ 0) or

goal-directed model-based (w ¼ 1) learning. Perseveration (p)

provides a measure of the tendency to select the same first

stage choice irrespective of outcome. The task was pro-

grammed with Matlab 2011a.
2.3. Computational modeling

This task had three states: stage-one state A (sA); stage-two

state B and C (sB and sC). Each state had two actions: aA and

aB. In Model free learning was modeled using a SARSA (l)

temporal difference (TD) algorithm where each choice is

based on a predicted long-run value [QTD (s,a)] for each action a

at each stage s. The TD reward prediction error (d) informs

subsequent predictions. For each trial (t), the stage-one state

s1,t (sA) requires an action a1,t choice. The stage-two state s2,t
(sB or sC) also requires an action a2,t choice, leading to a reward

r2,t (£1 or £0). After each stage i (1,2) of each trial t, a prediction

error di,t will occur that will update the previous states' si,t
value QTD and action ai,t:

QTD

�
si$t;ai;t

� ¼ QTD

�
si$t; ai;t

�þ aidi;t

where

di;t ¼ ri;t þQTD

�
siþ1;t;aiþ1;t

��QTD

�
si;t$ai;t

�

The action value of stage-one is updated depending on the

value after the stage-two state, QTD (s2,t,a2,t). r1,t ¼ 0 because no

reward is received at this stage and r2,t then updates the value

at the second stage. The terminal value QTD (s3,t,a3,t) ¼ 0. A

separate parameter captures the learning rate for the update

of each stage (a1, a2). The stage-one action value is updated by

the stage-one prediction error and the stage-two prediction

error at the end of each trial when r2,t is received:

QTDðs1;t;a1;tÞ ¼ QTDðs1;t;a1;tÞ þ a1ld2;t

This update extent is also determined by the eligibility

trace parameter l. At stage-one (QMB), the model-based
reinforcement learning algorithm calculated the action value

per action based on the probabilities that the current action

would lead to each stage two state [P(sBjsA.aA] ¼ .70;

[P(sBjsA.aA]¼ .30; and conversely for sC) and the values of those

states. Therefore, for each action aj (j ¼ A,B):

QMB

�
sA;aj

� ¼ P
�
sB
��sA;aj

�
maxQTDðsB; akÞ
k

þ P
�
sC
��sA; aj

�
maxQTDðsC;akÞ
k

The stage-two value is equivalent to the model-free value

of the optimal action as both model-free and model-based

values coincide at the end state. For each stage-one action, a

net action value is calculated depending on the weighted sum

of both model-free and model-based values:

Qnet

�
sA; aj

� ¼ wQMB

�
sA; aj

�þ ð1�wÞQTD

�
sA; aj

�

Here, w is a weighting parameter and higher w (w ¼ 1) in-

dicates reliance on model-based learning strategies while

lower w (w ¼ 0) indicates greater reliance on model-free. At

stage two, QNET ¼ QTD. For each stage, the probability of a

choice is calculated using the softmax equation in Qnet:

P
�
ai;t ¼ a

��si;t
�
a exp

�
bi

�
Qnet

�
si;t;a

�þ p*repðaÞ��

where bi is an index of choice reliability at each stage (b1, b2)

with higher values indicating higher reliability. P accounts for

perseveration (P > 0) or switching (P < 0) of choices in stage

one. rep(a) acts as a binary indicator such that it has a value of

1 if a is an action from stage one and a ¼ a1,t�1, and otherwise

equals 0.
2.4. Resting state functional MRI

We employed a novel multi-echo resting state functional

magnetic resonance imaging (fMRI) acquisition and analysis

with four-fold greater signal compared to noise (Kundu et al,

2012, 2013), important for harnessing signal from small

subcortical structures like STN. Data during rest for 10 min,

with eyes open was collected with a multi-echo planar

sequence using a Siemens 3T Tim Trio scanner and 32-

channel head coil at the Wolfson Brain Imaging Centre, Uni-

versity of Cambridge (repetition time, 2.47 sec; flip angle, 78�;
matrix size 64 � 64; in-plane resolution, 3.75 mm; field of view

e FOV, 240 mm; 32 oblique slices, alternating slice acquisition

slice thickness 3.75 mm with 10% gap; iPAT factor, 3;

bandwidth ¼ 1,698 Hz/pixel; TE ¼ 12, 28, 44 and 60 msec).

Anatomical images were also acquired with a T1-weighted

magnetization prepared rapid gradient echo (MPRAGE)

sequence (176� 240 FOV; 1-mm in-plane resolution; inversion

time, 1100 msec).

Functional data was denoised using multi-echo indepen-

dent component analysis (ME-ICA v2.5 beta10; http://afni.

nimh.nih.gov). Data were decomposed into independent

components with FastICA. Blood oxygen level dependent

(BOLD) percent signal change is linearly proportional to echo

time (TE). Thus, independent components that strongly scaled

with TE were retained as BOLD data, after assignment of high

Kappa scores (Kundu et al., 2012). Components that were TE

independent were measured by the pseudo-F-statistic, Rho

http://afni.nimh.nih.gov
http://afni.nimh.nih.gov
http://dx.doi.org/10.1016/j.cortex.2016.12.018
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Table 1 e Statistics of subthalamic nucleus connectivity
and compulsivity.

Cluster Z x y z

w positive

Bilateral ventral Striatum 65 4.35 13 24 �4

89 4.26 �6 14 �2

Left medial OFC 29 4.22 �6 38 �30

Right temporal 29 3.76 64 �30 �23

19 3.56 �66 �32 17

w negative

Dorsal ACC 31 4.87 8 28 19

Left hippocampus 38 4.44 �31 �20 �18

Posterior Cingulate 26 4.12 �13 �23 33

Medial Parietal 34 3.92 �10 �65 49

3.4 �8 �74 49

21 3.66 1 �74 56

c o r t e x 8 8 ( 2 0 1 7 ) 1 4 3e1 5 0146
and represent non-BOLD artefacts, which were removed by

projection. This robustly denoises data for motion, physio-

logical and scanner artefacts based on physical principles

(Kundu et al., 2013). Denoised echo planar images were cor-

egistered to their anatomical MPRAGE image and normalized

to the Montreal Neurological Institute (MNI) template. For

correlations with behavioural measures, but not baseline

mapping, spatial smoothing was performed with a Gaussian

kernel full width half maximum ¼ 6 mm.

Functional connectivity was computed using a seed-driven

approach using the CONN-fMRI Functional Connectivity

toolbox (Whitfield-Gabrieli & Nieto-Castanon, 2012) for Sta-

tistical Parametric Mapping (SPM). Functional data was

temporally band-pass filtered (.008 < frequency < .09 Hz).

Significant principle components of white matter and cere-

brospinal fluid were removed. For correlations with behav-

ioural measures of compulsivity, STN seed-to-whole brain

connectivity maps were computed and entered into second

level correlation analysis controlling for age and gender. For

the w and P scores we further controlled for the variance

related to the other variable as covariates of no interest to

account for multiple comparisons and highlight unique con-

tributions of each. The STN region of interest (ROI) provided by

Wake Forrest University PickAtlas (Maldjian, Laurienti, Kraft,

& Burdette, 2003) was used as the STN seed. This has the

same centre of mass as a previously used STN ROI based on

task-based fMRI (Aron & Poldrack, 2006; Aron et al., 2007) (10,

�14,�4 for right STN). Cluster extent threshold correctionwas

used for correlationswith behaviour, calculated at 15 voxels at

p < .001 whole brain uncorrected, correcting for multiple

comparisons at p < .05 assuming an individual-voxel Type I

error of p ¼ .01 (Slotnick, Moo, Segal, & Hart, 2003). Due to the

possibility of mixed signals arising from adjacent structures,

we also examined the adjacent substantia nigra (SN) as a seed

region to ensure specificity of the current findings to STN.

Thus, the same correlation for w was performed for SN-to-

whole brain functional connectivity maps.
Cerebellum 19 3.63 �41 �58 �53

Midbrain 17 3.58 3 �25 �18

3.32 8 �20 �23

OCI positive

Nil

OCI negative

Cerebellum 47 3.88 �48 �65 �51

3.78 �48 �48 �49

32 3.8 �6 �27 �58

Left Inferior Parietal 51 3.86 �45 �46 40

Right Dorsolateral PFC 21 3.35 50 33 35

Perseveration positive

Left Cerebellum 17 3.58 �8 �48 �9

Perseveration negative

Left Occipital 24 4.58 �27 �76 12

Left Premotor Cortex 23 4.52 �38 3 45

Left Insula 20 4.06 �20 19 35

Statistics for the bilateral subthalamic nucleus (STN) seed-to-

whole brain connectivity positive and negative correlations with

measures of compulsivity. Cluster extent threshold correction of 15

voxels at p < .001 whole brain uncorrectedwas used. Abbreviations:

Z, Z score; xyz, peak voxel coordinates; w, weighting of model

based (w ¼ 1) and model free (w ¼ 0) learning; OCI, obsessive

compulsive index; OFC, orbitofrontal cortex; ACC, anterior cingu-

late cortex; PFC, prefrontal cortex; IFC, inferior frontal cortex.
3. Results

3.1. Participant characteristics

We acquired resting state fMRI data from 77 healthy controls

(46 female; age ¼ 29.623 ± 12.168; verbal IQ ¼ 117.133 ± 5.595;

w ¼ .411 ± .276; perseveration ¼ .191 ± .173). Self reported OCI

data was available for 20 of these subjects and an additional

40, totaling 60 subjects for the OCI analysis (39 female;

age ¼ 30.4 ± 12.913; verbal IQ ¼ 115.388 ± 5.926;

OCI ¼ 10.683 ± 7.294).

3.2. Compulsivity measures

Table 1 demonstrates the results of the correlation between

STN seed-to-whole brain functional connectivity beta maps

with the measures of interest, including both positive and

negative correlations. The weighting factor, w, which de-

scribes the relative contribution of either habitual (model-

free, MF, w ¼ 0) or goal-directed (model-based, MB, w ¼ 1)

learning tendencies, was positively correlated with STN
connectivity with left VS and mOFC. These regions are illus-

trated in Fig. 1, alongside a plot of their functional connectivity

with STN against w. Also, w correlated negatively with STN

connectivity with left hippocampus, dorsal anterior cingulate

cortex (ACC) and medial parietal cortex (statistics in Table 1).

To examine the specificity of these correlations for STN,

rather than adjacent structures, we examined adjacent SN.

We found no similar pattern for SN functional connectivity

and its relationship with w, suggesting that the current find-

ings for STN were not driven primarily by signals from adja-

cent structures (Supplementary Table 1). To further confirm

this, functional connectivity for adjacent SN (with regions

currently implicated for STN and w, VS, medial OFC, dorsal

ACC, hippocampus) was computed and correlated with w. No

significant correlations were observed between adjacent SN

and regions implicated for STN, with w (see supplementary

materials).

For comparison purposes we also investigated persevera-

tion, which was associated with reduced connectivity be-

tween STN and left premotor cortex and left insula (Fig. 1). OCI

http://dx.doi.org/10.1016/j.cortex.2016.12.018
http://dx.doi.org/10.1016/j.cortex.2016.12.018


Fig. 1 e Subthalamic nucleus connectivity and model based versus model free learning. The two-step model-based model-

free learning task is depicted on the left. A stimulus chosen at stage 1 (S1) led with 70/30% probability to one of two states

(pink or blue in the schematic image) at stage 2 (S2). Choice of a stimulus at S2 led, with varying probability, to reward or no

reward. Subthalamic nucleus (STN) connectivity with whole brain was computed and correlated with w, the relative

contribution of model-free (w ¼ 0) or model-based (w ¼ 1) learning tendencies derived from the task. The y axis represents

the functional connectivity between STN and a given region, and the x axis is the behavioural measure of w (top) or

perseveration (bottom). STN connectivity with VS and mOFC positively correlated with w (top) and STN connectivity with

premotor cortex and insula negatively correlated with perseveration (bottom). Displayed at p < .005 whole brain uncorrected

for illustration on standard MNI template.

c o r t e x 8 8 ( 2 0 1 7 ) 1 4 3e1 5 0 147
score negatively correlated with connectivity between STN

and cerebellum, right dlPFC and left inferior parietal cortex

(Fig. 2). There were no positive correlations for OCI.
4. Discussion

We illustrate the relationships between intrinsic resting state

functional connectivity of the STN and behavioural measures
Fig. 2 e Subthalamic nucleus connectivity and compulsivity. Sub

computed and correlated with obsessive compulsive index. Abb

at p < .005 whole brain uncorrected for illustration on standard
of compulsivity across a relatively large sample of healthy

volunteers. Higher connectivity between STN with medial

OFC and left VS was associated with more model-based goal-

directed learning whereas more model-free habitual learning

implicated STN connectivity with dorsal ACC and left hippo-

campus. Furthermore, perseveration was associatedwith STN

with premotor and insula connectivity whereas higher self-

reported obsessive compulsive scores were associated with

lower connectivity between STN and right dlPFC and left
thalamic nucleus (STN) connectivity with whole brain was

reviation: DLPFC, dorsolateral prefrontal cortex. Displayed

MNI template.

http://dx.doi.org/10.1016/j.cortex.2016.12.018
http://dx.doi.org/10.1016/j.cortex.2016.12.018


c o r t e x 8 8 ( 2 0 1 7 ) 1 4 3e1 5 0148
inferior parietal cortex. We highlight unique neural couplings

of the STN, contributing to distinct measures of compulsivity.

The relationship between model-basedness and STN con-

nectivity with OFC and VS dovetails with several studies

implicating this cortico-striatal pathway in model-based

learning. Model-based behaviour has been associated with

higher grey matter volume in the medial OFC (Voon et al.,

2014) and the reward prediction errors used to guide both

model-based andmodel-free behaviour are encoded by the VS

(Daw et al., 2011). Furthermore, we have previously demon-

strated that higher functional connectivity between medial

OFC and VS is associated with greater model-based learning

tendencies using the same task (Morris et al., 2015).

In contrast, greater habitual model-free learning was

associated with greater connectivity of the STN with dorsal

ACC and hippocampus. The neural correlates of model-

freeness have been less well established. Previous studies

assessing habitual behaviour in humans have implicated the

putamen and premotor cortex using the ‘slips of action’ task

(de Wit et al., 2012) and the supplementary motor area (SMA)

using the current two-step task (Morris et al., 2015). Tradi-

tionally, there has been a dissociation between dorsal striatal

habit and hippocampal declarative or cognitive memories

driving behaviour (Broadbent, Squire, & Clark, 2007; Packard,

Cahill, & McGaugh, 1994; Wingard & Packard, 2008). Howev-

er, the hippocampus has been shown to encode reward pre-

diction (Tanaka et al., 2004), which is necessary for the

reinforcement learning that drives model-free behaviour

(Glascher, Daw, Dayan, & O'Doherty, 2010). The dorsal ACC

receives extensive projections from dopaminergic midbrain

projections and is also implicated in reward prediction and

prediction error for guiding reinforcement driven behaviour

(Holroyd& Yeung, 2012; Kennerley, Walton, Behrens, Buckley,

& Rushworth, 2006). Links between the STN and dorsal ACC

have been exemplified by studies in PD patients, which show

that STN DBS reduces cerebral blood flow in the dorsal ACC

(Ballanger et al., 2009; Thobois et al., 2007). STN DBS affects

habitual behaviour, as measured by the generation of a

sequence of random numbers (requiring habit suppression),

although DBS has been shown to both improve (Witt et al.,

2004) and impair (Thobois et al., 2007) performance on this

task. STN DBS has also been shown to consistently hasten

responding in the context of conflict or competing responses

related to mesial prefrontal theta activity (Cavanagh et al.,

2011). In the context of habit learning, conflict resolution

may be relevant in resolving choices that involve switching

between strategies. Thus, the STN may mediate the shift be-

tween automatic habit learning from enhanced reliance on

previously encoded reward prediction mediated via dorsal

ACC and hippocampal structures to controlled goal-directed

learning via the representation of goals in the medial OFC to

flexibly guide responding.

Both w and perseveration capture similar repeated choices

but are dissociated as a function of relevance of previously

learned outcomes. We implicate a relationship between

perseveration and STN connectivity with premotor cortex, a

region responsible for action ownership and recognition

(Ehrsson, Spence, & Passingham, 2004; Rizzolatti, Fadiga,

Gallese, & Fogassi, 1996). Changes in perseveration for

reward (Albuquerque et al., 2014; Herzog et al., 2009; Houeto
et al., 2002) are observed following STN DBS in PD. Thus,

whereas habit learning implicates regions involved in the

encoding of reward prediction, perseveration implicates

motor preparatory regions. Finally, higher obsessive-

compulsive inventory scores were associated with weaker

connectivity between STN and a fronto-parietal executive

network including dorsolateral PFC, a network crucial for

cognitive and attentional flexibility and shifting and impli-

cated in OCD (Fineberg et al., 2015).

We chose to examine resting state neural properties rather

than task-based for several reasons. Firstly, understanding

the resting and latent neural network provides insight into the

default or intrinsic function of the network as a whole-

without perturbation by cognition, which may differ on an

interindividual basis. As such, two levels of interindividual

variability are possible: variability within the intrinsic

network itself; and variability in the way in which that

network is recruited during task. This distinction certainly

requires further exploration and delineation. However, un-

derstanding the baseline characteristics of neural networks is

key, before any network recruitment by task demand.

Furthermore, resting state fMRI data is quicker and easier to

collect compared to task fMRI- features that are crucial in

clinical settings. As the current study is of relevance to clini-

cians interested in STN DBS, we use a tool that is accessible to

clinical work. This technique can therefore be expanded to

other areas of clinical interest, for example for pre-surgical

mapping studies based on behavioural or cognitive faculties

of particular importance. While we employ a technique that

improves signal compared to noise for examining small

structures, there are certainly still limitations for the use of 3T

fMRI for examining such small regions, where the signal can

be mixed or contaminated by adjacent structures. We aimed

to combat this by illustrating that the observed findings were

not produced primarily from the adjacent SN.

Together the findings highlight unique contributions of

diffuse cortico-striatal functional connections with STN to

dissociable measures of compulsivity. These observations are

particularly relevant to the impact of STN DBS on behavioural

inflexibility in neurological and psychiatric disorders andmay

potentially act as biomarkers of treatment response.
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