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Abstract
Reviewing athletic performance is a critical part of modern

sports training, but snapshots only showing part of a course or
exercise can be misleading, while travelling cameras are expens-
ive. In this paper we describe a system merging the output of
many autonomous inexpensive camera nodes distributed around
a course to reliably synthesize tracking shots of multiple athletes
training concurrently. Issues such as uncontrolled lighting, ath-
lete occlusions and overtaking/pack-motion are dealt with, as is
compensating for the quirks of cheap image sensors. The resultant
system is entirely automated, inexpensive, scalable and provides
output in near real-time, allowing coaching staff to give immediate
and relevant feedback on a performance. Requiring no alteration
to existing training exercises has boosted the system’s uptake by
coaches, with over 100,000 videos recorded to date.

Introduction
Training for many sports is conducted over some fixed course,

examples of such sports being athletics, rowing, cycling, skiing,
and swimming. Being able to see, and record, what an ath-
lete does throughout a training effort provides invaluable data
for performance-analysts and coaches. In our particular case of
cycling, aerodynamics are key, often giving the winning margin
in competition, so a means of continuous capture permitting as-
sessment of a cyclist’s variable body position is of great interest.
Figure 1 shows an example of wind-tunnel testing for posture
enhancement.

Figure 1. Aerodynamic ‘envelope’ highlighted on a static test

Figure 2. The conceptual starting point: Muybridge’s 1878 ‘The Horse in

Motion’

Capturing an individual’s performance is challenging: static
testing (as in Figure 1) imposes unrealistic constraints, affecting
in-motion reproducibility; static cameras only provide potentially
misleading snapshots of the whole effort; while rail-mounted cam-
eras that physically follow an athlete are expensive to install and
maintain, difficult to automate, and do not scale well to multiple
concurrent athletes. Instead, we investigate reliably simulating a
physically tracking camera through combining the output of many
static cameras.

Multiple cameras have been merged over a course since the
1870s, with Muybridge’s work on horse locomotion [1] (shown
in Figure 2). We know of more recent work for sports, with a
tracking shot for swimming demonstrated, but not productized
in the years since. Our work’s novelty lies in the entire system’s
automation, lack of expense, computational efficiency, scalability
and immediacy. Riders’ efforts are stitched on every lap, without
any manual intervention or treatment, and the results are available
to the coaches before the rider leaves the track, permitting tailored
feedback to inform the next exercise.

Below we describe the design of our processing system, first
dealing with the decentralized trigger, capture and analysis ele-
ments, before covering the centralized merging of footage to create
a tracking shot. Following this we present example output and
conclusions on the performance of our implementation.

System description
A critical issue in pursuing a many-camera architecture is

cost. When hundreds of cameras are required to ‘cover’ a course,
expensive machine-vision cameras are unlikely to be appropriate.
Installing network capacity and multiple computers to receive and
image-process each camera’s high-bitrate stream could rapidly
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Figure 3. Cameras (arrowed) installed at two metre spacing

become expensive and scale poorly. Instead, a system where each
camera is an inexpensive CMOS sensor attached to a commodity
single board computer has been developed. Each node has a small
but capable processor which allows it to autonomously perform the
majority of the image-processing and analysis, without reference
to its neighbours: detecting a cyclist passing, tracking the cyclist
across the frame, and outputting a compressed video of the passing.
Particular challenges include handling variable light levels, bicycle
occlusion, and multiple riders travelling as a pack.

A single server can then take the per-camera clips and analysis
results, which contain the timestamped positions of the detected
bicycles, and from these positions infer the riders’ tracks around
the course. Relevant frames from each camera’s clips are then
combined and encoded into the stitched output tracking each cyclist
separately.

The process described in detail below is summarized, and set
in context, in Figure 7, a simplified flow-diagram concluding this
section.

Camera modules
The camera-unit design was arrived at by considering a chain

of constraints, detailed below.

Positioning
The desired view of the cyclist is that perpendicular to the

bicycle/track, as in Figure 1. This is true both horizontally and
vertically: a viewpoint looking down to the cyclist is less useful.
Camera emplacements at the centre of the track can be liable to
obstruction, and are vulnerable to damage, so the chosen location
is low down on the track barrier.

Being therefore relatively near to the cyclists, wide-shots will
fail the horizontal perpendicularity criterion: using images from
the frame edges will have a front- or rear-facing component of the
cyclist. The field of view used for output must then be relatively
narrow, and the separation of cameras correspondingly reduced —
empirically we found a two metre separation to give acceptable
results, as highlighted in Figure 3.

Hardware
If the video is to be useful for analysis purposes, sufficient

detail must be captured, which requires a resolution of around
three pixels (px) per centimetre of cyclist: 600 – 700 pixels for a

Figure 4. A typical capture frame

bicycle-length. For the camera module to trigger autonomously
it’s useful to be able to capture a frame or two before the bicycle is
perpendicular to the sensor, adding at least another 300 pixels to
both sides of the desired sensor width.

Clearly, considering common sensor sizes, a 720p
(1280 × 720 px) sensor would just about meet the requirement,
with a Full HD (1920 × 1080 px) sensor being far better suited.
At present, larger sensors rapidly become much more expensive.

With cameras at two metre spacing around a 250 metre track,
data management and hardware unit costs are major issues. If
each camera were to stream to one or more servers, which in turn
detect which frames have bicycles present, it’s a lot of centralized
computation, a lot of data being needlessly transmitted, and a lot
of network provision to support that; all of which add to the cost.

The Raspberry Pi Foundation offers a Full HD camera module
for use with their Single Board Computer (‘RPi’ SBC) [2]: a
combination costing around £50 and coupling each camera with a
capable multi-core ARM processor and GPU, both having access
to the raw camera data. This means a camera node may then
only upload cyclist-containing frames, using high-quality video
compression, and need only be connected by cheap 100 Mbps
network links to a gigabit network backbone. We use the camera
variant without an infrared filter (‘NoIR’), as the resultant increase
in sensitivity makes up for the loss in colour fidelity, when the
very short exposure times necessary to minimize motion blur are
considered. The low power requirements of the nodes permit the
use of Power over Ethernet, reducing installation costs and making
each unit’s power supply remotely manageable.

Image data
A typical frame from the viewpoints illustrated in Figure 3

is shown in Figure 4. The bottom of the frame is occupied by the
track, the upper half has a variable background, capturing activities
in the track-centre and on the other side of the track, while the
cyclist passes across the middle of the frame, varying in scale
depending on their lateral track position.

Capture trigger detection
To minimize processing and storage of unwanted data, we

wish to only capture cyclists making a training effort, rather than
an empty track, or those cyclists orbiting the track waiting for their
turn or warming-down after an effort. To achieve this, video clips
should only be saved when a bicycle is present around the red or
black lines on the wooden boards.
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The first step in determining this is for each camera node to
self-calibrate where in its frame the wooden boards meet the inner
blue-coloured area of the track, thereby allowing for variance in
camera installation. Note that due to the shape of a velodrome
track this edge may not be straight. By comparison of the sum of
absolute differences between sequential frames (of the section of
the frames expected to contain the board-edge), quiescent frames,
without bicycles present, are found. Dividing the horizontal ex-
tent of the frame into forty blocks, for each block a threshold
value is formed halfway between an average intensity taken from
a patch in the blue-coloured area and a similar value from the
wood-coloured area, thereby adapting to variation in lighting con-
ditions (operations conducted on the red chroma channel (‘V’)),
and the block is swept vertically to find the height of threshold
transition. The forty edge estimates are then smoothed with an IIR
low-pass filter, allowing the curve of the track-edge (if present) to
be accommodated.

With the edge characterized, each frame is then ‘straightened’,
with the image distorted such that the track-edge is entirely hori-
zontal. A simple and very efficient action filter is applied to the left
quarter of the current frame’s luminance channel (‘Y’, in a YUV
colour model), comparing the ten rows of pixels below the edge
with both those in the previous frame and those in a recent frame
in which no bicycles were detected (the ‘background’ frame). This
will, intentionally, not respond to activity in the blue area above.
Should either comparison fail to have a significant sum of absolute
differences, a lack of triggering motion is presumed.

If triggering motion has not been discounted, we then perform
further characterization of the motion. This involves comparing
the current frame against the background frame. We look for one
or more contact points made by black bicycle tyres with the track,
and consider these contact points’ height in the frame relative to
the track-edge: any that are too low are too near the camera and so
are discounted. A contact point must:

• be more than 25 pixels wide,
• at its edges be significantly different to the background in a

band from the track-edge to three pixels below it, and
• across its width, with no discontinuities greater than five

pixels wide, be significantly different to the background for
a further ten pixels further down.

Furthermore, across the width of the contact point, and extending
slightly from its edges, the three pixel band further beneath must
not contain more than ten columns showing significant difference
to the background, otherwise the contact is too near to the camera.
This does not preclude other contact points being recognized, for
instance during an overtaking manoeuvre.

Having found the contact point, the point itself taken as the
centre of the extent described above, further filtering is performed
against the blue chroma channel (‘U’), looking just outside the
expected locations of the leading and trailing edges of a nominal
700 mm diameter tyre against the blue area of the track. Com-
paring rectangles just before/behind the expected tyre against the
background frame allows for ruling a contact point out if both rect-
angles are significantly different to the background, the implication
being that the tyre is larger than expected and hence the bicycle
is too close. Otherwise, a true contact point is found, and, if the
point is in the left (bicycle entering) half of the frame, a recording
is triggered.

Figure 5. Composite of three frames with rolling shutter corrected: per-

spective skew remains, away from the centre of the frame

To keep the background frame current, when the below-the-
track-edge regions of the current and previous frames have been
similar for a number of consecutive frames, and the areas used in
the ‘U’ channel test described above are similar for the current and
previous frames (and the last background update was more than
five seconds ago, or there has been a recent trigger), the stored
background frame is updated.

Following a trigger frame, activity in the next six frames
(allowing time for the cyclist to move entirely across the frame)
is presumed and contact points searched for, without applying the
action filter described above.

Contact point analysis and tracking
The ‘U’ channel wheel-size tests mentioned above serve an-

other purpose. Of the rectangles before/behind the wheel, one
should always show a significant difference — this being the bi-
cycle frame — hence indicating a rear/front wheel respectively.
These hints, along with contact point position data, are used to
track wheels from one frame to the next, and deduce (pixel-based)
bicycle velocities. These are useful data for the subsequent cent-
ralized clip stitching process.

Where two frames have previously been used to infer a velo-
city, the first simple tracking technique is to extrapolate expected
wheel locations in a subsequent frame. Otherwise, noting that cyc-
lists have upper-bounded positive velocities nearly always resolves
associating wheels from frame to frame. Such approaches may
obviously be extended by further extrapolation from more historic
frames if a contact point was temporarily omitted (perhaps due to
momentary occlusion) from a more recent frame.

Clip output
A downside of inexpensive CMOS camera modules is having

‘rolling shutter’, where the sensor scans out the image row-by-
row, meaning the bottom row of a frame is captured at a slightly
different time to that at the top. Hence in Figure 4 the wheels
appear elliptical: as the bicycle moves during the capture the
bicycle gets sheared. Armed with tracked velocities, this shear
may be corrected, resulting in round wheels (as in the centre of
Figure 5).

The wheels in the left and right parts of Figure 5 do not
appear to be round however: due to perspective effects, circles will
become ellipses oriented in one direction on the left of the frame,
and in the other direction on the right. This perspective effect,
if untreated, makes the stitched output visually discontinuous, as
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Figure 6. Where available footage from a pair of cameras overlaps in time, we select frames to a) avoid skips and b) keep the bicycle close to the centre of the

capturing frame. The transition between cameras n and n+1, while using poorly synchronized clips, has a substantial overlap and no missing frames, so only

consideration b) applies. The second transition, while the clips are nearly synchronized, has to use a poor transition to enhance the chances of a transition to

camera n+3. (Bicycles not centred in frames for clarity.)

the output displays a bicycle taken from the right of one camera’s
frame and then from the left of the next camera’s frame. The
degree of skew is proportional to the position of the bicycle, so
the tracking of the right-most wheel identified as a front tyre (the
‘reference wheel’) provides the necessary input to make the lead
bicycle’s wheels always appear round.

The position-based perspective-‘correcting’ component is ad-
ded to the velocity-based shear coefficient, permitting the shear
correction transformation to be performed on the RPi SBC, offload-
ing a further task from the central server. As part of the shearing
operation the clip is circularly shifted such that the reference wheel
is located just right of the centre of the frame, so the bicycle as a
whole is centred.

The relevant frames are H.264 encoded on the SBC, and the
resulting timestamped clips and tracking metadata are then stored
over the network, ready for stitching with the output of the other
nodes.

Clip amalgamation
Due to the majority of the work being done on camera nodes,

the central server only has three tasks:

1. associate tracks from one camera to the next,
2. select the frames giving a smooth progression of the cyclist

along each track,
3. encode the frames to a make a merged output video.

Of these, the first is by far the most challenging. Naïve
approaches, perhaps simply based around increasing trigger
timestamps, are limiting. For example, with two cyclists trav-
elling close together (as is common in ‘pack’ motion), one camera
may make two separate clips, while another may merge them.
Should the longer clip come from the second camera, there would
be nothing to join the end of the second clip of the first camera;
should the longer clip come from the first, the large difference in
trigger times would make the clip an unlikely candidate to have
immediately preceded the second clip of the second camera.

Always running a few seconds behind real-time (to allow
clips and metadata chance to arrive from the camera nodes), we
begin by loading the tracking metadata for each frame’s reference

wheel, and offset the analysed wheel locations by a pixel distance
proportional to the capturing camera’s index. This is necessarily
imprecise, as the pixel distance presumes the cyclist to be at a
certain depth from the camera, and so later matching must allow for
the inter-camera gaps being over-/under-stated. Since a speeding
bicycle has little acceleration or deceleration the progression of
wheel locations against time are compared to a smooth fit, and any
particularly poorly fitting points are substituted for interpolated
values and the velocities adjusted accordingly.

Next comes the matching process: for each track in a given
camera, can continuing tracks be found in the adjacent camera?
This is impeded by both not having any unique identification of
a bicycle, and the cameras’ unsynchronized capturing. We first
look for frames in the adjacent camera captured between half to
one and a half frame-periods after the last frame of the track in the
current camera, and, having found a candidate track, test all pos-
sible pairings between such broadly consecutive frames available
between the two tracks. This exhaustive approach is possible as
two cameras may both have a number of frames covering a given
length of track, and useful as in marginal cases some pairings
may not pass the pairing tests, while others do. The pairing tests
consider whether:

• using the wheel location and velocity of the earlier frame,
the predicted wheel location at the time of the later frame is
close to the observed location, and

• the velocities recorded for the two frames are similar.

This rigorous consistency avoids accidental cyclist substitution
part-way through a recording.

Should a pair of frames appear to follow on, the offset
between the two tracks is therefore established, and the remaining
question is one of frame selection for the output. Each possible
transition is scored, penalizing solutions where frames omit the
reference wheel heavily, and then favouring any where the bicycle
is largely in the centre of the camera’s field of view and hence
(mostly) purely side-on (illustrated in Figure 6). The transition
selected, the necessary frames are added to a ‘chain’, which is
progressively extended as the matching process is repeated for
each subsequent camera. Short chains, where some camera did not
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Figure 7. A simplified flow-diagram summarizing the process pipeline

capture a passing cyclist, are dropped. Note that this raises the bar
for trigger reliability enormously: while it may seem satisfactory
that a given camera may trigger 98 % reliably, requiring (say) ten
to trigger in a row means that around one in five chains will get
dropped, which is less satisfactory.

The chain formed, the source video clips are read to extract
the frames specified in the chain; the frames are assembled and
cropped to only show the centre, bike-containing, portion (assum-
ing the transition selector has been able to source optimal frames
this neatly crops the circularly shifted parts introduced during the
shear transformation); and then encoded for output.

Example output

Sample output, merging four cameras, is shown in Figure 8.
Counting the top-left image as frame one and proceeding right-
wards then back to bottom-left, camera transitions occur between
frames one and two, five and six, and eight and nine. In each case
the change in apparent illumination/colour of the wood of the track
may be observed, while the pedal angles advance smoothly. A
less-well managed transition is apparent in the bottom-right frame,
where the circular shifting is seen as an obvious discontinuity in
the track-edge. Due to the rolling-shutter shear correction the
wheels appear round, while the track-side railings seem skewed, as
expected. The shape and position of the rider remains consistent
and comparable, ideal for visual analysis purposes.

Our installation has created over 100,000 such output videos
in entirely automatic operation.

Conclusion

We have described an affordable, capable and implemented
architecture for delivering near-real-time virtual tracking shots.
By using Raspberry Pi cameras and single board computers our
per-node hardware cost is inexpensive (around £50). The hardware
itself may be connected using commodity networking components
and, critically, enables much of the computation to be offloaded
from a central computing resource. Decentralized tasks of bicycle
detection and tracking, and output clip deskewing, centring and
compression are all undertaken on the camera node, leading to
a substantially lower burden on the network and central server
and much improved system scalability. The system has reliably
generated over 100,000 videos in near real-time without requiring
adaptation of venue lighting or training regimes, leading to good
end-user buy-in by performance-analysts and coaches.
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Figure 8. Frame sequence from four cameras, processing left to right, top to bottom. Note changes in track colour between frames 1 & 2, 5 & 6 and 8 & 9

(different cameras) while pedals advance smoothly. Wheels are round, while background railings appear tilted, due to dynamic deskewing.
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