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Abstract
Results from wind-tunnel testing of athletes cannot always be

repeated on the track, but reducing aerodynamic drag is critical
for racing. Drag force is highly correlated with an athlete’s frontal
area, so in this paper we describe a system to segment an athlete
from the very challenging background found in a standard racing
environment. Given an accurate segmentation, a front-on view, and
the athlete’s position (for scaling), one can effectively count the
pixels and thereby measure the moving area. The method described
does not rely on alteration of the track lighting, background, or
athlete’s appearance. An image-matting algorithm more used
in the film industry is combined with an innovative model-based
pre-process to allow the whole measurement to be automated.
Area results have better than one percent error compared to hand-
extracted measurements over a representative period, while frame-
by-frame measurements capture expected cyclic variation. A near
real-time implementation permits rapid iteration of aerodynamic
experiments during training.

Introduction
In racing sports, aerodynamics are as important as power, and

small improvements affect medal places. Wind-tunnel testing is
useful but expensive, and having a stationary athlete may lead to
pose optimizations that cannot be reproduced or maintained in real-
ity. In this work we quantify aspects of aerodynamic performance
in the training/competition environment of a velodrome.

Aerodynamic drag is proportional to a body’s frontal area.
We therefore wish to accurately segment the athlete from the back-
ground as they move towards the camera, and so find the apparent
frontal area. The two main problems are distinguishing the athlete
from the background and excluding the moving athlete’s shadow
from the measurement. Compounding the difficulty is having con-
trol over none of the background (no green screen), the rider’s
clothing/appearance (skin similar in colour to velodrome wood),
or the lighting — see Figure 1 below, where the skin and wood
colours lack contrast, and the black tyre seems to merge into the
line marked on the track.

The application of matting to the topic of real-time sports
analysis, rather than its customary home of film and animation,
especially in the context of quantitative aerodynamic performance
assessment, is novel. The image-matting algorithm itself is heav-
ily based on ‘Fast matting using large kernel matting Laplacian
matrices’ by He, Sun and Tang [1]. There is relatively little pub-
lished on fast automatic generation of trimaps for video input, with
most literature assuming the trimap is a user-supplied input.

In the next section we describe the design and implementation
of the measuring process in detail, starting from an unanalysed
input video. Subsequent sections show sample analysed output,
and discuss the performance of the system as a whole.

Figure 1. Difficult to distinguish: leg vs. track, tyre vs. black line

System description
Video is recorded by a sensitive 50 f.p.s. camera, located on-

axis with the velodrome straight, and triggered as the cyclist enters
the straight. Automatically adjusting focus (or indeed zoom) in
real-time is impractical, as the bicycles are moving rapidly toward
the camera, and there may be more than one bicycle on the straight
at a time. Therefore we instead set the camera to have a small
aperture for a high depth of field, and a correspondingly high
sensor gain.

A three-stage image-processing pipeline is used. First, the
bicycle is located through motion estimation and adaptive colour-
thresholding. Second, in the region of the detected bicycle several
frames are combined to form an estimate of the background, and a
‘trimap’ is automatically generated, representing areas known to be
foreground, background, or uncertain, informed by the expected
shape of the bicycle/cyclist combination. Finally, we apply a
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Figure 2. Source frame: height of contact point implies distance to cyclist

and expected cyclist size. Note shadows around tyre and similarity of colour

of clothing and light-blue background.

natural image-matting algorithm to estimate the true nature of
the uncertain areas based on colour statistics of spatially nearby
regions of known fore-/back-ground. The output yields a map
of each pixel’s probability of belonging to the foreground; after
thresholding, summing, and scaling, the frontal area is found.
These stages are described in turn below.

Bicycle discovery
Locating the bicycle within the image frame fundamentally

relies on a bicycle’s front wheel’s tyre being black – locally the
darkest object on the track. Additional techniques are necessary
due to similarity to the track’s black line, and shadows cast by
overhead lighting.

The first process is to generate a map of areas exhibiting
change (i.e. motion) by subtracting the luminance (‘Y’, in a YUV
colour model) channel of the current frame from that of the frame
100 ms previously, downsampling and binarizing that image, per-
forming morphological opening, small object removal, and dilation
operations ([2]), and upscaling the result to the size of the original
frame. The result of this is to suppress minor changes and grow
the boundaries of regions of gross change.

Second, the height up the frame of the lowest contact point

is sought (though starting from half-way up the frame early in the
clip to avoid accidental detection of any bicycle preceding the one
triggering the camera’s recording). We begin by thresholding the
luminance channel for dark objects and intersecting the result with
the previously gained motion map. Again, small dark objects are
discounted, first by downsampling, then by morphological small
object removal operations adapted to the ‘height’ of the results
from the downsampling step (bicycles ‘higher’ in the frame are
further away and hence smaller, as depicted in Figure 2). If, at
this point, no dark objects remain, due to the bicycle triggering
the recording having moved out of frame, no height is recorded,
otherwise processing continues. Next we retain only those ob-
jects nearest the camera which have some vertical range (i.e. look
like an upright tyre). These objects (more than one occurring
during an overtake manoeuvre) proceed to ‘fine’ height estima-
tion, with the lowest/nearest being adopted as the contact point
of the nearest bicycle. Fine height estimation compares the area
around the coarsely obtained height on the original luminance
image with a threshold based on the darkest intensity present in
the downsampled image of the same area, and again applies the
motion map as a mask. Any small objects (‘small’ again defined
by the height/nearness of the bicycle) are culled and the mean
height of the lowest/nearest ten dark pixels is taken as the contact
point, while the coarse lateral position is also recorded for later
refinement.

For robustness, before precisely finding the lateral positions
of the contact points, the set of heights from the whole recording
is now analysed for continuity. Bicycle motion is very smooth,
generally with little change in velocity, so we can detect frames
where another bicycle tyre, or something other than a tyre, was
returned as the primary contact point and interpolate these heights
(and coarse lateral positions) by fitting smooth splines to the accep-
ted data. The details of discounting frames from a multiple bicycle
situation are not detailed here, as the area extraction results will
not have useful meaning in such cases. For detection of single-
frame glitches an approach such as LOWESS (locally weighted
scatterplot smoothing, from [3]) is adequate.

Refining the lateral positions is a process similar to that for
fine height estimation. Again the motion-containing darker-than-
all-else pixels of the area around the coarse estimate are considered.
Knowing the distance (height) to the wheel, the expected pixel
width of the tyre is known. A window of this width, and roughly
half a tyre high, is passed over all plausible lateral positions, and
a score formed based on the number of dark pixels found in the
window (pixels in the lower half of the window count double, as
the tyre may be inclined from vertical): the centroid of the dark
pixels for the window position with the highest score is taken as
the lateral contact co-ordinate. The set of lateral co-ordinates then
undergoes a LOWESS outlier discarding and spline smoothing and
interpolation process.

Background estimation and coarse segmentation
We use the capture video to generate the background model,

as no other clip would contain as relevant lighting conditions.
Presuming that cyclist segmentation is only worth attempting in
conditions where only one cyclist is in shot leads to a simple
method of estimating the background. The background model is
formed by stacking the median-filtered average of the upper-half
of the last five frames of the clip (when the cyclist will be low in
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the frame) on top of the median-filtered average of the lower-half
of the first five frames (where the cyclist will be entering the frame
at the top).

With the set of smoothed contact point co-ordinates known,
each frame is cropped to loosely bound the cyclist, with the front
wheel contact point at a known offset in the crop. The expec-
ted shape and size of the cyclist (deduced from the track posi-
tion/distance from the camera) is then used to tailor a ‘trimap’ of
the frame, the pixels being labelled as:

1. parts believed to be background,
2. parts believed to be foreground (i.e. the bicycle and cyclist),

and
3. the uncertain areas which may be foreground or background.

The better this trimap is the quicker and better the computation of
the final segmentation results.

Working in RGB colour space, we begin by thresholding the
difference of the green channels from the current and background
frames. This gives an approximate segmentation of the moving
cyclist, and is refined further using greyscale morphological op-
erations, the first of the which is an opening, to give the basic
mask.

The bottom of the front wheel often needs refinement due
to the presence of shadows. Working in all three colour channels
the blackest part in the region above the contact point is dilated
and kept, all other parts of the mask in this area are discarded.
With known scale and wheel position, the position in the image of
other body- and bicycle-parts may be inferred, such as the cyclist’s
legs, and the bicycle’s stem and saddle. The basic mask often has
erroneous holes, due to parts of the cyclist appearing similar to the
background, as shown in Figure 1 and Figure 2. A large structuring
element is used for a morphological close operation on the mask
above the saddle, covering the cyclist’s head and torso. Below the
saddle a narrow region close to the bicycle frame is closed in two
parts: for the part between the stem and saddle, mostly comprising
frame, arms and thighs, a medium-sized element is used, while a
small element is used below the stem, where the finer details of
the lower legs and structural elements of the bicycle are present.
As the legs are often wider than this narrow region, and relatively
large and solid, a larger element is used in a closing operation
either side of the bicycle-frame region.

These mask manipulations complete, the greyscale mask
is thresholded, and the largest contiguous area taken as being
the cyclist-with-bicycle combination and labelled as foreground
(shown as white in Figure 3). The areas not covered by a dilation
of the foreground are taken to be background (black), and the areas
of difference between foreground and background are labelled as
uncertain (grey).

The trimap is loosely cropped to the bounding box of the un-
certain areas, meaning that all pixels identified as background are
near the cyclist and so have properties more relevant to describing
the areas obscured by the cyclist than those background pixels
further away.

Figure 3. Loosely cropped trimap: background shown as black, foreground

(cyclist) as white, uncertain as grey

Image matting and area calculation
The cropped trimap and corresponding region of the current

frame are passed to the image-matting algorithm. We employ an
efficient implementation of He et al.’s ‘Fast matting using large
kernel matting Laplacian matrices’ algorithm [1], which uses in-
tegral images ([4]) to speed up computation. The paper’s proposed
KD-tree pre-process is not performed, as we have found that, in
our application, it doesn’t notably improve segmentation results,
but does add to the computation time.

In brief, the model matting approaches adopt is one where
a pixel’s colour I is a combination of the foreground (F) and
background (B) colours, moderated by the foreground opacity α:

I = Fα +B(1−α). (1)

Pixels where α is 0 or 1 therefore belong to the background or
foreground respectively. Since our input is I, the challenge is to
estimate α everywhere in the uncertain region of the trimap. Con-
temporary matting approaches exploit a colour line assumption:
that in RGB space the foreground (or background) colours in a spa-
tial neighbourhood lie along a single line. From this a cost function
function can be formed to determine the alpha value best relating
a candidate pixel’s colour to the known nearby foreground and
background colours, and this cost function optimized. While the
approach can be hindered by complicated foreground/background
colours, we find that in our application the correct formation of the
trimap is more critical to the accuracy of the results.

Having supplied or estimated α for all the pixels in the frame,
the area of the cyclist-with-bicycle combination can simply be
found by counting the number of pixels mostly belonging to the
foreground, i.e. α > 0.5. This area is then scaled to counteract the
cyclist appearing to enlarge as they approach the camera.
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Results
The bicycle-location aspect has been used on over 90,000

clips, with sampled accuracy over 98 %, i.e. with the triggering
bicycle’s position correctly and smoothly tracked.

Sample segmentation output can be seen in Figure 4, set
against a green background for contrast. While largely correct,
some small errors can be seen, with a hole in the cyclist’s left thigh
in the leftmost frame, partial inclusion of some shadows and track
texture in the rightmost frame, and omission of the area containing
the bicycle-frame manufacturer’s logo from the head tube in all
three frames.

In general, however, the snapshot nature of single frames
makes consideration of their errors less useful; for quantitative
output we prefer to average over a pedal revolution. Compared to
hand-extracted frontal-area data the automatic segmentation has
less than one percent error over a revolution.

An example where pose changes affect the longer-term aver-
ages is shown in Figure 5. Each time the pedals are level (twice
per complete revolution) is shown by a red vertical line, and we
see that per frame the area is somewhat noisy, while the overall
shape is clear: a gradual expansion in area, followed by a sharp
contraction. This occurred when a cyclist allowed their elbows to
drift apart, followed by a correction to a much tighter pose as they
realized their lapse.

Within-revolution data are nonetheless valuable for spotting
certain behaviours more qualitatively. In Figure 6, the cyclic vari-
ation in area throughout the revolution is highly apparent: bearing
in mind the red lines indicate a half revolution, the pronounced
increase in area once per revolution suggest an asymmetry, pre-
suming the cyclist approaches the camera on-axis (while largely
obscured by the gross changes, the expected half-revolution peaks
can be discerned in Figure 5).

The apparent gradual reduction in area over time observed
in both Figure 5 and Figure 6 is due to the camera being installed
above the track, and perspective effects causing later frames to
be seen increasingly from above, rather than purely front-on. A
simple geometrical correction for this may be applied as a post-
process.

Implementation work has made the processing of a four
second clip, covering the whole straight, take under twenty seconds,
meaning the results are available in near real-time.

Conclusions
In this paper we have described a system for accurately loc-

ating a bicycle in a velodrome environment, automatically seg-
menting it from the background, and measuring the apparent area
presented by the bicycle and cyclist. The system works consistently
on challenging real-world data in an uncontrolled environment,
where track markings, lighting, shadows and multiple bicycles may
impact accurate location, and similarity of colour of cyclist skin
and clothing may be hard to distinguish against the background.

The resultant area measurements are useful for assessing
aerodynamic performance, a critical component of modern track
racing, while doing so in a competition environment, rather than in
artificial wind-tunnel conditions. Overall such an approach could
have potential in other sports, or, more widely, other fields needing
automated segmentation.

Figure 4. Selection of segmented and identically scaled frames, with back-

ground pixels set to green
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Figure 5. Example area measurements (blue line), vertical bars indicate

the ‘feet level’ condition — half a pedal revolution. A gradual expansion in

area, followed by a sharp contraction.
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Figure 6. Example area measurements (blue line), vertical bars indicate the

‘feet level’ condition — half a pedal revolution. Cyclic area variation suggests

an asymmetry.
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