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ABSTRACT

Evidence for chemical and lithological heterogeneity in the Earth’s convecting mantle is widely

acknowledged, yet the major element signature imparted on mantle melts by this heterogeneity is

still poorly resolved. In this study, a recent thermodynamic melting model is tested on a range of
compositions that correspond to potential mantle lithologies (harzburgitic to pyroxenitic), to dem-

onstrate its applicability over this compositional range, in particular for pyroxenite melting. Our

results show that, despite the model’s calibration in peridotitic systems, it effectively reproduces

experimental partial melt compositions for both Si-deficient and Si-excess pyroxenites.

Importantly, the model accurately predicts the presence of a free silica phase at high pressures in

Si-excess pyroxenites, indicating the activation of the pyroxene–garnet thermal divide. This ther-

mal divide has a dominant control on solidus temperature, melt productivity and partial melt com-
position. The model is used to make new inferences on the link between mantle composition and

melting behaviour. In silica-deficient and low-pressure (olivine-bearing) lithologies, melt compos-

ition is not very sensitive to source composition. Linearly varying the source composition between

peridotite and basaltic pyroxenite, we find that the concentration of oxides in the melt tends to be

buffered by the increased stability of more fusible phases, causing partial melts of even highly fer-

tile lithologies to be similar to those of peridotite. An exception to this behaviour is FeO, which is
elevated in partial melts of silica-deficient pyroxenite even if the bulk composition does not have a

high FeO content relative to peridotite. Melt Al2O3 and MgO vary predominantly as a function of

melting depth rather than bulk composition. We have applied the thermodynamic model to test the

hypothesis that Fe-rich mantle melts such as ferropicrites are derived by partial melting of Si-

deficient pyroxenite at elevated mantle potential temperatures. We show that the conspicuously

high FeO in ferropicrites at a given MgO content does not require a high-Fe mantle source and is in-

deed best matched by model results involving around 0–20% melting of silica-deficient pyroxenite.
A pyroxenite source lithology also accounts for the low CaO content of ferropicrites, whereas their

characteristic low Al2O3 is a function of their high pressure of formation. Phanerozoic ferropicrites

are exclusively located in continental flood basalt (CFB) provinces and this model of formation con-

firms that lithological heterogeneity (perhaps recycled oceanic crust) is present in CFB mantle

sources.
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INTRODUCTION

A thermodynamic approach to mantle
heterogeneity
Subduction recycling may have operated over billions

of years, continuously returning surface material to

depth; consequently, the Earth’s mantle is likely to be

highly heterogeneous (Hofmann & White, 1982;

Hofmann, 1997; Stracke, 2012). Melting and mixing of

this recycled material over time may have resulted in

the convecting mantle gaining a complex structure with

a range of lithologies. Radiogenic isotopes in ocean is-

land basalts (OIB) and mid-ocean ridge basalts (MORB)

provide the clearest evidence for the presence of het-

erogeneity both in the MORB-source mantle and in the

deeper mantle advected by plumes (Hofmann & White,

1982; Dupré & Allègre, 1983; Zindler & Hart, 1986;

Hofmann, 1997). Moreover, the trace element character-

istics of MORB and OIB associated with particular man-

tle end-members have been used to identify the

sources and processes creating mantle heterogeneity,

with basaltic oceanic crust, sediments, continental

crust, and subcontinental lithospheric mantle all having

been proposed as candidates for the identities of heter-

ogeneities (Zindler & Hart, 1986; Weaver, 1991; Chauvel

et al., 1992; Hofmann, 1997; Gibson et al., 2005;

Willbold & Stracke, 2006; Jackson & Dasgupta, 2008;

Kawabata et al., 2011). Given the ubiquity and longevity

of subduction recycling, oceanic lithosphere is com-

monly considered the most important potential source

of heterogeneity in the convecting mantle (Stracke,

2012).

By comparison, the major element chemistry of

mantle-derived melts is less frequently used to investi-

gate the lithological and compositional heterogeneity of

their mantle sources. Unlike trace elements and iso-

topes, major elements cannot be treated as passive

tracers during melting. Rather, their abundance in the

melt source region controls its mineralogy and melting

relationships, making the prediction of the major elem-

ent compositions of the partial melts more complex.

Two approaches are generally employed: experimental

petrology and thermodynamic calculations.

Experimental petrology has greatly improved our

understanding of the behaviour of the mantle during

melting and, together with a consideration of fraction-

ation and transport processes, experiments on natural

and synthetic peridotites have long been used to effect-

ively explain the first-order features of basalt geochem-

istry (e.g. Yoder & Tilley, 1962; O’Hara, 1968; Green,

1973; Takahashi & Kushiro, 1983; Falloon & Green,

1987; Takahashi et al., 1993). As it has become increas-

ingly apparent that the mantle is lithologically heteroge-

neous, more recent experimental studies have focused

on the melting behaviour of compositions that are

richer in silica than typical mantle peridotite. These can

be divided into two compositional groups according to

their projection onto the Si-excess or Si-deficient side of

the pyroxene–garnet compositional plane, which forms

a thermal divide at high pressure (O’Hara & Yoder,

1967; O’Hara, 1968).

Si-excess compositions (referred to in this study as

‘eclogite’) contain a free silica phase at pressures above

those at which the thermal divide becomes operational,

which will dramatically change the melting behaviour
(O’Hara & Yoder, 1967; Kogiso et al., 2004). Eclogite is

introduced into the convecting mantle as subducted

oceanic crust (MORB), which undergoes chemical and

metamorphic transformation (Green & Ringwood,

1967). Its partial melts have Fe- and Ca-poor, high-Si

compositions, at least until quartz or coesite is lost from

the melting assemblage (e.g. O’Hara, 1968; Pertermann

& Hirschmann, 2003a; Kogiso et al., 2004; Spandler
et al., 2008; Lambart et al., 2013; Rosenthal et al., 2014).

However, in many locations, primitive erupted melts do

not resemble these compositions (with notable excep-

tions such as the Koolau series in Hawai’i; Hauri, 1996;

Herzberg, 2011). It has been shown through peridotite–

basalt sandwich experiments that partial melts of eclog-

ite will metasomatize surrounding peridotite to

consume olivine and become silica-deficient pyroxenite

(Yaxley & Green, 1998; Yaxley, 2000; Mallik &
Dasgupta, 2012). The resultant pyroxenite is more fus-

ible than peridotite and can partially melt to produce

mafic–ultramafic liquids only subtly different from

peridotite-derived melts (e.g. Lambart et al., 2009).

These pyroxenite partial melts and/or the reacted eclog-

ite partial melts are often suggested to account for the

major element features of some OIB and continental

flood basalts (CFB), implying the presence of recycled
eclogite or secondary pyroxenite in their source (e.g.

Kogiso et al., 1998, 2003; Gibson, 2002; Hirschmann

et al., 2003; Prytulak & Elliott, 2007; Dasgupta et al.,

2010; Herzberg, 2011; Mallik & Dasgupta, 2012).

Natural melts are not expected to perfectly match ex-

perimental ones because experiments tend to be iso-

baric and induce batch melting, whereas melt

extraction is thought to be efficient in the mantle
(Kelemen et al., 1997). To access the low melt fractions

(F) required to simulate fractional melting, as well as to

extrapolate across P–T space and to bulk compositions

(X) not directly interrogated by experiments, a thermo-

dynamic model is required. Thermodynamic models

are calibrated from experimental data and provide a

flexible means to interpolate between, and extrapolate

beyond experimental data points to explore a wider

parameter space (P, T, F, X). Thus far, thermodynamic
modelling predictions of melting of more enriched lith-

ologies have been restricted to the pMELTS model, for

which an upper pressure limit of 30 kbar is suggested

(Ghiorso et al., 2002). In this study, the new thermo-

dynamic melting model in the eight-component

NCFMASOCr system of Jennings & Holland (2015) is

used to investigate the dependence of melt composition

and productivity on bulk composition. Although the
model used in this work was calibrated for peridotite

melting, our findings demonstrate its effectiveness for

more silica-rich compositions by means of reproducing
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experimental run products from a range of bulk com-

positions. We use this model to assess the origin of

Phanerozoic high-FeO primitive melts (i.e ferropicrites).

MELTING OF NON-LHERZOLITE MANTLE
LITHOLOGIES: APPLICATION OF A
THERMODYNAMIC MODEL

In this study we use the thermodynamic model of

Jennings & Holland (2015), based on the dataset of

Holland & Powell (2011), to investigate the major elem-

ent compositions of melts derived from variable mantle

compositions. The Jennings & Holland (2015) model

adds an eight-component melt phase, as well as ferric

and chrome end-members for solid phases, to the data-

set of Holland & Powell (2011) and its more recent de-

velopments. The model is in the eight-component

system NCFMASOCr, which is considered complex

enough that it begins to approximate natural processes.

For lherzolite, it is effective from 0 to 60 kbar and from

800�C to liquidus temperatures. The melt model was

originally calibrated based on experimental studies of

partial melting of fertile peridotite KLB-1 (Takahashi

et al., 1993), which is often used to approximate the

composition of the upper mantle. The model is imple-

mented in THERMOCALC (Powell et al., 1998), includes a

new melt phase, and can be effectively used to investi-

gate mantle melting, including at near-solidus

conditions.

Although the model of Jennings & Holland (2015)

was calibrated for peridotite, the compositional range

over which it is effective was not previously estab-

lished. The purpose of such a thermodynamic model is

to extrapolate from experimental results, and so its ef-

fectiveness for different bulk compositions can be as-

sessed by its ability to reproduce experimental melt

compositions, melt fractions and solid phase assem-

blages not included in the calibrating dataset. The fol-

lowing sections assess the applicability of the model to

a range of bulk compositions corresponding to several

potential mantle lithologies, and investigate their phase

relations.

Silica-deficient pyroxenite
Silica-deficient pyroxenite (olivine-bearing or biminer-

alic) may form in the convecting mantle by a variety of

mechanisms: solid-state reaction between eclogite and

peridotite, and metasomatism of peridotite by Si-rich

melts, are commonly suggested (e.g. Yaxley & Green,

1998; Kogiso et al., 2004; Herzberg, 2011; Rosenthal

et al., 2014). Other possible origins may include subduc-

tion of lithospheric pyroxenite (Pilet et al., 2005) or even

the solid residue left after eclogite partial melting

(Kogiso & Hirschmann, 2006; Rosenthal et al., 2014).

These varying pyroxenite formation mechanisms may

lead to the presence of a broad range of pyroxenite

compositions in the mantle, which is reflected in the di-

versity of starting compositions used in experimental

studies [as reviewed by Lambart et al. (2013)]. For sim-

plicity, the KG1 bulk composition of Kogiso et al. (1998)

is examined here (Table 1). The KG1 composition is a

1:1 mixture of MORB and KLB-1 peridotite, which is

high in MgO relative to most pyroxenite experimental

starting compositions (see Lambart et al., 2013). It is a
hybrid peridotite–eclogite composition that captures

the above processes to the first order, and experiments

at a range of pressures and melt fractions have been

published for this composition (Kogiso et al., 1998).

Although the physical setting that would allow such a

material to be generated is not well understood, this

bulk composition has been suggested as a putative lith-

ology for the source regions of enriched Iceland basalts

(Shorttle and Maclennan (2011)).
Two versions of the KG1 composition are used in

this study: KG1(8) is the KG1 composition of Kogiso

et al. (1998) normalized to 100% in the eight-component

NCFMASOCr system with ferric iron content halfway

between that of KLB-1 and MORB, whereas KG1(7) is

normalized in the seven-component ferric iron-free sys-

tem NCFMASCr (Table 1). The following calculations

are performed on KG1(7) such that the results are com-
parable with the experiments of Kogiso et al. (1998),

which were performed in graphite capsules.

To guide the calculation of liquid compositions and

illuminate the phase relations of a silica-deficient pyrox-

enite, a P–T pseudosection for KG1(7) was constructed

(Fig. 1). This pyroxenite has a similar topology and

garnet–spinel transition to that of fertile peridotite KLB-

1 (Jennings & Holland, 2015), although orthopyroxene
is not stable along the pyroxenite solidus to as high

pressure as on the KLB-1 solidus [orthopyroxene van-

ishes at around 18 kbar in KG1(7) and 42 kbar in KLB-1].

The spinel model used is rather simplified, and the spi-

nel stability field predicted at high temperature may be

an artefact (Jennings & Holland, 2015). The equilibrium

isobaric liquid compositions at 15, 20 and 30 kbar are

shown in Fig. 2, along with the experimental liquid com-
positions of Kogiso et al. (1998). Model temperatures at

a given melt fraction are 20–60�C lower than experi-

mental partial melts of KG1. This may indicate a model

deficiency when performing calculations on more en-

riched compositions, but could also incorporate the un-

certainty in determining melt fraction and temperature

in experiments. The model melt compositions are simi-

lar to those formed in experiments, and in all cases the

trends with P and F are matched (e.g. CaO increases
with F and FeO increases with P). Some notable offsets

exist, especially with the highest pressure experiments:

at 30 kbar, the model melt has higher SiO2 and FeO and

lower MgO than the experimental melt compositions.

However, both the model and experimental melts are

subject to uncertainties. We suggest that, because the

model acceptably reproduces liquid compositions

within typical experimental tolerance and achieves the
same sense of change with pressure, it may be used for

predicting partial melts in bulk compositions similar to

KG1.
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For comparison, a similar calculation was performed

in pMELTS (pMELTS is not optimized for pyroxenite

melting). These calculations use the same KG1 bulk

composition with the addition of the published TiO2

content (Kogiso et al., 1998) at QFM – 3 (where QFM is

the quartz–fayalite–magnetite buffer), with results

normalized in the eight-component NCFMASOCr sys-

tem. The resulting liquid compositions are overlain on a

version of Fig. 2 in Supplementary Data Fig. 1 (supple

mentary data are available for downloading at http://

www.petrology.oxfordjournals.org); pMELTS does not

effectively predict the experimental melt compositions

Table 1: Bulk compositions: published version (with reference) and the seven- or eight-component version used in this study

Published compositions Compositions used in this study

KLB-1 KG1 G2 N-MORB Depleted
(Davis

et al., 2009)
(Kogiso

et al., 1998)
(Pertermann &

Hirschmann, 2003a)
(Gale et al.,

2013)
peridotite
X¼ –0�1

KLB-1
X¼0 KG1(7)

KG1(8)
X¼0�5 G2(7) G2(8)

N-MORB
X¼1

SiO2 44�84 46�97 50�05 50�47 44�14 45�65 47�4 48�72 51�11 50�13 51�86
TiO2 0�11 0�78 1�97 1�64
Al2O3 3�51 9�75 15�76 14�84 2�2 2�53 9�84 9�85 16�1 15�79 15�11
FeO* 8�20 9�77 9�35 10�19 7�86 8�01 9�86 8�38 9�55 9�36 8�74
Fe2O3 0�12 0�29 1�15 1�92 1�85
MnO 0�12 0�19 0�18
MgO 39�52 23�57 7�90 7�66 43�23 39�83 23�78 22�23 8�07 7�91 7�79
CaO 3�07 7�35 11�74 11�43 2�09 3�13 7�42 7�79 11�99 11�76 11�71
Na2O 0�30 1�52 3�04 2�83 0�01 0�31 1�53 1�7 3�1 3�05 2�87
K2O 0�02 0�12 0�03 0�16
Cr2O3 0�32 0�17 0�04 0�35 0�26 0�17 0�18 0�08 0�08 0�07

The seven- or eight-component version of bulk compositions is the published version with extra components subtracted and nor-
malized to total 100%, with or without Fe3þ. X denotes position along a compositional vector where zero is KLB-1 and unity is N-
MORB. Concentrations are given in wt. % oxide.
*FeOTotal for italicized values (Fe3þ/FeTotal not measured but assumed insignificant in experiments performed in graphite capsules).

Fig. 1. P–T pseudosection for the bulk composition of hypothetical pyroxenite KG1(7) in the NCFMASCr system (bulk composition
given in Table 1). Phases: g, garnet; sp, spinel; pl, plagioclase; ol, olivine; cpx, clinopyroxene; opx, orthopyroxene; liq, liquid. Darker
fields are higher variance. It should be noted that the spinel stability fields near the liquidus contains <1 wt % spinel, which may be
an artefact.
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of Kogiso et al. (1998) for most oxides. Although

pMELTS performed better than the present model for

CaO and produced acceptable results for some oxides

at 15 kbar, it was particularly poor at 30 kbar and in

Al2O3, FeO and SiO2, and is thus not further used in the

present study.

Silica-excess eclogite
Two bulk compositions are examined by calculating

their P–T pseudosections (Fig. 3): (1) average normal

(N-)MORB of Gale et al. (2013); (2) G2, an eclogite in the

middle of the natural sample array (Pertermann &

Hirschmann, 2003a). These pseudosections are calcu-

lated with Fe3þ/FeT¼0�16 in the bulk composition, after

Cottrell & Kelley (2011), where bulk compositions are

normalized in the eight-component system [compos-

itions N-MORB and G2(8) of Table 1]. The figures show

that, in contrast to fertile peridotite and silica-deficient
pyroxenite, olivine is present on the solidus only at low

pressure (<7–8 kbar) in both compositions. Above this

pressure, an olivine- and quartz-free interval exists until

quartz joins the solidus assemblage at 13 and 18 kbar

for N-MORB and G2(8), respectively. G2(8) contains

1�5 mol % less SiO2 than average MORB, resulting in

the low-pressure quartz stability limit on the solidus

occurring at higher pressure. In both compositions, gar-

net appears on the solidus at around 15 kbar and a
small mode of kyanite is stabilized over 25 kbar. This

change in subsolidus assemblage with increasing pres-

sure represents the activation of the thermal divide at

the pyroxene–garnet join. The reactions that cause the

disappearance of some phases (olivine and plagioclase)

and the appearance of others (garnet and quartz) are

univariant in P–T space in the simple CMAS system

(O’Hara, 1968), whereas they are multivariant in the pre-
sent eight-component NCFMASOCr system. This

change in assemblage causes a prominent bulge on the

solidus between the pressures of the olivine-out and

quartz-in boundaries as melting moves from the

olivine-bearing eutectic to the quartz-bearing one.

The effect of the different solidus phase assemblages

on the partial melt compositions of G2 is seen in Fig. 4.

For this calculation, the ferric iron-free bulk composition
G2(7) was used to reflect the experimental conditions

(Table 1). The G2 and G2K experimental melt compos-

itions of Pertermann & Hirschmann (2003a), and other

experimental melt compositions (12�5–50 kbar) from

similar volatile-free basalt and eclogite-like bulk com-

positions (Takahashi et al., 1998; Yaxley & Green, 1998;

Takahashi & Nakajima, 2002; Yaxley & Sobolev, 2007;

Spandler et al., 2008; Rosenthal et al., 2014), are shown
for comparison. During isobaric melting of G2(7) at 20

kbar, quartz is lost at very low melt fraction (F�0) from

the melting assemblage. However, by 30 kbar quartz

stability is increased and is present to F¼0�14; this is

also true of the observed melting assemblages of

Pertermann & Hirschmann (2003a). This leads to a sig-

nificant difference in the partial melt compositions be-

tween the two pressures, and melts at the quartz-

present eutectic (30 kbar) have much higher SiO2 and
lower FeO than those generated by melting of the ef-

fectively quartz-free assemblage. At melt fractions

above 0�14, where quartz is exhausted from the high-

pressure assemblage, the melt compositions at the two

pressures converge. The two low-fraction melting be-

haviours (quartz-bearing and quartz-absent) could ac-

count for some of the range in melt SiO2, CaO, FeO and

Al2O3 produced in the other experimental studies
shown, although most experimental datapoints roughly

follow the initially quartz-bearing trend. Other sources

of variability in the experimental database are the

Fig. 2. Comparison of model melt compositions (lines) with the
experimental melts of Kogiso et al. (1998) (points). For the
model melts, the ferric iron-free KG1(7) composition was used
(Table 1). Ferric iron was not included to reflect the reducing
conditions in the experimental charges. Red, 15 kbar; green, 20
kbar; blue, 30 kbar. Experimental melt compositions are nor-
malized to 100% in the same seven-component system. (See
Supplementary Data, Fig. 1 for pMELTS results overlay.)
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differing bulk composition and pressures used.

Interestingly, the low-F experimental melts of

Pertermann & Hirschmann (2003a) at 30 kbar better

match the quartz-absent melting behaviour in the

model observed at 20 kbar, despite quartz being re-

ported in the experimental residue. G2K is a bulk com-

position containing somewhat higher K2O and SiO2

than G2, and gives experimental melt compositions

that are more similar to the quartz-residue (30 kbar)

modelled ones. Given the lack of K2O in the present

model, we suggest that the better fit of G2K to the

model results is explained by the extra SiO2 stabilizing

quartz in the experiments.
Overall, the model produces an acceptable fit to the

experimental data at melt fractions above that of quartz

exhaustion, and the range of experimental compos-

itions can be largely explained by the presence or ab-

sence of residual quartz in the melting assemblage.

Depleted peridotite
Finally, a bulk composition more depleted than KLB-1 is

considered. Depletion of a peridotite by partial melting

will preferentially exhaust clinopyroxene and the

relevant aluminous phase. Around 20% partial melting

will remove all clinopyroxene from the KLB-1 residue

(Jennings & Holland, 2015). In this study, a depleted

peridotite composition is created by subtracting 10% of

average N-MORB from the composition of KLB-1 (see

Table 1). The resultant depleted peridotite composition

contains 0�01 wt % Na2O and corresponds to a

clinopyroxene-bearing harzburgite at subsolidus P–T

conditions. Its P–T pseudosection (Fig. 5) is very similar

to that of KLB-1 (Jennings & Holland, 2015) but with

orthopyroxene remaining present on the solidus to

pressures of hpx stability (high-pressure pyroxene;

Holland et al., 2013). Wasylenki et al. (2003) performed

melting experiments on a depleted upper mantle com-

position (DMM1), which contained a small fraction of

clinopyroxene lost at F¼ 0�1. The lower fraction melt

compositions of DMM1 were very similar to higher frac-

tion melts of KLB-1 (except in the more incompatible

elements such as Na2O). Melting more depleted bulk

compositions, where clinopyroxene is not present on

the solidus, would create melts with similar compos-

itions to higher fraction melts of KLB-1. As the current

model functions well for high-fraction melts of KLB-1, it

Fig. 3. P–T pseudosection calculated for (a) average MORB bulk composition of Gale et al. (2013) (N-MORB, Table 1) and (b) G2(8)
eclogite bulk composition [Table 1; after G2 composition of Pertermann & Hirschmann (2003a)], both in the NCFMASOCr system
with Fe3þ/FeT¼0�16 (after Cottrell & Kelley, 2011). Legend as for Fig. 1; additional phases: q, quartz; coe, coesite; ky, kyanite. Spinel
is not present in (a).
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is assumed that this will also be the case for depleted

peridotite compositions.

RESULTS: THE EFFECTS OF VARYING MANTLE
BULK COMPOSITION ON MANTLE MELTING

The melt model should be effective for mantle compos-

itions ranging from depleted peridotite to MORB-like

eclogite, so it can be used to explore the control of bulk

composition on melt chemistry. To simplify this, the

bulk compositions are conveniently chosen to be linear

combinations of fertile peridotite KLB-1 (X¼ 0; Davis

et al., 2009) and average N-MORB (X¼ 1; Gale et al.,

2013), both normalized to 100% in the NCFMASOCr

system, with Fe2O3 calculated by taking Fe3þ/FeT¼0�03

for KLB-1 and 0�16 for MORB, after Canil et al. (1994)

and Cottrell & Kelley (2011), respectively. This binary

join is illustrated in Fig. 6. As basalt (approximated by

average MORB) is extracted from a primitive mantle

lherzolite (KLB-1), the lherzolite bulk composition loses

basalt and moves to negative X. Conversely, if average

MORB is added to peridotite in some proportion

through subduction, the mantle moves to positive X.

This approximation reflects natural mafic–ultramafic

rock systematics to a first order and allows a continu-

ous range of potential mantle compositions to be inves-

tigated. In reality, this system does not account for the

subtleties of fractional melting and melt mixing, crystal

Fig. 4. Comparison of model melt compositions [lines, bulk composition G2(7)] with experiments of Pertermann & Hirschmann
(2003a) (circles) for bulk composition G2 (experimental melts of G2K are also shown, which is a bulk composition somewhat higher
in K2O and SiO2 than G2). Red, experiments and model at 20 kbar; green, 25 kbar; blue, 30 kbar. Experimental compositions and
uncertainties are from Pertermann & Hirschmann (2003a). The G2(7) bulk composition is ferric iron-free for comparability with ex-
periments, which are buffered by graphite (see Table 1). q-out marks the exhaustion of quartz from the solid. Large differences in
melt compositions at low F are explained by the presence or absence of quartz. Experimental melts from other studies using anhyd-
rous eclogite compositions at a range of pressures are shown with grey crosses (Takahashi et al., 1998; Yaxley & Green, 1998;
Takahashi & Nakajima, 2002; Yaxley & Sobolev, 2007; Spandler et al., 2008; Rosenthal et al., 2014).
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fractionation, and MORB modification by subduction

zone processes.

Solidus phase assemblage
Knowledge of the solidus phase assemblage is import-

ant for understanding the trace element geochemistry

of mantle melts, as well as for predicting their major

element composition. Phase assemblages at the solidus

for various pressures as a function of composition are

shown in Fig. 7. The pyroxene–garnet compositional

plane is crossed at around X¼ 0�70, above which quartz

replaces olivine on the solidus in higher pressure as-

semblages. In detail, the thermal divide is multivariant

in the present system: at 22 kbar a narrow interval

exists between X¼ 0�68 and X¼0�70 where neither oliv-

ine nor quartz is present, and at 50 kbar this region

shifts to X¼0�71–0�72. Plagioclase is stable in more

basalt-rich compositions to higher pressures on the sol-

idus, whereas orthopyroxene is stable to the highest

pressures in the most depleted compositions. Although

the various P–T pseudosections presented here and by

Jennings & Holland (2015) indicate that the lower pres-

sure limit for garnet stability is moderately insensitive

to bulk composition, it is seen here that the modal pro-

portion of garnet in high-pressure assemblages (50

kbar) increases from just 5% in harzburgite to 40% in

average MORB. Pyroxenite KG1(8) (X¼ 0�5) contains

29% modal olivine at 5 kbar, decreasing to 11% at 50

kbar, making this composition an olivine websterite or

olivine clinopyroxenite, depending on pressure.

Thermal properties: solidus and melt
productivity
Experimental determinations of the onset of melting in

various compositions indicate that pyroxenite should

begin to melt at somewhat lower temperature (or

higher pressure) than peridotite, and eclogite at lower

temperature still (Yasuda et al., 1994; Kogiso et al.,

1998; Yaxley & Green, 1998; Herzberg et al., 2000;

Hirschmann, 2000; Pertermann & Hirschmann, 2003a).

A more important difference from peridotite is the melt

productivity; that is, the amount of melting achieved

over a given temperature interval below the liquidus.

This is proposed to be much higher in pyroxenites,

meaning that pyroxenite would melt to a greater extent

over a given finite temperature increase or interval of is-

entropic decompression than would peridotite.

Accumulated melts from a mixed lithology mantle

would therefore be heavily biased towards originating

from the more fusible lithology (Hirschmann & Stolper,

1996; Phipps Morgan, 2001; Kogiso et al., 2004; Lambart

et al., 2013; Sims et al., 2013; Shorttle et al., 2014). The

effect of the high-pressure pyroxene–garnet thermal

divide on the solidus temperature is not fully resolved

in complex systems (e.g. Kogiso et al., 2004). It should

be noted that, because natural mantle rocks contain

volatile components, they may begin to produce incipi-

ent melts of volatile-rich composition much deeper than

the onset of the high-productivity anhydrous peridotite

melting (e.g. Dasgupta & Hirschmann, 2007). The com-

positions examined here are volatile- and potassium-

free, so the calculated solidus represents the onset of

this main phase of melting in natural samples, rather

than the temperature at which they produce incipient

melts.

The calculated solidus temperature for a continuous

range of compositions at four pressures is shown in

Fig. 8. At low pressures (5 and 13 kbar) across the full

compositional range the solidus temperature is not

very sensitive to bulk composition: an increase in basalt

content only slightly lowers the solidus temperature.

Between X¼ 0 (KLB-1 peridotite) and X¼0�5 [KG1(8)

silica-undersaturated pyroxenite], there is almost no dif-

ference in the solidus temperature. However, at the

higher pressures, a free-silica phase is stabilized in the

silica-excess (X> 0�70) compositions. The quartz- or

coesite-bearing eutectic is on the Si-rich side of the ther-

mal divide, whereas the spinel 6 olivine-bearing one is

Fig. 5. P–T pseudosection for the depleted peridotite bulk com-
position X¼ –0�1 (KLB-1 – 0�1 N-MORB), in the NCFMASOCr
system. Phase labels and legend as for Fig. 1.

Fig. 6. Illustration of the binary compositional range described
by the compositional parameter X, where X¼0 is the enriched
peridotite KLB-1 (Davis et al., 2009, with 0�3 wt % Fe2O3, Canil
et al., 1994), and X¼1 is average N-MORB (Gale et al., 2013,
with 1�85 wt % Fe2O3, Cottrell & Kelley, 2011). Other X values
are linear combinations of KLB-1 and MORB, where X¼0�5
[KG1(8)] is very similar to pyroxenite KG1 of Kogiso et al.
(1998). Compositions are listed in Table 1.
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on the Si-poor side; thus, the thermal divide has be-

come effective at this point. This new eutectic tempera-

ture is around 150�C lower, explaining the large drop in

solidus temperature in higher pressure silica-excess

compositions. This large discontinuity in solidus tem-

perature is contrary to the suggestion of Kogiso et al.

(2004) that subsolidus phase assemblages do not have

an obvious influence on solidus temperatures, and

means that subducted MORB-eclogite would indeed

begin to melt much deeper than other mantle litholo-

gies in upwelling plumes. However, during fractional

melting, this deeper melting may be self-limiting: after

the free-silica phase is exhausted (at around 0–20%

melting, depending on pressure and bulk composition)

melting will cease, and it restart only once the quartz-

free solidus is reached.
Although olivine-bearing pyroxenites with compos-

itions similar to KG1(8) do not have a solidus tempera-

ture that is particularly offset from that of fertile

peridotite, their melt productivity contrasts strongly.

The isobaric melt fraction as a function of temperature

for four compositions is shown in Fig. 9. The contrast-

ing behaviour is clear at 25 kbar (Fig. 9a). All compos-

itions have a steep dF/dT slope until clinopyroxene

exhaustion, and then switch to a lower productivity

regime. In the fertile KLB-1 and depleted peridotite com-

positions, clinopyroxene is lost early and thus most of

the melt fraction range is low productivity. This con-

trasts with MORB and KG1(8), which have steeper

slopes at the onset of melting and lose clinopyroxene

only after high-fraction melting, meaning that they will

melt to a greater extent over a given temperature inter-

val. At 25 kbar, KG1(8) has a solidus 50�C lower than

that of KLB-1 (Fig. 9a). If melting were isobaric, by the

onset of KLB-1 fertile peridotite melting the KG1(8) pyr-

oxenite would be 50�C below its solidus and would al-

ready have melted by 50%, and N-MORB would be fully

molten (in decompression melting, the effect of param-

eters such as the difference in entropy of fusion on the

P–T path of the solid must be accounted for). At the

onset of melting, MORB melt productivity is even more

extreme until the loss of quartz from the residue. The

same is true at 50 kbar (Fig. 9b). The solidus tempera-

ture projected along an adiabat and calculated without

melting at the pressure of interest is also shown in

Fig. 9; this indicates that at ambient TP (1315�C) at 25

kbar only N-MORB will have begun to melt, whereas at

TP¼ 1500�C all compositions will have crossed their

solidi.

Fig. 7. Solidus modes (normalized to one oxide molar, similar to volume per cent) as a function of composition (X; see Fig. 6) for
four pressures. Phase labels as in previous figures. The appearance of garnet twice at 22 kbar is a result of the narrow [gþ sp] sta-
bility field moving slightly up in pressure, and then down again, with increasing X.

Fig. 8. Solidus temperature as a function of composition
(X; see Fig. 6) and pressure. Line pattern and colour indicate
pressure (purple, 5 kbar; green, 13 kbar; orange, 22 kbar; blue,
50 kbar). Also shown are experimental solidi (W03, at 10 kbar)
or solidi calculated from published empirical parameterizations
of experiments (remaining points), for compositions that fall
on, or close to, the X binary join. References: W03, Wasylenki
et al. (2003, DMM1); S14, Shorttle et al. (2014, KG1); H00,
Herzberg et al. (2000, KLB-1); Hir00, Hirschmann (2000, various
peridotites); PH03, Pertermann & Hirschmann (2003b, G2).
Solidi from these parameterizations are calculated at 5, 13, 22
and/or 50 kbar, depending on the published calibration range
(if any). The jump in solidus at high pressure is caused by the
presence of quartz in the solidus assemblage at X>0�69.
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In a plume with mixed lithologies in thermal equilib-

rium, heat flow from unmelted refractory domains will

further increase the isentropic melt productivity of the

more fusible lithology (Sleep, 1984; Phipps Morgan,

2001).

Near-solidus melt compositions
The compositions of a nominal 0% melt fraction along

the solidus as a function of bulk composition are shown

in Fig. 10 at 5, 13, 22 and 50 kbar, along with the re-

spective bulk compositions. Because the solidus tem-

perature increases with pressure, higher pressure

calculations represent the effect of increased depth of

melting. For compositions that do not contain a free

silica phase (i.e. all compositions at pressures of 5 and

13 kbar and compositions of X< 0�70 at higher pres-

sures), compositional changes in the melt are muted

relative to the change in bulk composition for most

oxides. For example, for MgO, CaO and Al2O3 the melt

composition is almost constant over a broad compos-

itional range. These oxides are buffered by the residual

mineral assemblage, as increases or decreases in the

bulk composition change the modal proportions of min-

erals but have a limited effect on the melting reaction.

CaO shows the opposite sense of change, where

increasing bulk CaO is matched by a slight reduction in

CaO of the low-fraction partial melt. This behaviour is in

agreement with the observations of Herzberg (2011)

and stems from the increased stability of clinopyroxene

in more enriched compositions and its decreased

contribution in the melting reaction relative to its mode.

This leads to peridotite and pyroxenite partial melts

being broadly similar, as has also been observed from

experimental results (Lambart et al., 2013). The excep-

tion to this behaviour is FeO, where the melt experi-

ences a much larger change for more enriched

compositions, despite the bulk FeO content remaining

almost constant. This indicates that FeO may be a use-

ful marker oxide in identifying melts from recycled lith-

ologies (e.g. Kogiso et al., 1998; Gibson, 2002; Shorttle

and Maclennan (2011); Lambart et al., 2013). This be-

haviour can be explained by considering the need for

the melt and solid phases to maintain KD
Fe–Mg equilib-

rium: as the MORB component is added to the bulk

composition, the MgO of the solid dramatically de-

creases, whereas the decrease in melt MgO is rather

small (when considering melting of quartz-free assem-

blages). Because bulk MgO is much lower in MORB

than in peridotite, and because the bulk FeO is roughly

constant, melt FeO must increase to maintain KD
Fe–Mg

equilibrium. This mechanism allows a partial melt to

have elevated FeO without requiring an Fe-rich source.
For many oxides, the difference in melt composition

caused by changing the depth of melting is greater than

that caused by bulk compositional changes. Al2O3, MgO

and Na2O clearly demonstrate this, and can be ex-

plained in terms of changing phase composition and

melting reactions (or phase stability) with depth. For ex-

ample, MgO in melts increases with pressure as garnet

and clinopyroxene stabilize at the expense of olivine

(O’Hara, 1968), whereas Na2O decreases with pressure

above plagioclase-out as it becomes increasingly more

compatible in clinopyroxene (Blundy et al., 1995). The

depth and compositional effects are somewhat convo-

luted in pyroxenite vs peridotite melting, as pyroxenites

will both melt at higher pressures and have more en-

riched compositions.

In contrast to silica-deficient pyroxenites, quartz-

bearing MORB-rich compositions begin to melt on the

Si-excess side of the thermal divide at high pressures.

The effect of this switch in the eutectic position for the

SiO2 and FeO content of melts is dramatic. The equilib-

rium melt compositions are significantly different from

those of silica-deficient pyroxenites until quartz is ex-

hausted from the residue. These early dacitic liquids are

unlikely to reach the surface: they would form deep, are

far from equilibrium with peridotite, and have a high

viscosity.

Natural mantle melts represent higher fraction melt-

ing than incipient melts. Given that high-degree mantle

melting is likely to be near-fractional, higher fraction

melts can be approximated from Fig. 10 by assuming

that the solid residue depletes to lower X as basalt is

removed, obtaining subsequent instantaneous melt

compositions, and considering that the final melt com-

position will be an average, mixed composition. In the

case of pure batch melting, systematics can be gleaned

from Figs 2 and 4.

Fig. 9. Melt fraction (F) as a function of temperature at (a) 25
kbar and (b) 50 kbar. Orange, average MORB (X¼1); green,
pyroxenite KG1(8) (X¼0�5); blue, peridotite KLB-1 (X¼0), red,
depleted peridotite (X¼ –0�1). Arrows indicate the mantle tem-
perature, where potential temperature TP is 1315�C and
1500�C, at the given pressure.
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DISCUSSION

The origin of mantle pyroxenite
The model of Yaxley & Green (1998), and later Sobolev

et al. (2005), describes a two-stage process whereby: (1)

eclogite partially melts at depth, and then (2) these par-

tial melts metasomatize the surrounding peridotite to

create pyroxenite, which itself melts deeper than peri-

dotite. The composition of the resultant hybrid pyroxen-

ite depends on the melt-to-rock ratio, the composition

of the eclogite and peridotite, and the extent of melting.

This process is consistent with the solidus pressures

and melt productivities found in this study, although it

is critically controlled by the ability of the high-silica

melts to flow from their source. Melt–rock reaction be-

tween the eclogite partial melt and surrounding perido-

tite may precipitate pyroxene, reducing porosity and

restricting the volume of peridotite that can become

metasomatized (e.g. Mallik & Dasgupta, 2012;

Rosenthal et al., 2014).
During fractional melting (i.e. if the melt is able to es-

cape the solid), eclogite will stop melting once the free

silica phase is consumed. The solid residue that is left

behind will lie close to the pyroxene–garnet compos-

itional divide (X¼ 0�70). At 30 kbar, G2(7) loses all of its

quartz by F¼ 0�14 in equilibrium melting, or at lower F

in fractional melting. If the F¼0�14 equilibrium dacitic

melt is extracted, the residual solid is 48 wt % SiO2, 9 wt

% MgO, 11 wt % FeO, 16 wt % Al2O3 and 13 wt % CaO.

This composition is low in MgO and high in Al2O3 com-

pared with pyroxenite KG1 (22 wt % MgO, 10 wt %

Al2O3) but is more similar to pyroxenite MIX1G (17 wt %

MgO, 15 wt % Al2O3, 12 wt % CaO; Hirschmann et al.,

2003), which was created as an intermediate compos-

ition within the natural mantle pyroxenite array. The

melting residue of mantle eclogite could therefore also

be considered as a pyroxenite source for melts, al-

though such melts may be depleted in highly incompat-

ible trace elements. Because pyroxenite and eclogite

melt more productively than peridotite, an accumulated

magma from partial melting of a lithologically heteroge-

neous mantle will reflect a greater contribution of melt

from the more fusible lithologies, in agreement with

Fig. 10. Calculated solidus melt composition for a nominal zero melt fraction as a function of bulk composition X (from depleted
peridotite through to eclogite) at 5, 13, 22 and 50 kbar.
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previous understanding (e.g. Hirschmann & Stolper,

1996; Shorttle et al., 2014).

Fractional melting simulations
Mantle melting is near-fractional and polybaric, mean-

ing that the resultant aggregated melt compositions will

differ from the equilibrium compositions identified in

Figs 2, 4 and 10. Fractional melting simulations were

therefore performed to investigate the melt compos-

itions expected from peridotite and pyroxenite partial

melting in an isentropically decompressing mantle. The

results of these simulations (incremental melt compos-

itions) are provided in Supplementary Data Table 1.

Thermal structure
It is not possible to calculate self-consistent isentropic

decompression paths in THERMOCALC so a P–T path must

be independently calculated and imposed (compare the

MELTS family of models and associated software;

Ghiorso & Sack, 1995; Smith & Asimow, 2005). A step-

wise equilibrium melting regime is used, where melt is

extracted at a threshold fraction; these incremental

melts are integrated in a one-dimensional (1D) geom-

etry for a final mixed melt composition. At every step,

the bulk composition is recalculated by removing the

previous melt. A melt fraction step of F¼ 0�01 was

found to be an appropriate compromise between reso-

lution and time efficiency (a repeat of a calculation run

for KLB-1 at F¼ 0�005 resulted in almost identical inte-

grated compositions at a given melt fraction). An accu-

mulated stepped melting approach is broadly

consistent with the idea that mantle melting may re-

quire a residual or threshold porosity for melt extraction

to occur, although U-series disequilibrium suggests

that porosities may be small, assuming a peridotite

source [reviewed by Kelemen et al. (1997)].
Melting at ambient mantle TP will begin at shallower

pressures than melting at elevated TP, and shows the

melt compositions expected from passive upwelling in

rift scenarios. For plume-type active upwelling, TP is

used as a general representation of the effect of ele-

vated temperature, and therefore deeper melting.

TP¼ 1500�C is broadly applicable to many known

plumes given the uncertainties associated with making

mantle temperature estimates (Herzberg et al., 2007;

Putirka et al., 2007). Four scenarios were therefore mod-

elled: (1) KLB-1 peridotite melting at ambient mantle TP

(1315�C; McKenzie et al., 2005); (2) KG1(8) pyroxenite

melting at ambient TP; (3) KLB-1 peridotite melting at

TP¼ 1500�C; (4) KG1(8) pyroxenite melting at

TP¼ 1500�C.

To model decompression melting, an equilibrium is-

entropic P–T path was calculated using the method of

Katz et al. (2003). Melt productivity as a function of pres-

sure, dF/dP, is calculated according to the set of equa-

tions given by Katz et al. (2003), where melting is split

into a high-productivity clinopyroxene-bearing region

and a subsequent lower productivity clinopyroxene-

absent region. These two melting regimes can be seen

in all lithologies in Fig. 9, in addition to the quartz-

bearing interval in N-MORB. P–T–F path calculations are

performed separately for a mantle of KLB-1 peridotite

and the X¼ 0�5 KG1(8) pyroxenite compositions; that is,

heat flow between the two lithologies in a mixed source

mantle is not considered (see Phipps Morgan, 2001). A

detailed description of the method and new parameter-

ization for pyroxenite melting are given in the

Appendix.

T and P were calculated at F¼ 0�01 steps from the

intersection of the relevant adiabat with the correspond-

ing solidus; this structure was used as a basis for melt

composition calculations. The P–T–F structure is calcu-

lated using a simplified assumption of thermal equilib-

rium between a single lithology and its partial melt.

However, its effectiveness as an approximation for use

in accumulated incremental batch melting simulations

can be confirmed by comparing the input temperature

and the model (THERMOCALC output) temperature at a

given pressure and melt fraction. The results show that

the input and output temperatures generally match well,

with a maximum difference at a given P and F of 42�C

before clinopyroxene is exhausted from the residue

(Fig. 11). This means that the imposed equilibrium ther-

mal structure is close to the model fractional melting

thermal structure until clinopyroxene exhaustion, and is

an adequate way of imposing a dynamic melting regime

in THERMOCALC. The output P–T path tracks the shift in the

solidus to higher temperatures as the bulk composition

depletes, and inflections in the output P–T path, seen in

Fig. 11, reflect changes in residual mineral composition

(usually the loss of a phase). Once clinopyroxene is lost

from the KLB-1 residue at F� 0�2, the temperature

required to produce a further 1% melt increases mo-

mentarily with a decrease in pressure. This pause in

melting is expected, given that in fractional melting the

solidus temperature will increase when a phase is lost

[similar to the findings of Asimow et al. (1995)]. Beyond

this point, momentary temperature increases were dealt

with by skipping melting steps (see Appendix). The

melting path for KG1(8) is much longer because clino-

pyroxene remains in the residue until F� 0�6.

Melt composition
Fractional melts are thought to accumulate and mix at

the base of the crust, and primitive magmas are gener-

ally well-mixed averages of fractional melts (Kelemen

et al., 1997; Jennings et al., 2017), although examples of

incomplete mixing are also found in melt inclusions

and within whole-rock samples from single volcanic

systems or lava flows (e.g. Sobolev & Shimizu, 1994;

Maclennan et al., 2003). The incremental melt compos-

itions retrieved along the polybaric fractional melting

paths (described above) are integrated to simulate this

process of recombination. For simplicity, the integration

is performed here using a 1D melting column geometry

without compaction, such that a given accumulated

melt fraction is the average of the cumulative melt
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fractions (e.g. a melt given as F¼0�03 is the average of

the first three incremental melts, where the calculation

is performed in steps of F¼ 0�01).

The evolution of these incremental and accumulated

fractional melts with further decompression, thus

increasing cumulative F, is shown in terms of five oxides

in Fig. 12. TP is a proxy for average depth of melting, as

hotter decompressing mantle will intersect the solidus

and begin to melt at higher pressure and temperature.

As was also indicated by Fig. 10, Fig. 12 shows that the

melt composition is a function of both source compos-

ition and depth of melting, making it more difficult to in-

terpret source lithology from the major element

composition of erupted magmas. In general, deeper

(higher pressure) accumulated fractional melts are lower

in Al2O3 and higher in CaO (at low melt fractions), MgO

and FeO for a given composition. Melts from pyroxenite

are higher in FeO and lower in CaO, MgO and Al2O3 than

melts from peridotite at a given TP. The fraction of melt-

ing reached has some importance; for example, high-

fraction pyroxenite melts (F>0�4) have a similar com-

position to low-fraction peridotite melts in terms of FeO

and CaO. Interestingly, shallower peridotite partial melts

from ambient temperature melting become more en-

riched in MgO with increased melting and source deple-

tion, whereas deeper peridotite and all pyroxenite melts

decrease in MgO with continued melting. This reflects

the competing effects of source composition (which

would produce more MgO-rich melts with depletion)

and depth (which would produce less MgO-rich melts as

pressure decreases) on the melt.

The Fo contents of olivine in the solid mantle residue

are also shown in Fig. 12c. This shows Fo to increase

with increasing extent of melt extraction. KG1(8) pyrox-

enite mantle olivine ranges from 82�8 to 89�5 and varies

predominantly as a function of melt fraction. Primary

pyroxenite-derived melts are therefore not required to

be in equilibrium with high-Fo (>90) olivine, provided

that the melts maintain Fe–Mg disequilibrium with

peridotite.

In summary, the Al2O3 and MgO of mantle melts ap-

pear to be more sensitive to pressure than to source

composition, whereas CaO and FeO are more sensitive

to source composition than to pressure. CaO and FeO

may therefore be the more useful indicators of source

lithology, although their concentrations are still affected

by the depth of melting. This is consistent with the iden-

tification of an enriched end-member for magmas on

Iceland, which is characterized by high FeO and low

CaO as well as enriched trace elements, representing

melting of a fusible component in the mantle (Shorttle

and Maclennan, 2011).

Application to the origin of high-Fe mantle melts
(ferropicrites)
Although thermodynamic and empirical models based

on melting of peridotite can explain the nature of melt-

ing regimes involved in the generation of the parental

melts of picrites and olivine basalts (e.g. Langmuir

et al., 1992; Ghiorso et al., 2002; Herzberg & O’Hara,

2002; Herzberg & Asimow, 2008, 2015), these models

do not account for the genesis of primitive mantle

melts that are anomalously rich in Fe (e.g.

FeOT�MgO). These so-called ferropicrites are subalka-

line with> 12 wt % MgO and have noticeably lower

Al2O3 and CaO contents (both <approximately 10 wt %)

than mantle-derived picrites (Gibson, 2002).

Ferropicrites were first identified in the Western

Superior Province Archaean greenstone belt (Hanski &

Smolkin, 1989) and have since been identified through-

out the geological record. Examples of Phanerozoic fer-

ropicrites are rare, and are found exclusively in large

igneous province settings: in CFB provinces including

Emeishan, Siberian Traps, Karoo, Paran�a–Etendeka,

Madagascar, North Atlantic and Ethiopian CFB prov-

inces (Lightfoot et al., 1990; Wooden et al., 1993; Fram

& Lesher, 1997; Storey et al., 1997; Ewart et al., 1998;

Gibson et al., 2000; Gibson, 2002; Riley et al., 2005;

Zhang et al., 2006; Heinonen & Luttinen, 2008;

Heinonen et al., 2010; Desta et al., 2014), and in pos-

sible accreted oceanic plateaus (Ichiyama et al., 2006;

Erdenesaikhan et al., 2014).

The most common hypothesis adopted to explain

the origin of Phanerozoic ferropicrites is that they rep-

resent near-primary partial melts of pyroxenite, which

formed at high P and T in the convecting mantle. This

model was first suggested by Gibson (2002), who

noted that the hybrid pyroxenite produced in the

peridotite–eclogite sandwich experiments of Yaxley &

Fig. 11. Calculated [input, calculated by method of Katz et al.
(2003)] and model (output, temperature results from
THERMOCALC) for fractional melting model. Blue, KLB-1; green,
KG1(8); continuous line, TP¼1315�C input P–T path; dashed
line, TP¼1500�C input P–T path; filled points, output P–T path
at TP¼1315�C; open points, output P–T path at TP¼1500�C. All
points in F¼0�01 steps; small numbers show F¼0�1 intervals.
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Green (1998) was enriched in FeOT. Tuff et al. (2005)

subsequently strengthened this hypothesis by examin-

ing the high-pressure phase relations of a ferropicrite

from the Paran�a–Etendeka CFB province. In their ex-

periments, they found that garnet and clinopyroxene

were co-saturated at pressures above 3 GPa, indicating

equilibrium with a high-pressure garnet- and

clinopyroxene-bearing source. Such a hypothesis is con-

sistent with the observation that ferropicrites represent

early magmatism in CFB provinces: the thick lithosphere

prior to extensive rifting would restrict partial melting in an

upwelling mantle plume to only more fusible lithologies

(Gibson, 2002). This model is consistent with Sr, Nd, Pb

and Os isotopic and trace element compositions of ferropi-

crites from the Karoo CFB province (Heinonen et al., 2013,

2014). The source pyroxenite has been suggested to be Fe-

enriched, to explain the high Fe content of ferropicrites

(Ichiyama et al., 2006).

Alternative mechanisms of ferropicrite genesis

have also been proposed. It has been suggested that

ferropicrite melts derive from mixing of immiscible

Fe-rich melts with picrites (Jakobsen et al., 2005;

Veksler et al., 2006), although Goldstein & Francis

(2008) noted that ferropicrite crystallization tempera-

tures and MgO contents are too high to be consistent

with this model. Archaean ferropicrites are frequently

suggested to have formed by partial melting of an Fe-

rich peridotitic mantle source (in the sense that the Mg#

is decreased by FeO addition rather than MgO reduc-

tion), although the origin of this Fe enrichment is uncer-

tain: an initially Fe-rich mantle and subsequent Fe

sequestration, a core contribution, and even an infall of

Fe-rich chondritic meteorites have been suggested

(Hanski & Smolkin, 1995; Stone et al., 1995; Francis et al.,

1999; Gibson et al., 2000; Goldstein & Francis, 2008;

Milidragovic & Francis, 2015).

The final part of this study uses a thermodynamic ap-

proach to investigate whether the major element com-

positions of ferropicrites are indeed compatible with

melting of pyroxenite. If the pyroxenite hypothesis is

correct, then the presence of ferropicrites in several

CFB provinces implies the presence of pyroxenite, or

originally eclogite, in the CFB mantle sources. If these

mantle sources are in fact mantle plume starting heads

that originated at the core–mantle boundary (Richards

et al., 1989; Campbell & Griffiths, 1990), then the pres-

ence of eclogite has important implications for the deep

cycling of older subducted slabs into regions of plume

initiation. The pyroxenite hypothesis negates the re-

quirement for anomalously Fe-rich mantle peridotite

domains to exist, along with the array of processes sug-

gested to produce them.

Fig. 12. Composition of accumulated fractional melts as a function of melt fraction F. (a) CaO, (b) Al2O3, (c) MgO, (d) FeOT and
(e) SiO2, for polybaric fractional melting of peridotite KLB-1 (blue) and silica-deficient pyroxenite KG1(8) (green) and TP¼1315 and
1500�C. Each point represents an F¼0�01 calculation step. Points show the integrated cumulative melt compositions of all melt
fractions up to the one given. Lines show the instantaneous melt compositions. A 1D melt column is assumed; that is, the compos-
ition of an F¼0�03 melt is the average of the F¼0�01, 0�02 and 0�03 incremental melt compositions. Lines show the Paran�a–
Etendeka CFB province picrite (continuous line) and ferropicrite (dashed line) suggested primary melt compositions for compari-
son, calculated assuming Fe3þ/FeT¼0�1. Plot (c) also shows the Fo content [100(Mg/(MgþFe2þ)), mol] of olivine in the solid mantle
residue at melting intervals of 0.1, where the colour indicates the corresponding bulk composition.
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Major element composition of accumulated
pyroxenite partial melts
The unusual major element chemistry of ferropicrites is

one of their most conspicuous features. Yet, because

major element modelling requires thermodynamic ana-

lysis (and an appropriate thermodynamic tool for pyrox-

enite melting was not previously available), its

investigation has thus far been restricted to (1) compari-

son with experimental melt compositions (e.g. Gibson,

2002; Goldstein & Francis, 2008), (2) comparison with

published major element markers of pyroxenite partial

melts (Heinonen et al., 2013), and (3) experimental

examination of their high-pressure liquidus phase rela-

tionships (Tuff et al., 2005). In this section, the compos-

itions of primitive ferropicrites from the Paran�a–

Etendeka CFB province are compared with modelled

accumulated fractional melts to investigate whether

pyroxenite partial melting at high pressure is indeed re-

sponsible for their origin. For comparison, picrites and

basalts from the same province (‘Horingbaai-type pic-

rites’; Thompson et al., 2001) are also examined. These

are thought to be derived from high-temperature de-

compression melting of peridotitic mantle (Thompson

et al., 2001).

The compositions of primary melts (normalized to

100% in the eight-component NCFMASCrO system and

shown in Figs 12 and 13) were calculated as follows.

For the picrites, the whole-rock sample with the highest

Fo olivine [sample 97SB33 with Fo85–93 olivine of

Thompson et al. (2001)] was adjusted to be in KD
Fe–Mg

equilibrium with the average sample Fo (91�6) by add-

ing equilibrium olivine (assuming a melt Fe3þ/RFe¼ 0�1)

using PRIMELT3 (Herzberg & Asimow, 2015), corres-

ponding to a primary composition of 17�7 wt % MgO.

For comparison, the maximum Fo olivines (93�3) are in

equilibrium with a 21�6 wt % MgO liquid. For the ferropi-

crites, the most primitive and unaltered sample was

chosen [sample 97SB63 with up to Fo86 olivine, from

Gibson et al. (2000)]. Its composition was corrected to

be in equilibrium with the highest Fo olivine (86�0), at

MgO¼ 15�1 wt % (also with melt Fe3þ/RFe¼ 0�1), which

assumes that there had been no significant prior frac-

tionation and that these olivines are in equilibrium with

their mantle source. On the solidus of KG1(8) at

TP¼ 1500�C, olivine is Fo82�9 in the present model,

which steadily increases during decompression frac-

tional melting (Fig. 12). Therefore, Fo86�0 or lower does

not necessarily imply prior olivine fractionation in

pyroxenite-derived melts.

Figure 12 shows the suggested primary melt com-

position of Etendeka picrites and ferropicrites. FeOT

(RFe as FeO), rather than FeO, is shown in Fig. 12, to re-

duce the effect of (1) choice of Fe3þ/RFe in the mantle

source and (2) assignment of Fe3þ/RFe in the natural

samples on the comparability of the two. The picrites

and ferropicrites do not perfectly coincide with any

given source composition, TP, or F, reflecting both the

large uncertainty associated with determining a primary

composition and the simplified nature of the model.

However, for every oxide shown, the general sense of

the difference between the picrite and ferropicrite pri-

mary melt is consistent with the derivation of ferropi-

crite from a source more similar to KG1 pyroxenite,

whereas picrite is more consistent with a peridotite
source (i.e. ferropicrite is higher in FeOT and lower in

CaO, Al2O3 and MgO), and is generally consistent with a

high TP in the region of �1500�C.

The composition of accumulated fractional melts

plotted in terms of the co-variation of two compos-

itional parameters is shown in Fig. 13. Figure 13a is a

plot of melt CaO versus MgO; this combination of

oxides was suggested by Herzberg & Asimow (2008) to
be useful in discriminating between peridotite and pyr-

oxenite sources. It does indeed appear to provide good

discrimination between melts of the two sources from

this study. The grey dashed line was used by Herzberg

& Asimow (2008) as a practical way to identify

peridotite-sourced melts (which plot above the line) and

pyroxenite-sourced melts (which plot below it) in the

software PRIMELT2 and 3 (Herzberg & Asimow, 2008,

2015). Fractionation of olivine will shift melt compos-
itions parallel to the peridotite–pyroxenite divide, so

will not cause liquids to cross it. The divide was sug-

gested on the basis of a parameterization of melting ex-

periments, although Herzberg (2011) noted that it is not

necessarily applicable in all circumstances. Although

KG1(8)-derived melts do indeed plot beneath it, it is dif-

ficult to discriminate between high-fraction pyroxenite

melts and low-fraction, low-pressure peridotite melts.
Melting of pyroxenite at TP> 1500�C would probably

produce melts that cross the proposed dividing line. In

addition, the compositional change from peridotites

through to pyroxenites is not a sharp boundary, and

partial melts from an intermediate composition would

plot closer to the divide. This discriminatory boundary

is useful, however, because it is insensitive to olivine

fractionation and different primary compositions
related to erupted magmas along an olivine-only con-

trol line can be distinguished.

As discussed above, the CaO and FeOT contents of

melts are somewhat more sensitive to source compos-

ition than to depth of melting, and the reverse is true for

MgO and Al2O3. If CaO and FeOT concentrations are

normalized to the more pressure-sensitive MgO or

Al2O3, then the depth effect is reduced (as is done in

Fig. 13b and c). As a result, more of the variation in the
plotted melt compositions and natural samples is ac-

counted for by changes in the source composition.

Figure 13b is normalized to Al2O3, which means that

olivine fractionation will have a minor effect on the melt

composition in this plot, so the accurate estimation of a

primary melt is less critical in discriminating between a

peridotite source (which is indicated by melts with low

FeOT/Al2O3 and high CaO/Al2O3) and a pyroxenite
source. In Fig. 13c, the effect of olivine fractionation is

pronounced; despite this, a separation of peridotite-

and pyroxenite-sourced melts is still achieved, with
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only small differences in melt composition resulting

from varying TP.

It is concluded that CaO and FeO(T) in a magma are

the best major elements for discriminating between

source compositions, and that these can be normalized

to either MgO or Al2O3 to reduce the complicating effect

of pressure on magma composition. This is in agree-

ment with previous studies. For example, isotopically

enriched samples from Iceland have higher FeOT and

lower CaO and SiO2 than isotopically depleted samples

and have been shown to be derived from more fusible

mantle lithologies (Shorttle & Maclennan, 2011; Sims

et al., 2013). Additionally, Lambart et al. (2013) showed

from experimental data that pyroxenite-derived melts

can have high FeO and/or low SiO2 relative to

peridotite-derived melts. In the modelled fractional

accumulated melts of this study, SiO2 is similar for

KG1(8) pyroxenite and KLB-1 peridotite, although it is

lower at higher pressure. Some features of the major

element geochemistry of OIB that are incompatible with

a peridotite source (e.g. at the same SiO2 content, they

tend to be higher in FeOT and lower in CaO than 3 GPa

near-solidus peridotite partial melts) could also be rec-

onciled if a proportion of silica-undersaturated pyroxen-

ite were present in their mantle source (e.g. Kogiso

et al., 1998; Davis et al., 2011).

Paran�a–Etendeka picrite and ferropicrite whole-rock

compositions and suggested primary melt compos-

itions are also shown in Fig. 13. It is clearer here than in

Fig. 12 that (1) ferropicrites are similar to low- to

moderate-fraction melts of high-pressure (high-TP)

silica-deficient pyroxenite KG1 and (2) picrites are simi-

lar to partial melts of KLB-1 peridotite. The dominating

effect of olivine loss or gain on the whole-rock compos-

itions is clear in Fig. 13a and c. In every plot, the sense

of the change in chemistry between picrites and

Fig. 13. Composition of accumulated fractional melts compared with whole-rock data. Points are accumulated (integrated) melt
compositions at F¼0�01 intervals (see caption to Fig. 12 for details). Small arrows indicate the location of the F¼0�01 melt (i.e. the
onset of melting). Small dots represent unfiltered whole-rock samples from the Etendeka province [normalized to 100% in the
eight-component NCFMASCrO system; data from Gibson et al. (2000) and Thompson et al. (2001)], enclosed by coloured fields to
highlight the general trend and location of most of the samples, and stars show the suggested primary melt compositions. Vectors
calculated for olivine fractionation/accumulation are shown, and explain most of the spread in the whole-rock data. Short white
arrows show the approximate effects of increasing depth of melting and source enrichment (X) on the liquid composition. The
dashed line in (a) is the boundary given by Herzberg & Asimow (2008) to differentiate between peridotite-derived melts (above the
line) and pyroxenite-derived melts (below the line), where change parallel to the line is caused by olivine loss or gain.

2304 Journal of Petrology, 2016, Vol. 57, No. 11&12



ferropicrites is matched by the sense of change be-

tween accumulated fractional melts of KLB-1 and

KG1(8). The chemistries of the natural samples could

probably be better matched by calculating over a wider

range of TP and adjusting the bulk composition, al-

though the examples shown clearly illustrate that ferro-

picrites can be explained by high-pressure melting of a

predominantly pyroxenitic source. There is little con-

sensus about the most appropriate composition for

mantle pyroxenite, and KG1 by no means represents

the only option: being a synthetic mixture of MORB and

peridotite, it is not entirely clear how such a blended

composition would be created in the mantle.

Implications for whole-mantle recycling. It is concluded

major-element chemistry of picrites and ferropicrites

from the Paran�a–Etendeka CFB province can be ac-

counted for by elevated-temperature melting of perido-

tite and pyroxenite, respectively, in agreement with

previous studies (Thompson et al., 2001; Gibson, 2002;

Tuff et al., 2005). If ferropicrites are the result of partial

melting of pyroxenite at elevated temperatures, then

their presence in several Phanerozoic CFB provinces

implies that CFB mantle sources are generally litho-

logically heterogeneous. To produce a pyroxenitic lith-

ology, a two-step model involving the initial partial

melting of eclogite and subsequent metasomatism of

peridotite is a possibility. The presence of ferropicrites

in CFB settings therefore implies that recycled eclogitic

material is present in CFB mantle sources. If mantle

plume starting heads are responsible for CFB provinces

(Richards et al., 1989; Campbell & Griffiths, 1990), and if

these derive from the core–mantle boundary, then this

implies that subducted slab material has undergone

whole-mantle cycling and has been advected to the sur-

face from regions of plume nucleation (e.g. Hofmann,

1997), or recycled material may have been entrained by

the plume head at storage interfaces in the mid-mantle.

However, ferropicrite outcrops are volumetrically minor

and do not constrain the proportion of eclogite or pyr-

oxenite in CFB mantle sources.

Limitations
The thermodynamic model of Jennings & Holland

(2015) is tested in this study for applicability to a range

of potential mantle compositions. It should be used

with caution, especially for assemblages containing a

free silica phase, and the effect of several model limita-

tions must be considered. The solid–liquid Fe–Mg parti-

tioning behaviour of the model becomes unreliable at

pressures above around 50 kbar (Jennings & Holland,

2015), which may be relevant to the genesis of ferropi-

crites (although it is noted that Figs 2 and 4 show that

experimental melt Mg and Fe contents are effectively

reproduced at 30 kbar in pyroxenite and eclogite).

Perhaps a more serious limitation when examining

the melting behaviour of enriched mantle compositions

is that calculations are performed in the simple

NCFMASOCr system. This is used to approximate a

real, complex system, and is appropriate for calculating

peridotite phase relations. However, TiO2, K2O, H2O and

CO2 are not examined; these components will affect the

phase equilibria, liquid composition, melt productivity

and, most significantly, the solidus temperature (Green,

1973; Eggler, 1976; Gaetani & Grove, 1998; Dasgupta &

Hirschmann, 2007; Davis & Hirschmann, 2013). This be-

comes a more important limitation when considering

pyroxenite and eclogite, which contain higher concen-

trations of all of these elements than peridotite. Some

experimental studies on eclogite melting have stabi-

lized rutile and K-feldspar close to the solidus, although

these phases are lost shortly after the onset of melting

(Spandler et al., 2008). Because TiO2, K2O and H2O are

higher in ferropicrites than in picrites [e.g. up to 4%

TiO2 in samples from the Karoo (Riley et al., 2005)], the

system limitation is particularly important when using

the present model to investigate their origin. In detail,

including these elements will have some effect on the

melt concentrations of the components considered in

this study, in particular by moving low-fraction melting

to higher pressures. Overall, however, this system limi-

tation should not affect the conclusion that ferropicrites

have more major element compositional similarities to

partial melts of mantle pyroxenite than to peridotite.

The anticipated lowering of the pyroxenite solidus by

the neglected components may actually promote the

production of more ferropicritic partial melts.

CONCLUSIONS

In this study, the thermodynamic model of Jennings &

Holland (2015) was tested to validate its use in investi-

gating the relationship between primary melts and

mantle composition. Despite being calibrated for peri-

dotite melting, it was found that the model could effect-

ively reproduce experimental partial melt compositions

for the pyroxenite KG1 (Kogiso et al., 1998) and eclogite

G2 (Pertermann & Hirschmann, 2003a); the latter con-

tains a free silica phase at pressures above 18�3 kbar,

indicating the activation of the garnet–pyroxene ther-

mal divide.

The thermodynamic model was used to investigate

the relationship between source composition and melt-

ing behaviour. The thermal divide was found to have a

dominant control on solidus temperature, melt product-

ivity, and partial melt composition. When considering

only olivine-bearing lithologies (i.e. silica-deficient bulk

compositions at all pressures and more silica-rich com-

positions at low pressures), the dependence of melt

temperature and composition on bulk composition was

found to be strongly non-linear. The concentrations of

most oxides in partial melts from more enriched bulk

compositions tend to be buffered by the increased sta-

bility of more fusible phases (in particular clinopyrox-

ene). This means that partial melts of pyroxenite are not

very different from those of peridotite, as previously

noted by Lambart et al. (2013), despite the difference in
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mineral modes and bulk composition. An exception to

this is in FeO, where the concentration in the melt has a

strong response to the changing bulk composition, des-

pite the fact that the range of FeO is small across the

bulk compositions considered. This is the result of the

KD
Fe–Mg control on the melt composition and the lower

bulk MgO in the more enriched compositions. Some

melt oxide concentrations, in particular Al2O3 and MgO,

were found to be more sensitive to pressure than to

bulk composition. The solidus temperature is fairly in-

sensitive to bulk composition, although from the onset

of melting, more enriched bulk compositions melt more

productively over a greater melt fraction interval.

The changes in melt composition in response to bulk

composition were exploited to examine the hypothesis

that high-Fe mantle melts are derived from partial melt-

ing of mantle pyroxenite. The results of our modelling

show that the conspicuously high FeOT in ferropicrites

does not require a high-Fe mantle source with perido-

titic MgO contents and is indeed best explained by low

to moderate fraction pyroxenite melting, as is their low

CaO content. The low Al2O3 characteristic of ferropi-

crites reflects their relatively high pressure of formation

and supports a model involving melting of pyroxenite

in hot mantle plume starting heads, restricted to high

pressures and low fractions beneath thick lithosphere

(Gibson, 2002).

In this study, ferropicrite compositions are compared

with modelled accumulated fractional melts of the

hypothetical pyroxenite KG1 (Kogiso et al., 1998). This

composition is merely illustrative of the types of melt

compositions expected from a more enriched mantle

and is not suggested to be the best match for the ferro-

picrite source. The range of pyroxenite and eclogite

compositions that have been considered in experimen-

tal studies, and those that may actually exist in the man-

tle, is huge (e.g. Lambart et al., 2013), and heterogeneity

may be introduced into the mantle by a variety of mech-

anisms (e.g. Herzberg, 2011). A thermodynamic ap-

proach such as the one used here can be used to

further investigate the origin and consequences of man-

tle heterogeneity.
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APPENDIX: THERMAL MODEL FOR MELTING

P–T–F pathways for decompression melting were calcu-
lated assuming anhydrous and isentropic conditions

according to the method of Katz et al. (2003), where

melting is split into a clinopyroxene-bearing high-pro-

ductivity interval and a clinopyroxene-absent low-pro-

ductivity region. The differential equation provided by

Katz et al. (2003; originally McKenzie, 1984) for dF/dP is

numerically integrated using a fourth-order Runge–
Kutta scheme. For peridotite melting, the solidus,

liquidus and melt productivity parameterization of Katz

et al. (2003) were used, along with the thermal proper-

ties of Shorttle et al. (2014). For pyroxenite melting, a

new solidus, liquidus and melt productivity parameter-

ization was created for the KG1(8) composition (see
Table 1) from calculations using the Jennings &

Holland (2015) melt model. In addition, a

clinopyroxene-out boundary was defined as a quadratic

function of P (although in this study, only the high-

productivity region was required). The parameters used

are listed in Table A1.

Journal of Petrology, 2016, Vol. 57, No. 11&12 2309



A note on fractional melt modelling beyond
clinopyroxene exhaustion
At cumulative melt fractions above cpx-out, the input

model overestimates the melt productivity (as seen in

subsequent calculated temperature increases); this

occurs because the input model is calibrated for equilib-
rium melting of KLB-1. By F� 0�2, the residual solid

from fractional melting is too depleted and will have to

decompress further than predicted by the model to pro-

duce an additional 1% of melt. To extend calculations to

higher cumulative F, we skip decompression steps

where a temperature increase is required for equilib-

rium with 1% melt, allowing the solid to decompress an

extra increment before a 1% melt fraction is achieved.

The effect of this workaround on the chemistry is

minimal.

Table A1: Parameters used in calculating P–T–F path

KLB-1 peridotite KG1-a pyroxenite Unit Notation

Tsolidus 993�7þ206�4P – 12�4P2 941�1þ208�9P – 12�8P2 �C
Tlhz�liq 1901�8 – 154�6Pþ25�2P2 1293�7þ67�7Pþ5�3P2 �C
Tliquidus 1769�2þ59�6P – 3�7P2 1507�8þ64�2P �C
Tcpx�out 1149�0þ144�8P – 5�3P2 1115�5þ152�2P – 6�4P2 �C
b1 1�0 1�0 Melting function exponent, cpx-bearing
b2 1�5 1�5 Melting function exponent, cpx-absent
cp 1187* 1140* J kg�1 K�1 Heat capacity (constant pressure)
asolid 3�2�10–5 3�2�10–5 K�1 Thermal expansivity, solid
qsolid 3300* 3300* kg m�3 Density, solid
qliq 2900* 2900* kg m�3 Density, liquid
DS 407* 380* J kg�1 K�1 Entropy of fusion

KLB-1 Tsolidus, Tlhz-liq and Tliquidus from Katz et al. (2003). Unless otherwise indicated, other values are new, and for use with the
equations of Katz et al. (2003).
*From Shorttle et al. (2014).
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