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ASP 5.4 66 27.4 12.9

BOU 4.8 46 44.0 22.8

CLF 4.2 100 7.8 23.3

HAD 4.4 100 8.7 31.9

HER 3.7 100 12.1 3.3

HON 6.5 43 17.1 17.2

KAK 5.4 38 53.5 16.5

NGK 4.4 100 2.0 35.2

Mean 4.8 74 21.6 20.4

Median 4.6 83 14.6 20.0

Statistical forecasting techniques applied to 

observatory data for core field modelling
William Brown1, Ciaran Beggan1, Susan Macmillan1 (wb@bgs.ac.uk)
1British Geological Survey, Edinburgh, UK 

Session A01 Poster 701: IAGA 2017 Cape Town, South Africa

Modelling of the geomagnetic field is hindered by noisy and incomplete observations,
and the extent to which we can model and separate the contributions of the various
field sources in these data. Forecasting of the core field and its secular variation, SV,
is further complicated by an incomplete knowledge of the physics controlling
magnetic field generation.
Core field forecasts are often produced by extrapolating modelled field values[1] or
alternatively, by methods such as core flow advection[2], or inverse geodynamo
modelling[3]. Those approaches which use no physical knowledge of the field or flow
behaviour cannot predict changes such as jerks, those that are based on physical
processes generally lack the knowledge to resolve events on a timescale of a few
years, and all will be subject to the accuracy of the simplifying model assumptions
made.
Given that the behaviour of temporal splines near the model end points is dependent
on regularisation choices, extrapolating a model reliably is not straight forward. We
take a preliminary look at statistical time series forecasting of observatory data, with a
view to including forecast values and their uncertainties in a field model inversion, to
improve the accuracy of short-range model predictions.

Why consider statistical forecasting?
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Data and model considerations

Test scenario
We calculate monthly mean series from AUX_OBS_2 hourly mean observatory scalar
data for the period 1999—2015, prepared after [5]. We use 8 example observatories,
with as close to continuous hourly data series as possible, and split the data into a
training set for 1999—2010, and a validation set for 2010—2015.
We fit ARIMA models for each observatory series in the training set, and forecast each
monthly; for the period of the validation set.
We utilise a BGS field model, denoted MEME2010, to compare our ARIMA forecasts
to field model extrapolation. MEME2010 is constructed after the procedure of [2],
from the same observatory data set as for the ARIMA models, as well as CHAMP and
Ørsted vector and scalar, data for 1999—2010. The main field Gauss coefficients are
extrapolated linearly for the period of 2010—2015, and the extrapolation and
forecasts compared to the validation data.

• Annual differences of monthly means generally aren’t stationary (Fig.1a)
• Monthly first difference (FD) SV generally are approximately stationary (Fig.1b),

with monthly data averaging out some external signal and periodicities seen in
hourly data

• Monthly FDSV can be non-zero mean (Fig1.b), models must account for this
• Observatory data “cleaned” of external signals allows more robust forecasts of

the core field
• We can’t expect to predict jerks, but we expect to avoid influence from end-of-

model effects by working directly from data
• Vector components at a single site have differing signal content, due to

orientation relative to external sources, so are difficult to model jointly, scalar
data provides a simpler approach

• Seasonal (annual and semi-annual) components and further harmonics are
present in monthly FDSV data (Fig.1e,f)

ARIMA modelling
AutoRegressive Integrated Moving Average is a type of statistical time series model,
which can be used to forecast future trends based on patterns in existing
observations. The technique is naïve of any physical property underlying the data, but
approximates the lag of the time series (AR order), and lag of the modelled time
series residuals (MA order), with which the historic patterns in the data can be
represented. ARIMA models require a stationary time series, accommodated via
successive time differencing (I order). ARIMA models can also include a seasonal
component with associated (AR, I, MA) orders, over a particular fixed period, and a
constant term to accommodate series with a non-zero mean.
Here we model FDSV series, with a seasonal period of 12 months rather than
seasonally differencing the data, to retain stationarity. We follow the Box-Jenkins
method[4], using ACF and PACF functions to assess likely model parameters, and
optimal parameterisations determined by Akaike Information Criterion.

Summary and further work
ARIMA models can represent observatory time series within a mean RMSE here of
5nT/decade, and produce forecasts on the same order of accuracy as core field model
linear extrapolation, over 5 years. The ARIMA model parameters can certainly be
tailored further, especially in cases such as KAK (Fig.2), and the applicability to the
global data set of observatories must be assessed.
A more extensive analysis of the statistical properties of the data, and in vector
components, is needed, as well as consideration of other suitable forecasting
techniques, such as machine learning algorithms[6].
Given the preliminary results here, we will look to include forecast data and their
uncertainties in a core field model inversion, to directly compare performance versus
field model extrapolation on short timescales. This work could also be extended to
include “virtual-observatory” time series, greatly increasing spatial coverage.

Results

Table1 Mean root-mean-square
error (RMSE) is similar between
forecasts and extrapolation, but
forecasts show a smaller median
RMSE. Regarding constraining a field
model beyond the available data
span, it is promising to note that the
mean of over 70% of the forecast
samples are within 1σ of the
validation data over 5 years.

Fig.1 Annual differences of monthly mean (a) and first differences of monthly mean (b) scalar
field at HAD, UK, with autocorrelation (ACF) (c,e) and partial autocorrelation (PACF) (d,f)
functions. Blue dashed lines indicate 5% significance.
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Fig.2 Comparison of monthly mean data (black), MEME2010 model (red), and forecast (blue).
Forecast and model extrapolation performance is variable at each observatory. At HAD, the
forecast performs better than the extrapolation; at KAK, the forecast is mislead by accommodating
the strong long period variation in the ARIMA model.
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