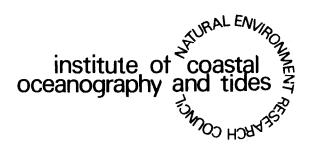
ICOT/IR/12



The analysis of tidal streams - Laeso Rende

by

J. R. Rossiter

1968

The analysis of tidal streams - Laeso Rende

bу

J.R. Rossiter

1968

This report was produced before the Tidal Institute became the Institute of Coastal Oceanography and Tides.

Background

At the request of Dr. Swansson of the Fisheries Board of Sweden, in 1967 the Institute undertook the analysis of the long Danish series of current measurements taken from the Laeso Rende Lightship during the years 1912-1913.

Laeso Rende (Lat. 57° 13' N, Long. 10° 42' E) is situated in the Kattegat between the Danish north-east coast and the island of Laeso. The observations, together with a description of the techniques (a "Libelle" current meter was used) will be found in the publication by Jacobsen (see ref.). Velocities and directions were tabulated at intervals of approximately 4 hours (0, 4, 8, 12, 16 and 20 hours each day) at depths (2½ 5, 10, 15 and 20 m). The total depth of water at the station was 22 m. Apart from a few breaks, the records span the period 5 September, 1912 to 18 November, 1913.

Although the quality of the basic observations may be suspect, and the sampling interval is large and inconvenient for tidal analysis, it was considered that such remarkably long time series at 5 depths merited analysis.

Analysis Procedure

Values of velocity (Y cm/sec) and direction (Θ clockwise from north) were punched onto cards, and north-going (N) and east-going (E) components of velocity computed.

The ten series so generated were edited, by inspection, for large errors, and after correction were submitted to harmonic analysis using the Tidal Institute Flexible Analysis program TIFA.

A sampling time of 4 hours restricts the analysis to the tidal bands 0, 1, 2 and 3 cycles per day. All higher species present in the data will be "folded" into these lower frequencies; it is clear from the results (Table 1), however, that such contributions must be negligible.

TIFA will seek any selection of the orthodox tidal lines, plus any other frequencies (called "ODD") stipulated, assuming the sampling time to be 1 hour. When the sampling time is \triangleright hours, the analysis can be performed by defining lines in terms of \triangleright instead of \bigcirc (\bigcirc = angular speed in degrees per hour). Care must be taken that \triangleright \bigcirc for an ODD line does not coincide with \bigcirc for an orthodox line. It is not possible to treat the astronomical variables N, f and u required

to represent nodal variations in a similar way; for these analyses the simplifications

$$N = f = u = u = 0,$$

 $f = 1$

have been used.

The version of TIFA used produces the modulus of Zo; since the data were effectively to a zero datum, it was necessary to determine the sign of Zo independently. This was done first by computing daily mean values of N and E (centered on 1400 hours each day), then the overall mean. The tabulated daily means at each depth are available for study.

Analysis Results

Table 1 lists the harmonic constants of N and E for the 21 lines selected. There is a gratifying agreement between the major constituents at different depths, as well as indications of systematic variations in depth. The tidal regime is clearly semidiurnal, and virtually rectilinear in the N-S direction. Nevertheless, in order to understand the depth variations more fully, it was decided to determine the basic parameters of tidal current motion in two co-ordinates.

From Figure 1, the total velocity U is given by

$$U^{2} = N^{2} \cos^{2}(\sigma t - n) + E^{2} \cos^{2}(\sigma t - e)$$
 (1)

where N, E are the component amplitudes and n, e their associated phase lags. The time origin used here is arbitrary. For maximum U, it follows from (1) that

$$R^2 \sin^2 2(\sigma k - a) = 0 \tag{2}$$

where

$$R^2 \cos 2n = N^2 \cos 2n + E^2 \cos 2e$$

 $R^2 \sin 2n = N^2 \sin 2n + E^2 \sin 2e$ (3)

at time
$$t_{max}$$
 given by $t_{max} = h/\sigma$ (4)

From (1) and (4),

$$U_{\text{max}}^{2} = \frac{1}{2} N^{2} \left\{ 1 + \cos \left(2\Lambda - 2\pi \right) \right\} + \frac{1}{2} E^{2} \left\{ 1 + \cos \left(2\Lambda - 2e \right) \right\}$$
 (5)

The direction of U_{max} is given by $\phi_{\text{max}} = \arctan \frac{N \cos (n-k)}{E \cos (n-c)}$ where ϕ is measured anticlockwise from east.

Table 2 lists values of N_{σ} , U_{max} and ϕ_{max} for M_2 , S_2 , N_2 , O_1 and S_a , and

these are plotted against depth in Figure 2. The vectors of mean flow (Z_0) are shown in Figure (3).

Some conclusions

The direction of maximum velocity is probably not too well defined by this analysis, and the results for O_1 , are probably marred by the effect of background noise on its rather small amplitude. With these reservations, the following conclusions are worth noting:-

- (1) Tidal currents are reasonably uniform from surface to bottom. In all cases (M2, S2, N2 and O1) the maximum velocity occurs at approximately mid depth.
- (2) The phase of the tidal streams follows a pattern similar to that of the velocity; the maximum velocity, at mid depth, is also associated with maximum time lag. It seems possible that a linear time lag from surface to bottom (or vice versa) could have been introduced into the data as a result of the fact that only one current meter was used for all depths. Quote from Jacobsen's introduction:— "The measurements were taken nearly simultaneously at all depths, as the entire series could generally be carried out in fifteen minutes". Note that this is of the same order of magnitude as the relative time lags observed.
- (3) Tidal currents rotate anticlockwise downwards, indicating inverse Ekman spiral due to bottom friction.
- (4) The seasonal variation (Sa) and mean flow (Z_O) are significant in the upper layers, very small near the bed. They both rotate clockwise downwards, indicating the normal Ekman spiral arising from wind drift, and perhaps also from fresh water flow at the surface.

Reference

Current measurements from Danish Lightships. Medd. Komm. Havund., Serie Hydrografi, 11(8), Kobenhavn, 1923.

Table 1:- Analysis of Laeso Rende current observations at various depths, covering period 5 September 1912 to 14 November 1913

Time Zone -1. Units are cm/sec.

					Time ZC	ne -1	•			Unit	s are	cm/s	ec.							
	N	Ī	E	;	N	Ī	E	;	N	İ		E	N	!	E	}	N		1	E
	H	g	H	g	H	g	Н	g	H	g	H	g	Н	g	Н	g	H	g	H	g
Depth	2 <mark>2</mark> m			5 m				10 m			•	15 m				20 m				
Zo Sa Ssa	26.0 7.4 6.9	303			24.7 8.5 5.1	295 76	4.6 3.1 1.7	<u>-</u> 287 339	9•7 8•6 1•5		3.3 1.8 1.0		-0.2 3.0 2.4		0.4 1.5 0.7	239	-2.2 1.2 2.4	217 263		210 150
2Q1 Q1 O1 P1 K1 J1	1.7 1.2 3.5 0.5 1.1 0.3	295 73 269 140	0.4 0.7 0.4 1.0 0.2 0.3	64 269 73 317 336 146	1.6 1.6 3.9 0.8 1.8 0.8	32 300 78 276 167 233	0.5 0.5 0.7 0.6 0.7 0.3	329 222 44 273 154 88	1.3 1.4 5.1 0.8 2.3	83 271	0.4 0.5	111 9 269 230	0.2 1.0 4.6 1.8 1.5	41 300 77 243 119 327	0.6 0.5 0.4 0.2 0.3 0.6	341 42 300 347 125 64	0.9 0.4 3.5 1.3 2.1	330 280 64 229 110 289	0.3 0.4 0.9 0.4	284 56 302 78 113 42
2N ₂ N ₂ N ₂ N ₂ S ₂ K ₂ K ₂ S ₂	0.5 4.4 5.2 1.9 20.4 1.5 6.1 1.1 2.4	46 175 305 9 350 115 318 288 29	0.5 0.8 1.0 0.9 1.7 0.4 0.6 0.1	121 146 259 36 306 253 280 230 297	0.9 4.7 6.5 1.9 22.6 1.6 7.0 2.1 2.3	103 179 304 335 350 131 321 293 14	0.3 1.2 0.9 1.7 3.5 0.2 0.5 0.3	338 107 240 21 333 51 333 270 59	1.5 5.4 7.9 2.5 26.0 1.2 9.3 1.7 2.2	359 114 331 289	0.2 0.4 0.1 1.1 0.5 0.6 0.4 0.4		0.9 5.0 7.5 2.2 25.9 1.8 8.9 2.0	139 168 306 359 355 104 329 293 18	0.6 0.1	169 66 127 301 189 50 235 173 145	0.5 5.4 7.0 1.6 23.2 1.9 7.3 1.7 2.4	62 162 299 29 347 84 320 305 13	1.3 0.7 2.0 0.1 0.7 0.4	90 25 120 190 181 159 146 121 103
MO ₃ M ₃ MK ₃	0.5 0.8 0.8	350	1.0 0.6 1.1	334 136 110	0.8 0.9 0.6	301 355 75	0.7 0.2 0.9	333 90 119	0.4 0.6 0.6	238 49 162		182 280 19		138	0.2 0.8 0.6	156 323 223	0.4 0.4 0.4	230 80 211	0.9	104 351 205

Table 2:- Direction, time and magnitude of maxima of some tidal stream components at Laeso Rende

	Depth (m)	r/o = t max* (mins)	U max (cm/sec)	o max
^M 2	2•5	0	20.4	87
	5	1	22.8	82
	10	18	26.0	88
	15	10	25.9	93
	20	- 6	23.3	95
s ₂	2•5	0	6.1	85
	5	6	7.0	86
	10	26	9.3	86
	15	22	8.9	90
	20	4	7.3	96
N ₂	2•5	0	5.2	82
	5	-1	6.5	86
	10	14	7.9	88
	15	4	7.5	96
	20	-6	7.1	101
о ₁	2•5	0	3.5	83
	5	8	3.9	81
	10	21	5.1	89
	15	9	4.6	94
	20	-17	3.5	93
Sa	2•5	0	7.5	82
	5	-21	9.0	70
	10	-21	8.7	79
	15	-53	3.2	68
	20	-180	1.6	50

^{*} relative to t_{max} at 2.5 m depth.

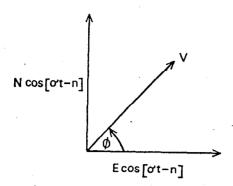
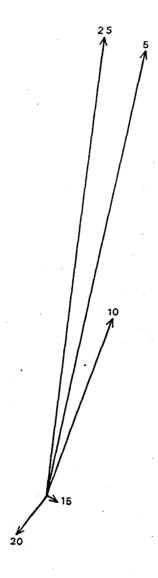
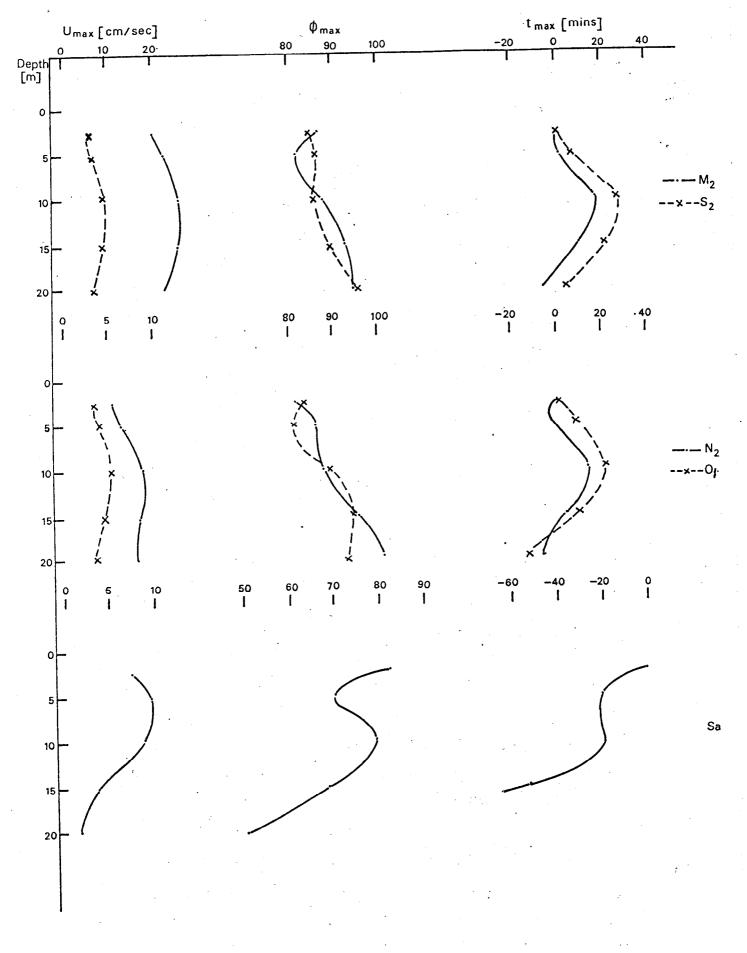




FIGURE 3

5 cms/sec

