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Abstract—A non-linear, yet simple, multiplicative human-
control model is developed by studying the statistical properties
of human subjects’ motor response to a visual input; statistical
analysis of the magnitude of the steering angle, from subjects
performing a tracking task with a steering wheel, shows that
the data is consistent with a log-normal distribution. Thus the
possibility of modelling human-control as a multiplicative process,
that replicates the statistical properties found in the human-
operator is considered. The proposed multiplicative controller
is contrasted with real data and with the Crossover Model. This
research has potential applications in a wide range of fields, from
human performance modelling to the development of human-
machine interfaces, particularly in the application of ground
vehicle automation.

I. INTRODUCTION

Nearly every existing human-control model incorporates a
series of parameters [1], which not always have physiological
interpretation. Usually, with the intention of reproducing the
control actions of the human-operator as close as possible,
the parameters are adjusted to match the responses of hu-
man subjects. This approach, while not incorrect, has one
inconvenience: often it is difficult to tell to which extent an
accurate model representation is the result of a good model,
or of the optimization procedure to fit its parameters [2].
This is especially true for models with many parameters. The
most pre-eminent example is the use of neural networks to
model the human [3]; neural networks can be used to model
virtually any dynamical system. Although in many respects
these models are very valuable, they do not produce insights
on the characteristics of human-control. Furthermore, different
subjects may use diverse control strategies that not necessary
match the same model. At the same time, for sufficiently
complex systems, alternative interpretations can explain the
same observed effects.

In this paper, an statistical approach to biofidelic modelling,
i.e. modelling human-operator behaviour in a faithful way
biologically speaking, is introduced. The approach consists
of considering a model to be biofidelic, when it reproduces
some of the statistical properties of the human-operator in a
particular task. The used methodology is consistent with the
Principle of Maximum Entropy [4], which states that given
some initial data, the distribution that better describes the data
under some specified constraints, is the one with maximum
entropy. In this paper, the intended task is to organize the
observed results into a model that is as simple as possible.

A factor of motivational value for this research is that, recent
and relevant studies in neuroscience [5], have shown that several
aspects regarding the dynamics of the brain are characterized by
long-tailed probability distributions such as the log-normal. One
example is the distribution of firing rates in cortical neurons.
In this paper, the possibility of steering wheel control in a
tracking task to be characterized by a log-normal distribution
is considered. Given that the log-normal distribution arises as
a result of multiplicative processes, a multiplicative human-
control model is proposed. The model is compared with data
from human subjects and with a standard approach in human-
performance modelling: the Crossover Model [6].

For this research, data collected from human subjects in
compensatory and pursuit tracking tasks, and using a steering
wheel as control device, is utilized [7].

An accurate representation of the human-operator is an
important part in the design of human-computer interfaces. This
research is aimed towards biofidelic formulation of human-
control models, in particular to their application to ground
vehicle automation and driver assistance technologies.

The discussion is organized as follows: In Section II
the needed theoretical background is presented. Section III
introduces the human tracking experiments from which the
data was collected. By analyzing the data, a novel approach to
model the human-operator is proposed in Section IV. Lastly,
in Section V, conclusions are drawn and potential extensions
of this work are suggested.

II. THEORETICAL BACKGROUND

A. Log-normal distributions and multiplicative dynamics

Consider a multiplicative process of the form

Gtk = ξtkGtk−1
= Gt0

tk∏
i=t1

ξi, (1)

where (ti, ti+1) ⊂ R+ ∪{0} are equispaced time intervals and
Gt0 > 0, ξi > 0. Taking natural logarithms in (1) results in

logGtk = logGt0 +

tk∑
i=t1

log ξi. (2)

If ξi are identically distributed and independent random
variables, the Central Limit Theorem (CLT) applies to the
summation term of (2) and, for large enough k, logGtk will
be approximately normally distributed. Therefore, Gtk will
follow approximately a log-normal distribution. In general, the
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discrete observations of a time series (ξi) are not independent,
unless the series is a Markov process. However, an alternate
formulation of the CLT that applies for the analysis of arbitrary
time series can be employed [8].
Definition. m-dependent random variables:
A sequence of random variables Xi for i = 1 . . . N is said to
be m-dependent when |i − j| > m implies that Xi and Xj

are independent. If the sequence {Xi}i=1...N is understood as
a time series, m-dependence means that events occurring at
least m time steps away are independent.
Theorem. Central Limit Theorem for m-dependent random
variables:
If Xi is a sequence of m-dependent random variables with
expected value E[Xi] = 0 and E[|Xi|3] <∞, then

Y∞ = lim
N→∞

N−
1/2

N∑
i=1

Xi (3)

is normally distributed with E[Y∞] = 0 1. In particular, for

large N , YN =
N∑
i=1

Xi approximates a normal distribution of

zero expected value.
This result is more a technical requirement than a limitation.

In practice, a given time series – predicted to arise from a
multiplicative process – is fitted to a log-normal probability
distribution after under-sampling the series with different values
of m. If the results are equivalent for m ≥ m̂, the original
time series can be considered m̃-dependent; the under-sampled
time series can then be treated as a Markov process.

The potential interest in the log-normal distribution, with
the purpose of modelling the human-operator, relies on two
points. One is that the log-normal is a distribution of maximum
entropy (Section II-B). The second point is that, several
research studies in neuroscience have brought attention to
the fact that, multiple aspects of the Central Nervous System
(CNS) dynamics are log-normally distributed. For instance,
log-normal distributions yield the best fit for the distribution of
neuron firing rates in the cortex [9]. Another example is from
research in the activity of neurons in the lower spine of turtles
while engaging in rhythmic scratching; this appears to be also
distributed according to a log-normal [10]. And interestingly,
in [11] it is shown that, visual perceptual learning can be
described as a process in which the human observer reduces
the magnitude of internal multiplicative noise. Additionally,
in [5], it is suggested that complex interconnected biological
systems produce multiplicative and not additive interactions.

B. Maximum entropy probability distribution

The Principle of Maximum Entropy [4] asserts that, when
determining which probability distribution explains better some
data, and under some established constraints, the probability
distribution with the maximum uncertainty should be chosen.
For continuous probability distributions, the differential entropy
is considered as measure of uncertainty. In the case of a positive

1There is also an expression for the variance of Y∞ in [8].

random variable X with probability density function (PDF)
fX , the differential entropy is:

H(X) = −
∫ ∞
0+

fX(x) log (fX(x)) dx. (4)

Assuming the constraints: X > 0, E[log(X)] = µ and
E[(log(X) − µ)2] = σ2, the PDF obtained by maximizing
expression (4) is the log-normal:

fX(x) =
1

x
√
2πσ2

e−
(log(x)−µ)2

2σ2 . (5)

The approach is equivalent to introducing the least possible
number of constraints. In this research, the human-operator
is modelled based on partial information; only data from
recordings of operator’s responses in a control task are used.
It is considered that almost no knowledge about the features
of human-control are known; in reality this turns out to the
case. Thus the methodology is consistent with the Principle of
Maximum Entropy.

C. Bootstrap test for goodness-of-fit

Once a probability distribution is selected to be representative
of a data set X, and its parameters are fitted to the data giving
a PDF fX and a cumulative distribution function (CDF) FX, in
order to quantify the goodness-of-fit the following bootstrap
method can be used [12]:

(i) Determine the distance between the fitted probability
distribution and the empirical data by using some statistical
measure, for example the Kolmogorov-Smirnov distance
can be used:

D = max
x∈X
|FX(x)− F̃X(x)| (6)

where F̃X is the empirical CDF.
(ii) Generate a set of pseudo-random numbers Y distributed

according to FX.
(iii) The parameters of the chosen probability distribution are

fitted again to the new artificial data Y, obtaining a new
CDF FY.

(iv) The Kolmogorov-Smirnov distance is calculated for the
artificial data set Y,

d = max
y∈Y
|FY(y)− F̃Y(y)|.

(v) Steps (ii) to (iv) are iteratively repeated many times (say
10000− 100000 times) generating a set of distances D =
{d1, d2, . . . , dN}.

(vi) The p-value of the goodness-of-fit test is estimated
according to

p =
#{d ∈ D| d > D}

N
(7)

where # denotes the cardinality of the specified set, that
is, p is the proportion of distances in D greater than D. If
p > 0.1 the goodness-of-fit test rejects the null hypothesis
of the data not belonging to the specified distribution; the
data can be explained by the distribution considered.
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Fig. 1: Man-machine control loop in the experimental setup
used to collect the data. In compensatory mode, the display
presents a fixed reference circle at the center of the display,
and a moving solid dot with position e(t). In pursuit mode,
the reference circle moves with position r(t). The solid dot
has position m(t) thus the error is perceived as the difference
between r(t) and m(t).

III. HUMAN TRACKING TASK DATA COLLECTION

Ten subjects, of ages between 22 and 33 and mixed
genders, participated in a series of data collection experiments
performing a tracking task. The goal of the subjects was to
control a one-dimensional plant with a steering wheel. The
data was collected in compensatory and in pursuit mode [7].
In compensatory mode, only one object – a solid dot – moved
in the screen with respect to a fixed reference point – a circle
at the center of the display – along the horizontal direction.
The distance from the dot to the circle represented the error
e(t). The human subjects were requested to keep the error as
small as possible by using the control device. The error was
induced by a forcing function r(t). The moving dot, responded
to the human manipulative control actions c(t) according to
a transfer function Yp, which determined the plant dynamics
m(t) (Fig. 1). In compensatory mode the plant dynamics are
not visualized by the human-operator, which only has access
to the relative error e(t) = r(t)−m(t).

In pursuit mode, the reference circle is not fixed in the
display but moved according to the forcing function. The
position or lateral offset on the display of the other moving
element is controlled by the plant dynamics m(t) (Fig. 1).
Although neither of the moving elements directly represents
the error in pursuit mode, the human perceives the error as the
relative difference in position between the moving reference
point, with position determined by the forcing function, and
the solid dot, controlled by the plant dynamics. The task of
the human was to reduce their distance.

For each subject two tracking events were recorded of 90 s
duration. Half of the subjects performed the tracking task in
compensatory mode and the other half in pursuit mode. In
both modes, the plant dynamics were governed by the transfer
function:

Yp(s) =
K

s(Ts+ 1)
, (8)

with K = 5, T = 0.1.
The forcing function r(t) was composed of a sum of

sinusoids with a range of frequencies fk = 0.01− 20Hz:

r(t) =
∑

fk∈{0.01...20}

e−4fk sin(fk · 2πt− ϕk), (9)

where ϕk ∈ [−π, π] is a randomized phase for each summation
term. With this choice, the amplitude is negligible for frequen-
cies outside of the range where a human-operator can perform
adequate control. Considering quasi-random forcing functions,
humans can’t perform tracking with acceptable performance
for frequencies greater than approximately 1 Hz [13].

Regarding the steering wheel, it was calibrated to allow
a total of 900 degrees of rotation lock to lock. For each of
the events there was recorded: the forcing function, the plant
output, the error signal and the human response, which was
the normalized steering wheel angle from −1 (450 degrees to
the left) to 1 (450 degrees to the right). For each of the 90 s
events, the initial 20 s and the last 10 s were excluded. Thus
from each event, only 60 s of data are analyzed. The recorded
data were sampled at 100 Hz.

These experiments were part of a more extensive data
collection project, which included fractional order transfer
functions among other variants [7].
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Fig. 2: (a) Normalized histogram for the responses of all the
subjects combined – recorded from the steering wheel sensor
– along with the fitted log-normal PDF. (b) Fitted CDF and
empirical values. The fitted parameters for the log-normal are
µ = −2.368, with 95% confidence interval [−2.401,−2.337],
and σ = 0.550, with confidence interval [0.528, 0.573].
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human virtual human

Subject µ σ gain KH µ σ

S1 −2.641 0.406 10.570 −2.920 0.525
S2 −2.274 0.547 18.940 −2.617 0.627
S3 −2.289 0.603 26.370 −2.602 0.699
S4 −2.036 0.506 15.626 −2.451 0.588
S5 −2.311 0.566 21.650 −2.640 0.587
S6 −2.354 0.401 9.498 −2.862 0.474
S7 −2.602 0.459 11.417 −2.926 0.578
S8 −2.338 0.652 23.759 −2.817 0.617
S9 −2.425 0.458 18.385 −2.827 0.618
S10 −2.406 0.617 15.565 −2.709 0.514

TABLE I: Fitted parameters for the log-normal distribution (5)
tabulated per subject. The table shows the results for the data
collected from the human subjects, and for the artificial data
obtained by running the multiplicative control model – with the
same quasi-random forcing function r(t) that was presented to
each subject. For the case of the artificial data, the fitted gain
of the multiplicative control model KH is also shown.

IV. MODEL PROPOSAL AND VALIDATION

A. Distribution of the human-operator responses

The uncertainty in the response of a human-operator to an
input, is a challenge when trying to identify the operator as a
deterministic actuator. The exact input to which the operator
responds is itself generally unknown. Hence, the possibility
of characterizing the responses of the human-operator in a
probabilistic manner is examined.

By analyzing the magnitude of the human responses (|c(t)|)
to the displayed error, empirically one sees that it has the shape
of a skewed distribution (Fig. 2a). To visualize the data, the
steering responses of all the ten subjects were combined, after
being under-sampled to a sampling rate of 1 s. This was done in
order to confirm that the series is m-dependent (Section II-A).
For m > 100 no appreciable differences were observed visually
or numerically in the results. Additionally, values such that
|c(t)| < 0.02 were discarded. This threshold was set because
no evident pattern was found in the data for smaller magnitudes,
and because the log-normal is defined over a positive support.

The parameters of the log-normal distribution were fitted to
the data through maximum likelihood estimation. Subsequently,
a goodness-of-fit test was performed (Section II-C) from which
a p value of 0.317 is obtained. Between the individual subjects
the fitted parameters present some variability (Table I), although
the values are comparable; since different subjects employ
different control strategies and have different skill levels, this
was not considered surprising.

Thus the statistical analysis indicates that, the magnitude
of the control responses over a threshold, can be explained as
a process distributed according to a log-normal. This result
motivates the possibility of modelling the human-operator
responses as a multiplicative process.
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Fig. 3: Amplitude of the steering signal for two different
randomized forcing functions r(t) in (a) and (b). The two
curves in each plot represent the response of a human subject
c(t) and the response C(t) of the MHC model (14) with fitted
KH to match the subjects’ response: (a) KH = 10.570 and
(b) KH = 18.385.

B. Multiplicative human-control model

A non-linear multiplicative human-control (MHC) model is
here proposed. In the MHC model, the control response C(tk),
according to a time discretization t1, t2, . . . , tk, . . . , tf with
fixed time-step s = tk − tk−1, is defined as

C(tk) ≡ KHStkHtk , (10)

where KH represents the neuromuscular gain, Htk is the mag-
nitude of the response intent of the human-operator, and Stk is
a sign function that determines in which direction the response
is applied. Htk is designed to simulate a multiplicative process
dependent on the previous observations of the error signal,
with multiplicative factor ξtk : (e0, . . . , etk) −→ (0,∞):

Htk ≡ ξtkHtk−1
. (11)

With this scheme, different functions Stk and ξtk can be speci-
fied. Considering that humans act after a certain neuromuscular
lag τ [7], that can be represented as the number of discretization
steps ρ = τ/s, Stk and ξtk are defined thus:

Stk ≡ sgn (Lρ{etk}) (12)

and
ξtk ≡ Lρ

{∣∣∣ etk
etk−1

∣∣∣}, (13)

where Lρ is the back-shift operator (Lρ{etk} = etk−ρ). The
infrequent case where Stk = 0 or Lρ{etk−1

} = 0 can be
handled separately by assigning ξtk = ξtk−1

. For this particular
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choice of functions (12)-(13), the MHC model can be written
as

C(tk) ≡ KHH̃tk (14a)

H̃tk ≡ Lρ
{ etk
|etk−1

|

}
H̃tk−1

(14b)

which is a non-linear two parameter model (for ρ and KH ).
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Fig. 4: (a) Normalized histogram of the virtual human (MHC)
responses, for all the same instances of r(t) that were presented
to the ten subjects, and fitted PDF. (b) Fitted CDF and
empirical values. The fitted parameters for the log-normal are
µ = −2.395, with 95% confidence interval [−2.442,−2.347],
and σ = 0.782, with confidence interval [0.751, 0.816].

C. Model Validation

Since different subjects present distinct control strategies
(Fig. 3), the gain KH was fitted to match the control responses
of each subject through a Bayesian optimization algorithm
(Table I). For example, the subject in Fig. 3a relies on lower
amplitude and higher duration pulses, compared to the subject
in Fig. 3b. The neuromuscular lag was also fitted from the
subjects’ data by a cross-correlation method [7] (τ ≈ 0.361
for the studied cases).

Once artificial data was generated by running the model, with
the same randomized instances of Equation (9) (for r(t)) that
were presented to each subject, the artificial data was fitted to
a log-normal distribution. With this purpose, the same method
used to fit the subjects’ data was applied. For the combined

data of all the simulations, the results are summarized in Fig. 4.
A goodness-of-fit test results in a larger p-value compared to
the human’s data (p = 0.752). This was anticipated since the
artificial data originates from a purely multiplicative process.
The log-normal parameters for the particular instances of r(t)
of the virtual human were also calculated (Table I), showing
values comparable to those from the subjects’ responses.

The MHC model is here contrasted with a standard methodol-
ogy in human-performance modelling, the Crossover Model [6].
The Crossover Model, describes the combined response of the
human-operator and the plant to a input, with a human-machine
system transfer function:

Yh (s)Yp (s) =
ωce
−τs

s
, (15)

where Yh represents the human and Yp the plant. The model
has two parameters: ωc which is the combined human-plant
open-loop gain, and τ the neuromuscular lag of the human-
operator. The Crossover Model has been widely used as a
benchmark to validate other human-control approaches [14],
[15]. For the presented application, the data generated from
the virtual human is fitted very well by this model (Fig. 5).
The Crossover Model only gives an adequate representation
of the human-operator frequency response in the vicinity of
the crossover frequency ωc [7]. The MHC model presents
Crossover Model behaviour over a wider frequency range. This
may be caused by the lack of human internal noise in the
MHC model and by limitations in the modelling approach.

D. Critique

Although the presented methodology offers satisfactory
results, there are a number of discrepancies between the model
output and the real data. Humans present a higher crossover
frequency than that of the MHC model (Table II). This results
in the MHC model having a higher root-mean-square error
(RMSE) in the tracking task for the examined plant. Further,
the given approach requires the use of a threshold in the
data. Human-control is likely to be explained better below
the threshold by another type of model. Moreover, the model
assumes that the human manipulative actions are a stationary
process, thus learning and adaptation are not considered.

V. CONCLUSION

This paper has presented a novel approach to human-
performance modelling. The approach develops models that
present the same statistical properties found in the responses
of the human-operator. In particular, for data obtained from
human subjects in a tracking task, while controlling a plant
with a steering wheel, it is shown that the data fits well a log-
normal distribution. As the log-normal distribution arises from
multiplicative processes, a non-linear multiplicative human-
control (MHC) model is proposed. The model is compared to
real data and to a prevailing model in the human-performance
literature; it is shown that the MHC model is biofidelic and it
fits well the predictions of the Crossover Model.

The results presented here correspond to a specific laboratory
task with particular plant dynamics, forcing function and control
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Fig. 5: Frequency response estimate of the virtual human
(MHC) for the same events displayed in Fig. 3, (a) and (b)
respectively. And frequency response of the Crossover Model
with parameters ωc and τ fitted to the data.

human virtual human

Subject ωc RMSE ωc RMSE

S1 0.108 3.506× 10−3 0.088 5.271× 10−3

S2 0.287 3.055× 10−3 0.156 4.914× 10−3

S3 0.381 2.340× 10−3 0.207 3.311× 10−3

S4 0.254 3.915× 10−3 0.128 6.510× 10−3

S5 0.362 2.812× 10−3 0.174 4.233× 10−3

S6 0.191 3.833× 10−3 0.080 6.111× 10−3

S7 0.115 3.440× 10−3 0.095 5.170× 10−3

S8 0.294 2.044× 10−3 0.189 3.119× 10−3

S9 0.290 2.367× 10−3 0.150 3.583× 10−3

S10 0.269 3.037× 10−3 0.128 4.691× 10−3

TABLE II: Crossover frequency ωc (in Hz) and RMSE of the
tracking task tabulated for each subject and for the virtual
human. In the case of the virtual human, an identical function
r(t) (9) as in each of the events with human subjects was used.

device and are not claimed to be universal. Although a steering
wheel was used as control device, the data cannot be said to
represent driver behaviour. Planned future work includes the
study of how the results in this paper generalize to other type
of plants and to driver behaviour.

Nevertheless, this research proposes that, knowing about
the statistical organization of the human-operator responses,
imposes constraints in human behaviour modelling and in the
proposal of new theories to describe the principles of operation
of human-control. Additionally, the statistical properties of the
human-operator can be used to motivate new models and to
further test the validity of the existing ones. As a minimum
requirement, human-performance models should be asked to
be statistically consistent with the responses of the human-
operator. It is noteworthy that such a straightforward approach
can produce a model that on the one hand, reproduces the
dynamical properties of the human-operator from a statistical
point of view, and on the other hand is able to achieve stable
control of the plant.

The aim of this research is to design human-machine
interfaces that can predict the intentions of the human-operator,
adapt to them and assist them in performing the underlying
task.
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