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Abstract: 

The paper furthers the analysis of a recently proposed balancing 
methodology for high-speed, flexible shafts. This mechanism imparts 
corrective balancing moments, having the effect of simulating the fixing 
moments of equivalent double or single encastre mounted shafts.  This is 
shown to theoretically eliminate/nullify the 1st lateral critical speed (LCS), 
and thereby facilitate safe operation with reduced LCS margins.  The paper 
extends previously reported research to encompass a more generalised 

case of multiple, concentrated, residual imbalances, thereby facilitating 
analysis of any imbalance distribution along the shaft. Solutions provide 
greater insight of the behaviour of the balancing sleeve concept, and the 
beneficial implications for engineering design.  Specifically: 1) a series of 
concentrated imbalances can be regarded as an equivalent level of uniform 
eccentricity, and balance sleeve compensation is equally applicable to a 
generalised unbalanced distribution, 2) compensation depends on the sum 
of the applied balancing sleeve moments and can therefore be achieved 
using a single balancing sleeve (thereby simulating a single encastre 
shaft), 3) compensation of the 2nd critical speed, and to a lesser extent 
higher orders, is possible by use of two balancing sleeves, positioned at 
shaft ends, 4) the concept facilitates on-site commissioning of trim balance 

which requires a means of adjustment at only one end of the shaft, 5) the 
Reaction Ratio, RR, (simply supported/ encastre), is independent of 
residual eccentricity, so that the implied benefits resulting from the ratio 
(possible reductions in the equivalent level of eccentricity) are additional to 
any balancing procedures undertaken prior to encastre simulation. Analysis 
shows that equivalent reductions in the order of 1/25th, are possible. 
Experimental measurements from a scaled model of a typical drive 
coupling employed on an industrial gas turbine package, loaded 
asymmetrically with a concentrated point of imbalance, are used to support 
the analysis and conclusions.  
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Abstract   

The paper furthers the analysis of a recently proposed balancing methodology for high-speed, 

flexible shafts. This mechanism imparts corrective balancing moments, having the effect of 

simulating the fixing moments of equivalent double or single encastre mounted shafts.  This 

is shown to theoretically eliminate/nullify the 1
st
 lateral critical speed (LCS), and thereby 

facilitate safe operation with reduced LCS margins.  The paper extends previously reported 

research to encompass a more generalised case of multiple, concentrated, residual 

imbalances, thereby facilitating analysis of any imbalance distribution along the shaft. 

Solutions provide greater insight of the behaviour of the balancing sleeve concept, and the 

beneficial implications for engineering design.  Specifically: 1) a series of concentrated 

imbalances can be regarded as an equivalent level of uniform eccentricity, and balance sleeve 

compensation is equally applicable to a generalised unbalanced distribution, 2) compensation 

depends on the sum of the applied balancing sleeve moments and can therefore be achieved 

using a single balancing sleeve (thereby simulating a single encastre shaft), 3) compensation 

of the 2
nd

 critical speed, and to a lesser extent higher orders, is possible by use of two 

balancing sleeves, positioned at shaft ends, 4) the concept facilitates on-site commissioning 

of trim balance which requires a means of adjustment at only one end of the shaft, 5) the 

Reaction Ratio, RR, (simply supported/ encastre), is independent of residual eccentricity, so 

that the implied benefits resulting from the ratio (possible reductions in the equivalent level 

of eccentricity) are additional to any balancing procedures undertaken prior to encastre 

simulation. Analysis shows that equivalent reductions in the order of 1/25
th

, are possible. 

Experimental measurements from a scaled model of a typical drive coupling employed on an 

industrial gas turbine package, loaded asymmetrically with a concentrated point of 

imbalance, are used to support the analysis and conclusions.  

Keywords: High-speed shafts, lateral vibrations, balancing sleeve, critical speed, 

mechanical design 
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1. Introduction 

All shafts and rotors contain a degree of mass unbalance due to asymmetry and manufacturing 

imperfection leading to forces being exerted by the rotor on its surrounding structures.  It is of 

considerable importance to ensure that such forces are appropriately accommodated either by 

design or by addressing the geometric unbalance of the rotor
1
.  Attempts to achieve this through 

design and precise tolerancing during rotor manufacture are frequently insufficient, and 

alternative means of reducing vibration levels are therefore necessary, typically employing post-

manufacture dynamic balancing.  

 

The impact of such problems can be identified in diverse application fields, ranging from the use 

of high speed dentist drills, to gas turbines for the oil and gas industry, where couplings between 

prime movers (eg. gas turbine) and driven units (e.g. compressors) have tended to become longer 

and operate at higher speeds as designs have advanced
2
.  Safe operation is ensured by adherence 

to American Petroleum Institute (API) design rules, which have increasingly strict requirements 

to limit both torsional and lateral vibration.  For some installations these limits can often be 

difficult to achieve. For instance, in the case of flexible coupling shafts the lateral critical speed 

margin is now 1.5 or 2 times the maximum operating speed
3
. As a consequence there is 

significant interest in lateral critical speed margins
4
, as they often result in additional costs and 

design limitations as they become higher. For a given length, coupling design (for gas turbines in 

the oil and gas industry, for example) is often a compromise between the coupling lateral 

flexibility (i.e. maintaining a suitable lateral critical speed margin), its maximum diameter (in 

order to limit the effects of churning), and the need to meet ½ mass requirements of the driven 

unit
5
.  A consequence is that from a balancing perspective, couplings are often more flexible 

than desirable and are extremely difficult to dynamically balance across a wide operating speed 

range. 

 

For a rigid rotor with two unbalanced forces acting in two planes, the induced vibration is a 

transverse bounce or tilting motion without any flexing of the rotor.  This dynamic unbalance is 

corrected by two balance weights being radially positioned in the two different planes, either in-

phase or 180 degrees out of phase, as necessary.  If a rigid rotor is balanced using two planes at 

any speed, it is considered balanced at all speeds.  However, this is not the case for a flexible 

rotor, particularly when operating at high-speeds.   

 

Modal balancing
6
, consists of the addition of small masses at the surface of the rotor in a manner 

that cancels the effects of eccentricity. At low speeds, i.e. those well below the first critical 
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frequency, a flexible rotor can be assumed as a rigid body and there is no deflection due to 

eccentricity.  Despite this, there may be a considerable increase in centrifugal forces that are 

transferred to the bearings.  The purpose of low speed balancing is to ensure that the axis of 

rotation is a principal axis of inertia in order to nullify the moments of the inertia forces. At high 

speeds close to or beyond the first critical frequency, balancing as a rigid rotor becomes 

detrimental since the addition of balance weights can cause large deflections across a range of 

speeds.  Moreover, due of the widespread use of low-speed balancing machines and the 

difficulties in approximating the balance correction required for high-speed use, a number of 

alternative balancing methodologies have been proposed based on the assumed modal shape of 

the shaft
7
, or else underpinned by significant a-priori knowledge of the unbalance 

characteristics
8
. However, due to (typically) unknown imbalance distributions, balancing errors 

caused by shaft deflection are not adequately catered for across the required operating speed 

range and many field problems persist where unacceptably high vibrations at the bearings lead to 

subsequent unit shutdowns and failures. 

 

In recognition that low speed balancing is often inadequate for application to flexible rotors 

(particularly those that operate close to, or must pass through, critical speeds), other more 

general methodologies to balance shafts have been investigated. Typically, for each critical 

speed that a rotor must traverse, a different state of balance is required, and therefore different 

balance planes are necessary.  The axial location where balance masses have most effect in 

mitigating vibrations excited at a critical speed can be identified either numerically, analytically 

or empirically, but in each case to achieve modal balance some knowledge of the rotor’s 

dynamic behaviour is necessary.  In the latter case, when balancing a particular mode, a trial 

mass is added to a series of locations and the amplitude of the resulting vibration is measured 

close to the associated critical speed until the minimum vibration amplitude is identified.  This 

method is known to achieve precise levels of balance, but is considered very time-consuming. 

 

Alternative methods for conducting modal balancing without the use of trial masses attempt to 

model a rotor system based on measured characteristics
9
.  This approach typically requires 

assumptions to be made regarding the bearings, which are difficult to model accurately or else 

require running vibration measurements to be taken.  A further alternative method, termed 

influence coefficient balancing
10

, selects correction masses to be placed in positions to ensure 

that vibration is zero at a series of known locations along the shaft for a series of shaft speeds.  

Although successful, this technique requires substantial theoretical and computational analysis. 
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More recent work has concentrated on the possibility of ‘automatic balancing’ whereby masses 

have limited movement to allow for balancing across a range of speeds. Reported research
11

, for 

instance, was limited to a rigid rotor where the degree and position unbalance may change over 

time, and it remains difficult to achieve satisfactory results consistently over a large speed range 

for flexible shafts or rotors.  Meanwhile, the use of controllable bearings, actuators and sensors 

to measure and control vibration continues to be work-in-progress research, due to the 

complexities surrounding the control system and the likely high-cost of implementation, as 

report
12

 and more recent report
13

 which made a detailed study of the vibration control 

characteristics of gas foil bearings with inbuilt electromagnetic actuators. 

 

As an alternative to the above approaches, a novel method of balancing long, flexible, high-

speed drive shafts has been proposed
14,15

, where balance corrections (that are traditionally 

applied to the ends of the drive shaft) are applied instead to the free ends of a pair of balancing 

sleeve arms, integrally attached to each end of the drive shaft. The balance sleeve applies a 

corrective centrifugal force to the drive shaft to limit the shaft-end reaction forces. As well as 

increasing with speed, the correcting forces also increase in magnitude due to the flexibility of 

the balancing sleeve.  This mechanism of attaching trim balance masses therefore counteracts the 

increased shaft imbalance forces resulting from the shaft’s own flexibility, and provides a means 

of amplifying the balance correction set at low-speed to reduce the balancing errors produced at 

high speed by shaft deflection. Additionally, it also imparts a corrective bending moment to the 

drive shaft that has a beneficial tendency to limit the shaft deflection and may be set by 

replicating the fixing moments of an encastre mounted shaft to theoretically nullify (i.e. move to 

a higher speed) the original critical speed of a simply supported shaft.  Various detailed forms 

are possible such as light weight, low profile designs - to minimise windage losses, for external 

application - with fixed or adjustable length, moment arms and suitable for either original 

equipment, (OE), or retro fitting. Alternatively, designs can be tailored to suit internal 

deployment within hollow sections of shafts, with external, manual or remotely/electrically 

actuated adjustment. 

 

It is shown here that this mechanism is beneficial on shaft systems with high flexibility and/or 

high shaft deflection, but is most likely to occur in practice when the shaft is mounted in 

angularly, non-restraining bearings, e.g. rolling element ball, or short, high clearance journal 

bearings. The latter is commonly used in industrial prime mover and driven units such as those 

used in the Oil and Gas Market, where design standards, ISO 7919-4
16

; ISO 10816-4
17

 typically 
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require vibration monitoring/ proximity sensors and software to shut down units if shaft 

movements exceed a percentage of the bearing clearance, (eg. 60%), in order to prevent bearing 

‘wipe-out’. The method is also applicable when long, flexible-element, coupling-shafts are 

employed — the latter being regarded as having ‘moment release’, i.e. the elements act as a 

lateral hinge. Hence, such shafts can be modelled as being simply supported and are more 

flexible as a consequence, making them particularly suitable to this method of balancing.  

Previously reported research on balancing sleeves
12

 has only considered the specialised case of 

plain shafts with uniform eccentricity.  Here, the presented treatment now develops a generalised 

extended approach that is applicable to more realistic imbalance distributions, comprising 

multiple concentrations of imbalance of variable magnitude, revealing several new insights with 

practical benefits for engineering design. 

 

2. Theoretical Analysis 

 

Following previously reported studies
14

 a simply supported, long, plain shaft, of circular cross 

section (making gyroscopic moments negligible) operating under steady state rotating 

conditions, and where both radial and angular accelerations and associated forces/ moments are 

zero, is considered. This provides a first-order simplification that is widely considered applicable 

to long, thin shafts, with low slenderness ratios
18

, typically < 0.12 (as employed in the site-

equivalent case study models given later). Shaft deflections due to shear effects are regarded as 

“second degree” in magnitude, and are therefore not considered further.  For derivation 

simplicity, the initial study is limited to a single concentrated imbalance, as it is further shown 

that more complex distributions can be regarded as the summation of any number of individual 

imbalances, provided that the shaft deflections remain small and the material is operating within 

the linear portion of its stress/ strain curve (the principle of superposition then becomes 

applicable).  This approach allows algebraic solutions to be obtained from the equations of 

motion, negating the requirement for time-consuming numeric solutions from Finite Element 

Analysis (FEA) to be necessary during early design stages. 

 

 

Figure 1 shows a plain rotating shaft of total mass, sM , and overall length, l , simply supported 

at both ends, with deflection, r, at length, x, and concentrated eccentricity, e, between 

dimensions a and f. Integrally attached to each end is a Compensating Balance Sleeve, 

comprising a flexible arm with negligible mass, of lengths, L1 and L2, spring stiffness’s, K1 and 
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K2 and deflections, Y1 and Y2, together with equivalent lumped, trim balancing masses, m1 and 

m2, positioned with eccentricities, c1 and c2, at their extreme ends. The eccentricity of the 

lumped masses are positioned 180º out of phase with the shaft eccentricity such that rotation of 

the shaft produces CFs to act on masses sM , m1 and m2, thereby imparting corresponding 

deflections r, Y1 and Y2, in opposing directions.  

Concentrated residual imbalance caused by a localised manufacturing or material defect, or 

possibly a point of external damage, can be considered as an equivalent additional mass, Mu, 

acting at radius, R. This is equivalent to a trim balance mass typically fastened to the outer 

diameter of the shaft, and for the purpose of analysis, is represented by a short zone of length, (f 

– a), with uniform eccentricity, e, and a zone mass, Mp.  

Taking mass moments about the axis of rotation and assuming Mu and r are much less than Mp 

and R, the zone eccentricity approximates to
18

:
 

                                       e ≅
Mu

M p

.R                                                         (1) 

Forces Acting on the Compensating Balance Sleeves 

According to classical theory
19

, the force balance on the compensating balance sleeve can be 

expressed as:       

                         KY = mω 2y                                  (2)  

From inspection of Figure 1, for small angles of slope, and noting that in the RHS,  (
dr

dx
)x = l  is 

negative, the balance mass displacements can be described by:  

y1 = Y1 + c1 − L1(
dr

dx
)x =0,            and                y2 = Y2 + c2 + L2(

dr

dx
)x =l                         (3) 

Y1 =
−m1ω

2 L1(
dr

dx
)x=0 − c1

 

 
 

 

 
 

K1 − m1ω
2

          and  
             Y2 =

m2ω
2 L2(

dr

dx
)x= l + c2

 

 
 

 

 
 

K2 − m2ω
2

                               (4) 

  with the moments on shaft being: 
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01

0

0101 B
dx

dr
AM

x

+






=
=  

       and                
020202 B

dx

dr
AM

lx

+






=
=

                                     (5) 

where      
2

11

1

2

1

2

1
01 ω

ω
mK

KLm
A

−

−
=        and               

2

22

2

2

2

2

2
02 ω

ω
mK

KLm
A

−
=        

                          
(6)

 

2

11

111

2

1

01 ω
ω

mK

KLcm
B

−
=                     and                     

2

22

222

2

1

02 ω
ω

mK

KLcm
B

−
=

                                      
(7) 

The external moment, Mx, imposed on the shaft by the balance sleeves at any point x, is 

described by the equation of a straight line between the end moments, M01 and M02: 

                           x
MM

MMx .0102
01

l

−
+=                                                                       (8) 

From traditional ‘Bending of Beams’ analysis, the dynamic loading imposed on the shaft is 

found by differentiating Mx, (but noting that 0)( =x
dx

dr
 and  lx

dx

dr
=)(  are constant with respect to x), 

giving: 

                                 Dynamic Loading  =   d
2
Mx

dx 2
= 0                                           (9) 

Forces Acting on the Shaft 

At any point, x, along the shaft, the eccentricity ex is given by: 

                                 [ ])()(. fxHaxHeex −−−=                                                        (10) 

 

where, H( ), denotes the Heaviside Function. 

Dynamic loading at length x on the shaft is obtained by considering the centrifugal force, CF, 

acting on an elemental section δx of shaft:  

                                           
)(2

x

s er
M

x

CF
+= ω

δ l                                                         (11)
 

The Combined Assembly 
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Shaft deflection and reaction loads are determined using standard beam theory analysis of the 

combined dynamic loading on the shaft resulting from both balancing sleeves and the residual 

shaft imbalance. Summation of (9) and (11), with (10) substituting for xe gives: 

Total Dynamic Loading = 

 

                    
[ ])()(.0 22

4

4

fxHaxHe
M

r
M

dx

rd
EI ss −−−++= ωω

ll                               (12) 

 

Constituent parts of (12) are the same as given in [
14

]; the only differences being the squared 

brackets containing the Heaviside function, H, which limit the eccentricity, e, to the shaft 

portion, (f - a).  

 

The analytical treatment used to solve (12) is omitted for the sake of brevity, and the reader is 

directed to [
14

] for details.  Specifically, by defining: 

 

                        EI

M
b s

l

2
4 ω

=
                                           (13) 

 

the shaft deflection, for any position x, is given by: 

 

bxHbxGbx
b

b

RR
bP

IEb

M

bxPRr

ll

sinhcoshsin.
sin

22
cos.

..2cos.
2

11

2

02

1 ++
−++

−+=
l

&&

l

                  (14) 

 

Standard shaft end boundary conditions are applied to this equation to formulate the required 

parameter definitions and these, together with Heaviside functions and associated parameters are 

listed in Appendix-2. 

 

Hence, all the parameters required to calculate the shaft deflection from (14), for any position x, 

are now known.  

 

Determining Reaction Loads 

To determine the Reaction Loads, from beam theory, the vertical shear force within the beam 

caused by bending is given by: 
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3

3

dx

rd
EISFv =

                                                                   (15) 

 

where at x = 0,  

 

3

100

3

3

2).
2

1
( b

dx

dr

b
H

dx

rd

xx ==








−=







                                                         (16) 

 

and at x = l ,       

 

l
l

&&

l

l

b
b

b

RR
bP

IEb

M

b
dx

rd
ll

x

cos.
sin

22
cos.

..2.
2

11

2

02

3

3

3


















−++

=








=

 

                        lll&&&
l

bHbbGbbPbR coshsinhsin. 333

1 ++++
                     (17) 

where: 

 

)(.)(sinh.
2

)(sin.
2

33

1 aHab
eb

ab
eb

R l −







−+−= lll&&&

 

 

)(.)(sinh.
2

)(sin.
2

33

fHfb
eb

fb
eb

−







−+−− lll

                                   (18) 

                                                                              

Total reaction force applied to the supports equals internal shear force + external spring force 

applied by the Compensating Balance Sleeve. 

 

Specifically, at x = 0:   1131 ...Re YKrIE +=
                                                  (19) 

 

and at x = l ,    222 ...Re YKrIE +−=
l
&&&

                                                (20) 

 

3. Eliminating/Nullifying the Impact of the 1st Critical Speed  
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From (14) it can be seen that shaft displacement, r, becomes infinite, thereby identifying the 

critical speeds, when 0sin =lb , i.e. π=lb , π2 , π3  etc., thereby defining the first critical 

frequency, from (13), as 
M

EI
crit

.
)( 2 l

l

π
ω = .  To avoid the singularity, the 3

rd
 term numerator of 

(14) is also set to zero at π=lb .  Therefore, by parameter substitution and equating to zero:  

 

0
22..2..2 2

11

2

01

2

02 =







−++−

b

RR

IEb

M

IEb

M ll
&&

                                               (21) 

 

From above definitions, at π=lb , 

                                    [ ] kebfba
e

b

RR ll .coscos.
222 2

11 =+−=−
&&

                                          

 

Defining the Concentrated Imbalance Coefficient as:  

[ ]
2

coscos bfba
k

+−
=                                     (22) 

 

and substitution into (21) gives:           0.
..2..2 2

01

2

02 =







++− ke

IEb

M

IEb

M
 

Hence,                      ( )eIEbkMM .....2 2

0201 −=+                                                                    (23) 

Equation (23) provides the requirements for balance sleeve compensation to facilitate the 

elimination/nullification (i.e. move to a higher frequency) of the 1
st
 critical frequency, of a 

simply supported shaft with concentrated imbalance. 

In the case of uniform eccentricity
14

, shows that the requirement for “classical” critical speed 

elimination, (corresponding to π=lb ), determines that both balancing sleeve moments are 

Mo = b2 .EI.e.  Comparing with the case for concentrated imbalance, this requirement is seen to 

be a fixed portion of the same equation, since the Concentrated Imbalance Coefficient, k, will be 

a constant for given values of a and f.  
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It can also be seen that k is an absolute maximum when 0=a  and l=f , giving 1−=k , i.e. the 

condition of uniform eccentricity.  Under such conditions, from (23): 

MoeEIbMM .2...2 2

0201 ==+ , thereby providing a direct correlation between the analysis for 

concentrated imbalance and that for uniform eccentricity. 

It is notable from (23) that for balancing operations, it is only necessary to estimate the product 

of the equivalent eccentricity, e, and the concentrated imbalance coefficient, k (other parameters 

being known from detail design); this can be regarded simply as an equivalent level of uniform 

eccentricity and is therefore linearly proportional to the shaft end reaction loads, at any given 

speed. Hence, it is readily determined from either low speed balancing data or on-site vibration 

information, and detailed knowledge of individual magnitudes or axial positions of imbalances is 

not needed. 

4. Encastre Simulation 

Double encastre mounting (i.e. fixed at both shaft ends) constrains whirling motion of the shaft 

via the application of fixing moments, Mf1 and Mf2 imparted from bearing casings to the ends of 

the shaft, of sufficient magnitude to maintain shaft-end slopes equal to zero at all operating 

speeds.  The natural frequency then increases by a factor around ~2¼ times that of the equivalent 

simply supported case (typically). Similarly, single encastre mounting only fixes one end of the 

shaft with the other remaining simply supported, but in this case the natural frequency is 

increased by a factor typically of ~1½.  

It had previously been shown
14

 that a good state of balance is achievable by making the balance 

sleeve moments as close as possible to the fixing moments, for all operating speeds, but 

particularly those close to the critical speed. Points of encastre conversion are then produced 

where exact ‘moment equalisation’ occurs. It was concluded that the process of critical speed 

elimination of a simply supported shaft constitutes a conversion process at this speed, to an 

encastre shaft with a much higher natural frequency. Although this is only theoretically possible 

due to the critical frequency being irrational, it is apparent that the closer the replication of the 

balancing moments are to the fixing moments (i.e. the more accurate the encastre 

approximation), the better the resulting state of balance. 

To extend the concept and confirm that these conditions also apply to the more generalised case 

of a single concentrated imbalance, equivalent double and single encastre shafts have been 

Page 13 of 39

http://mc.manuscriptcentral.com/(site)

Journal name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

analysed. By applying a similar analytical methodology to that previously employed, but with 

boundary conditions set such that the shaft end slope or bending moment is zero, for appropriate 

encastre or simply supported cases, the equation for shaft deflection becomes: 

)sinh.(sin)cosh.(cos1 bxbx
b

Q
bxbxPRr e

e −+−+=                               (24) 

For the double encastre case,  

ll

ll

&

ll

bb

bb
b

R
bbR

P

l
l

e
cosh.cos.22

)sinh.(sin)cosh.(cos 1
1

−

−−−
−=  
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ll&ll
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bbRbbRb
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For the single encastre case,  
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The double- and single-encastre denominators of eP  and 
eQ , become zero and represent the 1

st
 

critical speed of the system as r →∞, when 73.4=lb  radians and 93.3=lb  radians, 

respectively. Compared to results for the simply supported case, the critical speeds are 

correspondingly 2.27 and 1.56 times higher.  Further analysis gives the following fixing 

moments:  

Double encastre: 

               IEPbM ef ...2 2

1 −=     and )sin...2cos..2..(. 2

1

2

12 ll&& bQbbPbRbRIEM eellf −−−=  

                                      (25) 
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Single encastre:            

IEPbM ef ...2 2

1 −=        and        02 =fM                                           (26) 

Notably, for a speed corresponding to π=lb , the sum of the fixing moment in each case 

reduces to IEbkeMM ff ..2.. 2

21 −=+ .  This is identical to the moment requirement for 

elimination of the simply supported system, given in (23).  Hence, moment equalisation occurs, 

producing encastre conversion and the critical speed is theoretically eliminated.  

The shaft end reaction loads are given by: 

IEbQe ....2Re 2

1 −=
   and   [ ] .....coshsin....(.Re 3

12 +−+−= ll&&& bbPbRIE el    

[ ])sinhcos..2
ll bbQb e −−+                                                                                                      (27) 

 

 

 

 

 

5. Practical Insight 

From (23), the sum of the two balancing moments 01M  and 02M  determine the condition for 

critical speed elimination, and the position/length of the concentrated imbalance zone only 

affects the magnitude of the sum by varying the Concentrated Imbalance Coefficient, k, (22).   

Hence, near elimination of vibration at the critical speed is achievable using a single 

compensating balance sleeve fitted at either end.  This provides important insight into the 

characteristics imparted by the compensating sleeve viz. it facilitates increased design flexibility 

and enables a reduction in the size and cost of components. From a practical perspective, it may 

still be beneficial to incorporate two balancing sleeves in some instances in order to maintain 

sensible size and masses, but there remain advantages to be gained from requiring only fine 

adjustments to be made at one end.  This benefits commissioning as access and adjustment time 

is reduced, especially where applications require a firewall between the prime mover and driven 

units with separate coupling guard assemblies on either side (which would normally require 

removal and subsequent re-assembly). 
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6. Elimination/ Nullifying the Impact of the 2nd Critical Speed 

 

A uniform shaft operating near its 2
nd

 critical speed can be analysed simply as two half-length 

shafts, connected in series, and operating independently at their 1
st
 critical speeds

20
.  Due to 

symmetry, this is readily confirmed from the earlier assertions that shaft deflection becomes 

(theoretically) infinite when, π=lb , π2 , π3   etc. thereby defining the critical speeds. Since 

the 1
st
 critical speed of the half shaft is defined by the condition, π=1lb , and the 2

nd
 of the full 

shaft by: π22 =lb , then 
12 .2 ll = , i.e. the node point is positioned in the middle of the shaft.  

However, since it has been shown that the 1st critical speed of the half shaft can be theoretically 

eliminated by a single compensating sleeve, it similarly follows that the full shaft 2
nd

 critical 

speed can be eliminated by application of the condition to both half shafts, as shown in Figure 2.  

Clearly, each half shaft can be balanced using two compensating sleeves, thereby requiring a 3
rd

 

and 4
th

 balancing sleeve either side of the full-shaft node point. At the expense of a small 

increase in the mass at this point, which is readily trim-balanced since the shaft deflection at this 

point is zero, theoretical elimination, i.e. practical nullification of the 2
nd

 critical speed, is 

possible.  

For uniform shafts, the analysis can be applied to higher critical speeds due to the symmetry of 

each section of shaft between the nodes. In most practical circumstances, however, shafts that 

are not uniform require more complex analysis that is better performed numerically (using FEA 

for instance).  Nevertheless, this simple representation highlights the potential of the proposed 

system to improve balance for higher order critical speeds. 

7. General Imbalance Distribution 

Section 2 analysed the case of a single concentrated imbalance.  Through superposition the 

generalised case of any imbalance distribution consisting of a number of concentrated 

imbalances of varying magnitude, position and angular placement along the shaft, can be 

analysed by simple vector summation of the individual forces and deflections (under the proviso 

that the shaft deflections remain small and the material is operating within the linear portion of 

its stress/strain characteristic).  For instance, total reaction loads for a sum of n imbalances, in 

any given plane, is given by:  
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∑
=

=
n

total

1

),2,1(),2,1( ReRe
ϕ

ϕ

      (28) 

Where, ϕ , is the imbalance index number.  This can also be applied to determine the impact of 

other system variables viz. radial deflection, balance sleeve moment, etc. In addition, individual 

conditions determined for elimination of critical speeds can also be summed to give the overall 

condition for elimination of the total imbalance distribution.  

 

8. Equivalent Value of Eccentricity Resulting from Encastre Simulation 

Informative insight can be gained by considering the following definition, for shafts without 

balance correction: 

  �ℎ���	���	�	
��	���	
����, 

 =
�.�.��������	�����

��������	��������	�����
,                                   (29) 

This can be determined more readily by considering the special case of uniform eccentricity
14

, 

for simply supported and encastre supported ends. 

With reference to Appendix-3, it can be determined that the simply supported, shaft end reaction 

load is given by: 
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And the encastre shaft end reaction load is given by: 
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   (31) 

where,      ll bbT cosh.cos1−=     and      ll bbS coshcos −=  

Hence, the Shear Force Reaction Ratio is given by the following equation. 
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  (32) 

It is notable that eccentricity terms cancel so that the Reaction Ratio is independent of the level 

of residual eccentricity present in the shaft. Figure 3, shows a plot of Reaction Ratio verses non-

dimensional critical speed, from where it can be seen that the ratio greatly increases as the 

operating speed approaches the critical speed. Since RR is inversely proportional to reaction load 

reduction, and also noting that reaction load is directly proportional to eccentricity, then it 

follows that this ratio is an indication of the effective, or equivalent, reduction in eccentricity 

possible under conditions of encastre simulation/maximum compensation.  

 

9. Experimental Verification 

 

To experimentally verify the new theoretical concepts and insight of Balance Sleeve 

Compensation, a test facility is commissioned comprising of a Bibby Transmissions type 

TF0027L100 test shaft of 920 mm length tubular spacer (62mm o/d x 56 mm i/d); a disc-type 

flexible-element coupling-shaft with balance sleeves fitted at each end. The test shaft is mounted 

between two Oswald, Type QDi13, variable speed, 0 – 20,000 rpm, 49 kW, electric 

motor/generator units.  Figure 4 shows the test facility with the LHS driving and RHS acting as a 

passive load.  The rig is scaled to have the same critical speed as that of a Siemens sub-15MW 

gas turbine compressor set.   

     

To enable test weights to be mounted on the shaft, and create a-priori identified points of 

concentrated unbalance, 5x equally spaced dovetail rings are incorporated along the shaft length, 

as shown in Figures 4 and 5. Tests used two test weights clamped 171º apart, to give a resultant 

67.5 g.mm of shaft unbalance, onto the second dovetail ring; thereby providing a length wise, 

non-symmetric, concentrated point of imbalance.  
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Detailed construction of the balance sleeves is shown in Figure 5a, where the Balancing Ring 

corresponds to the theoretical masses, mi, and the combination of Longitudinal Spars provide the 

lateral bending stiffness’ Ki. Detail design determine the structural sizes necessary to meet the 

parameter requirements given in Table 1 which determined the sleeve’s critical speed to be 

approximately 50% above that of the shaft and also that  bending stresses are within practical 

limits. This process ensured safe operation under the applied imbalances and operating speeds 

submitted during testing. 

Instrumentation consists of 3x Micro-Epsilon, free standing lasers systems (type optoNCDT 

2300), positioned to separately enable deflection measurements of i) the LHS sleeve ii) shaft 

mid-point and, iii) RHS sleeve, as a result of their respective unbalance during shaft rotation. 

Markers are bonded at the top dead centre (TDC) position on the outside diameter of each laser 

location to provide a consistent key phaser/trigger point during shaft rotation.  

Figure 6 shows a typical laser measurement plot obtained during testing, of cyclic deflection vs 

time, allowing vector formulation of peak—to–peak deflections and angular offsets between the 

local heavy spot of section unbalance and the respective laser trigger, i.e. shaft TDC position. 

Hence, at each test speed it is possible to translate local deflections onto the plane of unbalance 

produced by the resultant angle of the two test weights, and thereby determine the corresponding 

components of deflection, amplitude, 0—to–peak, referred to the balance plane. This allows a 

direct comparison with theoretical results for validation purposes.   

Test trials are conducted with designated states of imbalance and compensation, as follows: 

 

i)  Residual unbalance only. 

ii)  Residual unbalance + Test Weight, without Compensation, (Zero Correction). 

iii)  As ii), with LHS + RHS compensation. 

iv)  As ii), with mainly LHS compensation.                     

v)  As ii), with solely RHS compensation. 

vi)  As i), fast transit run through the critical speed. 

 

For comparison purposes, a Mathcad numerical program is employed using parameters given in 

Table 1, that align with the measured mean value derived from test vi), (two gyroscopic critical 

speeds, Forward = 10,384 rpm and Backward = 11,093 rpm – not shown).  
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Theoretical evaluation of the residual unbalance shows that a first order approximation is 

obtained using a concentrated unbalance of 50% of the test weight, (33.75 g.mm), see Figure 7.  

Theoretical analysis of the shaft, residual + test weight, then uses a total concentrated unbalance 

of 150% of the test weight, (101.25 g.mm) for the theoretical comparison shown in Figures 8 - 

11.  

To provide comparative theoretical mid-point shaft deflections with those of respective test 

results, the LHS and RHS compensating moments, Mo1 and Mo2, are matched to their 

respective test measurements of sleeve deflections, at 10,000 rpm, multiplied by the sleeve 

stiffness and length. A Compensation Ratio consisting of the sum of the measured moments, 

Mo1 and Mo2, to the theoretically moment requirement for maximum compensation (27.1 Nm) 

is used to assess the level of compensation present in each test.  

Measured moments and the Compensation Ratio for each test trial are given in Table 2. 

Figure 8 shows the results of test iii), without compensation and with double sleeve 

compensation, LHS + RHS, together with their respective theoretical displacements. In this case, 

with the compensation ratio = 0.654, it is evident that there is a good reduction in shaft 

deflections, but the shaft is under compensated, and further balance improvements should be 

possible in this instance. 

Figure 9 shows the results of test iv), without compensation and with primarily LHS 

compensation (but including some residual RHS) together with their respective theoretical 

displacements. In this case compensation is close to the optimum value (compensation ratio = 

1.037) with shaft deflections greatly reduced to only 4% of the non-compensated case.  

Figure 10 compares the same test results of Figure 9 with their theoretical equivalent, without 

compensation, first with standard shaft eccentricity, (concentrated unbalance = 101.25 g.mm) 

and secondly, with only 1/25
th

 of standard eccentricity, (concentrated unbalance = 4.05 g.mm).  

Figure 11, shows the results of test v), without compensation and with single sleeve 

compensation, RHS only, together with their respective theoretical displacements.   

It can be seen that this case is under compensated, (compensation ratio = 0.704), and further 

balance improvements could be made.  Nevertheless, it confirms that compensation, or 

adjustment can be achieved solely by single ended compensation, as predicted by the theoretical 

analysis.   
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10. Conclusions 

The presented account extends previous, special case, research
14

 on compensating balancing 

sleeves, to demonstrate the suitability of the methodology when applied to a generalized case of 

a shaft loaded with a single concentrated imbalance. By extension, it is shown that the principle 

of superposition allows for more practical imbalance distributions to be analysed using vector 

addition of any number of individual concentrated imbalances, of various magnitude/position. 

The study shows that the nullification of critical speeds is not dependent on individual discrete 

values of the balancing moments applied by the balancing sleeves, but on the sum of those 

moments; the position or size of the imbalance only determining the required magnitude of the 

sum. Hence, nullification can be achieved by the use of a single compensating balance sleeve 

fitted at either end of the shaft, thereby replicating a single encastre shaft. It is also shown that 

the concept can be extended to counter the effects of the 2nd critical speed, and that nullification 

of higher orders is also possible.  This also allows balance corrections to be made at more 

accessible positions, such as shaft ends, as opposed to inboard positions where higher masses are 

located; thereby making it useful to those industries where maintenance is difficult or hazardous. 

The Reaction Ratio, RR, is introduced and shown to be independent of any residual shaft 

eccentricity, indicating that reductions, (additional to any prior balancing procedures), in 

equivalent levels are possible by a factor of 25, if maximum compensation is achieved. The 

analysis and insight are supported by test results on a scaled test coupling shaft, as shown in the 

previous section. 

It is apparent that the process of balance sleeve compensation/ encastre simulation has a 

stiffening effect on a shaft so as to reduce its deflection during operation. Hence, it is envisaged 

that this process should be beneficial to the majority of flexible shafts, such as those not directly 

covered by this analysis, but containing discs or other complexity.  

It is also notable that for disc applications, where gyroscopic moments both increase and 

decrease natural frequencies, (with speed), it is only the former, forward whirl modes, that are 

normally excited by shaft imbalance. In the majority of such cases, the analysis then becomes 

more conservative, since the critical speed is increased, but the functional characteristics of the 

balancing mechanism will remain unchanged.  

Moreover, since the application of balance sleeve moments could be achieved by a large variety 

of sleeve designs to suit the individual layout requirements of different machines, it is expected 

that the benefits afforded by the mechanisms will be used in a wide range of applications sectors.  
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Appendix-1 

 

Notation  

 

iA0 , iB0 , Ci,Di,G,H,M,N,P,Q,b = Parameters substitutions  

 

BM= Shaft bending moment at point x  (Nm) 

ic  = Eccentricity of balance sleeve mass ( m) 

CF  = Centrifugal force (N) 

e  = Eccentricity of concentrated zone (m) 

ê  = Euler’s number 

E = Young’s Modulus (N/m^2) 

I = 2
nd

 Moment of area in bending (m^4) 

iK  = Balance sleeve stiffness (N/m) 

ill, = Shaft lengths (m) 

iL  = Balance sleeve length (m) 

im  = Balance sleeve mass (kg) 

iM 0   = Balance sleeve moment applied at shaft ends (Nm) 

xM   = Balance sleeve moment applied to shaft at point x (Nm) 

a,f  =  Eccentric zone end positions (m) 

k  =  Concentrated imbalance coefficient 

sM = Shaft mass (kg) 

Mp
 
= Concentrated zone mass (kg) 
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Mu
 
= Equivalent additional mass (kg) 

r  = Shaft radial deflection (m) 

iR  = Parameters of shaft radial deflection (m) 

ilR&  = Parameter derivatives of shaft radial deflection  

ii Rrr ,,
 
= Laplace displacement derivatives 

R = Radius of rotation of equivalent additional mass Mu (m) 

eiR  = Reaction load at shaft ends (N) 

s  = Laplace Transform operator 

SFv = Vertical Shear Force 

x  = Reference point position from shaft end (m) 

iy = Balance mass displacement from rotation axis (m) 

iY = Balance sleeve deflection (m) 

ω  = Rotational speed (rad/s) 

 

 

  

Page 26 of 39

http://mc.manuscriptcentral.com/(site)

Journal name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Appendix-2 

Heaviside Functions and intermediary Parameter Definitions: 
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Appendix-3 

The following parameter equations are taken from a previously reported study14 into cases of 

simply supported shafts, with uniform eccentricity and balance sleeve compensation.  

Shaft end reaction force is the sum of internal shear force and the external spring force applied 

by the compensating balance sleeve: 

KYEIrss += 3Re_                                                              (A3.1) 

Where, shaft derivatives at 0=x  are defined by equations:  
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where the following parameters are defined as: 
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Also, the balancing sleeve moment is given by:   B
dx

dr
AM

x

+






=
=0

0 .                                (A3.7) 
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However, for a shaft with zero balance correction, i.e. just a plain shaft with uniform 

eccentricity, without balance sleeves, then  A, 1A ,  B, K, Y  and   
0M  are all zero, giving: 

14 =A          (A3.8),     and by substitution in (A3.4),        
l

l

b

b
e

H
sinh
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2

−
=                     (A3.9)         

Further from (A3.5):                  
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And from (A3.3)                    
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The shaft end reaction load consists of internal shear only and from (A3.1) becomes:     
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Similarly analysis of encastre mounted shafts produces the following parameters equations: 
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Shaft end reaction load is:    3Re_ EIren = ,  (A3.15), where,               Jbr 3

3 .2−=            (A3.16) 

Note, in this case the reaction load consists solely of the shaft’s internal shear force. 

By defining the following parameters:  ll bbT cosh.cos1−=   and  ll bbS coshcos −=    (A3.17) 

and substituting in Pe and again in J , and hence in (A3.16) gives:  
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Figure 1, Schematic of simply supported, rotating shaft with concentrated eccentricity 

 

 

 

Figure 2, Diagrammatic representation of 2
nd
 critical speed balancing 
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Figure 3, Reaction Ratio, RR, verses non-dimensional speed 

 

 

 

Figure 4, Balance sleeve test facility 
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Figure 5, Test weight positions & LHS laser sensing configuration. 

 

 

                 

 

Figure 5a, Balancing Sleeve construction. 

 

 

 

 

Page 34 of 39

http://mc.manuscriptcentral.com/(site)

Journal name

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

 

Figure 6, Example laser measurement output. 

 

Figure 7, Estimated equivalent theoretical shaft residual unbalance 
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Figure 8, Comparison of Theoretical and Test levels of LHS + RHS Balance Compensation, CR 

= 0.654 
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Figure 9, Comparison of Theoretical and Test levels of LHS Balance Compensation, CR = 

1.037 

 

Figure 10, Comparison of Test levels of LHS Balance Compensation, CR = 1.037, with 

theoretical cases of Standard Eccentricity and 1/25
th
 reduced Eccentricity 
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Figure 11, Comparison of Theoretical and Test levels of RHS Balance Compensation, CR = 

0.710 
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Table 1, Parameter values used for numerical studies 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test Shaft Parameters 

s
M

= 4.2287 kg 
l  = 0.970 m 

1m = 0. 3864 kg 2m  = 0. 3864 kg 

e = 0.001549 m I = 2.426x10^-7 m^4 

Figs 8, 9, 10 resp. 

1c  = 0.0001119 m 

1c  = 0.0004441 m 

1c  = 0  

Figs 8, 9, 10 resp. 

2c  = 0.0003526 m 

2c  = 0.0002357 m 

2c  = 0.0004774 m 

K1,2 = 1.136x10^6 N/m E = 207 x 10^9 N/m^2 

 

L1,2 = 0.06148 m a = 0.318  m 

f = 0.328  m  
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TEST 

MEASURED MOMENTS  

COMP RATIO Mo1 Mo2 Total 

i)  Residual 

unbalance only 

0 0 0 0 

ii)  Residual + Test 

Weight 

0 0 0 0 

iii)  As ii), with LHS 

+ RHS Comp. 

3.74 13.97 17.71 0.654 

iv)  As ii), with 

mainly LHS Comp. 

18.4 9.7    (residual) 28.1 1.037 

v)  As ii), with 

solely RHS Comp. 

0 19.07 19.07 0.704 

vi)  As i), Fast 

Transit thro’ Critical 

Speed 

0 0 0 0 

 

Table 2, Test Details and Compensation Ratio 
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