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Abstract—How do animals like insects perceive meaningful
visual motion cues involving directional and locational infor-
mation of moving objects in visual clutter accurately and ef-
ficiently? In this paper, with respect to latest biological research
progress made in underlying motion detection circuitry in the
fly’s preliminary visual system, we conduct a novel hybrid
visual neural network, combining the functionality of two bio-
plausible, namely the motion and the position pathways, for
mimicking motion tracking and fixation behaviors. This modeling
study extends a former direction selective neurons model to
the higher level of behavior. The motivated algorithms can be
used to guide a system that extracts location information of
moving objects in a scene regardless of background clutter,
using entirely low-level visual processing. We tested it against
translational movements in synthetic and real-world scenes.
The results demonstrated the following contributions: (1) The
proposed computational structure fulfills the characteristics of
a putative signal tuning map of the fly’s physiology. (2) It also
satisfies a biological implication that visual fixation behaviors
could be simply tuned via the position pathway; nevertheless,
the motion-detecting pathway improves the tracking precision. (3)
Contrary to segmentation and registration based computer vision
techniques, its computational simplicity benefits the building of
neuromorphic visual sensor for robots.

I. INTRODUCTION

Fast motion tracking is still a pronounced challenge in

computer vision and robotic applications nowadays. From

biology to computational intelligence, nature has given us a

lot of inspirations and solutions for building artificial vision

systems. The ability to process visual information in an

efficient and accurate manner, becomes more desirable for a

practical system in mobile machines, like autonomous robots.

As the result of hundreds of millions of years of evolution,

motion vision plays a critically important role for animals’

survival. In recent ten years, much biological progress has been

made in revealing the preliminary motion detection pathways

in insects, e.g., flies [1]–[8] and locusts [9], [10]. Compared

to mammals, insects can handle the complexity of real worlds

with a relatively small amount of neurons. However, mapping

the underlying mechanisms and circuits to neural processing

of the higher level of behavior still challenges scientists.

To simulate insects’ vision, many biologically inspired

neural networks have been conducted for varied application

areas, like the collision detection in robot navigation (e.g.

[11]–[14]), the translational movements perception (e.g. [15],
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Fig. 1. The preliminary visual processing pipeline throughout four neuropil-
layers in the fly’s visual brain: photoreceptors in the retina layer convey
motion information to three parallel pathways. Routes starting from L1 and
L2 neurons to lobula plate tangential cells (LPTCs) indicate the ON and OFF
motion-detecting (motion) pathways respectively. The route starting from L3
to T5 forms the position pathway. Dashed lines denote the putative interactions
between interneurons in the motion and the position pathways.

[16]), the small target movements detection [17] and so on.

Those modeling studies, all inspired by insects physiology,

provide suggestions or solutions for guiding the building of

cheap, quick and reliable motion detectors.

Different visual features of a moving object, such as the

position and the direction, are crucial to elicit two well-

studied behaviors for animals, i.e., the optomotor and the

fixation [1]. Motion tracking is vital for animals to possess the

ability to extract useful motion cues from visual clutter timely,

then evoke advisable behaviors, like the turning response, for

maintaining moving targets within their receptive fields. The

visual fixation response, first observed in flies, was proposed

one of the most important follow-up behaviors after the motion

detection [1]: when an object of interest appears in the view,

a fly tends to keep it near the center of frontal view, no matter

the direction in which the object or the background is moving.

More specifically, in the fly physiology, the tracking and

fixation behaviors were demonstrated to be mediated by par-

allel, the motion and the position visual pathways [1], [4],

[7]. In addition, a biological study [1] implicated that the

fixation behavior could be tuned by only the position pathway

whilst the motion pathway likely corresponds to the optomotor

response. However, it appears that both pathways give rise to

collaborative effects on shaping the fixation behavior.
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Fig. 2. The schematic illustration of signal processing in the hybrid visual
neural network: Blue arrows specify the feed-forward processing flowchart
towards the fixation response. Green arrows indicate the local inputs from the
motion to the position pathway. A red arrow designates a feedback control.

A schematic signal tuning map is represented in Fig. 1

inspired by the physiological postulate of the fly’s prelimi-

nary visual neural network [3], [4], [7], [8]. In general, the

motivated framework involves three visual pathways, which

are computationally conducted as the motion and the position

pathways. Concretely, the ON and OFF parallel pathways

make up the motion-detecting (or motion) pathway whilst an

extra class of neurons with wide-field properties constitute

the position pathway providing location instead of direction

information. It is important to state that a relevant model-

ing study on direction selective neurons was proposed very

recently [15], which combines the functionality of ON and

OFF pathways with biological plausibility for constructing the

proposed motion pathway. In this research, for the first time

we extended the former neural network to the higher level of

behavior, via incorporating in the framework a neural network

realizing the functionality of position pathway. Moreover,

we designed a hybrid neural network (Fig. 2) in order to

mediate the fixation behavior, by integrating all pathways with

a feedback control and more important the interactions (local

motion information) between the motion and the position

pathways underlying the OFF-motion sensitivity across a wide

receptive field in the fly’s visual system [4], [7], [8].

In the following sections, the hybrid visual neural network

architecture with algorithms and parameters setting will be

presented in Section II. Followed by are the systematic exper-

iments with results and analysis in Section III. Finally we give

a conclusion with the future work in Section IV.

II. THE VISUAL MODEL ARCHITECTURE

In this section, we will present the hybrid visual neural

network with the motion and the position pathways as depicted

in Fig. 2 and 3. It is necessary to clarify the concrete modeling

with algorithms of the motion pathway is illustrated fully in

a partial research [15], which is briefly introduced in this

section. We highlight the functionality of new-built position

pathway and the hybrid neural network design for shaping the

fixating response. In addition, it is also worth emphasizing

that contrary to the traditional tracking strategies like the

regression based and search/segmentation based models, the

biologically motivated neural network is guided by low-level

visual processing that is only interested in motion information

with the direction and the magnitude properties. To simplify,

the acronyms of visual model components in Fig. 3 and

corresponding algorithms are all listed in Table I.
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Fig. 3. The illustration of the motion (in the blue box) and the position (in
the green box) pathways. The connection of three cells are shown for instance
in the motion pathway with more details in [15]. For each local neuron in
the medulla and lobula layers, the lateral multi-connections of the same-sign
polarity cells along two directions with dynamic delays (in the red box) form
the excitation and inhibitions at the starting and adjacent cells in sampling
distance respectively. Full-names of model components reference Table. I.

A. The Motion Pathway

Retinal layer - In the motion pathways, the first retina layer

involves photoreceptors arranged in a 2D matrix form, the

number (n in Fig. 3) of which corresponds to the resolution of

input visual streams. Each photoreceptor captures gray-scaled

luminance then relays it to a simplified high-pass filter in order

to get the luminance change between successive frames:

Px,y,t = Lx,y,t − Lx,y,t−1 (1)

After that, for each local pixel, we apply a band-pass filter

in spatial for mimicking the center-surrounding antagonism

found in insects’ visual system. It is represented by a ‘Dif-

ference of Gaussians’ (DoG) algorithm, which enhances the

motion edge selectivity as suggested in [18], and also removes

redundant environmental noise so that maximizing relayed

visual information transmission to the following layers [15].

Lamina layer - In the second lamina layer, the first-order

interneurons of ON and OFF transient cells encode onset

and offset response by luminance increment and decrement

respectively, and split band-pass filtered signals into separated

ON and OFF channels forming the starting points of ON and

OFF motion pathways. Each photoreceptor corresponds to a

pairwise ON and OFF cells. Such mechanisms are expressed

by the ‘half-wave’ rectifiers as follows:

LAON
x,y,t = (Px,y,t + |Px,y,t|)/2,

LAOFF
x,y,t = |(Px,y,t − |Px,y,t|)|/2

(2)

In addition, we employ a ‘Lipetz transfer’ function to trans-

form the analog value of luminance to the membrane potential

in a roughly logarithmic manner [15].

Medulla layer - In the third medulla layer, the signals in

either polarity ON or OFF pathways form two kinds of flows

- the excitation and the inhibition. As depicted in Fig. 3, the

computational form of each pairwise combination of same-

sign cells reconciles that of the symmetric Reichardt detectors.



TABLE I
THE ACRONYMS OF VISUAL MODEL COMPONENTS

P photoreceptor HS horizontally sensitive system
HP high-pass filter VS vertically sensitive system
LP low-pass filter LOCAL local motion detector
BP band-pass filter L gray-scale luminance
MAX max operation E/I excitation/inhibition
LA lamina layer TR turning response
ME medulla layer MP/PP motion/position pathway output

Importantly, we build the temporal dynamics within the dual-

pathways, i.e., the delay represented by the first-order low-pass

filtering depends on the sampling distance. More specifically,

we put forth the longest time span in the combination at the

shortest sampling distance, and then gradually reduce it as

the distance growing along both directional multi-connections.

We take one cell in the horizontally sensitive system as an

instance to show the forming of excitation and inhibition and

their linear competition:

MEHS
x,y,t =

d·Ncon∑
i=d

(Dx,y,t · LAx+i,y,t −Wi ·Dx+i,y,t · LAx,y,t)

where, d/dt{Dx,y,t} = 1/τs(LAx,y,t −Dx,y,t)
(3)

where Ncon denotes the number of connected polarity cells,

d is the increasing step in sampling distance. τs indicates

the dynamic time constant in milliseconds. Wi is a bias to

form a partially balanced model with stronger response to

the preferred over null directional motion. Similarity for the

computations in the vertically sensitive system and for both

ON and OFF motion-detecting pathways.
There are also local motion detectors (LOCAL in Fig. 3)

combining local excitations from ON and OFF channels in

a supralinear manner, with regard to the computation in [15].

More importantly, in the proposed hybrid neural network, they

are additional inputs to the position pathway indicating helpful

local motion information as shown in Fig. 1 and 2.
Lobula complex layer - In the final layer of motion

pathway, four groups of LPTCs linearly integrate all the di-

rectionally specific excitations of both ON and OFF pathways

constituting the global membrane potential, then exponentially

transfer them as the HS and VS outputs towards the hybrid

pathway [15]. Positive outputs of the motion pathway will

be generated stimulated by the preferred-directional (front-to-

back and downward) motion while negative outputs via the

null-directional (back-to-front and upward) motion.

B. The Position Pathway
As illustrated in Fig 2 and 3, in parallel with the motion

pathway, the first layer of the position pathway shares the same

input of visual streams, modeled by a 2D array of photorecep-

tors as well. On the contrary, there are no lateral interactions

between neighboring interneurons in the position pathway. We

also employ a high-pass filtering process expressed as:

P
′
x,y,t = σhp · (P ′

x,y,t−1 + Lx,y,t − Lx,y,t−1),

where, σhp = τ1/(τ1 + τi)
(4)

where τ1 denotes a time constant in milliseconds and τi
indicates the time interval between successive frames. After

that, the filtered signals also go through spatial band-pass

filtering represented by the DoG algorithm, as well as the

‘half-wave’ rectifying, pertaining to the OFF-motion edges

selectivity along with filtering out onset responses. A max

operation subsequently combines the location of maximum

response occurs in the position pathway, with the output of

maximum modulus from local motion detectors (abbreviated

as LM) of both HS and VS systems of the motion pathway:

LMx′,y′,t = max(x,y)∈Ω(maxx,maxy) ||LM ′
x,y,t||2,

where, LM ′
x,y,t = LM2

x,y,t,HS + LM2
x,y,t,V S

(5)

The output is the maximum local motion signal with position

information (x′, y′) in a neighboring field Ω(maxx,maxy)
centered by (maxx,maxy) of the maximum offset response

elicited by the position pathway, and the radius of the field

corresponds to the max sampling distance (d · Ncon) in the

motion pathway. It is important to state that in this research, we

only demonstrate the motion tracking in horizontal direction

using x′ to activate the position pathway via an exponential

transformation as follows:

PPHS
t =

{
1/e−((x′−xvc)/(C/4))2 − 1, if x′ − xvc ≥ 0

1− 1/e−((x′−xvc)/(C/4))2 , else
(6)

where xvc is the horizontal location of image view center (vc)
and C is the number of columns in the receptive field.

C. The Hybrid Pathway
In the hybrid pathway, as illustrated in Fig. 2, the separated

outputs - the directionally membrane potential from the mo-

tion pathway and the max location output from the position

pathway are integrated to form the hybrid turning response in

a purely linear manner:

TRt = σm ·MPHS
t +σp ·PPHS

t ,
d{TR′

t}
dt

=
1

τ2
(TRt−TR

′
t)

(7)

where σm and σp are two gain factors. The output of hybrid

pathway - the ‘turning response’ is also delayed by a low-

pass filtering with a time constant τ2 in milliseconds. Taken

this response of behavioral level, we can simulate updating of

the fly’s view center via:

xvc = xvc + TR
′
t (8)

Therefore, we demonstrate that a successful visual fixation

behavior should satisfy the following condition:

lim
t→t0

||x′
t − xvc

t || ≤ γ (9)

where γ is a predefined threshold which is normally set

equally as the sampling distance in the motion pathway. As

shown in Fig. 2, we also design a quick feedback pathway

for the purpose of adjusting the gain factor (σp) of the

position pathway for more quickly meeting the requirements

of fixating:

σp = σp +σc, if |x′
t −xvc

t | > γ &
d{|x′

t − xvc
t |}

dt
≥ 0 (10)



TABLE II
THE VISUAL MODEL PARAMETERS SETTING

Name Value Name Value Name Value
Ncon 8 d 2 Wi 0.89
σc 10 τs 5 ∼ 200 C adaptable
γ Ncon σm 3 σp 10
τ1 20 τ2 10 τi adaptable

D. Parameters Setting

The chosen parameters in Table II were decided empirically

based on consideration of the optimization of functionality and

implementation of proposed framework for fast and precise

motion tracking. It possesses a feed-forward low-level visual

processing structure without any parameters training methods.

The adaptable parameters correspond to the resolution and the

sampling frequency of input visual streams. More detailed

parameters set-up of the motion pathway is suggested in

a partial research [15]. Importantly, a shortcoming of the

visual model is that the combination of gain factors in the

hybrid pathway greatly influences its fixating performance:

increasing either gain factors, especially that of the position

pathway, could accelerate the process to fit the requirements

of a successful fixation; however, as the neural network is

also sensitive to the velocity of translational motion, it may

also bring about fluctuations of the relative position between

the moving objects and the view center. Therefore, a robust

learning method is badly needed in the near future.

We hope the follow-up experiments will provide useful

conclusions or suggestions for designing artificial motion

tracking system, and exploring the potential of biologically

neural networks for utility in intelligent robots.

III. EXPERIMENTAL EVALUATION

In this section, we will present the systematic off-line

experiments, which can be categorized into two kinds of

tests, i.e., challenged by translational motion embedded in

synthetic and real-world scenes respectively1. All the input

visual streams were converted to the gray-scale with the

resolution of 320 · 240 and 432 · 240 for synthetic and real

physical scenes respectively. We show experiments results

via the outputs of relative position between the translating

object(s) and the simulated fly’s view center (VC), during each

tracking and fixating process. We also investigate and compare

the different fixation responses between neural networks with

the motion-blocked and the intact-pathways systems in the

synthetic tests motivated by a biological study [1].

A. The Synthetic Visual Stimuli Tests

In the first kind of tests, we tested the proposed model

against synthetic translational movements on both horizontal

directions. The visual stimuli include a single darker or lighter

object translating and elongating (and shortening) against the

clean background, as well as two gray-scaled objects moving

1An attached demo video shows all the off-line visual stimuli with results.
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Fig. 4. The outputs represented by horizontal positions of the simulated
view-center (VC) and the translating object: some snapshots with the VC
(represented by the red-frame) are shown at the top of each pairwise results.
Both the motion-blocked and intact-pathways neural networks are tested.

concurrently at the same or different constant speeds. There

was no background noise in those simulated scenarios.

The results illustrated in Fig. 4 and 5 allow the following

conclusions: first, when tested by either darker or lighter

objects translating in either horizontal directions, the tracking

and fixation behaviors elicited by both neural networks with

the motion pathway blocked and the intact pathways are

well achieved. During each tracking process, the outputs of

relative position quickly converge within a small range, i.e.,

the simulated fly’s view center is dramatically guided to close

in the position of translating object matching the fixation

behavior perfectly. In addition, it appears that the visual

model with complete pathways achieves more precise tracking

performance with relatively smaller relative positions.

Interestingly, when challenged by two dark objects trans-

lating simultaneously at an identical speed-level, the updated

view center of fixation behavior is always following the darker

object movements. The results reveal the contrast sensitivity

of the proposed framework with the preference to stronger

offset response caused by darker motion. In addition, when

the translating objects have different moving speeds, the view

center of fixation response initially accompanies the darker

object moving and then quickly jumps to the less-darker one,

once the darker object stops moving. Importantly, the results

also provide a profound implication that the motion-detecting

is essential for the proposed hybrid visual neural network to

elicit the fixation behavior.

With similar ideas, we also examine its performance a-

gainst two dark objects elongating and shortening with only

a single edge moving (Fig. 6). The visual fixation responses
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Fig. 5. The outputs under synthetic translation movements of two darker
objects moving at the same and different constant-speeds respectively.

are well realized as expected. However, the results point out

the offset-response selectivity of the proposed framework: the

simulated fly’s view center is always following the OFF-edge

elongating (offset) rather than shortening (onset). Furthermore,

the statistics shown in Fig. 7 demonstrate that the motion-

blocked system represents similar turning response compared

to that elicited by the intact-pathways system during motion

tracking, blocking the motion pathway nevertheless leads to

larger outputs of relative position at all tested translating

velocities, i.e, the tracking precision is much reduced.

B. The Real-world Visual Stimuli Tests

In the second kind of off-line tests, we inspected its per-

formance challenged by real-world translational movements

in visual clutter. Compared to the synthetic tests, there were

also much environment noise in the real physical scenes.

The visual stimuli involve the person-crossing and five gray-

scaled objects translating, all embedded in the busy back-

ground. Satisfactory results (Fig. 8) demonstrate the proposed

visual model successfully mimics the fly motion tracking

and fixation behaviors regardless of the cluttered background

and environmental noise. It appears that without translational

motions within the receptive field, the simulated view center

is rigorously affected by the background noise, wandering

intensely within the receptive field. However, if translating ob-

jects appear, the proposed ‘motion’ sensitive neural networks

can guide the simulated fly’s view center to follow translational

movements, both in a timely and reliable manner.

IV. CONCLUDING REMARKS

In this paper, we propose a hybrid visual neural network

inspired by the fly’s preliminary vision system, mimicking
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Fig. 6. The outputs stimulated by synthetic elongation and shortening
movements of two darker objects at the same and different speeds respectively.
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Fig. 7. The statistical results of the turning response (a) and the relative
position (b) during each entire tracking course for both the intact-pathways and
motion-blocked neural networks, tested by a single darker object translating
at three constant velocity levels separately.

motion tracking and fixation behaviors. The motivated frame-

work extends a former motion-detecting model to the higher

level of behavior. Its feed-forward structure is fully guided

by low-level visual processing strategies. The motion and the

position pathways explored by biologists are computationally

conducted to provide parallel outputs. The visual fixation

behavior is shaped by a hybrid pathway, integrating the outputs

of both pathways and eliciting the turning response in order

to simulate the updating of view-center during fixating along

with translational movements. Informative off-line tests results

demonstrate the proposed neural networks match the under-

lying functionality of fly’s visual pathways perfectly, which

can cope with motion tracking in a fast and reliable manner,

even against busy backgrounds. Moreover, the results well

reconcile with a biological finding that the position pathway

contributes more significantly in mediating the visual fixation

whilst the motion pathway rigorously improves the precision

and efficiency of tracking.
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This modeling study also opens several directions for future

research. First, its computational simplicity and robustness

also have great potential to build the neuromorphic sensor for

utility in robotic vision guiding real-time tasks of translational

movements detection and tracking mixed with multiple robot

agents and/or humans. Second, we will investigate its internal

characteristics in real-time motion tracking, and compare

its performance with other state-of-the-art tracking methods.

Moreover, we also expect to combine its functionality with

the biologically visual collision detectors mimicking insects’

motion detection in more complex scenarios.
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