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Abstract

Nonnegative matrix factorization (NMF) approximates a given data matrix

using linear combinations of a small number of nonnegative basis vectors,

weighted by nonnegative encoding coefficients. This enables the exploration

of the cluster structure of the data through the examination of the values

of the encoding coefficients and therefore, NMF is often used as a popular

tool for clustering analysis. However, its encoding coefficients do not always

reveal a satisfactory cluster structure. To improve its effectiveness, a novel

evolutionary strategy is proposed here to drive the iterative updating scheme

of NMF and generate encoding coefficients of higher quality that are capa-
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ble of offering more accurate and sharper cluster structures. The proposed

hybridization procedure that relies on multiple initializations reinforces the

robustness of the solution. Additionally, three evolving rules are designed to

simultaneously boost the cluster quality and the reconstruction error during

the iterative updates. Any clustering performance measure, such as either

an internal one relying on the data itself or an external based on the avail-

ability of ground truth information, can be employed to drive the evolving

procedure. The effectiveness of the proposed method is demonstrated via

careful experimental designs and thorough comparative analyses using mul-

tiple benchmark datasets.

Keywords: Nonnegative matrix factorization, clustering, initialization,

evolutionary computation.

1. Introduction

Non-negative matrix factorization (NMF) has become an increasingly

popular data processing tool in the recent years and is widely used by vari-

ous communities including computer vision, text mining and bioinformatics.

It is able to approximate each data sample in a data collection by a linear

combination of a set of nonnegative basis vectors weighted by nonnegative

weights. This often enables meaningful interpretation of the data, motivates

useful insights and facilitates tasks such as dimensionality reduction and sub-

space learning [3, 29, 28, 49, 6], clustering [37, 31, 5, 12, 38], graph matching

[20], etc.

An important group of works in NMF is focused on its optimization strat-

egy and how to find accurate NMF approximations fast for large data sizes.
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Typical NMF approximation approaches are reviewed in [1], and include al-

ternating least square algorithms [30], gradient descent [26] and multiplica-

tive update rules based on the creation of an auxiliary function for solving

constrained optimization problems [23, 25]. Recent advances in NMF opti-

mization include the use of the projected Newton method [14] and matrix

manifold optimization, such as, Stiefel manifold when the extra orthogonality

constraint is enforced [45]. Amongst these approaches, the multiplicative up-

date is perhaps the most popular NMF solver, despite the fact that it is very

sensitive to initializations. Usually, the simplest NMF initialization setup is

to assign random values to the optimizing variables. This is certainly not

the most effective strategy, and more sophisticated algorithms have been pro-

posed to improve the convergence rate and the solution quality [22]. These,

for example, include the initialization of the factorization matrices based on

clustering solutions [41, 50, 34], or the use of data reduction algorithms such

as principal component analysis [46] or singular value decomposition [4].

Another major group of NMF research is focused on the study of the NMF

variations, so that they can better facilitate a specific data analysis task. For

example, the least squares NMF takes into account the uncertainty measure-

ments to better analyze the gene expression data [40]. The weighted-NMF

[16] improves the NMF capabilities of representing positive local data for

image classification tasks. Also, there are various approaches that introduce

extra terms to the original NMF objective function of the reconstruction error

by incorporating objectives, such as learning local presentations [24], preserv-

ing local data geometries [32, 51], incorporating topographic constraints [42],

and enhancing class saparability [29, 39] to better serve a dimensionality re-
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duction, clustering or classification task. A thorough survey on such types

of approaches can be found in [29].

In this work, we focus particularly on the improvement of the multiplica-

tive NMF update, which is the most commonly used NMF approach, to

better serve the very important data analysis task of clustering. Data clus-

tering has been used for decades in many fields, such as image processing and

text mining [43, 7, 8], and has benefited more recently the microarray gene

expression data analysis in genomic research [21]. Usually, the multiplica-

tive NMF update can result in varying clustering results for the same given

dataset due to initialization sensitivity. Moreover, driven by its reliance on

the reconstruction error minimization, the resulting factorization matrices

may not necessarily indicate the optimal clustering structures. To work on

these issues, we propose a novel NMF updating strategy, which takes advan-

tage of the hybridization of different NMF initialization setups and evolves

along different directions to produce NMF approximations that suit better

the clustering purpose. The effectiveness of the proposed method is demon-

strated thoroughly through benchmark testing and comparisons with existing

approaches.

The rest of the paper is organized as follows: Section 2 reviews the basic

bacground of the multiplicative NMF update rules and the corresponding

initializations. The proposed method is described in Section 3. Experimental

results and comparative analyses are provided in Section 4 and the work is

concluded in Section 5.
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2. Background Methodology

2.1. NMF Formulation

Given a d×n non-negative matrix X = [xij] with each element xij ≥ 0, its

columns represent data points to be analyzed. NMF seeks two non-negative

matrices, a d × k one W = [wij] and an n × k one H = [hij], so that the

following reconstruction error is minimized:

min
wij≥0,
hij≥0

∥X −WHT ∥2

F
, (1)

where ∥ ⋅∥F denotes the Frobenius norm. Each column of W is known as the

basic vector, while each column of H as the encoding coefficient vector. Here,

the number of the basis vectors k implies an upper bound of the rank of the

approximated data matrix because rank (WHT ) ≤ min (rank(W), rank(H)) ≤
k. Also, we know the upper bound of the rank of the original data matrix

X, given as rank(X) ≤ min(d,n). Thus, it is common to set k ≤ min(d,n)
[37] so that the factorized matrix WHT is able to provide a low-rank ap-

proximation to the original data matrix X with the benefit of noise and data

redundancy reduction. When the number of the basis vectors is set as the

expected cluster number, each element of H can be viewed as the confidence

value a data point belonging a data cluster. The ith data point is assigned

to the jth cluster when j = argmaxkl=1hil. In addition to the Frobenius norm

as used in Eq.(1), other metrics for evaluating the distance between the orig-

inal data matrix X and the approximated one WHT can be used, such as

Kullback-Leibler (KL) divergence [23] and earth mover’s distance [35].
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2.2. Multiplicative NMF Update Rules and Initialization

The solution to the constrained optimization problem in Eq.(1) can be

approximated iteratively by the following multiplicative update rules [23]:

Ht+1 = Ht ○ (XTWt)⊘ (HtW
T
t Wt) , (2)

Wt+1 = Wt ○ (XHt)⊘ (WtH
T
t Ht) , (3)

where ○ denotes the Hadamard product and ⊘ the Hadamard division of

two matrices of the same size, Wt and Ht denote the computed basis and

encoding coefficient matrices at the tth iteration. Different setups of W0

and H0 may lead to different factorization results. One traditional strategy

is random initialization (RI), which generates elements of W0 and H0 in a

completely random manner [23]. To increase the convergence rate, more ad-

vanced initialization approaches have been developed, such as random Acol

initialization (RAI) and clustering-based initialization (CI), which are de-

scribed below.

2.2.1. Random Acol Initialization

Instead of forming completely random basis vectors of W0, the RAI

method [22] forms each column of W0 by averaging p randomly selected

columns of the data matrix X. For example,

[W0]i =
1

p
∑

j∈N(i)p

[X]j , (4)

where N
(i)
p denotes a set of p random integers between 1 and n generated for

the ith column of W0, and [⋅]i denotes the ith column of an input matrix.

Then, H0 is computed by a least square computation [22] .
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2.2.2. Clustering-based Initialization

When the output of NMF is used to facilitate the cluster exploration, it

is natural to conduct the initialization by linking to a clustering algorithm.

For example, it is possible to set H0 as the n× k cluster membership matrix

M = [mij] obtained by a clustering algorithm [50, 34], where

mij =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, if the ith data point belongs to the jth cluster,

0, otherwise,
(5)

and set W0 as the d×k cluster centroid matrix C [50] that can be computed

from M and the original data matrix X by

[C]j =
1

nj
∑
mij=1

[X]i. (6)

Here, nj denotes the total number of data points belonging to the jth cluster.

3. Proposed Method

In this work, we propose an evolutionary strategy to improve the itera-

tive updating procedure of NMF, refereed to as ENMF. It aims at producing

higher quality basis and encoding coefficient matrices W and H that are more

suitable for data clustering tasks. The algorithm starts from multiple pairs of

initialization matrices of the basis vectors and encoding coefficients. These

matrix pairs form an initial candidate set denoted as S0 = {(Wi
0,H

i
0)}

m

i=1
,

where {Wi
0}
m

i=1
and {Hi

0}
m

i=1
are referred to as the seed matrices. The algo-

rithm evolves creating an updated candidate set at each iteration, denoted

as St = {(Wi
t,H

i
t)}

mt

i=1
for the tth iteration with mt denoting the new candi-

date number. The proposed updating rules result in an updated candidate

number of mt = 3m + 1 in each iteration, which we will discuss in detail in
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Section 3.2. In the end, the optimal encoding coefficient matrix and its cor-

responding basis matrix are selected from the finally evolved candidate set

based on a score function formulated to suit the data clustering task.

3.1. Seed Matrix Generation

To take advantage of the state-of-the-art NMF initialization strategies

and to achieve local improvement of the optimal solution, multiple NMF

initialization approaches are utilized to construct the initial candidate set,

that contains various seed matrices of the basis and encoding coefficient:

• The CI approach is first conducted via performing the k-means clus-

tering [11]. The resulting binary cluster membership matrix M is used

as H1
0, and the resulting clustering centroid matrix C as W1

0.

• Similar CI approach is conducted again but based on the fuzzy c-means

(FCM) clustering [2]. The obtained cluster membership and centroid

matrices M and C are used as H2
0 and W2

0, respectively. In addition,

one more candidate is generated by setting the n × k member degree

matrix U = [uij] of FCM as the H3
0 and the same centroid matrix C as

W3
0. Here, the degree value uij represents the confidence value the ith

data point belonging to the jthe cluster and satisfies the conditions of

0 ≤ uij ≤ 1 and ∑kj=1 uij = 1.

• The RI and RAI approaches are used to generate the two candidates

of (W4
0,H

4
0) and (W5

0,H
5
0).

In this case, a total number of m = 5 seed matrices are generated. However,

it is worth to note that the proposed NMF updating algorithm is a general
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method and the users could choose any type and number of initial candidates

to suit their needs besides the above setup.

3.2. Evolving Strategy

In each iteration, three new subsets of candidates S
(M)
t+1 , S

(S)
t+1 and S

(F )
t+1 are

generated from the previous set St, according to three types of evolving rules

proposed, which correspondingly are the multiplicative rule, the survival of

the fittest rule and the firefly rule. The three subsets together constitute

the updated set St+1 = S
(M)
t+1 ∪ S

(S)
t+1 ∪ S

(F )
t+1 for the (t + 1)th iteration. In the

following, we explain these rules in detail.

3.2.1. Multiplicative Rule

The multiplicative rule is constructed to take advantage of the classical

multiplicative update rule for NMF approximation. It generates the new

candidate subset by

S
(M)
1 = ΦM (S0,X) , (7)

for the first iteration and

S
(M)
t+1 = ΦM (S(M)t ,X) , (8)

for the (t+ 1)th iteration (t ≥ 1). The operation S′ = ΦM(S,X) takes one set

of matrix pairs S = {(Wi,Hi)}mi=1 and one d × n data matrix X as the input,

where each matrix pair in S includes one d × k matrix Wi and one n × k
matrix Hi. It outputs a set of matrix pairs denoted as S′ = {(W′

i,H
′
i)}

m
i=1,

which are formulated based on Eqs.(2, 3) and are as follows

H′
i = Hi ○ (XTWi)⊘ (HiW

T
i Wi) , (9)

W′
i = Wi ○ (XHi)⊘ (WiH

T
i Hi) . (10)
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This rule enables the inclusion of multiple NMF solutions obtained by the

multiplicative update rules. Each solution provides an approximated opti-

mal solution to the minimization problem of the reconstruction error. Also,

each solution is obtained through a different way of initialisation such as the

random and clustering-based ones. Given a number of m initial candidates

for the algorithm to start, there are always m candidates generated by the

multiplicative rule in each iteration.

3.2.2. Survival of the Fittest Rule

The survival of the fittest rule is designed to ensure the inclusion of the

most competitive candidates that contain the best encoding coefficient matrix

suitable for the clustering task in each iteration. In the first iteration, after

applying the multiplicative rule to the initial candidate set S0, the candidate

population is enlarged to a combined set of S
(M)
1 ∪ S0. A best encoding coef-

ficient matrix H∗
0 is selected from those contained in S

(M)
1 ∪ S0 according to

a predefined score function O(⋅) that assesses the quality of the input encod-

ing coefficient matrix in terms of its clustering performance. This selection

procedure can be formulated as

H∗
0 = arg max

(W,H)∈S0∪S(M)1

O(H). (11)

The survival of the fittest rule further generates a new candidate subset S
(S)
1

by modifying the matrices contained in S
(M)
1 based on H∗

0, such that

S
(S)
1 = ΦS (S(M)1 ,H∗

0) . (12)

The operation S′ = ΦS(S,A) creates m + 1 matrix paris S′ = {(W′
i,H

′
i)}

m+1
i=1

from the input set S = {(Wi,Hi)}mi=1 and the matrix A. Specifically, all the
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encoding coefficient matrices {H′
i}
m+1
i=1 contained in S′ are set as

H′
i =A, i = 1,2, . . . ,m, (13)

while the basis matrices are generated by

W′
i = Wi, for i = 1,2, . . . ,m, (14)

W′
m+1 = max (0,X (AAT )−1

A) , (15)

with the operation max(0, ⋅) truncating all the negative elements of the input

matrix to zero. This survival of the fittest operation ΦS (S(M)1 ,H∗
0) inherits

the best encoding coefficient matrix H∗
0 in all the (m + 1) newly generated

candidates, among which the first m candidates keep the m basis matrices

contained in S
(M)
1 as shown in Eq.(14) and the last candidate uses a new basis

matrix generated according to H∗
0 as shown in Eq.(15). The design of Eq.(15)

is based on the alternating least squares algorithm for NMF [9, 22, 36], where

X (AAT )−1
A provides a least square estimation to a matrix W so that the

distance between WAT and X is minimized. After applying the thresholding

operation max(0, ⋅) to maintain only the positive elements in the estimated

matrix, a basis matrix W′
m+1 is generated containing non-negative elements

to suit the purpose of NMF and meanwhile offering smaller reconstruction

error when combined with H∗
0.

By incorporating S
(M)
1 = ΦM (S0,X) into Eqs.(12) and (11), we re-express

the proposed update for the first iteration as

S
(S)
1 = ΦS (ΦM (S0,X) ,H∗

0) , (16)

where H∗
0 = arg max

(W,H)∈S0∪ΦM (S0,X)
O(H). (17)
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The above update can be viewed as an operation on S0 with the assistance

of the two sub-operations of ΦM and ΦS. We follow a strategy similar to

Eq.(16) to formulate the survival of the fittest rule for the (t+ 1)th iteration

(t ≥ 1), but let the update operate on the candidate subset S
(S)
t generated

by the survival of the fittest rule in the previous iteration, other than S0.

Replacing the set S0 with S
(S)
t in Eq.(16) and replacing H∗

0 with H∗
t , it gives

S
(S)
t+1 = ΦS (ΦM (S(S)t ,X) ,H∗

t ) . (18)

In order to maintain a non-decreasing excellence of the new population, we

select the most competitive candidate H∗
t from a combined set formed based

on all the candidates generated in the previous iteration. By replacing the

set S0 with St in Eq.(17), we have

H∗
t = arg max

(W,H)∈St∪ΦM (St,X)
O(H). (19)

Here, the set St = S
(M)
t ∪ S

(S)
t ∪ S

(F )
t includes all the candidates generated by

all the three proposed rules in the tth iteration.

To summarize, the survival of the fittest rule generates m+1 candidates in

each iteration by combining the best encoding coefficient matrix H∗
t selected

in each iteration with various basis matrices. This is equivalent to forcing all

the weaker encoding coefficient matrices to eliminate themselves but let the

best one to survive; thus, the rule is termed the survival of the fittest. The

proposed rule combines H∗
t with different basis matrices as shown in Eq.(14)

in addition to a computed one providing smaller reconstruction error as in

Eq.(15). It attempts to introduce new candidates by altering the basis matrix

of the strongest one to avoid being trapped in a local optimum.
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3.2.3. Firefly Rule

The firefly rule is designed to generate candidates with the potential of

providing higher clustering performance. The core difference between the

firefly and the survival of the fittest rules is that the firefly one aims at gen-

erating new encoding coefficient matrices of higher quality, while the survival

of the fittest at keeping the best encoding coefficient matrix from the previous

iteration. In Section 3.2.2 its was explained how to select the best encod-

ing coefficient matrix in each iteration in Eqs.(11) and (19), which result in

{H∗
0,H

∗
1, . . .H

∗
t , . . .}. In the following, we show how the firefly rule generates

the new candidates by modifying the current candidates using H∗
t .

We design the firefly rule so that it possesses a matching structure as the

the survival of the fittest rule. In the first iteration, both rules modify the

same candidate subset S
(M)
1 generated by the multiplicative rule but using

different operations. Thus, the firefly rule can be expressed as follows by

replacing the ΦS operation in Eq.(12) with ΦF

S
(F )
1 = ΦF (S(M)1 ,H∗

0) = ΦF (ΦM (S0,X) ,H∗
0) . (20)

The n × k matrix H∗
0 is selected from the encoding coefficient matrices con-

tained in the combined candidate set S
(M)
1 ∪S0. The operation S′ = ΦF (S,A)

takes a set S = {(Wi,Hi)}mi=1 and an n × k matrix A as input, while outputs

a new set S′ = {(W′
i,H

′
i)}

m
i=1. Specifically, the relationship between the input

and output of ΦF is defined as

H′
i = Hi + βe−γ∥A−Hi∥2F (A −Hi) , (21)

W′
i =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

W̃i, if ∥X − W̃iH
′
i
T∥

2

F
< ∥X −WiH

′
i
T∥

2

F
,

Wi, otherwise,
(22)
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where the matrix W̃i is computed by

W̃i = max(0,X (H′
iH

′
i
T)

−1
H′
i) , (23)

with 0 < β ≤ 1 and γ > 0 being the user selected parameters. From the

(t+1)th iteration (t ≥ 1), the firefly rule starts to generate the new candidate

subset S
(F )
t+1 from the previous subset S

(F )
t . By replacing the ΦS operation

in Eq.(18) with ΦF and the subset S
(S)
t with S

(F )
t , we obtain the matching

formulation of the firefly update for the (t + 1)th iteration (t ≥ 1)

S
(F )
t+1 = ΦF (ΦM (S(F )t ,X) ,H∗

t ) , (24)

where the n×k matrix H∗
t is selected from the combined set of St∪ΦM (St,X).

In the following, we explain the core ideas behind the firefly operation ΦS as

formulated in Eqs.(21) and (22).

The design of Eq.(21) is motivated by the recent evolutionary optimiza-

tion algorithm inspired by the flashing behavior of firefly, known as the firefly

algorithm [44]. The algorithm assumes that attractiveness between fireflies is

proportional to their brightness, thus, given any two fireflies, one will move

towards the other that glows brighter. However, such attractiveness de-

creases when the distance between two fireflies increases. Following Eq.(21),

the encoding coefficient matrix of each candidate in either S
(M)
1 for the first

iteration or ΦM (S(F )t ,X) for the tth (t > 1) iteration is viewed as a firefly. Its

quality is evaluated by the score function O(⋅), representing the brightness

degree of the firefly. By rewriting Eq.(21) as

H′
i = (1 − βe−γ∥A−Hi∥2F )Hi + βe−γ∥A−Hi∥2FA, (25)

it can be seen that the newly generated encoding coefficient matrix is a mix-

ture of the one generated by the multiplicative rule (Hi) and the pre-selected
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one with the best clustering performance (A = H∗
t ). This is equivalent to

moving the fireflies towards the brightest firefly. In Eq.(21) the exponential

term βe−γ∥A−Hi∥2F that determines how much Hi should be moved towards

A =H∗
t is directly controlled by the distance between the two matrices. This

is equivalent to forcing the attractiveness towards the brightest firefly to de-

crease as the relative distance increases. The parameter 0 < β ≤ 1 adjusts

the contribution of A to the construction of H′
i, controlling the dominating

degree of the brightest firefly to determine the positions of the other ones.

The parameter γ > 0 controls how much the distance ∥A −Hi∥2
F affects the

contribution of A in the construction of H′
i, determining the decaying degree

of the attractiveness between fireflies against their distance.

Eq.(22) updates the basis matrix for each of the encoding coefficient ma-

trix H′
i. The design is based on the alternating least squares algorithm for

NMF [9, 22, 36], which updates the basis matrix based on the current encod-

ing coefficient matrix through first solving the unconstrained reconstruction

error minimization problem of

min
W

∥X −WH′
i
T∥

2

F
, (26)

by setting its derivative to zero and then modifying the resulting matrix by

converting all its negative elements to zero. This procedure gives the matrix

W̃i. However, the modification step of converting the negative elements to

zero potentially raises the risk of obtaining undesired reconstruction error.

An alternative setup of W′
i is to employ the original one Wi as generated

by the multiplicative rule, given the fact that the basis matrix does not af-

fect directly the data cluster structure. In Eq.(22), between W′
i and Wi

we choose the one possessing the smaller reconstruction error in order to
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prevent the proposed evolving procedure from sacrificing the data represen-

tation accuracy to compensate for the cluster quality. Here, W̃i is always

nonnegative. Also, according to Eq.(25), it is obvious that, when Hi and A

are both non-negative, H′
i is non-negative. These guarantee that the matrix

pairs (W′
i,H

′
i) generated by the firefly rule are eligible as NMF candidates.

The firefly rules generates a total of m candidates in each iteration. As

shown in Eqs.(16) and (18) for the survival of the fittest rule and Eqs.(20) and

(24) for the firefly rule, instead of directly updating S0 and S
(S)
t (or S

(F )
t ) with

ΦS (or ΦF ), the multiplicative operation ΦM is first used to smoothen out

the given candidates, which may potentially reduce the reconstruction error.

The mixture of ΦM and ΦS (or ΦF ) attempts to evolve matrix pairs offering

good quality of encoding coefficient matrix while alternatively ensuring the

joint quality of the basis and encoding coefficient matrices.

3.3. Score Function

Since the primary goal of this work is to improve NMF so that it can serve

better the data clustering task, it is natural to formulate the score function

as a cluster validity measure [10, 27] that assesses the cluster quality. When

the internal evaluation is used, the assessment is based on the data matrix X

itself. The cluster structure possessing higher within-cluster similarity and

lower between-cluster similarity is of better quality. In this case, the Dunn

induex (DI) [19] for example can be directly used as the score function. When

the external evaluation is used, the assessment compares the clustering results

with the ground truth partition of the data, for which the cluster structure

that better matches the ground truth partition is of higher quality. For

example, the RAND index [33] can be used as the score function for the
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Figure 1: Data flow of the proposed ENMF. The circle, triangle and rectangle symbols

represent candidates derived during the generation of the S
(M)
t , S

(F )
t and S

(S)
t subsets,

respectively. The lines of different shades represent data flows from the three rules.

external evaluation, to compute the percentage of the correct data partitions

offered by the clustering result as compared to the ground truth.

The overall data flow of the proposed ENMF strategy is shown in Figure 1.

In the first iteration, starting from them pairs of seed matrices included in the

initial candidate set S0, different candidate subsets are generated from S0 by

following the three proposed rules. These lead to three evolved subsets S
(M)
1 ,

S
(S)
1 and S

(F )
1 containing m, m+1 and m candidates, respectively, constituting

the new population S1 of the first iteration. From the second iteration,
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different candidate fractions in the population are updated by different rules.

For example, S
(M)
t is updated by the multiplicative rule, S

(S)
t by the survival

of the fittest rule and S
(F )
t by the firefly rule. The updated subsets S

(M)
t+1 , S

(S)
t+1

and S
(F )
t+1 include m, m + 1 and m candidates, respectively, constituting the

new population St+1. These updating rules result in a fixed population size

of mt = 3m + 1 during each iteration. The motivation behind these rules are

summarized as follows. The operation ΦM based on the multiplicative rule

aims at generating candidates that are able to converge to an NMF solution

driven by the reconstruction error minimization. The operations of ΦS and

ΦF based on the survival of the fittest and firefly rules aim at the local

improvement of the candidates to produce better quality of data clusters

within each iteration. Specifically, ΦF moves the the encoding coefficient

matrices generated by the multiplicative rule towards a best one selected,

based on a pre-defined score function, while ΦS ensures the best selected

encoding coefficient matrix is included in the updated candidate set. The

score function assesses the cluster quality so that the output of NMF is able

to serve better a data clustering task.

4. Experimental results and analysis

As explained in Section 2.1, the factorization of a d×n data matrix X into

one d×k basis matrix W and one n×k encoding coefficient matrix H = [hil]
can be directly used to discover the data cluster structure, by setting the

number of the basis vectors k as the number of the expected clusters and by

assigning the ith data point to the jth cluster through j = argmaxkl=1hil. To

evaluate the matrix factorization output in terms of its corresponding cluster-

ing performance, we conduct experiments using ten benchmark classification
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datasets from the UCI machine learning repository, including balance scale,

breast tissue, breast cancer Wisconsin diagnostic (WDBC), breast cancer

Wisconsin original (BCWO), dermatology, glass identification, Haberman’s

survival, iris, thyroid and red wine quality (winered). The characteristics

of these datasets are summarized in Table 1, where the first word or the

abbreviation of the data name is used to refer to each dataset. For data

preprocessing, a scalar ∣mini,j xij ∣ is added to the input data matrix X when

it contains negative elements.

4.1. Experimental Setup

We compare the proposed ENMF updating strategy with the classical

multiplicative update [23]. We also examine effects of different factorization

initialization approaches including RI, RAI and the three types of CI based

on the membership matrix of the k-means clustering (CI1), the membership

matrix of the FCM clustering (CI2) and the member degree matrix of the

FCM clustering (CI3). Each initialization approach is run for five times,

generating five pairs of encoding coefficient and basis matrices. For ENMF,

these five pairs are used as the initial candidates to start the algorithm,

which means that the initial candidate population size of the ENMF is m = 5

and a candidate population size of mt = 3m + 1 = 16 is maintained during

the evolving iterations. Apart from these, we also examine the results of

the ENMF by using a mixture of all five initialization approaches (MIX).

In this case, five pairs of initial coefficient and basis matrices are generated

by running each of the five initialization approaches once, which again leads

to an initial candidate population size of m = 5 and a population size of

mt = 16 during the iterations. Both internal evaluation based on DI index
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and external evaluation based on RAND index are experimented. When

external evaluation is used as the score function, the evolving procedure of

the ENMF becomes supervised due to the involvement of the ground truth

class information, for which we split the dataset into two separate sets for the

training and test purposes. The RAND index computed with the training

set is used as the score function to drive the evolving of the ENMF1. For

the standard NMF based on the multiplicative update, the same five seed

matrix pairs that are used as the initial candidates of the ENMF are used

to initialize the updating procedure of the standard NMF. This leads to five

solutions of the standard NMF and the one possessing the best clustering

performance is reported. All the experiments are repeated five times and the

averaged clustering performance is reported. In all experiments, the number

of the basis vectors k is set as the cluster number for both NMF and ENMF.

For ENMF, we adapt the recommended parameter setting γ = β = 1 for the

firefly rule as suggested by [44]. The iteration numbers for the NMF and

ENMF updates are both fixed as 500 in all the experiments.

4.2. Results and Analysis

Table 2 compares the standard NMF with the multiplicative update and

the proposed ENMF with a mixture of three updates under the different

initialization setups of CI1, CI2, CI3, RI, RAI and MIX as explained in the

previous section. For a more clear identification of the performance improve-

ment of ENMF over NMF, we also summarize the performance difference

between ENMF and NMF under different initialization setups in the same

1A four-fold cross validation (CV) is performed to report the RAND performance.
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table. It can be seen that for most cases ENMF leads to an improved cluster-

ing performance as compared to standard NMF. This shows effectiveness of

the proposed factorization strategy that is particularly designed to suit bet-

ter the clustering purpose. Particularly, ENMF is more forceful than NMF

to produce a cluster structure that is more compatible to a ground truth

partition associated with the data, indicated by the significant performance

improvement in terms of the external evaluation measure of RAND index.

Under the internal evaluation based on DI index, ENMF provides more sat-

isfactory improvement over NMF for the case of random initialization than

clustering based intialization. This is because when the output of a clustering

approach such as k-means and FCM is employed to initialize the factoriza-

tion, the matrix H has already contained a cluster structure possessing good

DI value due to the nature of the clustering algorithm, and thus the im-

provement over the later involving procedure can be in a smaller scale, or

the performance can remain the same for some datasets.

In Figures 2 and 3, we compare the convergence of ENMF with mixed

initialization and that of NMF multiplicative update initialized by different

approaches of RI, RAI and the best one from CI1 to CI3 (referred to as CI

in the figure) for different datasets, based on RAND and DI indices, respec-

tively. It can be observed that, clustering performance obtained by NMF

initialized with the output of a clustering algorithm does not improve much

over iterations for most datasets. The combination of NMF and clustering

based initialization is only worthy when the later NMF update is able to

improve the cluster quality. Otherwise, the clustering algorithm on its own

can be directly applied to save the extra computational cost consumed by
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the NMF update. Differently, the clustering performance obtained based on

the ENMF initialized by a mixture of different approaches can significantly

and rapidly improve over iterations for most datasets.

Overall, as shown in Table 2 and Figures 2 and 3, the performance of the

ENMF and NMF is affected by the employed initialization approach. There

is no superiority of one initialization approach over another given different

datasets. For many datasets, a mixed initialization leads to better perfor-

mance, indicating the effectiveness of hybridization. When ENMF employs

similar seed matrices, e.g., those obtained by CI1 and CI2, they do not mo-

tivate the evolving procedure to generate better candidates than NMF, as

exemplified by the zero improvements in Table 2. Differently, random ini-

tialization, such as RAI and RI, offers solutions of varying quality. It helps

to avoid the local optimum by preventing the generation of candidates that

are too similar, but may lead to unsatisfactory convergence without sufficient

number of iterations due to the lack of seed quality control. By initializing

the ENMF with a mixture of different types of seed matrices, their qual-

ity and diversity are balanced, and have the potential to generate solutions

providing higher quality of clusters and converge in less iterations.

In the above experiments, we adopt the recommended setting of β = γ = 1

for the firefly rule as suggested by [44] and use an initial population size ofm =
5 for the ENMF determined by the number of used initialization approaches.

Here, we further conduct some experiments to investigate the impact of dif-

ferent values of β, γ and m. By letting the firefly parameters vary within

the ranges of β ∈ {0.1,0.3,0.5,0.7,0.9,1} and γ ∈ {0.001,0.01,0.1,1,10,100},

we record the clustering performance of the ENMF at its 100th and 500th
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iterations for different parameter combinations, and demonstrate the cor-

responding RAND and DI performance in Figures 4 and 5 using the iris

and Haberman’s survival datasets. It can be seen from the left plot of each

subfigure that the clustering performance of the ENMF reaches its best at

different parameter values for different datasets. It can also be seen from the

right plot of each subfigure that the adopted parameter setting of β = γ = 1,

although is not the best choice for individual cases, it appears as an above

average choice for most cases in both the early stage (100th iteration) and the

end (500th iteration) of the evolving procedure. When the DI index is used

as the score function, the performance is less sensitive to parameter setting

than using the RAND index. In general, it is reasonable to adopt the setting

choice of β = γ = 1 to save the extra effort on performing parameter selection.

About the initial population size, in Section 3.1 we propose to generate five

candidates using five different NMF initialization approaches. It is of course

possible to generate more than one candidate using each approach, which

leads to a larger population size. To investigate the impact of the popula-

tion size, we run the ENMF with the random initialization approach RAI

under different initial population sizes of m = 3 and m = 10 using the RAND

index as the score function, for which the initial candidates are generated

by running the RAI approach three and ten times, respectively, using the

iris and Haberman’s survival datasets under four random training-test par-

titions. It can be seen from Figure 6, among seven trials of the two datasets,

the smaller population size (m = 3) actually provides higher clustering per-

formance, while only in one trial of the iris data, the larger population size

(m = 10) performs better. We also conduct the same experiments for the
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clustering based initialization approach CI and have observed that different

population sizes lead to almost the same performance of the ENMF. Since a

larger population size does not necessarily offer better performance for the

random initialization approach and different population sizes usually offer

similar performance for the clustering based initialization, we include only

one candidate for each initialization to improve the algorithm efficiency.

5. Conclusion

We have proposed a new strategy for conducting NMF, so that the result-

ing encoding coefficient matrix H is capable of representing better quality

of clustering structures. Three rules have been designed, of which the first

rule inherits the classical multiplicative update, while the other two rules are

driven by the preservation of stronger candidates offering higher clustering

quality and are inspired by the evolutionary optimization algorithm of fire-

fly. Any measure for assessing the clustering performance can be used as the

score function to control the evolving procedure. The proposed framework is

general and can also be applied to improve NMF applications for other data

analysis tasks by setting appropriate score functions. For example, measures

of compression rates, data sparsity and reconstruction errors can be used

for data compression tasks. Experimental results have demonstrated the su-

perior performance of the proposed method over existing ones for the data

clustering task evaluated with ten benchmark datasets.

For the future work, we will investigate the application of the current

algorithm in the sparse coding as mentioned in [48] [47] and [17]. Extra terms

will be added in the optimisation function (as in [48] and [17]) to control the

sparsity of the encoding vectors, while the proposed algorithm will be applied
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for solving the new proposed optimisation function to obtain sparse data

representations. Besides,not only limited to the clustering, we will apply

the developed algorithm for other applications, i.e., data compressions for

high-dimensionality data such as image and video ([15], [18],[13], [48] and

[17]).
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Datasets No. of Instances (n) No. of Features (d) No. of Classes (k)
Balance 625 4 3
Breast 106 9 6
WDBC 569 30 2
BCWO 683 9 2
Dermatology 358 34 6
Glass 214 9 6
Haberman 306 3 2
Iris 150 4 3
Thyroid 215 5 3
Winered 1599 11 6

Table 1: Summary of dataset characteristics.
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(a) Balance (b) Breast (c) WDBC

(d) BCWO (e) Dermatology (f) Glass

(g) Haberman (h) Iris (i) Thyroid

(j) Winered

Figure 2: Comparison of the RAND performance between the ENMF under the mixed
initialization and the NMF multiplicative update initialized by RI, RAI and CI for various
datasets.
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(a) Balance (b) Breast (c) WDBC

(d) BCWO (e) Dermatology (f) Glass

(g) Haberman (h) Iris (i) Thyroid

(j) Winered

Figure 3: Comparison of the DI performance between the ENMF under the mixed ini-
tialization and the NMF multiplicative update initialized by RI, RAI and CI for various
datasets.

35



1

β

0.5

00
20

40
60

γ

80

1

0.99

0.98

0.97

0.96

0.95

0.94

0.93

0.92

0.91

0.9

100

R
A

N
D

 (
%

)

parameter combination index
0 10 20 30 40

R
A

N
D

 (
%

)

0.9

0.91

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

1

[β,γ]
[1,1]

(a) Iris data at the 100th iteration.
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(b) Iris data at the 500th iteration.
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(c) Haberman data at the 100th iteration.
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(d) Haberman data at the 500th iteration.

Figure 4: The left plot in each subfigure demonstrates the RAND performance of
the ENMF at the 100th or 500th iteration under different parameter settings of β ∈

{0.1,0.3,0.5,0.7,0.9,1} and γ ∈ {0.001,0.01,0.1,1,10,100} leading to a total of 36 param-
eter combinations. The right plot of each subfigure demonstrates the RAND performance
distributions of all the 36 parameter combinations of [β, γ]. The marker “●” indicates
the parameter combination of β = γ = 1, while the markers “∗” indicate the remaining
combinations.

36



1

100

1.2

1.4

1

1.6

D
I

γ

1.8

50

β

2

0.5

0 0 0 10 20 30 40

parameter combination index

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

D
I

[β ,γ]

[1,1]

(a) Iris data at the 100th iteration.
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(b) Iris data at the 500th iteration.
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(c) Haberman data at the 100th iteration.

1.184

1.186

100

1.188

1.19

1

1.192

D
I

1.194

γ

1.196

50

β

1.198

0.5

0 0 0 10 20 30 40

parameter combination index

1.184

1.186

1.188

1.19

1.192

1.194

1.196

1.198

D
I

[β ,γ]

[1,1]

(d) Haberman data at the 500th iteration.

Figure 5: The left plot in each subfigure demonstrates the DI performance of the
ENMF at the 100th or 500th iteration under different parameter settings of β ∈

{0.1,0.3,0.5,0.7,0.9,1} and γ ∈ {0.001,0.01,0.1,1,10,100} leading to a total of 36 pa-
rameter combinations. The right plot of each subfigure demonstrates the DI performance
distributions of all the 36 parameter combinations of [β, γ]. The marker “●” indicates
the parameter combination of β = γ = 1, while the markers “∗” indicate the remaining
combinations.
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Figure 6: Comparison of the convergence rates of the ENMF under different initial pop-
ulation sizes of m = 3 and m = 10 using the RAI initialization for the iris and Haberman
datasets. Four different training-test partitions are used, each referred to as a trial.
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