
An abandoned object detection system based on dual background segmentation

A. Singh, S. Sawan, M. Hanmandlu
Department of Electrical Engineering

I.I.T. Delhi
Delhi, India

abhinavkumar.singh@mail2.iitd.ac.in

V.K. Madasu, B.C. Lovell
School of ITEE

NICTA and The University of Queensland
Brisbane, Australia

v.madasu@uq.edu.au

Abstract— An abandoned object detection system is presented
and evaluated using benchmark datasets. The detection is
based on a simple mathematical model and works efficiently at
QVGA resolution at which most CCTV cameras operate. The
pre-processing involves a dual-time background subtraction
algorithm which dynamically updates two sets of background,
one after a very short interval (less than half a second) and the
other after a relatively longer duration. The framework of the
proposed algorithm is based on the Approximate Median
model. An algorithm for tracking of abandoned objects even
under occlusion is also proposed. Results show that the system
is robust to variations in lighting conditions and the number of
people in the scene. In addition, the system is simple and
computationally less intensive as it avoids the use of expensive
filters while achieving better detection results.

Keywords- video surveillance, left baggage detection,
background segmentation, tracking

I. INTRODUCTION

Recent years have seen a stark rise in terrorist attacks on
crowded public places such as airports, train stations and
subways, nightclubs, shopping malls, markets, etc. Many
surveillance tools have been employed in the fight against
terror. Although video surveillance systems have been in
operation for the past two decades, the analysis of the CCTV
footage has seldom ventured out of the hands of human
operators. Recent studies [1-3] have brought into fore the
limits to human effectiveness in analyzing and processing
crowded scenes, particularly in video surveillance systems
consisting of multiple cameras.

 The advent of smart cameras with higher processing
capabilities has now made it possible to design systems
which can possibly detect suspicious behaviors (in general)
and abandoned objects (in particular). A number of
algorithms [5, 7, 8] have been suggested in the recent past to
deal with the problem of abandoned-object-detection. Due to
their dependence on complex probabilistic mathematics,
most of these algorithms have failed to perform satisfactorily
in real time scenarios. In addition, the other difficulty of
detecting an abandoned object under occlusion adds to the
overall complexity. Some proposed algorithms [4-5] have
dealt with partial occlusion (by moving people) but complete
or prolonged occlusion (by another object) has not yet been
tackled. Furthermore, the background subtraction methods
employed in the above methods are either computationally
intensive or lack dynamically updating features.

 In this paper, we present an abandoned object
detection system based on a simplistic and intuitive
mathematical model which works efficiently at QVGA
resolution which is the industry standard for most CCTV
cameras. The proposed system consists of a novel self-
adaptive dual background subtraction technique based on the
Approximate Median model [6] framework. Algorithms for
tracking abandoned objects with or without occlusion are
also included.

A. System Overview
The overall system (see Fig. 1) is modular in nature and

consists of four disparate blocks with each block acting as a
discreet processing unit making it easy to modify any block,
provided the input and output data types remain compatible
with the connecting blocks. The 4 blocks are: Data extraction
and conversion unit; Background subtraction module; Still
object tracking and occlusion detection block and Alarm
raising and display of result unit

A live video stream is initially segmented into individual
images from which a region of interest is extracted and
converted to 3D intensity matrices (height * width * intensity
value of each pixel). These matrices are then fed as input to
the Background Subtraction module.

II. BACKGROUND SEGMENTATION

Numerous background subtraction methods are available
in the literature. The most popular being the ones based on
Gaussian mixture models, the first of which was proposed by
Friedman and Russell [12] and then modified by several
authors [13-14] to suit their specific needs. In this work, a
new background subtraction technique based on the
Approximate Median algorithm is developed. This method is
adaptive, dynamic, non-probabilistic and intuitive in nature.
Like the majority of other methods (for ex. [6]), we also use
pixel color/intensity information for background processing.
But instead of having one reference frame, we maintain two
different reference frames for self adaptability resulting in
less computation due to non-inclusion of any complex
mathematics. Moving crowd/objects, lighting changes and
unnecessary details like shadows, reflections on floors and
walls are filtered off efficiently with only stationary objects
remaining in the scene, thus leaving us with the prime
motive of ‘detecting abandoned objects’. Moreover, having
two backgrounds has an added advantage that the user can
adjust the time interval between the update of reference
background frames to suit different needs and environments.

2009 Advanced Video and Signal Based Surveillance

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Lincoln Institutional Repository

https://core.ac.uk/display/96701448?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Figure 1: Flowchart of the overall system operation

A. Algorithm
The proposed algorithm to separate background and

foreground in the incoming image is based on the
‘Approximate Median Model’ [6]. However, our technique
requires two reference background images, namely, ‘Current
Background’ and ‘Buffered Background’. This technique of
storing two backgrounds can be considered as a dual
background method. One of the interesting features of this
technique is that both the backgrounds are updated
dynamically. The first one is updated frequently while the
second one has a slower update rate.

 The first frame of the incoming video is initialized
as ‘Current Background’. Subsequently, the intensity of each
pixel of this current background is compared with the
corresponding pixel of the next frame (after every 0.4
seconds). If it is less, then the intensity of that pixel of
current background is incremented by one unit, otherwise it
is decremented by one unit. In case of equality, the pixel
intensities remain unchanged. This way, even if the
foreground is changing at a fast pace, it will not affect the
background but if the foreground is stationary, it gradually
merges into the background.

 Since we are interested in all those objects which are
stationary for a long period of time (and thus have gradually
merged into the background), we maintain another set of
background images called ‘Buffered Background’. Here, all
those pixels which do not belong to the prospective
abandoned objects set are made equal to that of ‘Current
Background’. This is done at an interval of every 20 seconds.

 Difference of the two backgrounds is represented as a
binary image with the white portion representing foreground
(blobs).

B. Illustration
The Dual Background technique is illustrated in Fig. 2.

Frame 2A shows all the objects that are detected. Frame 2D
shows the current background, which is updated every half a
second. The longer a person or object stays in A, stronger its
impression is imprinted on D. Frame 2E shows the buffered
background, which is updated every half a minute, and does
not contain abandoned object(s). Hence the difference of 2D
and 2E gives the position of abandoned objects, which is
highlighted in frame 2C, after the object has been left
abandoned for a long enough time. Frame 2B shows the
foreground which comes from difference of 2A and 2E.

Figure 2: Dual Background Segmentation

III. OBJECT DETECTION

In this module, we divide the binary image from the
previous unit into a number of legitimate blobs (rectangular
regions enclosing continuous regions of foreground). Once
the blobs and their various properties like area, centroid
position etc. have been generated, we apply the tracking
algorithms.

A. Mathematical Model
Let us suppose that after blob analysis we get ‘N’ number

of blobs, each with its enclosing region ‘Rn (t, l, h, w)’, its
area ‘An’ and centroid ‘Cn(i,j)’.

 Figure 3: A typical blob

where,
t is the top position value of pixel; l is the left position
value of pixel; h gives the height of the blob; and
w is the width of the blob; and 1 n N

Let ‘T’ be the set of tracked blobs such that,

() (){ }[]
Mn

mtjiCAwhltRBBT nnnnnnn

≤≤∀
==

1
,,,,,,,,:

2

where,
M is the number of tracked blobs; tn is the number of
frames for which the blob has been tracked and mn is the
number of consecutive frames for which the blob being
tracked previously has been not detected

 Let us call the present set of blobs which we get after
analysis of the present frame as ‘P’ and its objects as bn ,
which are N in number. Then the set of blobs is:

() (){ }[]
Nn

jicawhltrbbT nnnnn

≤≤∀
==

1
,,,,,,:

B. Blob detection
The blob analysis takes as an input a binary image,

applies an algorithm similar to the one described in [11] and
returns various properties of the detected blobs like bounding
box, area, centroid position etc. A simplified version of the
algorithm is as follows:
1. Create a region counter.
2. Scan the image from left to right and from top to

bottom.
3. For every pixel check the north and west pixel (4-

connectivity) or the northeast, north, northwest, and
west pixel (8-connectivity) for a intensity value of 1 in
the binary image (termed as criterion of blob analysis)

4. If none of the neighbors fit the criterion then assign to
region value of the region counter. Increment region
counter.

5. If only one neighbor fits the criterion, assign pixel to
that region.

6. If multiple neighbors match and are all members of the
same region, assign pixel to their region.

7. If multiple neighbors match and are members of
different regions, assign pixel to one of the regions and
indicate that all of these regions are the equivalent.

8. Scan image again, assigning all equivalent regions the
same region value.

C. Tracking
The next process in object detection is tracking the

different blobs so as to find which blobs correspond to
abandoned objects. The first step in this process is to create
a set, Track, whose elements have three variables: blob-
Properties, hitCount and missCount. The next step is to
analyze the incoming image for all the blobs. If the area
change and the centroid position change, as compared to
any of the elements of the set Track are below a threshold
value, we increment hitCount and reinitialize missCount
with a zero; otherwise we create a new element in the
Track-set, initializing the blob-properties variable with the
properties of incoming blob and hitCount and missCount are
initialized to zero. We then run a loop through all the
elements of the set. If the hitCount goes above a user
defined threshold value, an alarm is triggered. If the
missCount goes above a threshold, we delete the element
from the set. These two steps are repeated until there are no
incoming images.

Pseudo Code for Tracking

Take area, centroid, bounding boxes (bbox) and total
number of blobs (n) as input from Blob Analysis block. Let
Track=empty set of vectors of type t where t=(area,
centroid, bbox, hitcount, misscount,active,occluded)

m= Track.Size
For i=1 to n
 c=0
 For j=1 to m
 If (percentage background in Track[j].area<50)
 Then Track[j].occluded=true
 End
 If (|area[i]–Track[j].area|/area[i] <.05 and |centroid[i]–
 Track[j].centroid|/centroid[i]<.05)
 Then Track[j].active =true, c=1,
 break from loop
 End
 End
 If c=0
 Then k=Track.size++,
 Track[k].area = area[i]; Track[k].centroid =
centroid[i];

 Track[k].bbox = bbox[i]; Track[k].hitcount = 1;
 Track[k]. active = true;

 End
End
m= Track.Size
For j=1 to m
 If (Track[j].active==true)
 Then

Track[j].hitcount=Track[j].hitcount+1;
Track[j].miscount=0;

 If (Track[j].hitcount > 4)
 Don’t update pixels of Track[j].bbox in buffered
background
 End
 If (Track[j].hitcount > 40)
 Then raise alarm for Track[j]
 End
 If (Track[j].active==false and misscount >3)
 Then delete Track[j]
 End
 End
Update the buffered background

D. Occlusion Detection and Tracking
A tracked blob is considered to be occluded if its major

region (say 80 %) is covered by foreground and it should
continue to be tracked if either it is occluded or its area and
centroid is matched with any of the blobs of set P.

An alarm is raised if tn > threshold. The blob is
removed from T if mn>3. This idea is similar to the method
used in [7] and [8] for occlusion detection, but instead of

3

keeping track of two different foregrounds, we propose the
following modification.

Let us assume that a particular portion of the frame
containing the blob which is being tracked (i.e. present in the
‘Track’ set of blobs) is now occluded. Due to this occlusion,
the blob signifying that particular object won’t be included in
the present set of Track. Mathematically,

() ()

1
else

1

1.0 and 1.0
,,

or

8.0

 if
0 and 1

2

+=

≤≤∨

<
−

<
−

>

=+=

nn

n

kn

n

kn

n

n

nnn

mm

mk
A

aA
A

jicjiC

A
R

mtt

Following are the possibilities in the new frame of the
blob that was being tracked up to previous frame:-
• Object is removed from the location. In this case, the blob

area representing the object should contain background
pixels.

• There may be a new object at the same location.
• There is a new object which completely or partially

occludes the old object.
An exception to the above cases is when a tracked object

is removed while being occluded or another object of similar
size is placed in camera’s line of view. To deal with
occlusion we have added the following two steps to the
tracking algorithm:

Step 1: Calculate the number of pixels of buffered
background which are same as that of current background for
that element of set Track which has suddenly stopped being
tracked (due to occlusion, or removal from scene). If it’s
below a threshold value, say 50 percent, and the hitCount is
above a threshold value (making sure the blob has been
tracked long enough), we label this element of the set Track
as occluded.

Step 2: Go to step 2 of the tracking algorithm. A blob
labeled occluded remains in the Track set; i.e. its hitCount is
incremented and missCount is reinitialized.

Rest of the tracking algorithm remains same.

E. Alarm and Display
We use the Raise-alarm flag from previous units and

highlight that part of the video for which the alarm has been
raised. We also display the binary-image (without
background) video so that the operator can fine tune the
value of D for shadow and reflection subtraction.

IV. RESULTS AND ANALYSIS

All algorithms described above are applied on standard
benchmark datasets for obtaining experimental results.

A. Datasets
The experiments were computed on Intel Core 2 Duo

processor with 1 GB RAM. Every video was scaled down to
QVGA resolution (320x240) and 10 fps frame rate before
further analysis. Five different situations involving different
crowd densities and various sizes of objects were selected
from the PETS 2006 dataset and two different situations
were analyzed from AVSS 2007 i-LIDS Abandoned
Baggage Training dataset, one with a low crowd density
while the other had a medium crowd density. Both datasets
involved surveillance feed from metro stations, snapshots of
which are given below.

Figure 4: Snapshot of PETS & AVSS datasets

The PETS dataset was recorded at a metro station and
each scene involved a person with a bag who loiters for a
while before leaving the bag unattended. The details of
videos which were analyzed are as follows:
• Dataset S1 (Take 1-C) : 1 person, 1 luggage item,

difficulty 1/5
• Dataset S2 (Take 3-C) : 2 people, 1 luggage item,

difficulty 3/5
• Dataset S5 (Take 1-G) : 1 person, 1 luggage item,

difficulty 2/5
• Dataset S6 (Take 3-H) : 2 people, 1 luggage item,

difficulty 3/5
Although ground truth for all the videos was available, it

was not utilized as our model dynamically updates the
background and is therefore not scene specific. Each scene
of PETS dataset was recorded from four different angles,
resulting in 20 different videos from PETS dataset and two
videos from AVSS dataset.

B. Setup
The minimum time for which the object remains

stationary and abandoned, before the alarm is raised, can be
varied and should be ideally 2 to 3 minutes, but since the
total time for which a video in our dataset runs is less than 3
minutes, we have kept the minimum time as 30 seconds or
300 frames (30s @10 fps). Once the object starts getting
tracked, anything which occludes it is taken care by our
algorithm. Hence the tracking time remains constant at
around 30 seconds, in any situation for any stationary object
before the alarm is raised.

4

Time taken for the alarm to be stopped after the
object is removed from the site, depends on how soon the
impression of the object on the current background
disappears and hence the difference between the intensities
of buffered background and current background pixels
becomes insignificant. This time depends on current-
background-update-rate and how different the object is from
the things which are behind it in the scene. Since this time
depends on the object and scene textures, it varies from five
to ten seconds.

Figure 5: Abandoned object detection process

False alarm is raised or the object is not detected in
only three cases. Each case and the reason for failure are
given as follows:

Object gets camouflaged by the background and fails
detection (no): 2 videos
Object is correctly detected but a very still person also
gets detected (np): 1 video
Object is correctly detected, no person is detected but
an unwanted blob is also incorrectly detected as an
abandoned object (nb): 3 videos

Figure 6: Occluded abandoned object detection

Although, the system performance can be
measured via common metrics such as the ROC curves, we
have defined the success rate of our algorithm using a score
which is equivalent to the ratio of the total number of videos
analyzed to the number of successfully analyzed videos.

Mathematically,

()25.05.0 ×+×+−
=

bpo nnnn
nS

We define the parameter for measuring successful
videos in the above fashion because our algorithm
completely fails if no object is detected, it partially (50%
failure) succeeds if object is detected but along with it a still
person is also detected, and it fails very little (25% failure) if
the object is correctly detected, no person is detected but an
unwanted blob is incorrectly detected as an abandoned
object.

The overall results are illustrated in Table 1. A total
of 22 videos were analyzed from both the PETS and AVSS
datasets. There were two complete failures as the system was
unable to detect the abandoned objects in the video frames.
There was one partial failure in which a still person was also
detected as an abandoned object. In addition, there were
three videos in which unwanted blobs were sometimes
classified as abandoned objects. By applying the formula for
the performance score as explained above, we achieved a
success rate of 85.2%. The results are comparable to the
methods presented in the literature and are significant
because of lesser computation and faster processing.

C. Discussion of Results
Based on the results and analysis, we can conclude that

low to medium density crowd has no effect on processing
speed or accuracy of the model. In a high density scenario,
there is a possibility that the object is prone to be hidden
from camera view for most of the time or in other words it is
camouflaged by the background leading to a failure in
detection. Another achievement of this model was that
difference in lighting conditions had almost negligible effect
on the operating performance. This can be attributed to the
use of Dynamic Background technique. The system will
thus work perfectly in an open environment (under sunlight)
too. Additionally, shadow effects and reflection of light
from bright objects do not pose any problems.

The algorithm works in real time at QVGA
resolution and 10 fps frame rate, and has a high success rate
of 85%. Even decreasing the frame rate to as low as 3 or 4
fps has insignificant effects on the accuracy of the model.
Processing speed is inversely proportional to the square of
resolution of the video for a given aspect ratio and also
inversely proportional to the frame rate of the video.

The model can detect any number of abandoned
objects in a given video sequence. Although speed is
compromised with an increase in the number of objects to
be detected but such cases are rare to encounter. Some
noticeable limitations of the model are that a completely
immovable person gets mistaken for an abandoned object.
Also, the object must be in clear view of the camera for at
least five seconds, otherwise it gets merged into the
background.

5

V. CONCLUSIONS
This paper presented an abandoned object detection

system based on a dual background segmentation scheme.
The background segmentation is adaptive in nature and
based on the Approximate Median Model. It consists of two
types of reference backgrounds, Current and Buffered
background, each with a different time interval. Blob
analysis is done on the segmented background and a
dynamic tracking algorithm is devised for tracking the blobs
even under occlusion. Detection results show that the
system is robust to variations in lighting conditions and the
number of people in the scene. In addition, the system is
simple and computationally less intensive as it avoids the
use of expensive filters while achieving better detection
results.

REFERENCES
[1] C. Sears and Z. Pylyshyn, “Multiple Object Tracking and Attentional

Processing”, Canadian Journal of Experimental Psychology, vol. 54,
2000, pp. 1-14.

[2] P. Cavanaugh and G. Alvarez, “Tracking Multiple Targets with
Multifocal Attention”, Trends in Cognitive Sciences, vol. 9(7), 2005,
pp. 349-354.

[3] M. Bhargava, C-C. Chen, M.S. Ryoo, and J.K. Aggarwal, “Detection
of Abandoned Objects in Crowded Environments”, in Proceedings of
IEEE Conference on Advanced Video and Signal Based Surveillance,
2007, pp. 271 - 276

[4] G.L. Foresti, L. Marcenaro, and C.S. Regazzoni, “Automatic
Detection and Indexing of Video-Event Shots for Surveillance
Applications”, vol. 4, 2002, pp. 459 - 471

[5] R. Mathew, Z. Yu and J. Zhang, “Detecting New Stable Objects in
Surveillance Video” in Proceedings of the IEEE 7th Workshop on
Multimedia Signal Processing, 2005, pp. 1 – 4.

[6] N.J.B. McFarlane and C.P. Schofield, “Segmentation and tracking of
piglets in images”, Machine Vision and Applications, vol. 8, 1995,
pp. 187-193.

[7] N. Bird, S. Atev, N. Caramelli, R. Martin, O. Masoud and N.
Papanikolopoulos, “Real Time, Online Detection of Abandoned
Objects in Public Areas”, in Proceedings of IEEE International
Conference on Robotics and Automation, 2006, pp. 3775 – 3780.

[8] F. Porikli, Y. Ivanov, and T. Haga, “Robust Abandoned Object
Detection Using Dual Foregrounds”, Eurasip Journal on Advances in
Signal Processing, vol. 2008, 2008.

[9] J.O. Aguilar, “Omnidirectional Vision Tracking with Particle Filter”,
in Proceedings of 18th International Conference on Pattern
Recognition, vol. 3, 2006, pp. 1115 – 1118.

[10] I. Haritaoglu, D. Harwood, L. S. David, “W4: Real-time surveillance
of people and their activities”, IEEE Trans. Pattern Anal. Mach.
Intelligence, vol. 22 (8), 2000, pp. 809–830.

[11] F. Chang, C-J. Chen, and C-J. Lu, “A linear time Component-
Labeling Algorithm using Contour Tracing Technique”, Computer
Vision and Image Understanding, vol. 93, 2004, pp. 206-220.

[12] N. Friedman and S. Russell, “Image segmentation in video sequences:
a probabilistic approach”, in Proceedings of 13th Annual Conference
on Uncertainty in Artificial Intelligence, 1997, pp. 175-181.

[13] C. Stauffer, and W. Grimson, “Adaptive background models for real-
time tracking”, in Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, vol. 2, pp. 246-252, 1999.

[14] C.R. Wren, A. Azarbayejani, T. Darrell, and A.P. Pentland,
“Pfinder:Real-time tracking of the human body”, IEEE Trans. Pattern
Anal. Mach. Intell., vol. 19, no. 7, pp. 780–785, Jul. 1997.

TABLE I. SUMMARY OF RESULTS

Video Nomenclature
Time Taken for Object to be detected

after being left abandoned
(in seconds)

Time Taken for alarm to be removed
after the object is removed from the site

(in seconds)
Angle1 Angle2 Angle3 Angle4 Angle1 Angle2 Angle3 Angle4

S1 (Take 1-C) 30 30 30 30 6 5 6 6

S2 (Take 3-C) 31 31 31 31 7 7 7 7

S5 (Take 1-G) Failed Failed 30 30 Failed Failed 9 10

S6 (Take 3-H) 29 29 29 29 9 9 9 9

S7 (Take 6-B) 30 30 30 30 6 5 5 5

AVSS (low density) 28 _ _ _ 6 _ _ _

AVSS (medium density) 30 _ _ _ 7 _ _ _

6

