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Abstract 

Resource allocation trade-offs between sexual functions are predicted, but these are usually 

measured only at the whole plant level. In some gynodioecious species, individuals with 

partially restored male fertility exist providing an opportunity to investigate whether the costs 

associated with male fertility restoration are linked to seed production. In this study, we 

examined whether there is a relationship between the number of stamens and seeds produced 

both at the flower and at plant level in the gynodioecious herb Geranium sylvaticum. We 

individually marked flowers in plants varying in the degree of male sterility in the field and 

counted the number of seeds produced. There was no significant correlation between the 

number of stamens and seeds produced at the flower level suggesting an absence of resource 

trade-off between female and male functions. Furthermore, number of stamens and seeds 

were positively correlated at the plant level. The lack of trade-offs between the two sexual 

functions in this species indicates that relative sex allocation was not affected by resources 

within a single season and/or that the male costs were relatively small.  

 

Key words: Gynodioecy, male fertility restoration, resource sex allocation, seed and stamen 

number. 
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Introduction  

Plant resource allocation patterns have been fascinating evolutionary ecologists for decades. 

A basic assumption in resource allocation theory is that individuals possess a finite amount of 

resources (e.g. time or energy) to allocate to the different functions (growth, survival and 

reproduction). Individuals should allocate limited resources such that fitness is maximised 

(principle of allocation, Cody 1966; Levins 1968). Based on the idea of limited resources 

there should theoretically be trade-offs between resources allocated to different functions 

(Reznick 1985) and this has been empirically supported (Stearns 1989; Bazzaz and Grace 

1997). Among all resource allocation decisions, resource investment in reproduction is 

expected to have the most important implications for the evolution of life history traits 

(Obeso 2002).  

Most flowering plants are hermaphroditic, with flowers containing both the female 

(i.e. seed production) and the male (i.e. pollen production) sexual function. Sex allocation in 

hermaphroditic plant species usually departs from strict equisexuality (Ross 1990; Méndez 

and Traveset 2003). Trade-offs between allocation to female and male functions are generally 

considered significant and for instance one of the most important reasons behind sexual 

dimorphism and the evolution of dioecy (e.g. Ashman 1999). Even though sex allocation 

trade-offs have been investigated to some extent at the plant level, few studies have evaluated 

trade-offs at the flower level (but see Devlin 1989; Mossop et al. 1994; Sato and Yahara 

1999). Yet trade-offs within an individual level are fundamental in modular organisms such 

as plants and may reveal phenomena that are not observable at the whole plant level. Species 

where hermaphrodite individuals vary in the number of anthers produced and thus vary in the 

degree of maleness provide an excellent and unusual opportunity to investigate allocation 

trade-offs between sexual functions.  
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Less than 1% of plant species are gynodioecious i.e. include populations where 

females coexist with hermaphrodites (Renner 2014; Rivkin et al. 2016). In most 

gynodioecious species, sex determination is cytonuclear, with cytoplasmic male sterility 

(CMS) genes disrupting pollen production, which is restored by nuclear genes (Schnable and 

Wise 1998). The outcome of the cytonuclear interaction depends on whether restorers have 

negative pleiotropic effects on fitness (Caruso et al. 2012). Even though theoretically 

demonstrated, few studies have quantified the pleiotropic costs due to the lack of available 

molecular markers for CMS (but see De Haan et al. 1997; Bailey 2002; Dufaÿ et al. 2008; del 

Castillo and Trujillo 2009). The restorers may have pleiotropic effects influencing both male 

and female fertility in hermaphrodites (Koelewijn 2003).  

Geranium sylvaticum is a perennial species with a gynodioecious breeding system and 

its sex expression is most likely determined by the interaction between nuclear and 

cytoplasmic male-sterility genes (see Asikainen 2004; Couvet et al. 1998). Populations are 

typically comprised of female or ‘male-sterile’ individuals (i.e. plants with rudimentary, non-

functional stamens) and individuals that produce pollen (i.e. hermaphrodites). 

Hermaphrodites possess flowers with one to ten functional stamens, so plants can be further 

classified as full hermaphrodites (i.e. producing only perfect flowers with 10 functional 

stamens), and intermediates (i.e. producing perfect flowers with one to nine functional 

stamens or with a mixture of pistillate and staminate flowers). The intermediate plants are 

probably the result of a partial male sterility restoration. In addition to the genetic 

mechanisms underlying male sterility restoration, biotic (Varga and Kytöviita 2010) and 

abiotic factors (Varga and Kytöviita 2016) may also affect the stamen number in G. 

sylvaticum.  

Previously, we have shown that in G. sylvaticum populations the functional gender 

(sensu Lloyd 1980) of the hermaphrodite individuals varies and is biased towards maleness 
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(Varga and Kytöviita 2016). Theoretically, assuming a positive relationship between stamen 

number and paternity probability, there needs to be compensation for the fitness loss due to 

reduced stamen numbers to enable intermediates to coexist with full hermaphrodites, as both 

sexual phenotypes produce a similar amount of pollen per anther (Varga and Kytöviita 2014). 

It is usually assumed that a trade-off between female and male functions exists both at the 

flower and plant level and that allocation between the two sexual functions should also result 

in a strategy that maximises the sum of fitness gained through both functions 

(Parachnowitsch and Elle 2004; Ashman and Majetic 2006).  

In this work, we investigate phenotypic sex allocation patterns in hermaphroditic 

individuals in a gynodioecious experimental population of G. sylvaticum. We assume trade-

offs in resource allocation between female and male sexual functions at the flower level and 

consequently predict a negative correlation between seed number and stamen number both at 

the flower and at the plant level.   

  

Material and methods 

Study plant 

Geranium sylvaticum (Geraniaceae) is a self-compatible, perennial plant. Most populations 

are gynodioecious, and individuals with an intermediate sexual expression have been 

reported, having similar or even higher frequencies than that of females in populations 

(Vaarama and Jääskeläinen 1967; Asikainen and Mutikainen 2003; Volkova et al. 2007).  

Female flowers have rudimentary stamens and produce no pollen, whereas perfect 

flowers have one to ten functional stamens divided in two whorls of five and produce viable 

pollen. Pollen-producing flowers are protandrous and female flowers remain receptive for 

pollen longer than pollen-producing flowers (Varga et al. 2013a; Elzinga and Varga 2017). 

Flowers are visited by a large array of insect including syrphid flies, bees, and bumblebees. 
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All flowers offer nectar (Varga et al. 2013a). Higher visitation rates to hermaphrodite plants 

have been reported in some populations (Asikainen and Mutikainen 2005a), even though no 

study has investigated the patterns of visitation to individual flowers. All flowers produce a 

fixed number of ten ovules even though usually only up to five seeds develop per fruit 

(Asikainen and Mutikainen 2003).  

 

Experimental plants 

To examine trade-offs between female and male function we collected data in an 

experimental G. sylvaticum field located near Konnevesi Research Station, central Finland 

(62°38′N, 26°17′E). The field is an experimental setup design to evaluate long-term 

performance of G. sylvaticum. Briefly, the experimental plants originate from seeds obtained 

from a controlled hand-pollination experiment (Varga et al. 2013b). The experimental 

population is composed by 448 plants that germinated in early 2008 and were planted into the 

experimental field in September 2008 (see Varga et al. 2013b and Varga 2014 for more 

details).  

 

Plant measurements 

Flowering phenology of each individual was monitored every second day throughout the 

flowering period in 2010, noting the number of open flowers and the number of functional 

stamens in each open flower. During the peak flowering, we randomly marked more than 

1000 flowers on 196 hermaphroditic plants. Individual flowers were marked with the number 

of functional stamens present using small transparent labels (5 x 5 mm): e.g. 0 for a pistillate 

flower with zero functional stamens; 10 for perfect flower with 10 functional stamens; 4 for 

an intermediate flower with four functional stamens. Plants were naturally pollinated by a 

range of insects including bees, bumblebees, syrphid flies and other diptera (pers. obs). After 
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seed production, flowering shoots were collected and all flowers, fruits and seeds were 

counted, noting the number of seeds produced on the marked fruits.  

The sexual expression of each plant was calculated at the end of the flowering period 

as the average number of functional stamens present in all flowers observed (marked and 

unmarked flowers) per plant. Therefore, sexual expression of a plant ranged from 0 (all 

flowers produced zero functional stamens) to 10 (all flowers produced ten functional 

stamens), with intermediate plants with intermediate values.  

 

Statistical analyses 

All analyses were performed using R v.3.1.2. At the flower level, we first examined whether 

fruiting (Yes/No) was related to the number of stamens produced, using a generalised linear 

mixed model (GLMER) with a Binomial error distribution (package ‘lme4’) including plant 

identity as a random factor. At the flower level, we also investigated whether the number of 

seeds produced was related to the stamen number using a GLMER with a Poisson distribution 

and including the same variables as before.  

 At the plant level, we first investigated whether the number of shoots produced was 

affected by the plant sex expression using a generalised linear model (GLM) with a Poisson 

error distribution. Then, we tested whether the number of flowers, fruits and seeds produced 

were related to the sex expression of the plant and the total number of stamens produced per 

plant. For these, we used GLMs with negative binomial error distributions to correct for 

overdispersion (package ‘MASS’) including the number of shoots as a covariate. 

 In all models, residuals were visually inspected and collinearity between variables 

was evaluated calculating variance inflation factors (VIF), and in all cases VIF < 2.  

 

Results 
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Individual flower level 

Altogether, we retrieved data from 953 flowers belonging to 196 different individuals, with a 

mean ± SE number of stamens per flower of 7.6 ± 0.1 (Fig. 1). When analysed at the 

individual flower level, out of the 953 flowers marked 91% did successfully develop into a 

fruit containing at least one seed. The probability of a flower developing into a fruit was 

affected by the number of stamens present (ß = 0.01 ± 0.00, z = 12.0, p < 0.001). The marked 

flowers produced on average 2.90 ± 0.05 seeds per fruit. However, seed production at the 

flower level was not related to the number of stamens produced (ß = 0.01 ± 0.01, z = 0.71, p 

= 0.48; Fig. 2).  

 

Whole plant level 

The size of the experimental plants measured as the number of shoots ranged between one 

and four (average 1.4 shoots ± 0.1). The number of shoots was not related to the plant sexual 

expression (ß = 0.35 ± 0.35, z = 1.018, p = 0.308).  

During the flowering season, plants produced on average 30.0 ± 1.4 flowers and this 

number was positively related to the number of shoots produced (ß = 0.34 ± 0.06, z = 6.206, 

p < 0.001) but not to the sexual expression of the plants (ß = 0.17 ± 0.22, z = 0.791, p = 

0.429). On average, 17.3 ± 1.0 of the flowers turned into a fruit containing at least one seed. 

The number of fruits produced was independent of shoot number (ß = -0.05 ± 0.05, z = -

0.955, p = 0.339), but was negatively related to plant sex expression (ß =-0.98 ± 0.19, z = -

4.931, p < 0.001) and positively related to the total number of stamens per plant (ß = 0.04 ± 

0.00, z = 16.199, p < 0.001). 

Finally, plants produced on average 23.2 ± 1.2 seeds. We found a negative, significant 

relationship between seed production and plant sex expression (ß = -0.83 ± 0.29, z = -2.817, p 

< 0.01; Fig. 3). Moreover, the number of seeds was affected by the total number of stamens 
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produced at the plant level (0.04 ± 0.00, z = 11.295, p < 0.001; Fig. 2B) but was not related to 

the number of shoots (-0.08 ± 0.08, z = -0.938, p = 0.348).  

 

 

Discussion 

In this study, we evaluated trade-offs between sexual functions both at the individual flower 

level and at the whole plant level. Our results show that at the individual flower level, there is 

no relationship between the number of stamens and seeds produced. This suggests an absence 

of resource trade-offs between the two reproductive functions at the flower level. In contrast, 

at the whole plant level, there was a positive relationship between the number of stamens 

produced and the number of seeds. Taken together, these results indicate that there are no 

evident physiological trade-offs between female and male functions. The apparent lower 

probability of paternity with lower male sex expression was not compensated by a higher 

seed production in individuals that produced less than ten stamens per flower. In agreement, 

we did not find female function compensation of reduced male function in sexually 

intermediate G. sylvaticum plants in our previous work (Varga and Kytöviita 2016). These 

results suggest that the sexually intermediate phenotype may not be an evolutionary stable 

strategy unless other factors account for the apparent loss of male function. 

  To our knowledge, very few studies have investigated sex allocation trade-offs 

between pollen and seeds at the flower level (Devlin 1989; Mossop et al. 1994; Sato and 

Yahara 1999) and this is especially true for gynodioecious species (but see Atlan et al. 1992). 

All flowers in our study expressed the same potential for the female sexual function (i.e. 

contained a gynoecium with ten ovules) and only the male sexual expression varied. In the 

gynodioecious Fragaria virginiana, pollen production per flower has been shown to correlate 

negatively with the probability that a flower would develop into a fruit (Ashman 1999). In 
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contrast to our study species, hermaphroditic F. virginiana flowers do not present dichogamy. 

In the dichogamic protandrous G. sylvaticum flowers, the number of stamens is already 

developmentally fixed and irreversible at the time of ovule fertilisation, which could explain 

the lack of any relationship between stamen and seed number at the flower level. This further 

implies that the resource allocation to male function did not affect subsequent resource 

allocation to female function. 

 The above results were further corroborated at the whole plant level. The total number 

of stamens and seeds correlated positively at the whole plant level suggesting a lack of trade-

off between the two sexual functions. Furthermore, the results indicate that resources are 

allocated in a manner where increasing flower number benefited both sexual functions 

similarly. Sex allocation between the female and the male functions has been extensively 

studied, especially in the context of size-dependent allocation, including gynodioecious plants 

(e.g. Ashman et al. 2001). Models assuming resource-limited female function predict a 

change towards higher seed production as plant size increases. There is experimental 

evidence for this and in many species female resource allocation is more responsive to plant 

size than male resource allocation (Dudash 1991; Koelewijn and Hunscheid 2000; 

Klinkhamer et al. 1994). In the present study, seed production was not correlated with the 

number of shoots produced, a proxy used for plant size. However, the male function (i.e. the 

number of functional stamens) increased with the number of shoots and, critically, the 

increase was similar in both functions (ß = 0.40± 0.06 vs. ß = 0.35 ± 0.09 for the male and 

female function, respectively). Therefore, we conclude that the plant size did not affect 

relative sex allocation in G. sylvaticum. 

In theory, in species with cyto-nuclear gynodioecy, an increased allocation into male 

reproduction should be selected for in hermaphrodites (Maurice et al. 1993; Maurice et al. 

1994; Schultz 1994). In the present study, the number of seeds per plant was higher in plants 
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that were nearly complete hermaphrodites (Fig. 3). It has been shown previously that seed 

production in G. sylvaticum is limited both by nutrient (Asikainen and Mutikainen 2005b) 

and light availability (Varga et al. 2015) in the field. However, it remains to be tested whether 

resource limitation is also responsible for stamen and ultimately, pollen production. We do 

know that light availability affects sex expression (i.e. the number of stamens produced) in 

this species even though we did not detect any significant effect on functional gender i.e. 

whether plants reproduced mainly through seeds or pollen (Varga and Kytöviita 2016).   

To conclude, this study demonstrates the lack of marked trade-offs between the 

female and the male functions at the flower level and at the plant level in G. sylvaticum. The 

lack of measurable trade-offs suggests that there are no significant net costs of male 

restoration in this gynodioecious species. It is possible that hermaphrodites with reduced 

male function reproduce more through selfing to compensate for the loss of fitness as 

compared to outcrossing pollen donors. Selfing requires much smaller allocation to male 

function than out crossing (e.g. Whitton et al. 2008; Johnson et al. 2010). Geranium 

sylvaticum plants are self-compatible and inbreeding depression seems minor (Varga et al. 

2013b) suggesting that the potential benefits of selfing could be high in this gynodioecious 

plant species.   
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Figure captions 

Fig. 1. Frequency distribution of the sexual expression in Geranium sylvaticum experimental 

plants. The vertical line shows the mean. N = 196 plants. 

 

Fig. 2. Density distribution of the number of seeds vs. stamens produced at the individual (A) 

flower and (B) plant level in experimental Geranium sylvaticum plants. N = 953 and N = 196 

for flowers and plant respectively.  
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Fig. 3. Number of seeds produced in experimental Geranium sylvaticum plants in relation to 

plant sexual expression. Overlapping data points are plotted with random jitter for visibility. 

The line indicates the loess smoothed fit curves with a 95% confidence regions.  

 


