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Abstract 

In solving everyday problems or making sense of situations, people 

interact with local resources, both material and cultural (Kirsh, 2009a). Through 

these interactions with the world, thinking emerges from within and beyond the 

boundaries of the mind. Traditional frameworks specify that problem solving 

proceeds from initial state to goal state through the transformation of a mental 

representation of the problem by the retrieval and manipulation of symbols and 

rules previously stored in memory. Information garnered through bodi ly actions 

or from transactions with the world is considered to be a passive input. As a 

result, classical models of cognitive psychology frequently overlook the impact 

of the interaction between an individual and the environment on cognition. 

The experiments reported here were designed to inform a different model 

of problem solving that included the ubiquitous nature of interactivity in daily life 

by examining problem solving using artefacts. This research programme began 

with two experiments using an analytical problem, namely the river-crossing 

task. These experiments offered a platform to investigate the role of interactivity 

in shaping and transforming the problem presented. However, the problem 

space in the river-crossing task is relatively narrow and the research 

programme proceeded to three further experiments, this time using mental 

arithmetic tasks where participants were invited to complete long sums. These 

problems afford a much larger problem space, and a better opportunity to 

monitor how participants’ actions shape the physical presentation of the 

problem.  

Different task ecologies were used in the five experiments to contrast different 

levels of interactivity. In a low interactivity condition, solvers relied predominantly on 

internal mental resources; in a high interactivity condition participants were invited 
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to use artefacts that corresponded to key features of the problem in producing a 

solution. Results from all experiments confirmed that increasing interactivity 

improved performance. The outcomes from the river-crossing experiments informed 

accounts of transfer, as it was revealed that attempting the problem initially in a low 

interactivity condition followed by the high interactivity condition resulted in the most 

efficient learning experience. The conjecture being that learning of a more 

deliberative nature was experienced in the low interactivity version of the problem 

when followed by the opportunity to showcase this learning through the enactment 

of moves quickly in a second attempt that fostered a high level of interactivity. The 

mental arithmetic experiments revealed that a high level of interactivity not only 

produced greater accuracy and efficiency, but participants were also able to enact 

different arithmetic knowledge as they reconfigured the problem. In addition, the 

findings indicated that: maths anxiety for long additions could be mitigated through 

increased interaction with artefacts; trajectories for problem solving and the final 

solutions varied across differing interactive contexts; and the opportunity to 

manipulate artefacts appeared to diminish individual differences in mathematical 

skills. 

The varied task ecologies for the problems in these experiments altered 

performance and shaped differing trajectories to solution. These results imply, that 

in order to establish a more complete understanding of cognition in action, problem 

solving theories should reflect the situated, dynamic interaction between agent and 

environment and hence, the unfolding nature of problems and their emerging 

solutions. The findings and methods reported here suggest that a methodology 

blending traditional quantitative techniques with a more qualitative ideographic 

cognitive science would make a substantial contribution to problem solving research 

and theory.   
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 “Accordingly, just as we say that a body is in 

motion, and not motion is in a body we ought to 

say that we are in thought, and not that 

thoughts are in us.” 

C.S. Peirce, 1868.  

 

“Activity such as arithmetic problem solving 

does not take place in a vacuum, but rather, in 

a dialectical relationship with its settings.”  

J. Lave, 1988. 

 

“Finding suitable replacements for the 

traditional dualistic images will require some 

rather startling adjustments to our habitual ways 

of thinking, adjustments that will be just as 

counterintuitive at first to scientists as to 

laypeople.” 

D.C. Dennett, 1991. 

 

“The artifact is not a piece of inert matter that 

you act upon, but something active with which 

you engage and interact.”  

L. Malafouris, 2013.
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Chapter 1 

General Introduction 

The Rodin thinker is the traditional image of effortful cognition. This image 

very much sums up important assumptions and research commitments of the 

prevalent cognitivist paradigm in problem solving research: thinking processes 

are mental processes that transform mental representations, that yield choices 

or solutions, that are then selected for action. The research reported in this 

dissertation questions these assumptions: it proceeds from a perspective on 

reasoning that casts it as a product of action. To understand thinking you have 

to understand the role of interactivity, that is, how a reasoner interacts with the 

physical environment in configuring a cognitive system. This thesis reports five 

experiments on problem solving that compare and contrast performance as a 

function of the degree of interactivity. In all cases, performance was 

substantially transformed by a high degree of interactivity. On the basis of these 

results, theoretical implications and methodological recommendations are 

outlined. 

My interest in the notion of thinking as a product of action was initially 

sparked by Hollan, Hutchins, and Kirsh’s (2000) theory of distributed cognition, 

where they proposed theoretical principles to distinguish their account on 

thinking from traditional accounts of cognition. Historically, cognitive psychology 

is based on the keystone elements of the information-processing model of 

human thinking, where cognitive processes are likened to those of a computer 

(e.g., Newell & Simon, 1972; Newell, Shaw & Simon, 1958). This is often 

referred to as an internalist account of cognition where thinking is purported to 

emerge from processes occurring within the brain; external interactions 

between the body in the world or knowledge drawn from the surrounding 
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environment are regarded as passive inputs (see Gallagher, 2008; Menary, 

2007; Sutton, Harris, Keil, & Barnier, 2010; Vallée-Tourangeau & Wrightman, 

2010; Kirsh, 2013; Malafouris, 2013). Generally, a non-internalist1, approach, 

such as the theory of distributed cognition, presupposes a systemic notion of 

cognition whereby thinking emerges from interactions between the mind, the 

body, and the external world. Through further investigation into systemic 

cognition and non-internalist theories it became apparent that explanations of 

human thinking excluding interactions with the world, paint an incomplete 

picture of cognition (at best; at worst, the accounts are misleading). As a 

consequence, I become increasingly convinced of the fruitfulness of formulating 

non-internalist explanations of cognition, where thinking is posited as an 

emergent product of the interaction between the individual and the environment. 

From this perspective on cognition, I became aware that generally, 

psychological research and many canonical theories on human thinking were 

inadvertently grounded in a disembodied approach to cognition. By way of 

illustration, in the Baddeley and Hitch (1972) model of working memory there is 

no representation of the external world as anything more than a passive input. 

This is not to be presumptuous, nor is it the aim of this thesis to suggest that 

such models and theories are necessarily invalid because of the exclusion of 

interaction between agent and environment. Rather, one of the goals of this 

research programme was to illustrate the validity of, and foster awareness for, 

the reporting of the impact of interaction and situatedness on experimental 

outcomes or when developing theoretical models of cognition.  

                                                 
1 Although previous authors have used the term ‘externalist’ (e.g. Hurley, 2007; Menary, 2011) 
to describe theorists and researchers who do not ascribe to internalist theories, this thesis will 

adopt the term ‘non-internalist’. The approach subscribed to here is one of thinking emerging 
from both internal and external resources in a system of cognition, where the term externalist 
has the potential to imply exclusion of internal processes of the mind from cognition.  
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Zhang and Norman (1994) previously undertook innovative research into 

problem solving and external representations, however they did not specifically 

address interactivity with artefacts. Although their investigations revealed 

interesting insights into the effect of the external representation on performance 

in problem solving, in the ensuing years there was limited attention given to the 

topic from cognitive psychologists, with a handful of researchers pursing 

experimental approaches (e.g., Kirsh, 1995a; Ball & Litchfield, 2013; Vallée-

Tourangeau, 2013; Vallée-Tourangeau, Steffensen, Vallée-Tourangeau, & 

Sirota, 2016;). Consequently, there remained an extensive opportunity to 

explore interactivity in the lab. While the research programme presented here 

was essentially constructed from a psychological perspective, the field for 

inspiration also modestly spanned other domains including ethnography and 

philosophy of mind. The reason for drawing on this literature will become 

apparent as the thesis unfolds. However in short, the primary driver was to 

present a well-developed argument in favour of systemic cognition, showcasing 

a history of theory and research on this perspective of human thinking that has 

spanned not a few decades but more than a century. 

Much of the traditional psychological experimental literature on interactivity 

or that comparing concrete to abstract presentations of problems is predicated 

on research on the interaction between a person and a computer—the VDU 

and the keyboard (e.g., Kaminski & Sloutsky, 2009; Neth & Payne, 2001, 2011; 

Svendsen, 1991). To be sure, there is some degree of interaction when working 

with a computer, yet we are surrounded by a wealth of artefacts with which we 

interact—one of which is the computer. By framing interactivity in this narrow 

fashion, once again there is the possibility of only painting a partial picture of 

cognition. These computer-based activities are frequently centered on the 
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affordances offered by the machine in a two dimensional context, they are not 

necessarily centered on the potential of the person acting in an artefact-rich 

world solving a problem through the manipulation and exploration of the 

resources in a multi-dimensioned environment (Norman, 1993). This thesis 

adopted a broader view of interactivity as a dynamical, sense-making process 

that co-ordinates and integrates human actions in the bi-directional coupling of 

the body with others, with artefacts and with practices (Steffensen, 2013). 

The review of literature was divided into four chapters beginning with an 

overview of the traditional cognitive psychology account of thinking through to 

contemporary alternative theories on cognition. These chapters also include 

discussions on interactivity, artefacts and cognition, and the individual 

differences tasks used in the experiments presented in this thesis. The first 

chapter of the review, Chapter 2, is a foundation for discussion on the 

ecological turn of cognition, commencing with an outline of the traditional 

information-processing model, moving onto a situated account of cognition 

where thinking and knowledge are firmly tied to context and setting. Greeno’s 

(1989, 1998) contribution in support of a situated perspective on thinking, as 

presented in this chapter, was considered a suitable starting point for the 

discussion, as he directly challenged the information-processing account of 

cognition. Greeno explained, that although a traditional cognitive science 

approach to thinking provided a strong framework for research, the impact of 

context and setting was disregarded. Greeno argued for a model that explained 

the interaction of abstract internal representations with physical external 

representations in order to understand the processes of everyday thinking. The 

exploration in Chapter 2 of the situated approach to cognition continued with 

Lave’s (1988) Cognition in Practice. This is a rich source of examples and 
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theoretical conjectures on cognition in the lived-in world as a precursor to 

subsequent approaches to cognition such as distributed cognition and extended 

mind. Chapter 3 introduces the 4E’s—embodied, enacted, embedded, and 

extended cognition—with a more extensive treatment of Clark and Chalmers 

(1998) extended mind hypothesis finishing with a brief discussion of Material 

Engagement Theory (Malafouris, 2013). Chapter 4 moves on to the theory of 

distributed cognition, with a closer look at interactivity as the co-joining link in a 

dynamic cognitive system, and concludes by underscoring the role interaction 

with artefacts plays in problem solving. Chapter 5 presents a background of the 

individual difference measures employed in the experimental sessions 

presented as part of this research programme.  

The empirical evidence is introduced in Chapters 6 and 7 with a series of 

five experiments focusing on problem solving performance as a function of 

interactivity. Various individual difference measures were also included in the 

suite of tasks as a means of exploring disparities in performance by participants 

when exposed to the same problem in different interactive contexts. In all five 

experiments the external problem presentations were altered in order to 

contrast performance in low and high interactivity contexts. In Experiment 1 and 

2 a transformation problem, namely the river-crossing problem, was used to 

establish the impact of interactivity on performance. In addition learning transfer 

was investigated to determine the efficiency of learning across different problem 

presentations and levels of interactivity. The river-crossing puzzle provides a 

convenient platform for the study of problem solving with a well defined problem 

space bridging the initial state and the goal state. This particular transformation 

problem also lends itself well to presentations in different interactivity contexts 

from which to investigate situated and distributed perspectives of cognition. 
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However, these advantages come with limitations, including in this instance a 

narrow problem space, and tight constraints on the allowable moves, restricting 

the possible trajectories the solver can explore on the path to solution. To 

address these limitations, the research programme proceeded with three further 

experiments using mental arithmetic problems in the form of long additions of 

varying sum sizes. The aim of the three mental arithmetic experiments 

remained, at the core, to investigate the impact of interactivity in problem 

solving with additional hypotheses tested for each experiment as explained 

within the chapters. All mental arithmetic experiments included an investigation 

of the impact of maths anxiety across various interactive conditions. The first 

experiment contrasted problem solving performance in two interactivity 

contexts, with the second experiment employing four different interactive 

contexts (this was the only experiment with more than two levels of interactivity) 

and the third experiment explored the influence of expertise on problem solving 

across levels of interactivity. 

Chapter 8 provides a summary of these experiments and methodological 

observations resulting from this research programme. In addition there is a 

snapshot of the theories on human thinking processes proposed by early 

pragmatists, Dewey and Peirce. As suggested by Gallagher (2014), these 

theories were precursors to many of the prevailing non-internalist views on 

cognition and potentially provide a basis for an integrated theory of systemic 

cognition. 

The novel nature of the design of the experiments and the outcomes 

reported in this thesis have shown that it is possible to study interactivity by 

engineering research in the lab that allows participants to interact with the 

physical presentation of a problem. The argument presented here for a 
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systemic account of human cognition promotes the importance of identifying 

and acknowledging the influence of different task ecologies and the effect of 

interactivity on thinking. 
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Chapter 2 

Re-Thinking Thinking 

Overview 

Two significant approaches to cognition were being highly debated late 

last century. The well-established traditional approach of cognitive science 

based on a model of symbolic processing, and the emerging approach of 

situated cognition (Norman, 1993b). As an indication as to the importance of 

this debate to the study of human cognition, a special edition of the journal 

Cognitive Science was published with contributions from prominent advocates 

from both sides of the debate. Greeno and Moore (1993), Agre (1993), 

Suchman (1993), and Clancey (1993) presented a range of views on situativity 

in response to an article by Vera and Simon (1993) which suggested that this 

new approach of situated cognition could be subsumed into the existing 

symbol-system approach.  

While this chapter does not pursue the debate of that special edition, it 

does explore both approaches to cognition. In order to establish the 

fundamental arguments that prompted the development of the situated 

perspective, this chapter begins with a modest outline of the information-

processing model as the founding approach to the study of cognitive science. 

Those advocating the situated approach to cognition challenged the 

mainstream perspective that the individual is the locus of knowledge and 

thinking (Greeno, 1989; Hutchins, 1995a, 1995b; Lave; 1988). The review on 

situated cognition presented in this chapter showcases the work by Greeno 

(1989, 1998) and Lave (1988) as early researchers into learning and cognition 

in situ. Greeno (1989) was not dismissive of the information-processing 

approach as the model he proposed, in part, incorporated the concept of 
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symbolic processing in representing the interactions between agents and social 

and physical systems. Greeno’s research (1989, 1998) was chosen for 

discussion in this chapter as an introduction to the notion that cognitive 

processes consist of multiple representations—both internal and external to the 

mind—that led Greeno to doubt prevailing views of knowledge and learning 

transfer. Lave also questioned traditional approaches to learning transfer, 

motivating her to undertake ethnographic investigations similar to other 

influential researchers on situated thinking  (e.g., Carraher, Carraher, & 

Schliemann, 1985; Hutchins, 1995a). However, Lave’s (1988) study, The Adult 

Math Project, was chosen for in depth review in this chapter as her work was 

not only observational, it was also informed by experimental evidence. In 

comparing similar tasks across different settings, Lave’s study illustrated how 

the environment in which an individual is acting does not simply provide stimuli 

for action; the interaction of the agent with the situation potentially impacts 

performance and strategies used in the problem-solving process. While Lave’s 

ethnographic methodology was not used in experiments reported in this thesis, 

this early foregrounding of interactivity and the experimental evidence reported 

by Lave were influential in informing the methodological choices. This will be 

discussed in more detail in Chapter 8 as part of the reflections on methodology.  

Subsequent chapters will illustrate, that as the debate unfolded situated 

cognition was not subsumed into the traditional model of cognition. Instead, by 

building on previous arguments in favour of the ecological perspective of 

cognition, investigation into other aspects of the role of the physical 

environment on thinking and the movement toward a better understanding of 

human cognition in situ flourished. 
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Introduction 

Lave (1988) challenged conventional views that abstract knowledge learnt 

in the schoolroom was readily transferred to the ‘real’ world. Her book, 

Cognition in Practice, contributed to the emerging argument that to better 

understand problem solving it was remiss of researchers to exclude the 

interaction between individuals and their surroundings (Sawyer & Greeno, 

2009). Lave was writing at the same time as a growing number of scholars 

worked on situated cognition and situated learning, with investigations spanning 

the classroom, the supermarkets, human computer interaction, the skies and 

the high seas (Brown, Collins, & Duguid, 1989; Greeno, 1989; Hutchins, 1995a, 

1995b; Suchman, 1987, 2007). The term situated cognition first appeared in an 

article by Brown et al. (1989) and a chapter by Greeno (1989) in the same year, 

with Lave and Wenger (1991) discussing the term situated learning a few years 

later (Sawyer & Greeno, 2009). This situated approach to cognition challenged 

the paradigmatic approach to cognition of cognitive science, namely the 

computational theory of the mind, being that the mind-brain functions in a 

manner similar to that of a computer. The situationalists were not dismissive of 

a computational perspective on cognition rather that computations involve 

information that is both internal and external to the individual. Research inspired 

by the foundational work of Lave (1988) and Greeno (1989) did not challenge 

the computational perspective of problem solving, but rather questioned the 

strict internalist version of the computational perspective (Zhang & Norman, 

1994; Wilson, 1994). Emerging from the situated perspective on learning and 

thinking came the development of many prominent alternative theories and 

interpretations to the traditional approach to cognition (e.g., Hollan, Hutchins, & 

Kirsh, 2000; Hutchins, 1995a; Zhang & Norman, 1994;) including the 4E’s 
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(Gallagher, 2008) embedded (e.g., Clark, 1997), embodied (e.g., Gallagher, 

2005), enactive (e.g., Passoa, Thompson, & Noë, 1998; Varela, Thompson, & 

Rosch, 1991) and extended (e.g., Clark & Chalmers, 1998). The commonality 

between these theories, distinguishing them from the core principles of the 

cognitivists’ computational model, is the inclusion of the external environment 

beyond the brain as part a dynamic system of cognition.  

This chapter will introduce the basic premise of the computational or 

information-processing model as initiated by Simon and colleagues (e.g., 

Newell, Shaw, and Simon, 1958; Simon, 1973; Simon, 1996) as a foundation 

for progression to a discussion on the importance of considering cognition as a 

system that embraces the lived-in world.  The discussion on the systemic view 

of cognition will begin with an overview of situated cognition, based on the 

premise that it was arguably the first key movement within psychology away 

from the predominant paradigm of human cognition as an information-

processing system. This overview of situated cognition will focus on some of the 

work by Greeno (1989, 1998) and Lave (1988) to exemplify the emergence of 

the ecological turn through theories such as the situated perspective of 

cognition and learning in the late twentieth century. 

The Information-Processing Model 

Newell, Shaw and Simon (1958) were among the earliest cognitive 

scientists to propose and experimentally investigate the concept of comparing 

early versions of a computer’s information-processing capabilities to that of the 

human mind. Essentially the information-processing model parallels the 

processes of a computer during problem solving with that of the human brain. 

This metaphor of the brain-as-a-computer equates computer data with 

information received by the brain as inputs; processing as carried out in the 
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brain being similar to that of the central processing unit of a computer, drawing 

on memory to facilitate the manipulation of information (or data); with the 

solution or response being emitted as an output.  

According to Simon (1996) building computer systems that are organised 

“somewhat in the image of man” (p. 21) would potentially provide solutions to 

questions posed by psychology on human behaviour. This argument was in part 

supported by his description of both computers and the human brain as 

“physical symbol systems” (Simon, 1996, p. 21), interchanging the phrases 

‘information-processing system’ and ‘symbol system’, in explaining how 

information is encoded as symbols, stored in memory and retrieved as needed. 

Inputs encoded by the brain and stored as symbols form symbol structures 

serving as internal representations of the world, which in turn are manipulated 

by the system—the computer or the brain— to produce action within the 

external world (Simon, 1996). The Newell et al. (1958) information-processing 

metaphor equated much of the organisation of problem-solving components of 

the computer with that of the human brain, however it did not extend beyond 

behavioural to a biological comparison as they maintained that they were not 

directly comparing the electrical circuitry of the computer to the synapses of the 

brain. The aim was to explain any behaviours of a computer system that 

resembled the problem-solving strategies of a human. To facilitate this aim, 

Newell et al. (1958) developed a computer program called Logic Theorist (LT). 

This program was capable of working through a series of differently structured 

problems. The initial motivation for the artificial intelligence (AI) program, LT, 

was the belief that the construct of intelligence in humans could be extended to 

include the intelligence of the artificial systems of computers facilitating 

increased problem-solving capabilities of computers. The LT program 
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developed by Newell, Shaw and Simon drew on psychological research and 

observations of human memory and problem-solving processes in order to 

better understand human behaviour, while at the same time providing the 

foundation to build programs that would enable machines to ‘learn’ (Newell et 

al., 1958; Simon, 1973; Simon & Kaplan, 1989). Newell and colleagues 

scrutinised the algorithmic processes of the computer in solving the problems, 

comparing these processes to those of humans solving the same problems. 

They believed there were sufficient similarities between the behaviours of 

problem-solving processes and learning by LT to that of a human to initiate a 

theory on human problem solving that would be driven by the notion that 

problems were solved as a hierarchy of processes. Under this approach, a 

problem was composed of a hierarchy of subproblems this proceeded in two 

stages: first, the breaking down of the problem into components; second, the 

generation of subproblems. Through these observations of similarity, Newell 

and colleagues concluded that information-processing systems, (i.e. the digital 

computer) would provide a valuable approach for the investigation of not only 

problem solving but, the cognitive processes of other domains in psychology 

such as learning and perception by both applying them to computer learning, 

and the understanding of human psychological processes (Newell et al., 1958). 

This early work on artificial intelligence became the basis for Newell and 

Simon’s (1972) symbol system hypothesis. Here cognition was considered a 

computational process relying on schemas and symbolic structures drawn from 

memory, innate or learned, which are manipulated in the brain in an algorithmic 

manner not dissimilar to that of a computer program (Wilson & Clark, 2009). 

Problem structure. A fundamental element in the explanation of the 

problem-solving process, according to the computational model proposed by 
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Newell and Simon (1972), is the internal representation of the problem by the 

solver. Newell and Simon conceptualised this as taking place through the 

solver’s comprehension of the problem space. Essentially this problem space is 

considered a depiction of how the solver understands and mentally represents 

the problem within the task environment, which encompasses both the external 

and internal elements of the problem (Greeno, 1998; Kirsh, 2009a; Newell & 

Simon, 1972). This internal representation of the problem space is composed of 

three parts, an initial state, a goal state, and between these two states is the 

path to solution (Newell & Simon, 1972). According to this model, the reasoner 

therefore constructs a mental representation of the problem, developed through 

knowledge of the goal, subgoals, and constraints cuing certain operators that 

lead to the selection of a move or action to reduce the gap between the initial 

state and the goal state. 

 In attempting to analyse problems, the structure of a problem is frequently 

categorised as being either well structured or ill structured. In a well-structured 

problem, the solver searches or moves through the problem space guided by 

fixed operators and constraints creating this representation of the problem on 

the search path for a solution toward the clearly stated goal (Simon, 1973). The 

path to a successful solution consists of a series of simple, discrete moves that 

unfold as the task progresses. One such problem is the river-crossing problem, 

also known as hobbits and orcs or missionaries and cannibals (Knowles & 

Delaney, 2005; Reed, Ernst, & Banerji, 1974). Here the initial state is presented 

as six or ten ‘travellers’ (depending on the task variant) on one side of a ‘river 

bank’ with the goal being to move all travellers from one bank to the final 

position on the opposite river bank (e.g., Knowles & Delaney, 2005; Simon & 

Reed, 1976). The constraints are constituted by a set of simple rules, and the 
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operators in this problem, as a means of transforming one state to another, are 

the permitted moves in transporting the travellers across the river on a raft 

(Knowles & Delaney, 2005). Within the problem space there are a minimum of 

eleven moves required to reach a solution. Given this apparently narrow 

problem space, solvers nonetheless frequently breach the rules or make moves 

ending in blind alleys resulting in unnecessary moves in the search for a 

solution. Well-structured problems, such as this river-crossing problem, are 

useful tools for investigating strategies used by solvers in reaching the goal 

state as the route taken to reach the solution is tightly constrained by a small 

number of rules, therefore the search and move selection is limited. In turn this 

makes it possible for a researcher to track the steps taken to solution, the 

latency to solution, and the frequency with which the solver visits the nodes of 

the problem state as legal moves or breaches the rules producing illegal moves.  

In turn, problems may be deemed to be ill defined or ill structured where 

some aspect of the problem lacks the clarity of structure present in a well-

structured problem. The initial representation of the problem may be misleading, 

though this may not be evident to the reasoner until an attempt to solve the 

problem has commenced. As the solver works toward a solution, an impasse 

may be reached where it is clear that the inappropriate initial representation 

cannot lead to the solution phase (Ash & Wiley, 2006). Here the problem 

features of an ill-structured problem may emerge as the problem unfolds 

resulting in a changing problem space as it is constructed and modified from 

subgoals, new operators and constraints by the solver (Greeno, 1998; Simon 

1973). Thus to overcome this impasse, the representation of the problem must 

be restructured or altered to provide insight into discovering a new direction in 

searching for the solution. The moment when the impasse is overcome, or 
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insight into a solution occurs, is coupled with the certainty that a satisfactory 

solution has been reached (Gilhooly & Fioratou, 2009). This type of problem, 

known as an insight problem, can be accompanied by an “aha” (Topolinski & 

Reber, 2010, p. 402) experience when there appears to be a sudden realisation 

of the correct route to the solution. However, restructuring of the problem may 

or may not produce insight, as the cognitive operators cued by this restructured 

representation may not promote the correct solution (Ohlsson, 1984). 

According to Simon (1973), the majority of problems confronted in 

everyday life are ill-structured problems; he maintained there were possibly no 

well-structured problems, as such; only ill-structured problems that had been 

formalised for the problem solver to subsequently become well structured. 

Simon proceeded to decompose an example of problem solving in the real 

world using what he considered to be an ill-structured problem, an architect 

designing a house, in terms of units of well-structured subproblems that arise 

sequentially as the problem unfolds. In Simon’s example, during the creation of 

the design of the house, the architect tackles each problem as it emerges 

generating a series of well-structured subproblems. These well-structured 

subproblems are resolved as the architect draws on long-term memory or the 

use of experts or expert material within the reach of the architect. Simon 

described the process of designing the house as an organised system of 

production that unfolds from the architect’s memory sequentially, as a series of 

subprocesses where each step of the task is solved as the stimulus for a 

solution to the next element. Extending this example to a more generalised 

treatment of ill-structured problems, Simon (1973) proposed that by processing 

what may be considered as an ill-structured problem in components it becomes 

less complex. Thus, it may be perceived as ill structured when a large problem, 
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but well structured when deconstructed as a series of smaller subproblems. In 

approaching problem solving from this perspective it provided a foil against 

arguments that artificial intelligence problem-solving systems would be unable 

to solve ill-structured problems, as the notion of breaking problems down into a 

series of subproblems could be readily transposed onto the design of more 

complex computer programs (Simon, 1973). However, this model of problem 

solving becomes very complex for human problem solvers by potentially 

creating multiple problem spaces (Greeno, 1998). It relies on the solver to 

invoke an increasing amount of information from long-term memory to either 

update or store at the same time maintaining all aspects of these subroutines, 

such as constructing new operators and updating constraints for assimilation 

into meeting the final goal (Greeno, 1998). Simon (1973, 1996) maintained the 

problem solver, machine or human, was capable of solving complex problems if 

a system is serial in operation, by processing only a limited number of inputs at 

any one time to generate correspondingly small outputs, ultimately transforming 

the larger problem space of the original ill-structured problem. This system 

proposed by Simon (1973) accounted for emerging changes in the landscape of 

the problem space. As the issues or subproblems arise and are dealt with in this 

manner of sequential subroutines drawing on long-term memory and what 

Simon refers to as the external-memory, such as models and drawings, with the 

features from the external-memory evoking familiar and relevant information 

from the internal memory of the solver (Simon, 1973).  

Within this framework, the environment and changes presented by the 

environment in which the solver is embedded were considered as independent 

inputs. The external memory or the environment were not conceived as 

scaffolding new solutions, rather the solver was working within new constraints 
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and new goals for the subproblem, in turn generating an alternative from long-

term memory with the external environment essentially considered a resource 

and not a part of the thinking process. Simon (1996) did acknowledge in some 

respects, the interaction between individuals and the social world by discussing 

how those who are members of a society or an organisation are not passive 

instruments as they are using these social systems to advance their own goals. 

However, this was not an acknowledgment of the impact of social dynamics on 

cognition. Simon continued to express this interaction in terms of fundamental 

principles of logic, where the interaction is a series of problems solved 

sequentially as each member of an organisation performing his or her role, 

works toward achieving the over-aching goals of the organisation (Carroll, 

2002). Some of the work on models for problem solving (e.g., chess) within the 

information-processing paradigm has been criticised for being based on 

problem spaces and environments that are stable, unlike many real-world 

situations where individuals are forming an understanding of a problem in a 

dynamic setting with features emerging from the unfolding problem-solving 

landscape (Greeno, 1988). In addressing Newell and Simon’s theory on 

problem solving, Kirsh (2009a) expressed a similar criticism, noting how in 

developing their theory, Newell and Simon chose games and puzzles with a 

clear set of constraints and rules, thus creating an effective internal 

representation of the problem. In addition, the individual was assumed to 

require no specialist knowledge of the puzzle, with any individual di fferences 

presumed to affect the search within the confinements of the problem space, 

not across the entire task environment. The task environment was therefore 

considered abstract as the formal structure of a problem could be mapped 

across different presentations of the problem with any differences in the task 
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environment being considered as irrelevant and not a part of the problem-

solving task. Individuals were assumed to adapt behaviours to fit within the 

constraints of the formal problem space. Kirsh objected to the notion that the 

formal structure of problem solving, as proposed by Newell and Simon (1972), 

could be abstracted across all problem-solving landscapes or task 

environments. Kirsh believed that the solver’s path to solution is situation 

specific and is inevitably enmeshed with the activity and the context. 

The external environment. Within the task environment there may be 

diverse and alternative paths to solution, some pathways will be in sharp focus 

to the solver, other routes may not clearly lead to the target goal whereas others 

may lead to a blind alley, as exemplified by the river-crossing problem. Simon 

and Kaplan (1989) proposed that, in computers and people alike, the intelligent 

information-processing system undertakes a heuristic search of the task 

environment, using information stored in memory to filter out and select the 

most satisfactory paths to solution. Consistent with the information processing 

account of cognition, Simon and Kaplan’s description of the search process is 

an internal one, comprising of mental computations. The search is driven by the 

need to solve a problem, learn, or in the longer time scale, undergo biological 

adaptation to changes in the environment. In terms of the computational 

capabilities of an intelligent system searching the task environment, human or 

computer, is bounded by the physiology or hardware of the inner environment 

and the complex external spaces of the outer environment (Simon & Kaplan, 

1989). However, this view did not imply the outer, or external environment was 

part of the intelligent system; rather the external world was considered to be, in 

part, a burden, adding additional constraints and demands to be 

accommodated by internal cognitive processes. According to this model of 
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problem solving, the individual encodes the stimulus from the external 

environment; this is then transformed into an internal mental representation of 

the problem that may be subject to further transformation as the solver 

searches the problem space for a more suitable internal representation in 

seeking an answer. Kirsh (2009a) offered an alternative perspective, by 

considering all actions involved in the problem-solving strategy as part of the 

task environment. This was in contrast to the narrow view of a task environment 

presented by Newell and Simon (1972) or Simon and Kaplan (1989), where 

essentially only the steps taken by the cognizer in reaching a solution were 

relevant to the cognitive process. The task environment according to Newell 

and Simon did not include the impact of all actions, like scratching one’s head in 

a chess game, or the variation between artefacts, such as the difference 

between a chess game played on a computer or using wooden pieces (Kirsh, 

2009a). According to Kirsh, this view not only restricted the interpretation of a 

task environment by excluding an account of actions and artefacts as part of the 

cognitive process, but the individual differences and creative possibilities of the 

solver. Kirsh’s (1996) notion of a task environment was an abstract concept that 

offered a space of action possibilities, epistemic and pragmatic “laid over the 

interactions between an agent pursuing some goal, which we call its task, and 

the physical environment in which it is acting” (p.423). However Kirsh (2009a), 

in presenting a sketch of his theory on problem solving and situated cognition, 

did not entirely exclude the traditional cognitivist perspective, nor was he in full 

agreement with the situationalists. His proposal was a theory acknowledging 

both arguments, as situated cognition tended to focus less on search in the 

problem space than the social, cultural, material factors, where the search is of 

prime interest for cognitivists (e.g. Newell & Simon, 1972), with little interest in 
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the external world. Kirsh (2009a) suggested that it would be useful in 

developing an understanding of problem solving to appreciate the role of both 

aspects in the cognitive process.  

The “cognitive sandwich”. At the risk of oversimplification of a complex 

paradigm, there appears to be two key components to the information-

processing theory of cognition for problem solving: the first component being 

the sequential processing of information creating a series of perhaps well 

structured problems; the second being the access from and processing of 

information through long-term memory. As mentioned earlier, Greeno (1998) 

pointed out this approach assumes that the solver has sufficient internal mental 

capacity to deal with the increasing complexity of building subgoals and multiple 

problem spaces that emerge from ill-structured problem solving, in turn making 

analysis of this process complicated. This cognitive approach focuses on the 

informational content of the problem, task or activity rather than the interaction 

between the world and the individual (Greeno, 1998). Perception and action are 

considered as peripheral modules of the mind positioned either side of 

cognition, resulting in a classical cognitive sandwich, thus the mind is divided 

into components, with cognition being the interface between perception as the 

input and action as the output (Hurley, 2001). 

Situated Cognition 

The situated approach to cognition proposed thinking to be contingent on 

setting and context where knowledge and learning cannot be separated from 

the lived-in world (Norman, 1993a, 1993b; Robbins & Aydede, 2009). Situated 

cognition emerged as an alternative approach to the internal symbolic 

processing theory as part of the debate on whether or not cognition was the 

sole territory of the brain. Knowledge and learning within cognitive science are 
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generally conceptualised in a symbolic manner within the mind of an individual. 

The traditional information-processing theory, when applied to solving a 

problem, maintains that knowledge learnt through experience has been stored 

as information in memory as symbols. This information is awaiting recall 

through a web of processes and associations leading to inferences within the 

mind that are in turn applied to an activity or solving a problem (Greeno, 1989). 

This mind-as-a-computer analogy (see Gigerenzer and Goldstein, 1996) had 

been the predominant cognitive theory in cognitive science and psychology for 

over 30 years when Greeno and others (e.g., Hutchins, 1995a; Lave, 1988; 

Suchman, 1987, 2007) began exploring the concept of situated activity.  

Greeno and situated activity. Greeno (1989) questioned this treatment 

of knowledge within the information-processing approach, as there was limited 

consideration of the situation and context in which problems are located. 

Greeno (1989) was not dismissive of the information-processing paradigm nor 

the methodology used for investigating problem solving and reasoning, attesting 

to the strength and viability of the framework for the progression of research in 

cognitive science. Rather, he argued that in only dealing with cognition in terms 

of symbolic computation in the mind, the impact of situatedness of a problem or 

activity on reasoning was all but disregarded. Greeno suggested an alternative 

view “knowledge would be understood as a relation between an individual and a 

social or physical situation, rather than as a property of an individual” (p.286). In 

agreement with Lave (1988) on conclusions drawn from her study, the Adult 

Maths Project, where she investigated cognition in situ, he discussed how a 

better understanding of knowledge in context might be approached by 

analysing cognition in practice. 
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 In support of his argument for a more situated approach to understanding 

cognition, Greeno began by briefly outlining various examples of previous 

research. These included Lave’s (1988) reporting of de la Rocha’s (1986) study 

on mathematics in every day life, which investigated the shopping and food 

preparation activities of individuals enrolled in a Weight Watchers programme. 

Greeno cited the actions of one participant in the study, where rather than using 

formal algebraic algorithms as taught in school when calculating the correct 

portion of food, the calculation was undertaken through the action of physically 

dividing the food by cutting it into sections on the kitchen counter. As described 

by Lave (1988), the weight watcher was preparing the required portion of three-

quarters of two-thirds of a cup of cottage cheese for lunch, however the most 

suitable measuring device was not available. The dieter was perplexed at first, 

then in an ‘aha’ moment, he announced, “got it” (Lave, p. 165) filling a 

measuring cup to two-thirds with the cottage cheese. Tipping out the cheese 

onto a cutting board, the dieter proceeded to form the cheese into a circle. He 

marked a cross on the circle of cheese and took away one quarter, then served 

the remainder for lunch. The correct portion required of half a cup was derived 

by three-quarters multiplied by two thirds, without checking this against a 

solution worked out using pen and paper. Lave suggested that the checking 

process by which the dieter was able to assess the accuracy of the solution was 

thus enabled by the setting and enactment of the problem. In terms of O’Regan 

and Noë’s (2001) sensorimotor account of vision, this checking process could 

perhaps be interpreted as the experience of seeing being a way of acting. This 

example of the dieter measuring out cottage cheese illustrated how an 

individual utilising the resources available in that particular situation, rather than 

brain-bounded symbolic computation alone, performed the computation of the 
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portion of food required. Similarly, Greeno described a study by Carraher, 

Carraher, and Schliemann (1985) of street children with limited schooling, 

working as market vendors in Brazil, who were able to accurately calculate the 

prices of items in the market place. The street children used efficient 

computational techniques developed through actions and interactions with other 

vendors, customers, and the items in the market. However, Carraher et al. 

showed that these market vendors enacted maths differently from those 

children progressing through the formal education system (also see Carraher, 

2008). These examples do not undermine the computational perspective of the 

information-processing model, rather they illustrate different kinds of 

computations also subserved by possibly different symbol transforming 

representational systems in situated activity and reasoning (Carraher, 2008). 

The solutions to the problems faced by the Weight Watcher and the Brazilian 

street children were built out of components in the form of resources offered by 

the situation, rather than symbolic computations alone. When acting in the 

world, an individual integrates the structural features and knowledge offered by 

that particular environment in which he or she is situated with the stored 

knowledge the individual brings to the situation (Greeno, 1989). Drawing on 

Gibsonian and Heideggerian concepts Greeno also expressed the view that 

when engaging in everyday activities with the world an individual may interact 

with the structural features of the environment directly, without forming and 

interacting with mental representations of these features. However, Greeno 

moderated this radical view on representations by adding that representations, 

or mental models, of the structural features of objects and events are generally 

constructed when direct interactions with the environment are not successful. 

These mental models integrate the features of the setting and the knowledge of 
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the individual, thereby modifying and updating the knowledge available to the 

individual stored in the symbolic form. Closely related to this notion, O’Regan 

(1992) in arguing in favour of an alternative approach to the view that internal 

representations give rise to visual consciousness, proposed that people use the 

world in which they are embedded as an external memory. This proposal was 

further developed by Noë and O’Regan (2001) in suggesting, “the outside world 

serves as is its own, external, representation” (p.939).  

The research of de la Rocha (1986) and Carraher et al. (1985) underscore 

Greeno’s (1989) view, that the environment in which an individual is immersed 

is impactful on cognitive processes, with computations taking place across a 

cognitive landscape composed of internal and external features. Greeno (1989) 

believed that research such as de la Rocha’s (1984) and Carraher et al. (1985) 

evidenced how answers to everyday problems are often built from the situation 

in which the activity takes place. The knowledge garnered from the environment 

in a particular situation may provide the potential for the solution for a particular 

problem; this is not the exclusive domain of the internal manipulation of 

knowledge as symbols drawn from biological memory stores. According to 

Greeno and others (see Lave, 1988; Neisser, 1976; Suchman, 1987, 2007) the 

information-processing model offered a static view of problem solving without 

taking into account the temporal interactions of an individual within the specific 

features of their environment. Greeno maintained that knowledge, and therefore 

reasoning should be considered as related to the situation and using resources 

to hand, rather than in the mind of an individual internally manipulating symbols 

as an entity detached from the external world. 

In order to explain this theory of knowledge as a situated relational 

process and the issues of transfer from symbolic structures in the internal mind 
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onto the external physical world, Greeno presented a simple diagrammatic 

representation of semantics (see Figure 2.1). This illustrated how the symbolic 

structures and notations as described by an information-processing theory (see 

left-hand side of Figure 2.1) are potentially disconnected from the objects and 

events in the physical, socially situated world (see right-hand side Figure 2.1). 

The lower left platform on the diagram denotes basic notations and symbols 

such as marks on a piece of paper with these forming organised symbolic 

structures shown on the upper left platform, this would include, for example, 

written and verbal instructions. On this upper platform the arrow (ψ) refers to 

how symbolic expressions may be mapped from one to another resulting in the 

same meaning, if transformed according to a prescribed set of rules, for 

example 2 x 2 can be expressed as 22. On the right-hand side the individual 

objects and events are on the lower platform, and the upper platform indicates 

the organisation of the objects or events in relation to daily activity with the 

arrow (μ) denoting actions on the objects within a setting. θ on both sides of the 

platform refers to the relationship between the lower platform and the 

corresponding upper platform. The arrow at the top (Φ) represents the mapping 

of symbolic expressions across to the objects and events denoted by the 

symbols. Greeno interpreted this diagram as exemplified by way of the studies 

from Lave (1988), de la Rocha (1986), and Carraher et al. (1985) discussed 

earlier, indicating how school-based knowledge may be separated from 

reasoning in everyday problem solving. It may be the case for students that ψ 

and μ exist as two separate systems thus difficulties may arise in the 

meaningful transposition of these symbols and resulting symbolic structures 

(see left-hand side Figure. 2.1) onto events or objects that do not closely 

resemble the same symbol or structure as stored in memory when applied 
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beyond the classroom (see right-hand side Figure. 2.1; Greeno, 1989). This 

disconnect occurs by virtue of the notion that the symbols are encoded within 

the brain in a particular situation with a specific context, say within classroom. It 

may be problematic for an individual to map the symbolic structures onto real 

world problems as the language or notations learnt when mastering the 

symbolic structures do not correspond to the objects and activities. The 

semantics for the two sides are different, however, by viewing this from a 

situated perspective Greeno believed there would be an improvement in 

understanding “the separation between formulas and the interpretation of 

physical events that is evident in many students’ understanding” (p. 297) and 

therefore a possibility for research to improve this bridge between the two sides. 

Although discussed more explicitly in terms of interacting with the world, Kirsh 

(2009a) also clearly identified the problem of mapping from one 

representational system to another. Well-defined entities in one 

representational system may be easily mapped onto another well-defined entity 

in another system. However, a problem becomes more difficult to attend to 

when there is a difference between the abstract internal representation and the 

concrete physical domain disrupting the mapping process (Kirsh, 2009a). The 

reasoner may now have difficulty linking the two systems potentially requiring a 

revision of the problem by exploring the physical world. Greeno’s agenda was to 

provide a framework of situated thinking to describe and ultimately explain how 

successful transfer of knowledge between the two sides of the semantic 

equation could be possible by attempting to understand the co-ordination of 

interactions between physical representations and symbolic representations; he 

was not in any way proposing a complete solution. Greeno believed there were 

multiple representations at play during the reasoning process—mental 
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representations in manipulating the symbols on the left side, and the physical 

representation of objects and events. 

 

 

Figure 2.1. A view of semantics (adapted from Greeno, 1989). The left-hand 
side portrays symbolic expressions. The right-hand side indicates the entities 

(objects and events) referred to by the symbolic expressions. 
 

The issue in understanding transfer of knowledge was to resolve 

difficulties in the interactive relationship between these multiple representations. 

However, the question is also whether there is in fact transfer of learning from 

the symbolic notations favoured by the cognitivists to the situated and 

structured events of everyday life. Greeno believed that successful transfer is 

not readily achieved, as situatedness is not addressed by cognitive science in 

models of reasoning and problem solving. The interaction on the left-hand side 

of Figure 2.1 is with the symbolic structure rather than the notations, the 

individual draws on the symbolic notations as constituents of the symbolic 

structures, then maps (ψ) from symbolic expression to symbolic expression to 

transform the structural feature (Greeno, 1989). Greeno used the example of 

‘John brewed some coffee’ to exemplify a manipulation of the symbolic 

structures rather than notations, which can be rewritten as ‘Some coffee is 

brewed by John’. Of course this takes place within a permitted set of rules, in 

this case the English language, it would not make or at least it would change 

the meaning to say, ‘John was brewed by some coffee’. Similarly, manipulations 
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may be said to take place in the relationship between objects and the way an 

individual interacts with these objects in a given situation; these would also be 

subject to constraints. The objects and events as depicted in Figure 2.1 are 

manipulated (μ) within the given environment. The issue for Greeno is there 

may be a disconnect in the mapping of symbolic expressions, as school-based 

knowledge (ψ) and the structural features of the environment in everyday 

reasoning (μ). To exemplify his view Greeno cites a study by Caramazza, 

McCloskey, and Green (1981) where students taught Newtonian principles of 

motion using formulas were unable to apply this school-learnt knowledge to a 

practical situation using objects including a weight and a pendulum. To the 

students, the knowledge they learnt was related to the situation of learning in 

the class and the symbolic expressions, such as a physics formula ‘ f=ma’, 

rather than how to apply the notations such as f to how a weight affects the 

swing of a pendulum. There appears to be a disconnect in the transfer of 

information between knowledge learnt in the class and the physical event or 

object in the world. Greeno used the research by Carraher et al. (1983), as 

described earlier, to illustrate how in that setting, there appeared to be no 

connection between traditional school-taught mathematics and the real-world 

reasoning about quantities as used by the Brazilian street vendors. This 

indicated the computations in calculating the price of goods by the street 

vendors were possibly carried out by manipulating representations provided by 

the world rather than internal representations alone. Although, Greeno did not 

discuss his model in terms of computations, there was no implication that he 

was attempting to undermine the computational perspective of traditional 

cognitivists. As he pointed out, there are occasions when computations take 

place in the head, for example mental arithmetic or the construction of 
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sentences. Although, the Brazilian market vendors made computations using 

the items on the stalls as a reference point in calculating the amount to charge 

shoppers, it could be argued that the street vendors had their own internal 

symbolic notation for quantities that they mapped onto the real world situation. 

However, these symbolic notations would have been derived from their 

experience in the market, therefore indicating an interactive feedback loop of 

knowledge. The important point may be, in the case of the Brazilian market 

vendors, that there is an internal symbolism driven by and emerging from 

actions in the environment, therefore the computational system is distributed 

across the internal mind and the external environment.  

Greeno provided an example taken from an unpublished study by Johnson 

(1988) showing how numerical concepts, such as more than or less than, 

interrelate with the environment in which an individual is situated, during the 

construction and interpretation of models. Here, young children completed 

various quantitative mathematical comparison tasks. They were given a set of 

problems to solve using tokens as counters and a similar set of problems as 

word problem tasks to solve without any artefacts. The children performed 

better in the artefact based maths task involving the interaction between various 

relational concepts using the tokens, than when asked to complete similar tasks 

as word only based problems. In analysing the strategies used, the outcome 

was interpreted as an illustration of how the children used relational concepts to 

obtain the correct answer when they were able to operate in the world by 

arranging the tokens. Whereas in the word problem, there appeared to be a 

lack of interpretation of the comparative nature of the problems as the children 

resorted to reworking the problem using the symbolic structure, locating the 

numbers and adding or subtracting them, resulting in errors. This illustrated how 



 31 
 

in the word problems the arrangement of the problem became a self-contained 

system depicted by ψ as in Figure 2.1 where the semantics of the symbolic 

structure of the problem on the left-hand side could not cross over to be 

mapped onto a representation of the problem on the right-hand side. The 

reasoning abilities of the young children in the study appeared to be enhanced 

by the opportunity to model the theory of general concepts in the world using 

objects. Not unlike Lave (1988), Greeno maintained that school-based 

knowledge was all too often not connected in a valuable manner, nor was it 

relational in a generative way to other real-world situations (Greeno, 1989; 

Suchman, 1987, 2007). Greeno and Lave were not suggesting that school-

based knowledge was not situated. They proposed that knowledge learnt in 

school relates to the requirements of the setting of the classroom, students may 

learn knowledge in a symbolic manner, such as an algebraic equation; they are 

then tested on the manipulation of symbols in terms of the learning of the learnt 

algebraic equation. However, the student might not understand or interpret the 

knowledge in the way the teacher intended resulting in difficulty mapping these 

algebraic operations onto real-world settings (Greeno, 1989).  

The situated perspective firmly placed enquiry into cognition and 

behaviour beyond that of the individual, to focus on larger systems of 

interactivity in which the individual is embedded as “behaving cognitive agents 

interacting with each other and with other subsystems in the environment” 

(Greeno, 1998, p.5). Greeno maintained, that toward the end of the twentieth 

century the framework for analysis of the behaviour and cognition of individuals 

and groups had developed into two streams—the cognitive strategy, and the 

situated strategy. The cognitive strategy used experimentation, usually in the 

lab, to better understand individuals and subsystems, using these as 
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components from which to develop models and theories about larger more 

complex arrangements. As Lave (1988) pointed out psychologists frequently 

generalise about the population from observations of individuals. Whereas the 

situated perspective used tools such as discourse analysis and ethnography to 

investigate an activity of a person or people integrated in a larger system, for 

example Lave’s (1988) supermarket study and Hutchins (1995a) study on 

navigation in Cognition in the Wild. 

The situated perspective of learning and education as described by 

Greeno (1998), is one of participation and interaction with others, encouraging 

inquiry and discussion in the acquisition of skills by the individual, however 

there is very limited acknowledgement of the impact of interaction with artefacts. 

The study by Johnson (1988) of young children working with problems and 

tokens as previously described, offered no discussion on the use of the 

artefacts, the focus was on the mapping of symbolic representations onto 

physical real world events. Greeno briefly mentioned the use of pen and paper, 

calculators or computers as tools for the progression of skills and in the 

understanding of mathematical concepts. In one example presented by Greeno 

(1998), he described a study by Hall and Rubin (1998) where a student solving 

a maths problem drew a diagram, Hall and Rubin called “a journey line” (p.19), 

to represent the distance travelled as described in the problem. The student 

was asked to construct and explain this journey line to other students in a 

classroom situation which they used to calculate time, distance, and motion. 

The researchers found the explanation increased in fluency as the diagram 

unfolded over a number of presentations. The details of the experiment are not 

relevant here, however, what is interesting is the interaction in this classroom 

situation as a conduit for the social distribution of knowledge and cognition, 
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which as Greeno explained, is an important component in the situated 

framework for the dissemination, clarification, and updating of knowledge. 

However, there was little attention given to the use of the timeline, pens, 

markers, and blackboards as functional components in the cognitive process. 

Despite closing comments that included reference to the focus of the situated 

perspective on not only interactions between people but also the environment, 

the interaction with artefacts does not appear to be acknowledged as having a 

significant role in a dynamic cognitive system within Greeno’s interpretation of 

situated cognition.  

Lave (1988) was also exploring the impact of situatedness and context on 

human thinking and behaviour, with an emphasis on learning transfer. Lave’s 

study provided illustrative evidence for many of Greeno’s (1989) views on 

cognition. Therefore, by way of expanding on Lave’s influential contribution 

toward the establishment of a situated account of cognition, the following 

discussion on her book Cognition in Practice will consider her ethnographic and 

experimental evidence on the importance of considering the lived-in world in the 

understanding of human cognition. 

Lave and situated cognition. The concept of Lave’s (1988) book, 

Cognition in Practice, was based upon bringing the idea of “outdoor 

psychology” (Geertz, 1983/1993, p. 153) to reality, by combining observational 

and empirical techniques from ethnographic and experimental methodologies. 

Two studies, one by de la Rocha (1986) and a second by Murtaugh (1985) 

were used as foundations for the larger study that was to become the Adult 

Math Project, the basis for Lave’s book. The result was an exploration of 

mathematics “in situ” (Lave, 1988, p. 5) investigating the multifaceted 

interactions and relationships between traditional cognitive theories, education, 
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and the everyday practices of ordinary folk. Additional motivations for this study 

were driven by challenges from Lave of some prevailing cognitive theories and 

models. Following the findings of previous research, (Carraher, Carraher, & 

Schliemann, 1985; Lave, 1977; Reed & Lave, 1979) Lave was skeptical of the 

conventional learning-transfer theories, as held to be valid in the fields of 

psychology and education, where knowledge learnt in the classroom was 

considered to be readily transferred to everyday activities such as problem 

solving. She was also concerned that current internalist approaches to human 

cognition reduced individuals to disembodied, self-contained computational 

machines, which may result in distorted and unproductive characterisations of 

how people learn and think in the world outside the psychologist’s laboratory. 

Lave argued that as people act in the world thinking is often stretched across 

the mind, the body, and the setting, therefore any analysis of human thinking 

should reflect the interaction between the person, the actions, and the setting of 

the activity. Finally, she also noted that the current debate on ecological validity 

of experiments in the laboratory had achieved very little in rethinking traditional 

experimental methodology, acknowledging how this was an easily identifiable 

problem but extremely challenging to solve.  

This proposal by Lave to analyse the connection between cognitive theory, 

education, and everyday activities was an ambitious project, namely the Adult 

Math Project, which combined both observational and experimental enquiry 

across a variety of daily activities. In this investigation, researchers observed 

participants, with no particular mathematical skills, in everyday behaviours such 

as cooking, shopping, dieting, money management, in particular tasks within 

these activities requiring the application of any type of arithmetic. Lave 

explained that the term “everyday” (p. 15) as used in this study was not 
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pertaining to a particular time of day, a set of activities, social events, social role 

or settings, rather it is what people, “just plain folks” (p. 4), do in daily, weekly, 

monthly cycles of routine activity using examples of the shopper in the 

supermarket and the scientist in the laboratory. She therefore assumed the 

substantial task of addressing these questions by going beyond theorising, 

beyond the laboratory and into the ordinary world. Lave’s work showed that it 

was possible to study cognition in practice using ethnographic and experimental 

techniques. However, the lengthy methodological processes undertaken by 

Lave (1988), Murtaugh (1984), and de la Rocha (1986) in the pursuit of this 

extensive project also underscored the complexity of taking an investigation 

outside the laboratory. 

Arithmetic was chosen by Lave for this study of everyday practices as 

most individuals are exposed to maths through schooling, as professionals, 

laypersons, and in their day-to-day activities. These activities are also 

observable in daily life making maths a useful medium for the analysis of 

cognition as a social anthropological project. Maths is also frequently used for 

experimental research within cognitive psychology providing readily available 

examples with which to compare the results of the Adult Math Project. In 

addition, studying maths in-situ offers a rich opportunity to observe the impact 

and transfer of school-learnt maths on daily problem-solving activities. The aim 

of the study was to examine arithmetic and cognition—in particular problem 

solving—contextually and situated, as opposed to what Lave considered to be 

the more contrived environment of the laboratory setting. 

Lave directed a number of criticisms at the limitations of functional 

approaches to cognition that separate thinking into emotional and rational 

states, with problem solving being considered as a normative process of 
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rationality. This is a thinly veiled expression of the limitations of the information-

processing model which not only ignores the impact of emotion on problem 

solving in daily life, it also gives the social-cultural aspects of the lived-in world a 

passive role in cognitive processing. Neisser (1976) was one of the earliest 

cognitive psychologists to convey one such concern. He stated that in 

committing to this model of cognition (i.e. the information-processing model) 

“…there may be trouble ahead. Lacking in ecological validity…such psychology 

could become a narrow and uninteresting field” (p.19) by not attending to the 

actions of people and interactions with the everyday world. Neisser was not 

advocating an end to laboratory-based experiments; however, he believed that 

to better understand cognition it was vital to consider the impact of cognition in 

context within its natural environment. Lave also stressed the importance of 

social custom and culture in everyday practice on cognitive processes, 

maintaining that cognition was not solely a reasoning task of the mind, but also 

impacted by the society in which an individual was embedded. It is worth noting 

that although not attributed to Lave, her view is reflected in subsequent theories 

such as that of enaction (e.g., Varela et al., 1991), cognitive integration (e.g., 

Menary, 2006) and material engagement (Malafouris, 2013).  

One of the other motivations for the Adult Math Project was Lave’s 

skepticism of accepted views within cognitive science on learning transfer in 

education. She began by questioning the common view within traditional 

psychology and education practices that arithmetic as learned in school is a 

transportable tool for direct application to practical everyday situations, with little 

consideration given to the setting or context of the learning environment. 

According to Lave, the cognitive process of learning transfer was therefore 

implicit as the primary device for connecting knowledge learnt in school with 
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everyday living. The value attributed by traditional cognitive theorists of school-

based learning as transferable to life beyond the classroom seemed a logical 

place for Lave to begin investigations into the relationship between cognition 

and everyday activities. Lave argued that the origins of learning transfer 

research rested with Thorndike’s critique of the doctrine of formal discipline, 

where any form of mental discipline, from Latin to geometry, was considered to 

generally improve the minds of school pupils. Within this framework, the mind is 

like “a well-filled toolbox” (Lave, 1988, p.24) of knowledge whereby the 

individual carries the tools of knowledge, taking out the appropriate tools when 

required and returning them to be stored unchanged awaiting the next use. Two 

early theories of learning transfer and the mechanisms of learning transfer by 

Thorndike (1913) and Judd (1908) reflect this perspective in casting knowledge 

as a tool. 

Lave presented the arguments of Thorndike (1913) and Judd (1908) as 

the two key concepts in early research on learning transfer. Thorndike’s 

argument was that situations needed to share similar components for transfer of 

knowledge from one situation to another. In this case, the toolbox of knowledge 

contained special purpose tools with the appropriate tool for the relevant task. 

On the other hand, Judd proposed that generality of understanding was at the 

core of learning transfer; a few general-purpose tools could be used in a wide 

array of circumstances. General principles could then be applied to a new 

problem by recognising that it belonged to a class of problems previously 

encountered. Both Thorndike and Judd attempted to demonstrate their theories 

in the laboratory and in schools with limited success. Lave was not convinced 

that the word ‘tool’ was as an appropriate metaphor for knowledge-in-use, as 

this discounted any interaction between knowledge and the setting of the 
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activity. The assumption in using this metaphor was that a tool was resilient to 

change and may be universally applied across unrelated settings, then returned 

to the toolbox unchanged. The use of this metaphor disregarded context and 

situation to which the knowledge was being applied as well as any updating of 

knowledge through interaction with the world. 

In order to analyse the underlying assumptions of learning transfer within 

cognitive experimental research, Lave carried out what she described as an 

ethnographic enquiry into four papers—between them describing 13 

experiments—all recognised for their seminal contribution to the discussion on 

learning transfer. The experiments described in each of the four papers were 

based on a series of isomorphic tasks where participants were requested to 

solve problems in the form of puzzles. The typical criteria for measuring learning 

transfer in these studies was increased efficiency, accuracy, or the evidence of 

the application of the same basic logic for solving one problem in finding the 

solution for other similar problems. In addition to ascertaining the effectiveness 

of learning transfer across time and settings, Lave was interested in what the 

researchers meant by ‘problems’ and ‘problem-solving activity’; how the notion 

of problem solving was used in the development of subsequent models, 

understanding and addressing issues of poor transfer; and finally whether or not 

context and settings were considered in interpreting the findings. 

Learning transfer experiments. Lave described the experiments (see 

Table 2.1) in detail in her book, however for brevity within this thesis, the 

description of the experiments will be less extensive and based primarily on 

Lave’s interpretations. 

1. Reed, Ernst, and Banerji (1974). Reed et al. (1974) studied the effect of 

transfer and the use of analogy in isomorphic problem solving. They used the 
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missionary and cannibals problem (also isomorphic with the river-crossing 

problem) matched with the essentially isomorphic, although slightly more 

complex jealous husbands problem, comparing solution time, number of moves 

and illegal moves for each pair of attempts at solving the problems. In one 

experiment participants were told that the problems were analogous in the other 

they were not. Subjects were able to manipulate objects with comments being 

recorded for later analysis. There were some experimental design issues, 

however the outcome was essentially that transfer was only successful when 

subjects were told of the relationship between the problems. 

2. Hayes and Simon (1977). Hayes and Simon used the tower of Hanoi 

problem replacing the disks with monsters or globes. They were concerned with 

exploring transfer between isomorphic problems and the sensitivity of problem 

solving activity, when small changes were made to the presentation. Half the 

problems used in these experiments were transfer problems with monsters or 

globes moving from one place to the other. The other half used were change 

problems with the size of the monsters or globes changing. Using this set up, 

they added other qualities to the monsters where they could transform or move 

things. In all, there were four types of problems. Although not an issue 

discussed by Lave, it is worth noting that 60% of subjects began by making a 

sketch of the problem, however planning was not mentioned as part the transfer 

process. This complex design and the set of hypothesis proposed, resulted in 

confusing and contradictory goals. Lave criticised their work, noting that at least 

one hypothesis was not about uncovering learning transfer but the limitations of 

transfer. Lave implied that the demonstration of positive transfer by Hayes and 

Simon was weaker than their conclusions suggested. 
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3. Gick and Holyoak (1980). Gick and Holyoak studied analogous 

problems that involved creative insight. They developed vignettes based on an 

experiment by Duncker (1945) with a common problem being how to “figure out 

how to destroy a tumor by radiation without destroying healthy tissue” (p.30). 

For example, in the first experiment, subjects were given a base analogy story 

and then the target story (the radiation problem). They were instructed to think 

aloud while working through the first problem and use the solution from the first 

problem to solve the second. Gick and Holyoak envisioned a type of cognitive 

mapping where the subject would use a representation of the base problem in 

evaluating the target problem in order to detect similarities between the two 

problems, thus generating a solution for the second problem from the first. Gick 

and Holyoak were exploring why people might not be able to use analogous 

situations to solve new problems. They appeared to establish that there were 

difficulties for many participants in solving analogous problems and that this 

required further research. To the apparent frustration of Lave, the conclusions 

of Gick and Holyoak ignored earlier comments in their discussion that alluded to 

the importance of context and situatedness of the activities. 

4. Gentner and Gentner (1983). Gentner and Gentner also studied 

analogical problem solving, this time using an electronic circuitry problem. They 

described their research as testing “the generative analogy hypothesis, that 

analogies are an important determinant of the way people think about domain” 

in comparison to “the surface terminology hypothesis, that analogies merely 

provide a convenient vocabulary for describing concepts in the domain” 

(Gentner & Gentner, 1982, p. 1). They used analogies of moving water or 

teeming crowds as comparisons to the flow of electricity. Students were given 

problems based on batteries and resistors with half the subjects told the water 
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analogy (analogous with battery circuitry), and the other half were given the 

moving-crowd analogy (analogous to resistor circuitry). Gentner and Gentner 

(1982, 1983) found some evidence of students using the appropriate analogies 

in solving the problems when students were given suggestions that analogies 

may be useful tools in the thinking process. However according to Lave, 

Gentner and Gentner (1983) cast some doubt over whether their findings could 

be translated into an explanation of the mechanisms of learning transfer for lay 

people who were unfamiliar with the concept of analogies. In other words, they 

believed this particular example of transfer relied on specialist knowledge for a 

successful result.  

Table 2.1.  

A summary of the characteristics of the four papers discussed by Lave (1988) in 

Chapter 2 (adapted from Lave, 1988). 
 

 

()a = partial transfer 

Lave was not convinced the results reported by the four sets of learning 

transfer experiments provided robust evidence of transfer with only partial 

indications of learning transfer at best. In assessing the different problems 

Problem Form of 
transfer 
expected 

Transfer 
achieved 

Rationale Researchers Year of 
publication 

Missionaries 
and 
cannibals 

algorithm no Understand 
problem 
solving 

Reed et al. 1974 

Tower of 
Hanoi 

algorithm (yes)
a
 Understand 

problem 
solving 

Hayes and 
Simon 

1977 

      
Radiation analogy (yes) Important to 

science 
Gick and 
Hollyoak 

1980 

      
Electric 
circuits 

generative 
analogy 

(yes) Important to 
science 

Gentner et 
al. 

1983 
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used, she was critical of their validity as problem solving activities for these 

experiments; however, Lave was not explicit in her definition of a problem or 

problem solving in relation to these experiments. Although all experiments 

involved tasks that employed characteristics of a problem, she believed the 

problems were constructed in a manner that essentially suited the 

experimenter’s requirements and ultimate expectations of normative models of 

thinking not reflective of the lived-in world. Lave believed that by agreeing to 

participate in the experiments, the individual implicitly had no choice but to 

attempt to solve the problems, with there being only a correct or incorrect 

solution, otherwise the data were deemed unsuitable for analysis by the 

researchers. Lave questioned the value of these problems as they were similar 

in structure to those presented to pupils at school, containing well defined 

constraints and goals unlike many everyday experiences, such as those 

described in the dilemmas facing shoppers and dieters in the Adult Math 

Project. The problems posed in these four experiments have a solution that 

presupposes that all problem solving activity involves the search for the one 

and only correct answer, which again does not necessarily apply to everyday 

problem solving. In addition, as with school-based learning, it was difficult to 

ascertain whether learning from these laboratory-based problems was 

transferable to situations and contexts that reflected problem solving in daily life. 

Lave believed the researchers implied one explanation for the limited success 

of learning transfer within these experiments, was that just plain folk were less 

accomplished at analogical transfer as a tool for everyday problem solving than 

the more skilled problem solvers in scientific and other academic professions. 

According to Lave, Gick and Holyoak suggested these techniques of learning 

transfer should be taught to those unaware of this problem-solving process. 
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Despite the findings falling short of providing evidence of learning transfer, there 

appeared to be no question raised by Gick and Holyoak that the concept of 

learning transfer as a normative process might be flawed. 

Lave did concede that Gick and Holyoak briefly addressed context in 

terms of problem solving, however their definition of context was vague and was 

not inclusive of any specific discussion on everyday activity. The implication 

being that context was something to overcome in achieving learning transfer, 

rather than context providing structural features embedded in the topography of 

the problem-solving landscape, which in turn may alter the solver’s perspective 

of the problem. Lave was disappointed that the context or situatedness of an 

activity was essentially overlooked or dealt with ambiguously in the research 

she reviewed. It was clear to Lave, that the traditional cognitivist perspective 

conceptualised learning from transfer as acquired knowledge to be applied 

unchanged to situations irrespective of context, interactions between people, 

activities, artefacts, or time. Therefore, under this model it follows that 

decontextualised teachings at school are readily transferable to unrelated 

situations in everyday life. According to Lave, the notion that knowledge could 

be acquired ‘out of context’ and mapped on to any setting informed the 

motivation and design for the four sets of experiments previously described. 

Following her assessment of these experiments on transfer across isomorphic 

problems, Lave believed there to be two shortcomings with the research efforts: 

One was the absence of social context; the second being the lack of 

identification of the motivations for problem solving and knowledge transfer, 

beyond static problems presented in the laboratory into the lived-in world. 

Lave considered this dissociation of cognition from context within 

traditional psychology to be the result of insufficient theorising about cognition 
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as an activity that is situated culturally or socially. The problems used in the 

experiments for the four papers on learning transfer as discussed by Lave were 

of a closed nature. As a result the research provided little evidence that 

addressed the dynamic unraveling of a problem and its solution that individuals 

might experience when faced with the multi-faceted dilemmas of everyday life. 

Despite these criticisms, Lave did concede that some of the learning transfer 

research was attempting to discover what it is that people do when they make a 

connection between similar problems in different settings, although no specific 

research was mentioned by Lave. However, the thirteen laboratory-based 

experiments she examined fell short of providing sound empirical evidence to 

support this type of context-independent learning transfer. The experiments 

also failed to address how knowledge garnered in the school environment was 

related to everyday problem solving. To remedy this shortcoming Lave believed 

it was necessary to observe people in their daily routines, activities, and 

settings, and utilise diverse empirical techniques to understand more about 

cognitive activity as part of the lived-in world. This undertaking by Lave to 

investigate just plain folk going about their daily lives took the form of the Adult 

Math Project. 

The Adult Math Project. As part of the background to her own study, 

Lave discussed a selection of other research with a similar focus to her own 

investigation into maths and cognition in practice (see Lave pp. 63-68). This 

included Carraher, Carraher, and Schliemann (1982) and the Hutchins (1995a) 

study of navigation teams in the US Navy (Lave was aware of Hutchins’s 

research, although it was yet to be published). Unlike the experiments 

previously discussed (i.e., Gentner & Gentner, 1983; Gick & Holyoak, 1980; 

Hayes & Simon, 1977; Reed et al., 1974), these studies focused on the actions 
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of people engaged in everyday activities. According to Lave, in constructing 

transfer experiments to be conducted in the lab, the researcher first creates a 

target task with a target activity employing participants with no particular skills, 

so as not to contaminate the results. On the other hand, studies such as 

Carraher et al.’s (1982) research on Brazilian children working as market 

vendors, or Hutchins’s (1995a) study on navigation teams, the activity was 

located around the experience of the participants and their everyday activity. 

The participants were active in only one setting and selected on the basis of the 

area of research to be studied. The Adult Math Project employed a different 

approach by selecting participants with no particular skills, observing them 

across a variety of settings, and for part of the study used a within-subjects 

design to enable comparisons between performance of individuals undertaking 

similar problems in different contexts.  

There were three main components to the Adult Math Project, all 

investigating arithmetic performance and strategies in everyday practice. One 

component investigated supermarket best-buys; a second examined dieters as 

part of a Weight Watchers plan; and a third evaluated money management in 

the home. The third component revealed limited insight into maths in everyday 

practice, thus will not be part of the discussions here. The observations of all 35 

participants (32 females, 3 males) in supermarket best-buy exercises and 

formal maths test were translated into a form of experimental design where 25 

(one participant was later excluded due to health reasons) shoppers were 

involved in best-buy simulation problem sessions at home as a basis for 

studying every day activities that used well-learned routine maths practices. A 

second group of 10 Weight Watchers were monitored with the aim being to 

investigate the learning of new maths skills over a 6-week period in a setting 
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outside a school-like environment. All participants were also tested in their 

home for formal arithmetic competencies. 

Lave aimed to unite the methodology of ethnography with that of 

conventional laboratory-based experiments while at the same time addressing 

some of the criticisms of traditional experimental methodology. An approach 

Lave employed to address one of her criticisms, that lab-based experiments 

tended to investigate problems of a closed nature, was to focus on motivating 

the participants to reveal their problem solving skills by asking them to resolve 

dilemmas as they occurred in everyday settings. During observations in the 

initial stages of the Adult Math Project, Lave identified the activity that would be 

best suited as a more naturalistic problem-solving task for an experimental 

design. This task was the resolution of the dilemma by shoppers in determining 

the best-buy between two similar grocery items. In the second part of the study 

a different group of participants, Weight Watchers, were observed calculating 

food portions to satisfy the requirements of the diet programme. The Weight 

Watchers component of the study revealed strategies that illustrated the 

interaction between the individual and the environment when solving everyday 

problems. Thus, the shopper component of the study combined an 

ethnographic approach with experimental methodology; where the observation 

and analysis of the Weight Watcher component was essentially ethnographic. 

The data gathered from the research on the problems involving best-

buys were based on the performance of the same individuals undertaking real-

world arithmetic tasks in varying situations. This made it possible to compare 

results across different settings, as opposed to obtaining results from laboratory 

testing then speculating on the effect when the situation is changed. Two 

motives supported the use of best-buys for further investigation in an 
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experimental setting. First, there was the unexpected accuracy in calculations 

by participants in the supermarket, resulting in differences in problem solving 

techniques to those used in the formal test situations. Second, the tasks 

exposed the expertise of the participants in grocery shopping, suggesting they 

may not have integrated the school-taught algorithms into their daily life but 

developed their own algorithms. Lave also speculated, that as the design of this 

experiment was within-subjects, and the two tasks (the supermarket purchases 

and the formal maths tests) evaluated similar maths problems, the 

discontinuities between performance in the maths tests and the supermarket 

were related to the settings not individual differences. 

Data collection. The procedure for gathering the data was lengthy, and 

underscored the complexity of undertaking studies that attempt to address 

criticisms of ecological validity in laboratory experiments. All participants were 

asked to keep a diary of their daily use of groceries with dieters also 

documenting details of food consumption. The first stage was to conduct two 

interviews: one being an extensive background interview with each participant, 

gathering general demographic information along with details of schooling such 

as years since leaving school, and a second detailed interview on shopping 

routines or diet strategies. Next, a researcher toured the participant’s kitchens, 

observing meal preparation and asking questions about food management. The 

diaries were on hand during this stage providing a rich source for discussion. An 

inventory of calculators and measuring devices was also taken for each 

household. A system of observation was devised whereby participants were 

followed by researchers as unobtrusively as possible, fitting in with the 

schedules of the participants to observe shopping in the supermarket and 

storage of groceries in the kitchen at home. The initial observations of daily 
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behaviours at home and in the supermarket of all participants were followed by 

simulation experiments. The shoppers participated in a one-off best-buy session 

in their homes while the Weight Watchers were given a variety of meal 

preparation tasks, also in their homes, across a period of six weeks.  

Using the observations from supermarket behaviours in the initial stage 

of the study, researchers developed a series of best-buy problems for testing 

the performance and maths strategies of shoppers. In their home, the shoppers 

were presented with simulations of 12 best-buy problems. Some of the 

problems involved the use of the actual jars from the supermarket, while other 

problems were presented on cards informing the participant of the price and 

quantities of items for comparison (see Lave, pp. 104-105 for details of 

problems). The simulation experiment was devised to check the observational 

findings in the supermarket, enable comparison with the formal maths tests, and 

relationships with demographics. Due to difficulties in the supermarket 

environment with participants verbalising the problem-solving processes (e.g., 

shoppers felt self-conscious speaking into a tape recorder in the supermarket), 

it was not always possible to gather evidence of strategies used in the 

supermarket. However verbal protocols continued to be used in the form of 

direct discussions with the researchers, with more success in the simulation 

exercise as a way of confirming that shoppers had solved the problem not 

guessed the answer. Lave did not go into detail about the processes or 

strategies used when solving problems with either the cards or the physical 

items from the supermarket. Lave only noted that there was no statistical 

difference in the answers between those participants using cards and those 

using artefacts. Based on these results there was no investigation into how the 

participants used these items to solve the problems or the different strategies 
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used with the cards as opposed to the supermarket items. This apparent 

indifference by Lave to the processes used with a range of external resources is 

disappointing. One of Lave’s aims was to emphasise the point that different 

settings and external factors may impact problem solving and learning transfer, 

with the behavioural and cognitive processes in reaching solutions influenced 

by context and setting. Thus, it seems a logical assumption from Lave’s 

argument that setting should indeed include the interaction with artefacts in situ, 

when drawing conclusions on learning transfer and problem solving.  

Through observations of the same shoppers in the supermarket and the 

simulation exercises in the home, the researchers did however note that 

shoppers appeared to carry out similar mathematical practices in both settings. 

Although confusingly, Lave later noted that problem solving strategies were 

different from supermarket to the simulation in the home, explaining that this 

was not about the maths used but the other aspects of the unfolding action of 

the shopper in the supermarket. Actions that were carried out in the 

supermarket were not possible in the simulation exercises in the home, 

including the reading of the store unit price labels by shoppers, looking at the 

package size of comparable items, then using information on the packaging to 

compare value for money and searching shelves for alternative products. These 

actions were not possible, as the simulation exercises comprised of a set of 

specific items from which to make comparisons. 

The study proceeded to the final stage, which involved all participants 

taking part in arithmetic exercises testing mathematical competencies. These 

exercises were representative of maths that would have been taught during 

formal schooling. The learning transfer theories of Thorndike and Judd, as 

discussed previously, guided the construction of five arithmetic tests split into 
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three different components. The first component reflected Judd’s theory of 

transfer to assess common maths competencies, consisting of a general maths 

knowledge test and a multiple choice test drawn from a standardised maths 

achievement exam. A maths fact test and a measurement fact test (based on 

weights and measures) were developed to assess school-learnt maths skills 

reflecting the Thorndike perspective. A third set of ratio comparison problems 

was presented to address conventional views of learning transfer. Generally, it 

was observed that shoppers used ratios between quantity and cost, rather than 

an exact calculation, when assessing the best-buy between two and three 

items. Therefore, this third test was produced following the analysis of these 

observations made in the supermarket and responses from participants of the 

best-buy simulation task. A test was then created that would assess school-

learnt maths knowledge, at the same time enabling comparison between the 

formal maths test and the best-buy simulation tasks. Unfortunately, in the book 

Lave only reproduced the problems in the supermarket best-buy, the simulation 

exercise, and three out of five of the maths tests, excluding the ratio test. This 

makes it difficult to directly compare the content of the ratio tasks used in the 

supermarket and simulation with the ratio problems in the arithmetic test. 

The shoppers. The scores for the shoppers on four of the arithmetic tests 

(excluding the ratio test, as this was devised as a comparison to the best-buy 

tasks and not considered directly related to school learning) were correlated. 

The results indicated that these measures of school-like maths were a good 

assessment of this type of maths knowledge, as they were either moderately or 

strongly correlated with each other. Years of schooling were highly positively 

correlated with maths performance, with a high negative correlation between 

age and years since leaving school, demonstrating these were good predictors 
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of performance in school-like maths. However, there were no significant 

correlations between the three formal maths test scores and performance on 

the best-buy tasks, or between best-buy performance and schooling, age or 

years since completion of schooling. The surprising result was that the 

supermarket tasks were 98% accurate and the best-buy simulation resulted in 

93% accuracy, as opposed to the performance on the formal arithmetic tests of 

58%. Therefore, success in the supermarket and simulation best-buy tasks 

showed no relationship to schooling, age or years since leaving school. This 

suggested that the accuracy of performance in the supermarket and the 

simulation experiment in the home of the participant was not necessarily 

contingent on maths learnt in school. This added weight to Lave’s argument 

that the setting has an influence on problem solving performance, and math 

strategy is not necessarily a reflection of school-based learning transfer but may 

be driven by the skills learnt from everyday experiences that are situationally 

specific.  

Lave determined that the evidence from the Adult Math Project appeared 

to contravene the accepted logic of learning transfer between the setting of 

schooling and everyday practice in the supermarket. She argued that according 

to accepted cognitive theories, school algorithms when used in the supermarket 

should be “more powerful and accurate than quick, informal procedures” (p. 57). 

In addition, with the many distractions of a supermarket the expectation would 

be for greater cognitive demands on attention and loading on working memory 

than when undertaking the best-buy and maths tasks in the home, suggesting 

performance should be poorer in the supermarket. However this was not the 

case, with participants not necessarily using the maths strategies taught in 
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conventional schooling, and performance generally being more accurate in the 

supermarket than in the formal maths tests. 

In analysing the strategies used by shoppers it was observed that a 

number of characteristics of supermarket shopping calculations were dissimilar 

to those employed in the maths tests. When in the supermarket, the shopper 

would often use left to right calculations starting with the largest (hundreds) 

working down to the smallest (ones) number, using techniques such as 

rounding and easily divisible ratios in comparing and reconfiguring the problem. 

Notably, the environment was frequently used as a device for assisting in 

calculation of best-buys, such as the information on price per ounce supplied by 

the supermarket or differences in packaging of items. The environment also 

gave the shopper options not available in a traditional experimental situation. 

One example that may be the equivalent of an error in a traditional experimental 

session would be when a calculation was abandoned when the shopper felt it 

was too difficult. However, this was not considered an error in this study as the 

shopper frequently opted for alternatives by either postponing the purchase, 

substituted it for another, or “taking the big one because it won’t spoil anyway” 

(Lave, 1988, p. 58). Strategies such as these led Lave to describe the problem-

solving process in the supermarket as a transformation process, whereby the 

problem-solver must first transform the task of buying an item on the shopping 

list, or the dilemma of not knowing the best-buy in the supermarket into a 

problem requiring solution. The shopper would then work through the problem 

using the setting of the supermarket to offer strategies in order to reach a 

solution. While transforming the components of the problem as part of the 

computations, the solvers appeared to be very good at maintaining the 

relationship between the problem, the numbers, and the answer as indicated by 
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the accuracy of the solution. In contrast to the techniques employed in the 

supermarket, participants used pen and paper for the maths test, with 

calculations made working right to left, using borrowing and carrying 

procedures, with long division problems checked using multiplication and 

subtraction. Transformation of numerical solutions in the maths tests was more 

problematic for participants than in the supermarket trials. One possible 

contributing factor may have been increased anxiety by the participants in the 

formal maths tests, as they may have perceived these as more of a school-like 

assessment, when compared to the informality of the best-buy problems factor. 

This anxiety by participants was noted by some of the researchers. Therefore, 

the context of the two tasks may have been perceived differently. Although the 

maths tasks were presented in the home environment, they were still 

considered a test of abilities, whereas purchases in the supermarket were 

considered as mundane everyday activities relatively unrelated to math skills. 

Participants also made different types of errors in the maths tests to the 

supermarket maths activities. Errors in the formal maths test were more 

common in problems that required transformation before solving, such as 

expressing fractions in terms of common denominators in fraction-subtraction 

problems (3⅓ -½), rather than those that were directly solvable (36 + 98). Lave 

claimed analysis of techniques showed that the formulaic rules learned (often 

by rote) for problem transformation in school were very different from the 

successful transformation of problems in the supermarket, where there was little 

evidence for the use of formulaic rules. This claim appears to be primarily based 

on the inaccuracies of technique and answers in the more formal math tasks in 

comparison to the more ad-hoc methods resulting in more accurate responses 

in the supermarket and in-home simulation. Throughout the book Lave 



 54 
 

described in detail the methods used by a few shoppers and dieters in reaching 

solutions on specific problems. She also described the steps solvers used to 

break-down problems in the arithmetic tests, and an analysis of strategies used 

in best-buy problems for the in-home simulation and the supermarket. 

Unfortunately, there appears to be no description of an isomorphic problem by 

one shopper in the different contexts of supermarket, simulation, and maths test 

illustrating and comparing the problem solving strategies in both. However, the 

detailed examples included in the book did highlight the differences between 

strategies used in different situations. 

Other studies of maths in practice as described by Lave (e.g., Carraher et 

al., 1985) provided evidence to support Lave’s claims that rather than using 

traditional school-taught algorithms in day-to-day maths practices, the situation 

or setting might influence the strategies used by individuals when solving 

problems requiring arithmetic. Recalling the maths accuracy of the poorly 

educated children in Carraher et al.’s study on Brazilian market vendors, Lave 

noted that success in the lived-in world may not be dependent on the conscious 

application of school-learnt knowledge, nor is learning transfer as measured in 

a school-like test situation necessarily an indication of cognitive capacity. When 

investigating everyday maths strategies of those with formal maths education, it 

may be argued that it is difficult to evaluate whether the maths algorithms learnt 

in school have been the basis for self-taught algorithms in day-to-day maths 

practices. However, the argument could equally support a case for the impact of 

situatedness on cognition, as the setting and context when confronting daily 

problems has been instrumental in the development of these everyday self-

taught algorithms and strategies, which may or may not have evolved from 

arithmetic learnt in school. Lave and Carraher (2008) were not advocating that 
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individuals used a different kind of maths, or that everyday maths was 

necessarily superior to school-taught maths, as both methods resulted in 

successes and failures in the resolution of problems. They believed their 

research showed there were different maths strategies and possibly different 

symbolic representations being used by individuals for different settings. 

The dieters. The Weight Watchers component of the study by Lave (1988) 

investigated the incorporation of new food measurement practices into the daily 

lives of participants. In part, this type of activity was chosen as formal 

measurement systems are generally taught in schools and therefore should be 

familiar to the participants. In this experiment, dieters were asked to prepare all 

meals according to the Weight Watchers programme. Maths competency as 

evaluated in the formal maths tests was not related to success in calculation 

accuracy in the kitchen while participating in this experiment, although Lave 

supplied no statistics for comparison. It also appeared that the more expert 

individuals became at the programme the less they used formal calculations, 

while maintaining accuracy and losing weight. Dieters also invoked different 

strategies, structured cooking activities, and rearranged the setting and 

artefacts in such a way as to simplify the preparation and consumption of 

meals. Tools such as measuring scales, measuring cups and spoons were used 

less over time as they learnt the portion sizes recruiting everyday items as aids 

to calculation. Therefore artefacts continued to play a vital role, with the objects 

used changing as the experiment progressed. One example was when 

measuring the correct portion of milk in the early stages of the study; the dieter 

began by using a measuring cup and transferring it to a glass. The participant 

quickly reduced the process to pouring the milk directly into the glass up to the 

line of blue flowers on the glass, resulting in the required portion. Thus the 
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dieter soon moved from the formal prescriptions of the Weight Watchers 

programme to bespoke strategies in shaping the practices of meal preparation; 

formal maths became less salient in the structuring of resources for completion 

of the task at hand. This was often driven by dilemmas arising in order to 

reduce the time taken to prepare meals, accommodating family and work 

commitments. In some cases, as in the example described earlier by Greeno 

(1989), the dieter used an ad-hoc method to correctly obtain the portion size of 

cottage cheese when more precise measuring tools were not readily available. 

While the calculation may have been in part an internal process, the enactment 

of carrying out the calculation was an interaction between the unfolding problem 

and the setting. This exposed valuable insights into the impact of situatedness 

and evolving strategies employed in everyday problem solving. In addition this 

example exemplified Lave’s suggestion of an alternative approach to the 

analysis of problem solving. By observing actions and resolution strategies 

unfolding organically during everyday activity, rather than the artificially 

simulated problems of the lab, the unit of analysis becomes the person in the 

activity and the environment—the person-in-action (Lave, 1988). 

Psychology and the everyday. In Lave’s opinion cognitive 

psychologists were inclined to ignore the settings of everyday life in the 

exploration of the human mind and in the quest to develop paradigms that 

describe thinking processes. In exploring why this may be the case, she 

believed the association of the term everyday with thinking, within the realms of 

cognitive psychology, to be steeped with negative connotations. Studying 

everyday thinking was not considered rational or normative enough for the 

development of theory, nor for the methodological rigor required for 

experimentation in the lab, even though one of the fundamental aims of 
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psychology is to shed light on our thinking as we go about our daily lives. 

Subsequently, although not as a consequence of Lave’s discussion, it has 

become more acceptable within psychology and other disciplines to give 

consideration to models that do not follow a normative paradigm, for example 

Kahneman and Tversky’s (1979) prospect theory. Lave argued that there was a 

problem in cognitive research where the mind, in particular memory, was 

perceived to be a store for knowledge, being considered as the only possible 

source of continuity across situations, thus separating it from the sociocultural 

activities of everyday life. This was a problem for Lave, as she believed that 

through the observations and results from her own research, it was not 

conceivable to ignore the social when formulating an understanding of 

cognition. The “pejorative meaning of everyday thought” (Lave, 1988, p. 77) 

within cognitive psychology was an entrenched, long-standing view that the 

impact of everyday practice on thinking had little or no place in rational scientific 

investigation. Lave considered this to have emerged from the dichotomised 

classification of the modes of thought underpinned by the Western 

epistemologies of the dichotomy between mind and body, shaped by the 

positivist approach in science. Within this dichotomous framework, thinking 

modes are often divided into two classifications such as rational thought vs. 

primitive thought, domestic culture vs. wild culture, upper class vs. lower class. 

Over time, these classifications have transformed to reflect the differences 

between rational, abstract scientific knowledge and the simplistic, concrete 

thinking of the everyday. The essence being that primitive thinking is less 

cognitively demanding and rational than thinking processes of more developed 

societies. This translates into the possible view by cognitive psychologists that 

the activities of daily life taking place outside the rigor of experiments performed 
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in the controlled environs of the laboratory are assumed simpler, not as 

demanding and lack rationality on which to develop sound and consistent 

theories.  Lave (1988) even went as far as to suggest that the everyday is 

perhaps assumed simpler as it is considered to be only performed by “members 

of the lower classes and housewives” (p.82). This is somewhat of a paradox for 

psychology, as the assumptions made following hypothesis testing in 

laboratories are, in turn, frequently generalised to inform explanations for the 

activities of daily life. 

Psychology and anthropology. In Lave’s opinion, this view by traditional 

cognitive science of the everyday was also considered to be the foundation for 

one of the major divisions between psychology and anthropology, as the two 

disciplines interpret culture and cognition differently. Lave discussed differences 

between anthropology and cognitive psychology, initially pointing out two 

important commonalities between the disciplines which are often overlooked as 

the methodological approaches may be considered at opposite ends of the 

spectrum. Both are concerned with how people think and they share a 

theoretical positivist epistemology. She described how typically the knowledge 

offered by these disciplines has also been viewed as somewhat dichotomous, 

with psychology considered nomothetic (generalising about groups to find 

common rules of behaviour), whereas anthropology is viewed as ideographic 

(investigating the unique characteristics and peculiarities of an individual or 

groups). In these terms, psychologists seek a generalised description of 

cognitive processes, where anthropologists describe the peculiarities and the 

substance of culture to explain cognition. Traditional cognitive psychologists 

tend to investigate the processes that explain experiences abstracting theories 

using scientific testing, leading to hypotheses on the universal or macro view of 
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cognition. On the other hand, anthropologists perceive studying culture as 

investigating the content of experiences leading to these particularities using 

more descriptive and observational techniques from which to draw conclusions. 

She suggested that the differences and similarities between psychology and 

anthropology are epistemological in terms of methodology, as this positivist 

approach to social science attempts to uncover rational explanations for human 

thinking and behaviour. However, the anthropologist tends to be a discreet 

observer or participant with very little experimentation involved in the 

investigative process, whereas the experimental techniques of psychologists 

focus on manipulating conditions to observe effects on behaviours.  

Lave suggested that this dichotomous approach to studying human 

behaviour offered a similar distinction between the studying of cognition from a 

situated perspective and the more traditional cognitive theoretical 

methodologies. A balance between the approach of psychology and 

anthropology would potentially create an environment whereby the everyday 

actions of individuals and groups could be studied taking into account context 

and situatedness. This would require some relaxation in current approaches by 

both disciplines, where a reduction in laboratory controls is exchanged for a 

more rigorous approach to the alignment of observers’ and subjects’ 

perceptions of any given experience during observations of behaviour. Lave 

was not professing that these differences in methodology are easily reconciled 

in fact she notes that this debate is a difficult one to resolve. 

Culture and cognition. Lave then turned to the relationship between 

culture and cognition within cognitive psychology. Despite changes in 

approaches within psychology such as the movement away from behaviorism 

toward information-processing, there was no change in the view of the 
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relationship between the individual and the surrounding world. The default 

position continued whereby the environment was considered no more than a 

stimulus perceived by the cognizer evoking a response, resulting in an artificial 

division between the social world and the individual. Although the effect of 

culture and society over time in an evolutionary sense is acknowledged as 

altering human behaviour on a micro scale, such as over the span of a human 

life, culture is often excluded from the attempts to understand cognition or at 

best, limited. Lave considered the relationship between culture and knowledge 

was often considered only in terms of memory and retrieval, such as in the 

acquisition of expert knowledge. Traditional cognitive science conceives of 

expertise as an individual’s ability to draw on a vast reservoir of knowledge 

accumulated over time and stored in long-term memory readily available, similar 

to a well-indexed encyclopedia (see Larkin, McDermott, Simon, & Simon, 1980). 

She maintained that within traditional cognitive psychology, the relationship 

between culture and cognition is always based in the past, not in the present. 

Consequently, in Lave’s view there is very little account in traditional psychology 

for the relationship between people acting in the here-and-now as part of the 

world and the social domain they inhabit. Lave believed this carried through to 

traditional models of learning transfer, where the assumption is that people 

carry around a certain amount of knowledge and information in the mind, which 

is independent of the world in which the individual is situated. This stored 

information is retrieved as required and mapped onto interpretations of new 

situations or in solving new but similar problems as they arise in daily life. The 

assumption is, as a rational problem solver, that this knowledge is cognitively 

processed in a “context-free, value-free, body-free and factual” (Lave, 1988, pp. 

88-89) manner. However, Lave referred to the results from the Adult Math 
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Project to conclude that in examining cognition the traditional approach was too 

narrow, and the agent should be considered as acting and situated when 

undertaking a task in the everyday world.  

In Lave’s view, undertaking everyday maths activities may or may not 

include formal maths knowledge, with resources not only drawn from the 

memory of the individual but the activity itself. The same maths problem may be 

solved in different ways, by using a pen and paper, calculator, or asking a 

friend, the answer is the same, but the process and strategy are different. The 

shaping or the structure of the problem solution is different, thus different 

activities give rise to this shaping of the solution to the problem. Lave applied 

similar logic to a maths algorithm in a classroom that was then applied to 

shopping problem in the supermarket; the actions and strategies to solution are 

performed differently in the classroom to the everyday purchase of a grocery 

item in the supermarket as both activities would be structured differently across 

the differing settings. In a visit to the supermarket to buy groceries, there are 

multiple things going on at once, not just the calculation of a retrieved 

mathematical algorithm. There is the physical layout of the supermarket to 

negotiate, the relationship between the needs of the buyer and what is 

available, what are the prevailing prices of the day, the time the buyer spends in 

shopping on that particular occasion. These factors influence the structure of 

the resources available to the buyer in shaping the solution to the problem of 

what is the best-buy, in the case of the Adult Math Project.  

Ecological validity in research. This brings Lave to an issue mentioned 

earlier, echoing Neisser’s (1976) doubts about the ecological validity of 

experiments in psychology. In comparing schooling to lab experiments she 

argued that one general way of solving a problem as taught in school is 
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expected to be extrapolated for use with other similar problems, likewise, 

assumptions used to design one form of experimental practice are often used 

for all other similar experimental practices. Consequently, Lave questioned the 

validity of making inferences on everyday practices from findings in the lab and 

whether normative models are appropriate for the investigation into everyday 

lives. In approaching this issue of ecological validity in psychological research, 

Lave turned to a comparison between work by Capon and Kuhn (1979, 1982) 

and the Adult Math Project simulation experiment. Both experiments 

investigated consumer decision making at the supermarket using maths as a 

platform. According to Lave, Capon and Kuhn were concerned that no previous 

study had evaluated formal reasoning abilities in a naturalistic setting rather 

than in a formal testing situation, with the focus on the use of ratio comparisons 

by shoppers and whether strategies varied if the ratios became more difficult. 

The Adult Math Project followed up supermarket observations with simulations 

of best-buy problems in the home of the participant also using ratios as the 

basis for the problems. These problems were presented using cards or the 

actual items from the store, answers were announced to the researcher, with 

pen and paper or a calculator supplied to the participant as a last resort if the 

individual was having difficulty. As previously mentioned, Lave did not pursue 

the differences in presentation of the problem using jars and cards in the home 

to that of the supermarket environment, nor did she give any detail of when 

participants used different methods to calculate answers. Capon and Kuhn 

carried out two experiments at a card table set up outside a supermarket; one 

with 50 female participants, this was expanded by 100 to 150 female 

participants in a second. The shoppers were allowed to use pen and paper in 

calculating the answers. They were presented with two problems using two 
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items: deodorant and garlic powder, two bottles of each in differing sizes and 

prices asking consumers to select the best-buy for each product. The disguised 

ratio for the garlic powder was 2:1, with the more difficult problem being the 

comparison between deodorants at 2:3. There were a number of similar facets 

in the Adult Maths Project and the Capon and Kuhn experiments that 

approached a more ecological methodology. First, they both based the 

research in a more naturalistic setting, in this case the supermarket, although 

Capon and Kuhn were situated outside the supermarket itself, and the second 

part of the Adult Math Project took place in the home. Second, both investigated 

people using maths in everyday problem solving. Third, artefacts were 

employed, for at least part of the study, rather than a series of school-like 

problems presented on paper. Fourth, there was a rudimentary recording by the 

experimenters of math strategies used by shoppers in reaching an answer. 

Finally, both used ratios between products to test and analyse participants’ 

maths knowledge. Capon and Kuhn reported 44% of the150 participants were 

successful in solving both problems, this is in contrast to the Adult Math Project 

success rate by shoppers of 93%. After analysing the strategies used by their 

shoppers, Capon and Kuhn concluded that as individuals used the same 

strategies when solving the best-buy problems, indifferent to changes in the 

problem difficulty, there was consistency to the rationale used by individuals, 

reflecting stable attributes of individuals. The final conclusion being that even 

when given all the information, in this case weight and price, there was 

significant variability in logical reasoning abilities in the adult population. This 

was attributed to individuals not being aware of how to use the particular 

cognitive strategy tested here, again in contrast to Lave’s study where 

awareness of strategy was not apparent either, however, performance was 
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markedly better. This claim by Capon and Kuhn seems to be a bold one when 

there were only two problems to solve with only two ratios to compare. Lave 

suggested that the similarity between the strategies used by shoppers in the 

Capon and Kuhn study may have been due to the problems so closely 

resembling one another and being presented temporally close. The motivation 

for both experiments seems superficially similar, as they were both concerned 

with maths activities in a natural setting—the supermarket—and how basic 

maths ratio principles are applied in decision making. Given these similarities, 

Lave goes to great lengths explaining the differences between the experiments 

that lead to the differing results. Capon and Kuhn believed the issue could be 

found in individual differences of logical reasoning abilities, therefore 

consciously available strategies were required through consumer education to 

assist shoppers in efficiently selecting the best-buy. Lave disagreed believing 

that Capon and Kuhn used a simplistic model of the lived-in world unlike the 

complexities of everyday life that the researchers of the Adult Math Project 

attempted to inject into their model. In addition, according to Lave, Capon and 

Kuhn generalised the results across the adult population without an account of 

the demographics of their sample—all female from low to middle incomes—nor 

was any schooling investigated. Comparative criticisms of Lave’s study could 

include that the sample size was not large enough at 24, and the majority were 

female, although the Lave study reported no significant difference in 

performance as a function of gender. She concluded that under the more 

complex simulations of the Adult Math Project shoppers were shown to be 

effective at selecting the best-buys utilising a number of strategies for varying 

problems in differing settings. Lave also suggested that participants in the 

Capon and Kuhn experiment would have perceived the task as more of a maths 
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test than the Adult Math Project in store problems, possibly explaining why 

participants in the Capon and Kuhn experiment performed calculations using 

similar strategies to school-like procedures.  

The differences in methodology resulted in disparities in the results 

between the Adult Math Project and the Capon and Kuhn experiment being 

indicative in Lave’s view, of the shortcomings of the traditional approach to 

problem-solving research. Capon and Kuhn employed a more deductive 

approach typical of experimental psychology by initially identifying a theoretical 

model on which the experiment was based, then hypothesising about the 

outcome, followed by the experiment itself. The Adult Math Project was a hybrid 

of ethnographic and traditional psychological methodologies, starting with a 

more inductive approach to maths in practice undertaking observations of every 

day activities in grocery shopping. These observations informed a hypothesis 

aimed at exploring problem solving in a simulation experiment based on 

psychological experimentation techniques. According to Lave, Capon and Kuhn 

approached the research with a simplified view of the everyday world, with little 

evidence that the lived-in world was influential in constructing their hypothesis. 

In setting up a table outside a supermarket and using words such “as if” in 

posing questions, Capon and Kuhn did not capture the parameters of a 

naturalistic setting in which to study everyday approaches to problem solving. 

Lave concluded when comparing the two studies, that in different settings 

similar activities and problems may be subjectively construed as being the 

same, however these seemingly similar problems are transformed as are the 

resources available, cognitive or otherwise, in different contexts and settings. In 

her opinion these were not outcomes identified by the Capon and Kuhn study.  
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The difference in outcomes between Lave’s study and that of Capon and 

Kuhn also demonstrated how in analysing purchasing decisions in the 

supermarket it is not possible to reduce the problem to a comparison of unit 

price alone, with the shopping dilemma infused with a multitude of factors 

influencing the decision (Kirsh, 2009a). As the consumer moves about the 

supermarket picking up packages and inspecting items on the shelf, the 

problem is not only framed and conceptualised by activity, but contextual factors 

such as information on labels, comparisons with other products, use by dates, 

family attitudes to the product, and storage of the item in the home (Kirsh, 

2009). As Kirsh (2009a) suggested the layout of the supermarket and product 

display also have a dynamic impact on how the shopper frames the choice of 

product. In explaining the role of settings in problem solving Lave adopted the 

term “fields for action” (p. 130) from the sociological literature that she attributes 

to Bourdieu’s field theory. Bourdieu’s sociological field theory emphasised the 

relationships between the elements in the social world rather than the individual 

elements themselves. Within this framework, fields in the social world are 

viewed as structures where social agents and groups, think, act, and take 

relational positions (Hilgers & Mangez, 2014). Lave’s fields for action depict this 

notion of the agent acting within a space that both defines and is defined by the 

activity of shopping or preparing food. The agent does not act in isolation, rather 

the actions are relational to other elements within the field for action; be it within 

the supermarket or the kitchen. 

The activities within a setting are both created by and create fields for 

action2. In explaining how the setting in the supermarket was not merely a 

                                                 
2 The notion of field theory is not unique to sociology, with field theories in place within the 
domain of mathematics, Newtonian physics and Gestalt theory. The epistemological 
commonality between these theories was the movement away from Aristotelian and Cartesian 
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mental map in the mind of the shopper. The supermarket had an independent 

physical character while at the same time it had a separate reality related to the 

activities of the shopper. In everyday situations the motivation for problem 

solving frequently arises from dilemmas occurring such as conflict of values in 

the supermarket—which is the cheapest, which is the most nutritious—they are 

created mid-action as the shopper moves about the supermarket. These 

dilemmas are not value free or context free, they are situational, value, and 

experience driven. The activity of the shopper may be shaped as she moves 

around the supermarket, updating choices and decisions through the interaction 

with the setting—which items to purchase, which items offer the best value, the 

item required may be unavailable therefore a new search is required for a 

substitute. Activity in solving shopping dilemmas is a result of the mutual 

relationship between the setting of the supermarket and the actions of the 

shopper, with fields for action both created by and facilitating problem solving 

activities. Lave described a simple example of how the supermarket setting was 

used to solve a pricing dilemma. A shopper was selecting cheese when he 

came across a block that appeared to be an unusually high price in comparison 

to other blocks of the same cheese. Rather than attempting to calculate the 

correct price from the information available on other packages of cheese, the 

shopper searched for a block of cheese of the same weight and compared the 

price. This problematic event experienced by the shopper was indicative of how 

within one field of action, the supermarket, an unexpected problem was 

                                                                                                                                               
principles of mind-body dualism toward relational systems of action (Hilgers & Mangez, 2014; 
Kadar & Shaw, 2000). In a similar undertaking Gibson and Crooks (1938) used the term field in 
their analysis of how drivers generally skillfully, almost seamlessly negotiate the road, 

perceiving and acting in the “field of safe travel” (p. 469), while this field is bounded it is also 
dynamical (Hodges, 2007). Lave’s notion of fields for action also has parallels to Gibson and 
Crooks ecological perspective of fields and Gibson’s later seminal work on visual perception 

where Gibson placed emphasis on the perception of the environment by the active observer. 
Similar to Lave’s observations, as the world shifts and changes the agent acts through this 
perception of the world (Gibson, 1986). 
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identified. The basket of cheese in the supermarket emerged as another field 

for action in which to search for a resolution where the shopper transformed the 

problem using cues from within that field for action. There are repeated 

interactions between the person enacting the shopping and the supermarket 

setting as a field for action with problems arising followed by resolutions. This 

suggests that the shopping activity is not necessarily structured by arithmetic; 

rather the arithmetic required is structured by the shopping. 

Reflections, criticisms, and conclusions. In assessing the outcomes of 

the Adult Math Project, Lave was perplexed by two findings from the 

supermarket best-buy study. First, shoppers made errors in the formal testing 

situations but appeared to be almost error-free for similar problems in the 

supermarket. Lave proposed a possible explanation for the high accuracy of 

calculations in the supermarket, was that when a shopper abandoned a 

purchase involving difficult calculations, researchers did not record this as an 

error in calculation. In the supermarket, individuals were observed readily 

abandoning a potential grocery item in favour of another similar item if the 

calculations were particularly challenging. In this setting, there was little to be 

lost by abandoning the originally intended purchase when another similar 

purchase involving easier calculations was available. Second, although the 

study reported a high accuracy in best-buy tasks, shoppers made a number of 

attempts at calculation—on average 2.5 per grocery item—with errors being 

made in the intermediate steps in calculating best-buys. Again, these errors 

made on the path to solving the problem were not recorded as errors by the 

researchers. Lave explained why the errors made by a shopper prior to 

reaching a final best-buy decision were not included as in the analysis. The 

shopper generally recognised errors during the problem-solving process. The 
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shopper then used these errors in iterative cycles of calculation, often ending in 

a final checking process as a scaffold to reaching a resolution. As Lave, 

Murtaugh, and de la Rocha (1984) pointed out, it is difficult to analyse these 

dialectically formed problems where the actions and the situation both create 

and change each other, with problems being generated and resolved during the 

ongoing activity of the individual. Lave believed the difficulty may lie in 

delineating the problem from the resolution, just as it is difficult to locate the 

problem as being in the head or on the supermarket shelf, suggesting once 

again that the unit of analysis should be the person-in-action rather than the 

problem itself. 

Lave also took time to reflect on the method of observation and recording 

of shoppers’ thought processes. Shoppers carried a tape-recorder over their 

shoulder and were asked to “think out aloud” as they progressed through the 

grocery shopping best-buy task with the researcher following behind noting 

observations. However, shoppers were more comfortable talking to a 

researcher than appearing to talk to themselves when using the tape-recorder 

in moving about the store. The procedure was altered after the pilot, 

abandoning the use of the tape-recorder, relying on the researcher to take 

notes on decisions made, ask questions of the shopper to expand on 

explanations for decisions and record verbalised calculations. Lave 

acknowledged that while the researchers attempted to ask questions or make 

comments in order to clarify the shoppers’ thoughts rather than interpret or 

influence them, the interaction between the two cannot be ignored or 

eliminated. In order to acknowledge the impact of this interaction on decision 

making, transcripts of discussions between shoppers and researchers were 

analysed and a selection was reported. Lave reported how one shopper 
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appeared to be establishing herself as a shrewd shopper when explaining her 

rationale for buying one brand of noodles over another to the researcher. 

Comments by the researcher appeared to cause this shopper to reconsider her 

rationale for the purchase, notably that the maths calculations in rethinking the 

purchase were correct. There was also evidence that when undertaking the 

calculations, the shopper used the dialogical relationship with the researcher to 

enact a process of transforming the maths into a form that was easier to 

manipulate. The shopper appeared to use this verbal interaction as a checking 

mechanism before arriving at the best-buy solution. In one example, the 

conversation with the researcher began with the shopper verbalising thoughts 

such as past experience and knowledge of the value for money the item to be 

purchased offered. In verbalising the rationale of the purchase by way of 

comparison between the usual buy and other options on the shelf, the shopper 

began to reconfigure the problem by transforming the prices and weight of the 

products using ratios in order to simplify comparisons. Using information on the 

packaging of the items, the shopper recognised over three or four assessments 

cycles of other products that, through the unfolding calculations, the purchase 

based on past decisions may not be the best-buy after all. The researchers 

observed similar behaviours by other shoppers of assessing and reassessing 

best-buys. Therefore, Lave deduced that a pattern had emerged where the 

shopper anticipated resolution to the problem; however further inspection of the 

available information by the shopper prompted reevaluation. This reevaluation, 

at times concluded in the shopper continuing with the original choice. On other 

occasions the shopper rejected the original anticipated purchase leading to an 

alternative, unexpected solution to the problem in the choice of a different item. 

It was also observed that there was an ongoing checking procedure during 
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these partial forms of the final solution in comparing current knowledge and the 

prevailing resolution to the problem. This checking procedure was part of what 

Lave termed “gap closing” (Lave, 1988, p.164) whereby the shopper would 

solve the problem in a nesting process of gradually closing the gap between the 

dilemma and the solution over a number of back and forward interactions 

between the shopper, the items in the supermarket, and the researcher. The 

ongoing activity, interaction with products in the store and interactivity with the 

researcher shaped a resolution to the problem altering the structure of the 

problem enabling an improved solution to the original purchasing dilemma.  

The work by Lave on everyday mathematics has been influential over the 

past three decades in the fields of cognitive science, cultural anthropology, and 

in maths education (Carraher, 2008; Greiffenhagen, & Sharrok, 2008). 

However, the work has not been without its critics, Greiffenhagen and Sharrok 

raised doubts about the validity of Lave’s critical interpretation of the empirical 

evidence presented in the study of everyday mathematics. In addition they were 

skeptical of the connection between Lave’s empirical findings and what 

Greiffenhagen and Sharrok considered as a criticism by Lave of traditional 

theories of reasoning, mathematics and cognition. They begin by explaining 

that, in their opinion, Lave exaggerated the achievements by the shoppers in 

the supermarket best-buy problems by implying that Lave (1988) and 

Murtaugh’s (1985) interpretation of the word calculation was too generous. 

According to Greiffenhagen and Sharrok this led to a larger number of 

‘calculations’ being included in the analysis that, in their opinion, amounted to 

nothing more than basic arithmetic. However, it appears they may have 

misinterpreted Lave and Murtaugh’s definition, as Lave and Murtaugh were 

clear that the unit of analysis was arithmetic—that is, the use of basic arithmetic 
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operations. While Greiffenhagen and Sharrok (2008) acknowledged that studies 

such as Lave’s have been instrumental in updating models of teaching, thinking 

and rationality, they maintained that Lave and others in the field (e.g., Carraher, 

Carraher, & Schliemann, 1985) were attempting to show that everyday maths or 

informal maths, and school-taught maths or formal maths, were two different 

types of mathematics with formal school-learnt maths attempting to disregard 

informal, everyday maths. Greiffenhagen and Sharrok also questioned Lave’s 

motivation for this study and other studies on everyday maths suggesting that it 

was more of a critical attack on the established theories on maths, rationality, 

and cognition, and that the findings in the studies were not particularly 

remarkable. In an article responding to the criticisms of studies on everyday 

mathematics, Carraher (2008) rebuked their skepticism over the motives and 

findings of Lave’s studies on everyday maths. Carraher agreed that some of 

points made by Greiffenhagen and Sharrok may have some validity—the 

differences in difficulty between best-buys and some components of the formal 

maths tests, and the different treatment of errors in the formal maths tests to the 

supermarket best-buys tasks—cast some doubt over claims made by Lave in 

performance comparisons across differing settings. However, as emphasised 

by Carraher, while the descriptive component of any study plays an important 

role, the essential contribution of research is to make sense of the observations 

in order to move science forward. Carraher went to great lengths to explain how 

these studies into everyday cognition were not directed at showing that there 

were different kinds of maths, rather there were different ways to enact maths, 

with different strategies and symbolic representations used by individuals in 

maths outside the classroom. Carraher pointed out that the questions and 

arguments posed by Greiffenhagen and Sharrok actually reflected the changes 
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over the decades in assumptions about maths education, symbolic 

representation and the impact on debates on context and situatedness since 

the publication of the studies by Lave and himself. Carraher dismissed the view 

by Greiffenhagen and Sharrok that Lave’s work was motivated by an ideological 

critique of traditional views of cognition as being naïve. He suggested that 

deeper investigation into Lave’s previous research would have shown them that 

her motivation was rooted in the exploration of learning and cognition from a 

cultural and situated context, not to promote any personal ideology. In brief, 

Carraher believed the authors to be labouring under the false impression that 

the focus of these studies was to show that everyday maths was superior to 

school maths. In doing so Greiffenhagen and Sharrok missed the point that 

everyday maths was not being promoted as a superior alternative to maths 

taught in schools, rather these studies on everyday maths shed light on the 

phenomena of different maths practices in everyday situations. Carraher 

suggested that alternative algorithms that appear to be created by individuals in 

the ongoing practices of daily life could ultimately be absorbed into mainstream 

education and research. This would contribute to understanding how these self-

taught methods succeed and fail in everyday mathematics, resulting in the 

disappearance of the dualism that exists between these two approaches—one 

formal and one informal—to mathematical dilemmas. 

The Adult Math Project provided a rich source of material for investigating 

the relationship between everyday problem solving and school-taught 

arithmetic. Support for Lave’s argument that the setting in which a problem is 

actioned impacts the structure and strategies during the ongoing activity of an 

individual in searching for a resolution was evident in the analysis of the results 

from the ethnographic observations and the formal experiments reported. 



 74 
 

Comparisons between more orthodox psychological experiments and the hybrid 

study presented by Lave stressed how differences in methodology influenced 

the results and therefore the inferences drawn. This confirmed Lave’s 

hypothesis that by discounting the impact of situatedness, research by 

traditional cognitive psychologists was not accounting for the complexity of 

mental processes, sociocultural influences and the interaction between the 

individual and the dynamic environment in which the individual is embedded. 

Everyday activities such as grocery shopping are often perceived as 

unremarkable and routine, with the shoppers in this study themselves 

expressing such views. However, Lave has shown that these activities are 

frequently shaped by previous experience, transformed, updated, and altered 

across the setting as the activity progresses. 

Conclusion 

The contribution of Newell and Simon’s (1972) canonical work on problem 

solving by information-processing systems, both human and machine, 

substantially changed approaches to research within the field of cognitive 

psychology. They offered a computational model of the mind based on the 

manipulation of symbolic notations and structures. This model, although widely 

accepted in the academic community, was challenged by a number of 

researchers and theorists for its limited account of the impact the external world 

has on cognitive processes. Greeno (1989, 1998) and Lave (1988) were among 

those influential in the early stages of the ongoing debate over the ecological 

turn in cognitive science away from a framework of cognition delimited by the 

brain. Motivated and influenced by previous work from others (e.g., Bartlett, 

1958; Gibson, 1966; Neisser, 1976) Greeno and Lave both undertook research 

and contributed theoretical insight toward a greater understanding of the 
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situated approach to cognition. This theory of cognition proposed that the 

environment in which an individual was embedded, including sociocultural 

influences and ongoing actions, shaped and guided learning and thinking. 

Consequently, this shifted the focus of analysis from the internal processes of 

the cognitive agent, where the outside world had been assigned a marginal 

role, to a wider system incorporating the agent and the external world in 

dynamic interaction. 

The situated model of cognition not only integrated the role of the 

environment as part of the system shaping cognitive processes; it questioned 

accepted conceptions of knowledge and learning transfer. As previously 

discussed, Greeno suggested that knowledge should be considered as a 

relationship between the individual and the situation, rather than the exclusive 

domain of the internal mind of the individual. Lave also challenged the 

metaphor of knowledge as a tool to be accessed when required from a stored 

corpus of information, then replaced unchanged awaiting the next occasion for 

use. Through her analysis of everyday activity of shoppers in the supermarket 

she concluded that knowledge was characterised more as “a process of 

knowing” (Lave, 1988, p. 175) through interaction with the changing world, not 

bounded by an abstract domain within the mind of the individual. Lave’s study 

of everyday maths practices illustrated that problems frequently unfold 

organically during ongoing daily activities, with relations between the setting, 

the activity, and the individual being both determined by and creating these 

daily dilemmas. This was in contrast to the prefabricated tasks and problems 

presented in the classroom of traditional schooling and the laboratory of the 

experimental psychologist. Learning transfer as perceived in the traditional 

approach to cognition separated cognition from the social world. In analysing 
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the four sets of traditional psychological experiments on learning transfer, Lave 

argued there was no clear evidence of learning transfer as a valid problem 

solving process. Nor were there any satisfactory explanations of how 

knowledge from formal learning situations might transfer to solving problems 

that unfold in everyday situations. This potentially undermined prevailing 

explanations and expectations of learning transferring from the setting of school 

to activities in different settings beyond the boundaries of the classroom (Lave, 

1988). Lave and Greeno considered problems presented in the classroom and 

in the lab to be generally unrepresentative of problems in the lived-in world, as 

these formal problems offer a clear goal state with a well-defined and stable 

problem-space. Where in everyday problem solving the salient features of the 

problem-space are not as well defined, with these features frequently emerging 

during the interactions of the agent with the changing world (Greeno, 1998, 

Kirsh, 2009a). They did not explicitly deny the validity of results achieved within 

the context of the setting of the classroom or the laboratory; however, one 

argument posed by situative theorists was that all teaching and experimentation 

was itself situated and not context free. Therefore, it is essential to recognise 

the character of this situatedness and the context in which the activity takes 

place, this challenges the accepted practice of mapping inferences about 

cognition drawn from results in school and from the lab onto the lived-in world. 

Lave’s interest was in situatedness from a sociocultural and person-in-

action perspective, consequently her investigation into the impact of the 

physical environment was only cursory. Lave did not explore any differences in 

maths strategy that may have arisen between the individual being in situ at the 

supermarket and at home for the simulation exercise, nor the use of different 

artefacts in the two settings. Greeno on the other hand tentatively considered 
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the role of objects when expanding on the symbolic processing in the external 

environment. The unexplored aspects of the physical environment, in particular 

the role of artefacts in cognitive processes, exposed another essential line of 

investigation into problem solving in situ, instigated by the debate on situated 

thinking. 

Lave’s project and Greeno’s framework for analysing cognition in situ were 

ambitious, pioneering and have been extensively cited in many fields beyond 

that of psychology. However, they also underscored the issues confronting 

researchers when taking research from the lab to the outside world—an 

unpredictable and complex world (Norman, 1993a). Issues include determining 

the best problems and methodologies in order to facilitate valid and reliable 

comparisons between the performance of a person across differing settings; 

recording both qualitative and quantitative data in a manner enabling the 

matching of observation of behaviour to empirical outcomes; separating the 

problem from the resolution in ongoing activities, when the problem-space is not 

stable and well defined; and identifying and addressing the factors that may 

influence variability in results that otherwise would be controlled in a laboratory 

setting. These challenges and the outcomes presented by Lave and Greeno, 

evolved and unfolded not unlike the situated process for problem solving they 

proposed, contributing to a platform from which to build an alternative model for 

re-thinking thinking. 
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Chapter 3 

The Extended Mind 

Overview 

The ecological turn in cognitive research toward a greater emphasis on 

the role of the environment—sociocultural and physical—led to the 

development of a theory of situated cognition. Researchers such as Carraher, 

Carraher, and Schliemann (1985), Lave (1988) and Hutchins (1995a, 1995b) 

embarked on large-scale ethnographic studies, merging anthropology and 

psychology to investigate everyday thinking practices. At the same time, a 

growing number of psychologists (e.g., Greeno, 1989,1998; Zhang & Norman, 

1994) and philosophers (e.g., Clark, 1997; Neisser, 1976) were also 

researching and developing theories supporting an ecological approach to 

cognition. In hindsight, it could be argued that the unintentional drawing 

together of this groundswell of ideas under the one umbrella of situated 

cognition focused the efforts of those researchers and theorists challenging the 

established views of traditional cognitive science. Consequently, the situated 

perspective in understanding human cognition gained momentum with the 

development of an increasing number of theories predominantly in psychology, 

philosophy, and artificial intelligence. 

The aim of this chapter is to present a brief introduction to some of the 

predominant theories of cognition beyond the brain including the so-called 

4E’s—embodied, embedded, extended, and enacted cognition—along with 

cognitive integration and Material Engagement Theory. One of the 4E’s, the 

extended mind hypothesis proposed by Clark and Chalmers (1998), is 

discussed in more detail in this chapter as it is arguably one of the seminal 
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theories of a systemic view of cognition explicitly recognising that the products 

of a cognitive system emerge through interactivity. 

Sutton (2010) and Menary (2006, 2010a, 2010b, 2015) further developed 

the Clark and Chalmers thesis in a second wave extended mind theory. They 

proposed a second wave, in part, to address criticisms of the parity principle as 

described in the original extended mind hypothesis. The chapter concludes with 

a stronger account of the extended mind thesis in Malafouris’s (2013) theory of 

material engagement, offering further exploration of the relationship between 

objects and cognition by the attribution of agency to artefacts as an emergent 

property of interaction. The experiential and affective properties of things 

saturate the cognitive, social, and emotional lives of people. Therefore 

Malafouris argues, that artefacts should be studied as active, integral elements 

of human cognition rather than passive tokens within problem-solving activities, 

because things have the potential to shape thinking as people engage with the 

world. This emphasis on the importance of research into the cognitive role of 

artefacts as components of an emerging dynamical system of thinking in the 

world motivates the experimental work discussed in later chapters. 

Introduction 

In an endeavour to partially dissolve the boundaries surrounding cognitive 

processes as constructed by internalist theories, Hutchins (1995a) undertook a 

lengthy study of the behaviour of a ship’s navigation team analysing the 

observations in terms of a naturally situated cognitive system. Hutchins’s 

agenda was to shift the concept informed by cognitive science that human 

cognition was located somewhere inside the head, to understanding cognition 

as a process that extends “out beyond the skin of the individual” (p.287). A 

number of studies and theories emerged at the same time (e.g., Greeno, 1989; 
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Lave 1988; Lave & Wenger, 1991; Suchman, 1987) endorsing similar agendas, 

therefore underscoring the notion that knowledge and learning were relational 

to the environment. The contribution made by researchers (e.g., Greeno, 1989; 

Hutchins, 1995a; Lave; 1988) of situated cognition toward an explanation for 

cognitive processes that would potentially transcend traditional cognitivism, 

stimulated the emergence of theories founded on the premise that mental 

processes were dependent on the context or setting of an activity. The theories 

of embodied, embedded, extended, and enacted cognition, the so-called 4E’s, 

represent a large body of the research that has contributed to this ecological 

turn in cognitive science by offering alternative frameworks to the traditional 

approach presented by cognitive science (Gallagher, 2008; Menary, 2010a; 

Menary 2015). The 4E’s are generally considered complementary to the 

concept of situated cognition, proposing alternative interpretations of cognition 

to the mind-body dualism of traditional psychology, although offering differing 

methodological and philosophical strands to the non-cognitivist approach 

(Menary, 2010a; Robbins & Aydede, 2009). This chapter will discuss each of 

the 4E’s with the focus on Clark and Chalmers’s (1998) theory of the extended 

mind. This is not to imply that embodied, embedded, or enactive cognition offer 

any less to the debate on cognition than the extended theory, as all propose 

persuasive arguments in favour of their respective claims. However, extended 

cognition offers an important foundation for a discussion on theories and 

research that embrace the value of artefacts in varying degrees, within a 

broader interpretation of systemic cognition that is of particular interest within 

the framework of this thesis.  
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Three of the 4E’s 

Embodied cognition. Embodiment is clearly interwoven with 

situatedness, as the body is the contact point where physical action changes 

and impacts the external world in which an individual is embedded (Clark, 2008; 

Clark & Chalmers, 1998; Gallagher, 2008, 2009). Malafouris (2013) argued that 

while embodied cognition moves toward dispelling the demarcation between 

mind and body, the theory does not go far enough in dissolving the boundaries 

of the skin and the outside world. Gallagher (2008) explained how the physical 

construction and mechanics of the body influences the way an individual 

experiences the world, offering opportunities to explore and search the 

environment in activities and tasks. At the same time, the bodily shape 

constrains actions and the possible affordances offered by the world (Gallagher, 

2008). The movement of the body is not just determined by neural activity 

alone, it is also enabled by the design and flexibility of bodily parts such as 

tendons, muscles, and joints to actively retrieve information from the world 

using sensory inputs as a source to take action and solve problems (Clark, 

2008; Gallagher, 2008). The body interacts with the surrounding world, 

facilitating an intelligent interface between the internal mind and the outer 

environment (Gallagher, 2008). These actions in the world are not merely the 

result of some preconceived mental state; the embodied approach to cognition 

conceives of bodily actions as being integral in the shaping of abstract 

concepts, reasoning, and thinking (Hutchins, 2010b). Cognition comes from 

actions, with an individual’s body influencing the way of thinking (Clark, 2008; 

Hutchins, 2010b).  

Enaction. Enactivism as introduced by Varela, Thompson, and Rosch 

(1991) is a strongly embodied approach to cognition, placing the emphasis on 
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experience in the lived in world, embracing the notion of bodily action of an 

organism on, and interaction, with the world it inhabits (Menary, 2015). The 

theory of enactivism offers a middle ground between strict cognitivism whereby 

experience is all but dismissed from cognitive theory, to the other end of the 

phenomenological spectrum defended by philosophers where experience is 

unquestionably accepted as part of cognitive practices. In proposing this middle 

ground enactivism is not a theory limited to human cognition, as the concepts 

offered extend to almost all living organisms (Menary, 2015; Stewart, 2010). 

Within this approach to cognition there are two inter-related key concepts: the 

autonomy of the living organism by generating and sustaining its own activity 

bringing about its own cognitive world; and the activity in this world must be 

sense-making by relating to the world in a cognitively adaptive manner 

(Thompson & Stapleton, 2009). Thus the proposal by enactivists is that through 

interactions with the environment in sense-making activities, an autonomous 

organism constructs its own world or its own reality (Thompson & Stapleton, 

2009).  

Embedded cognition. Just as the body is an active cognitive component 

situated in the world, individuals are embedded in the surrounding world, not as 

observers but as beings immersed in a world rich with artefacts and activities in 

which everyday engagement with these resources shapes plans and actions 

(Gallagher, 2008). In discussing various approaches to cognition, Gallagher 

(2008) does not differentiate between the terms situated and embedded noting 

that by virtue of existing and acting in the world, an individual is naturally 

embedded in the environment in which she is situated.  
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The Extended Mind 

In keeping with the situated approach to cognition, but at the same time 

subsuming some of the tenets of the information-processing model, Clark and 

Chalmers (1998) advocated a further theory of cognition—the extended mind 

hypothesis. This hypothesis proposes that not only are an agent’s body and the 

world in which the agent is situated impactful on cognition; both the body and 

the world should be considered as active components of the cognitive process. 

Drawing on the growing volume of work challenging the traditional information-

processing conception of cognition, Clark and Chalmers took the position that, 

in addition to cognition being situated, embedded and embodied, the mind and 

therefore cognition was extended into the external world including, and beyond 

the body. Thus the extended mind hypothesis, proposed by Clark and 

Chalmers, asserts that cognition is not bounded by skull or skin, but integrates 

the mind, the body, and external resources into the cognitive system. Within this 

framework, there is no demarcation between the body, the mind, and the 

external environment; rather cognitive systems encompass individuals and their 

physical and social world, with the individual exploiting various aspects of the 

environment to contribute to thinking, decision making, and problem solving 

(Gallagher, 2008; Wilson & Clark, 2009). A keystone assertion is based on the 

notion of “active externalism” (Clark & Chalmers, 1998, p. 8) where the world is 

a causal factor playing an active role in cognition; that is, the agent acts on the 

world and the world acts on the agent in the world itself. Menary (2010b) 

believes that active externalism goes beyond a causal explanation to one where 

the features of the environment are not aids to cognition, rather these features 

can be constitutive components of the cognitive process. As an individual 

encounters a task, the world forms a functional component in the undertaking of 
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that task, thus the setting and environment in which an agent is situated plays 

an active role in motivating and structuring the processes through which 

cognition both arises from, and creates actions in, the living world (Clark & 

Chalmers, 1998; Wilson & Clark, 2009). The active agent is immersed in a 

world surrounded by artefacts as complementary components in the cognitive 

system. Here the inner mind, the body, and external surroundings of an 

individual are coupled in a flexible and reliable manner in a “two-way 

interaction” (Clark & Chalmers, 1998, p. 8) creating a cognitive loop (Wilson & 

Clark, 2009).  

The notion of ‘a coupled system’ is an important tenet in extended mind 

thesis, and ultimately many approaches to cognition from a systemic 

perspective. According to Clark and Chalmers (1998) the most reliable coupling 

takes place in the head, however this reliable coupling is not just brain-bound, it 

is evident between the individual and the surrounding environment. When using 

a diary to keep track of forthcoming events, if the diary is not to hand, the user 

may miss an appointment, in this case the removal of the diary from the 

cognitive system results in a loss of augmentation of the user’s capabilities. 

Clark and Chalmers go as far as to state that such a loss of an external 

component of a cognitive system would be as if part of the brain had been 

removed. Clark and Chalmers (1998) proposed a parity argument where 

components, be they external or internal, can be considered to have a 

functional role in a cognitive system: 

If, as we confront some task, a part of the world functions as a process 

which, were it done in the head, we would have no hesitation in 

recognizing as part of the cognitive process, then that part of the world is 

(so we claim) part of the cognitive process. (p. 8) 
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This has become known as the Parity Principle (Clark, 2008). Clark and 

Chalmers point is further clarified by their much-discussed hypothetical Otto’s 

notebook, with this artefact providing an interesting foundation for a thought 

experiment that demonstrates the extension of memory beyond the brain. To 

briefly describe the scenario, Otto is an Alzheimer’s patient who carries a 

notebook with him in which he writes new information to assist in playing the 

role of his biological memory (Clark & Chalmers, 1998). While Otto carries the 

notebook with him, it is a permanent extension of his cognitive capabilities 

augmenting his thinking— without it, his competencies would be severely 

impaired. In consulting his notebook for say, the location of a museum, Otto not 

only relies on this portable artefact as a cognitive vehicle in order to find his 

way, but he also believes the information as he would believe his memory. The 

information in Otto’s notebook takes on the role of a belief to Otto; Clark and 

Chalmers postulate that it is the role information plays in cognition that is 

important, not the location in which it is used that ultimately gives rise to 

information being considered a belief.  

Wide computationalism. Consistent with the views of Greeno 

(1989,1998) on situated cognition, Wilson and Clark (2009) discussed cognition 

not in terms of an individualistic phenomenon as depicted by the information-

processing model of cognitive science, but rather as cognitive systems reaching 

“beyond individuals into their physical and social environment” (Wilson & Clark, 

2009, p. 58). While the cognitivist explanation does go beyond cognition being 

essentially neural, cognition nonetheless remains firmly in the mind of an 

individual as an internal computational process, with the surrounding 

environment offering information as a contributor of static inputs to this process 

(e.g., Newell, Shaw, & Simon, 1958). The notion of computationalism would 
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then appear to be at odds with theories of situated cognition, and therefore 

extended cognition, as the inference is that cognitive computation is only 

possible in the head, as epitomised by the mind-as-a computer metaphor 

(Wilson & Clark, 2009). Wilson and Clark (2009) disagreed with this inference, 

as their theory on extended cognition embraced computationalism as being 

possible across a wider system beyond the skin of individual, reaching out to 

the surrounding milieu (Wilson, 1994). This position of cognitive processing as 

part of a “wide computational system” (Wilson, 1994, p. 351) concedes that 

some processing takes place only in the mind of the individual, however asserts 

that the brain of the individual is not the boundary of computationalism. In 

rejecting the traditionalist approach to computationalism, the process of 

cognition is broadened to include all components within the cognitive process 

that have computational properties. A component of the cognitive system 

however, does not necessarily need to be computational to be considered as an 

integrated part of the cognitive process. To be considered as an integral 

component to an extended cognitive system, any additional resource should 

enable improved efficiency to the existing system in reaching the anticipated 

goal or completing the action, therefore offering cognitive augmentation by its 

introduction to the system (Wilson & Clark, 2009). There may be components of 

this system that are part of the environment, but not part of the individual, such 

as pen and paper. Pen and paper together offer a computational module in 

itself for say calculating sums when required by the user, which in turn 

contributes to the wider computational system (Wilson, 1994). However, note 

that it may be that pen and paper separately are parts of the cognitive system 

but are not in themselves computational in this case. Wilson (1994) suggested 

that wide computationalism did not exclude the notion that computational 
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cognitive states may be instantiated solely within the individual, he was making 

the case that these computations are not exhausted by the boundaries of the 

skull but are a part of the wider extended computational system (Wilson & 

Clark, 2009). 

Three threads of cognition. The extended mind hypothesis characterises 

the brain, the body, and the world as “three threads” (Clark, 2008, p. 197) 

interwoven in a synthesis of available resources to solve a problem or complete 

a task with minimal effort. Clark called this the “Principle of Ecological 

Assembly” (p.13), indicating the significance of both embodied and embedded 

cognition within the extended mind thesis. The mind is not conceived of as a 

device that manipulates symbols according to a set of rules; rather the mind is 

an initiator of thinking as the cognitive process unfolds as “Cognition leaks out 

into body and world” (Clark, 2008, p. xxviii). Chalmers (2008) succinctly 

captured the role of the body and the world in terms of extended cognition when 

he describes how the body, including language and senses, should be 

considered a tool to extend thought and the relevant parts of the world not as 

mere aids to cognition but become part of the mind. Thus within this framework, 

all components in the cognitive system actively contribute in a causal manner—

that is to say, if the environment changes or is changed by an individual, this 

has an effect on internal processes and vice versa (Clark & Chalmers, 1998). 

This interaction between the components creates a loop of activity, with 

behaviours of one component impacting other segments within the loop. This 

looping interaction between the internal and external constituents, mediated by 

the body, produces an active externalism resulting in online cognitive activity, 

creating a coupled system embedded in the world (Clark & Chalmers, 1998). 

This is not to say that all components have an equal weighting in the system—a 
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frequently misunderstood interpretation of the Clark and Chalmers Parity 

Principle (Clark & Chalmers, 1998; Menary, 2010b, 2006, 2007; Sutton, 2010; 

Sutton, Harris, Keil, & Barnier, 2010; Wilson & Clark, 2009). Although Clark and 

Chalmers expressed some doubts about the conservativeness of the embodied 

or embedded approaches to cognition, it is clear that extended cognition 

incorporates many of the tenets of situated, embedded and embodied cognition 

(Clark, 2008; Clark & Chalmers, 1998; Menary, 2010b). 

The structure of extended systems. By virtue of the notion that this 

paradigm includes brain, body, and the world, it is clear that extended cognition 

may take many forms, thus Wilson and Clark (2009) identified two dimensions 

to provide a structure in order to broadly establish the determinates of extended 

cognitive systems. The first dimension is the identification of nonneural 

cognitive resources—these may be natural, technological, or sociocultural; 

second, the resulting functional integration of the aforementioned resources 

with internal cognitive resources must be reliable and durable (Wilson & Clark, 

2009). These dimensions track the nature of the resource along with the 

reliability and durability of the cognitive extension providing a framework that 

offers a graduated approach in considering the various forms of extended 

cognition (Wilson & Clark, 2009). 

The first dimension sets out to define resources beyond the neural 

substrate that might potentially form part of the extended mind; these resources 

are either natural, technological, or socio cultural. Broadly speaking natural 

resources, when considered as part of extended cognition, are within the 

natural world of the cognizer and integrated functionally into the cognitive needs 

of the agent. For example, an empty shell used as protection by a crab, it is 

naturally occurring in the crab’s environment, it is required by the crab to 
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continue to function in the world and in turn the shell functionally alters the 

actions available to the crab (Wilson & Clark, 2009). Non-natural or 

technological resources are those that are developed by human agents—

examples by Wilson and Clark included a notebook and a prosthetic leg. The 

third nonneural resource, sociocultural systems, arguably could also be 

considered as either natural or technological resources. This resource draws on 

the social and cultural systems created and molded by prior generations, it may 

be a behavioural or a material product of the culture in which an individual is 

embedded, one example would be writing systems (Wilson & Clark, 2009). To 

be considered an integrated part of an extended cognitive system, a nonneural 

resource must play an active role in the cognitive operations of the agent, not 

merely a resource used by an agent with cognitive abilities (Wilson & Clark, 

2009). By way of example, Wilson and Clark return to the example of writing 

systems. Here the individual does not generally write random words on a page 

just because he or she possesses the ability to write. Rather, writing is not a 

resource used by the individual to only augment existing capabilities such as 

working memory—individuals write to think and create (Oatley & Djikic, 2008; 

Wilson & Clark, 2009). The agent will mine the surrounding world for resources 

to solve problems or engage in tasks and to reduce the burden on the internal 

cognitive load such as working memory, in a manner that does not favour either 

internal or external resources (Fu & Gray, 2000; Lauri, 2013; Wilson & Clark, 

2009). Resources are recruited by the cognizer to minimise effort while 

generating an acceptable outcome (Clark, 1989). Clark (1989) dubbed this the 

007 principle: 

The 007 principle. In general, evolved creatures will neither store nor 

process information in costly ways when they can use the structure of the 
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environment and their operations upon it as a conventional stand-in for the 

information-processing operation concerned. That is, know only as much 

as you need to know to get the job done (p. 64). 

Once a resource has been established as being functionally integrated within 

the cognitive system, the second dimension to consider is the reliability and 

durability of the system. This dimension of reliability and durability is perhaps 

less clearly captured than identifying nonneural resources and their integration 

into the extended cognitive system, as Clark and Chalmers do not specifically 

tease out the aspects of durability and reliability as separable elements. They 

briefly described Otto’s notebook as having “enduring augmentation” (Clark & 

Chalmers, 1998, p. 67), suggesting that this resource is deeply integrated into 

the functioning of the cognitive agent, and is therefore more durable than a 

resource that only augments cognition on a single instance. However they do 

explore the aspect of reliability within an extended cognitive system more 

specifically as being determined by the relevance of the coupling between the 

internal and external resources. As discussed earlier, this coupling of resources 

must form a functional part of the cognitive activity, be portable and readily to 

hand, Clark and Chalmers (1998) then determined this constitutes reliable 

coupling. At times, relevant resources may be temporarily decoupled from the 

system just as sleep briefly interrupts the biological brain, consequently If Otto 

is not accompanied by his notebook occasionally, this does not permanently 

exclude it as a reliable cognitive component for coupling in the future. 

Therefore, if the relevant resource is generally available to the agent for 

integration as an augmenting component into the cognitive system as and when 

required, this would then be considered sufficient for reliable coupling to be 
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established between the individual and the resource (Clark & Chalmers, 1998; 

Wilson & Clark, 2009).  

Transient cognitive systems. Some cognitive systems that emerge as 

solutions to problems unfold, or as activities are undertaken, may be considered 

transient in nature, for example composing a piece of music or completing a tax 

return. In other situations, there may be more permanent systems in place, such 

as consulting an address book when sending Christmas cards every year. The 

pen and paper, computer, address book, or files of information created over the 

year for a tax return are “add-ons” (Wilson & Clark, 2009, p.64), both permanent 

and temporary, that integrate with the processes of the brain. Thus, some 

systems will make use of existing mental capabilities and integrate additional 

resources temporarily in the cognitive process, while others will make use of 

coupling between internal and external resources that is more permanent and 

stable (Wilson & Clark, 2009). In explaining more transient forms of extended 

cognitive system, Wilson and Clark (2009) began by drawing on the notion of a 

task-specific device (TSD), a theoretical approach proposed by Bingham (1988) 

to provide an organising framework for problems arising in the study of human 

physical action. Bingham dubbed this the Human Action System. The Human 

Action System involves the nonlinear linkage between the four subsystems of 

human action—the musculoskeletal system, link-segment system, the 

circulatory system, and the nervous system (Bingham, 1988; Wilson & Clark, 

2009). Bingham considers the linkage of the subsystems to be nonlinear as it is 

not a case of studying the components of the subsystems in isolation as an 

action takes place, then adding the behaviour of the components together. 

Attempting to understand each of these four subsystems in isolation, then to 

investigate the nonlinear character of the dynamics of actions and the 
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interactions between each component would prove overwhelmingly complex. 

Bingham proposed an inverse methodology by working backwards from the 

whole assembly that is the TSD to the complex dynamics of the subsystems. In 

essence a TSD is a dynamic system, it is a soft assembled (i.e. temporary and 

easily dissoluble) whole built from whatever resources are on hand consisting of 

both the individual and the surrounding environment (Bingham, 1988; Wilson & 

Clark, 2009). By focusing on the specifics of the task, the functionality and the 

goals, a TSD links together the intricate interactions of the high dimensional 

group of the four subsystems that enable an action to occur. Thereby reducing 

them to a more controllable lower dimensional structure, enabling the simpler 

dynamic assembly of the TSD (Wilson & Clark, 2009). This facilitates an 

approach where it is possible to look at the task-specific dynamics, then to 

establish the particular dynamics of the subsystems, which are acting together 

in creating the overall dynamical system (Bingham, 1988). Wilson and Clark 

(2009; also see Clark, 2008) used Bingham’s notion of TSD as an analogy to 

their extended mind hypothesis, many seemingly disconnected parts making up 

a functional whole, thus providing a foundation for further exploration into 

extended cognitive systems. Clark (2008) explained how the central tenets of a 

TSD could also apply to larger problem-solving entities with similar transient 

features; consequently, these temporary forms of cognitive augmentation were 

labeled “transient extended cognitive systems” (p. 158). Transient extended 

cognitive systems (TECS) are also a soft-assembled unit bringing together the 

problem-solving attributes of the brain and the body with external resources that 

enable cognitive scaffolding (Clark, 2008; also see Wilson & Clark, 2009). 

TECS just like TSD, allow for the coupling and uncoupling of external resources 

with the brain and body in creating an extended cognitive system directed at a 
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specific task. By considering transient cognitive systems in this manner, the 

durability of the extended cognitive system may be gauged by the form the 

system takes. When a TECS is perhaps a one-off system created for a task 

such as a new brainteaser, for example the river-crossing problem (see chapter 

6 of this thesis for details on the river-crossing problem). A one-off TECS might 

be considered less durable and reliable than when a TECS is generated from a 

system that is frequently repeated such as a regular crossword solver 

completing a new crossword puzzle or simple maths additions. In the instance 

of the crossword, a solver may quickly employ re-assembled TECS in going 

through the clues that are easily completed first, rather than trying to solve each 

clue before moving onto the next: a system the solver may have used 

successfully previously. Other cases may fall between these two forms of TECS 

resulting in an intermediate form of TECS, such as solving a Sudoku puzzle 

(Wilson & Clark, 2009). There is the possibility of creating a range of TECS in 

succession, as a trekker might do when using a variety of equipment such as 

compass and map. As with the TSD, it may be useful to work back from the 

larger problem-solving ensemble by initially analysing the system as a whole, in 

the form of a TECS. This in turn may provide insights into the components and 

their interactions (Clark, 2008). Studying TECS may offer an understanding into 

the distinctly human ability of reasoning and problem solving as the reasoner 

exploits and interacts with the wide variety of artefacts offered by the external 

environment, thus providing a window into the investigation on how these 

additional resources augment problem solving (Clark, 2008; Wilson & Clark, 

2009).  

Where TECS are considered as soft-assembled, Wilson and Clark (2009) 

conceived the next step on from the concept of transient cognitive systems 
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would be to consider the more permanent notion of the extended mind that 

would result in a more reliable and durable system than a TECS. Such a system 

could be exemplified in the fictional case of Otto’s notebook where the notebook 

is an artefact of deep functional integration offering reliability and durability 

within an extended cognitive system. While the notebook obviously does not 

match the biological equivalent of the memory in the brain, the coupling of the 

artefact with the inner processes of the mind augments the cognitive processes 

of the individual. 

Wilson and Clark proposed that the many forms of extended cognitive 

systems are on a continuum ranging from the transient, one-off and repeated 

systems through to the more permanent relationship between an individual and 

external cognitive resources. This extended cognitive system is therefore a 

hybrid process where the inner and outer components are different, 

nonetheless complementary and integrated into the system (Wilson & Clark, 

2009). These components of the extended cognitive system might be recruited 

from anywhere, internal or external to the individual, taking any form, including 

processing and encoding, providing these functional links contribute to the 

computational activity of the task; Clark (2008) dubbed this “computational 

promiscuity” (p.106). This tenet of computational promiscuity fits well with the 

problem-solving activities of the everyday reasoner by reflecting the fluidity of 

the cognitive process, as resources are recruited by the individual from the 

artefact-rich environment and coupled with internal resources as 

complementary computational aids to the intrinsic contents of the extended 

cognitive system regardless of spatial location (Wilson & Clark, 2009).  
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Second-wave EM 

In further developing an extended mind framework of cognition, Sutton 

(2010) defended a second line of thought that he claimed could be found in the 

original extended mind arguments (Clark, 1997; Clark & Chalmers, 1998). As 

Sutton (2010) explained, many critics of extended mind (e.g., Adams & Aizawa, 

2001; Rupert, 2004) focused on the parity principle when attending to Clark and 

Chalmers’s explanation for the nature of, and the relationship between 

components within the cognitive system. Wilson and Clark (2009) also noted 

there seemed to be a constant misinterpretation of the so-called claim of parity 

introduced by Clark and Chalmers in the extended mind hypothesis. In 

addressing this overemphasis, apparent misunderstanding and shortcomings of 

the parity principle by discussants of extended mind, Sutton (2010) proposed 

“First-wave EM” (extended mind) and “Second-wave EM” (p.193). The 

emphasis of first-wave EM was on the notion of parity between internal and 

external processes where these processes were considered to play a similar 

functional role in cognition (Menary, 2010b; Sutton, 2010). In contrast, second-

wave EM as outlined by Sutton, was centered on what he labeled the 

complementarity principle; so-called as the external parts of the extended 

cognitive system may function differently, and at the same time are 

complementary to inner resources during cognition and action (Clark, 1997; 

Sutton, 2010). As Sutton pointed out, Clark (1997) not only addressed parity, 

but also the notion of resources being complementary in his (Clark’s) writing as 

illustrated by this paragraph: 

…the brain's brief is to provide complementary facilities that will support 

the repeated exploitation of operations upon the world [and] to provide 
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computational processes (such as powerful pattern completion) that the 

world, even as manipulated by us, does not usually afford. (p. 68). 

Wilson and Clark (2009) further addressed parity and complementarity in 

explicitly maintaining that the argument for extended cognition did not pivot on 

the requirement for inner and outer processes or states to be similar. Rather the 

internal and external resources should be complementary and deeply integrated 

into the cognitive whole. Therefore the focus in the extended mind thesis was 

on how the internal and external resources function together, not on their 

functional similarity. However, this response by Wilson and Clark to criticisms of 

the parity principle in the substantiation of the Clark and Chalmers argument 

appears to have been largely ignored. Clark and Chalmers were not claiming 

that in order to meet the principles of the extended mind theory, outer 

processes need to perform exactly like inner neural processes to be considered 

cognitive—rather the argument for extended mind was that the brain does not 

hold exclusive rights over the resources required for cognition. According to 

Sutton, (2010), when correctly understood, the parity principle and the 

complementarity principle are compatible. However, the parity principle was a 

more abstract notion, thus the argument frequently made by critics (e.g., Adams 

& Aizawa, 2001; Rupert, 2004) that internal and external resources must be 

isomorphic to meet the criteria of the parity principle and therefore extended 

mind, is better resolved through complementarity (Sutton et al., 2010). While 

these two principles are fundamental to the extended mind thesis, critics have 

often disregarded Clark and Chalmers outline of other conditions, such as 

reliability and durability—these “glue and trust” (Clark, 2010, p.83) conditions 

should also be in place to identify an extended mind (Wilson & Clark, 2009). 

The arguments in favour of pursuing a complementarity approach to extended 
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mind and possibly further distinct frameworks are not pursued in this thesis. 

However, Sutton (2010) believed that continuing to develop an extended mind 

hypothesis based on complementarity addressed many criticisms of parity and 

thus provided a basis for studying cognition from both a scientific and cultural 

perspective. 

Cognitive Integration and Enculturation 

Also with an eye to the second wave of extended mind, Menary (2006; 

2007; 2010b) proposed an alternative approach to extended cognition in the 

form of cognitive integration (Sutton, 2010). The first wave or “extended-mind-

style arguments” (Menary, 2010b, p. 228) of Clark and Chalmers (1998), 

Hutchins (1995a), and Gallagher (2005) integrate the features of the internal 

mind, body and external world into a hybrid cognitive process of looping 

interactions between manipulations by the mind and body on the environment in 

which the individual is situated (Menary, 2010b). The second wave or 

“cognitive-integration-style arguments” (Menary, 2010b, p.228) begin to unravel 

the nature of the integration in hybrid cognitive systems by examining how and 

where the integration takes place. In addressing the position of cognitive 

integration in terms of the 4E’s, Menary (2015) placed the extended mind 

hypothesis in the category of strongly embedded, and enactivism as strongly 

embodied, where cognitive integration traverses both strongly embodied and 

strongly embedded approaches.  

Menary (2007; 2010b; 2015) interpreted Clark’s (2008) version of 

extended cognition as organism-centered, whereby thinking is extended out into 

the world in which the individual is embedded and situated, however the brain 

remains at the centre of the thinking process. Cognition begins with the body 

and extends out into the world, the focus then moves to the ways in which the 
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brain and body interact with external resources as active components in a 

single dynamic cognitive system (Menary, 2007; 2015). The enactive approach 

focused on the role of the body of an organism, enacting with and in the world it 

inhabits as part of the cognitive process (Varela, Thompson & Rosch, 1991). 

This approach encompassed the spectrum of cognitive systems, from simple 

biological systems to the very complex, including memory and problem solving. 

The enactive approach of Varela et al. (1991) integrated cognition and emotion 

as part of sense-making, whereas the extended mind hypothesis as presented 

by Clark and Chalmers (1998) appeared to neglect emotion as part of the 

cognitive process (Malafouris, 2013; Thompson & Stapleton, 2009). Although 

beyond the scope of this thesis, it is important to note that Clark (1998) argued 

against relying on strong sensorimotor models believing that such models were 

insensitive to key information processing routines providing an incomplete 

picture of cognition. Clark also mentioned the role of emotion in cognition is 

worthy of discussion when concluding the chapter Memento’s revenge, 

although he did not elaborate this point (Clark, 2010). While both the extended 

mind and enactive hypotheses proposed an expanded framework for cognition 

from the mind to the external world, neither emphasised the ways sociocultural 

practices impact the association between brain, body, and the external world in 

creating a distributed cognitive system (Menary, 2015). In line with Sutton’s 

(2010) approach to extended cognition and the distinction between the first and 

second waves of extended mind, Menary (2010b) did not rely on the parity 

principle when explaining cognitive integration. He believed the question to be 

asked of the extended mind theory was not whether external processes are 

functionally similar but how do these external processes get to function similarly 

to those of the biological brain. Menary did not deny that some cognitive 
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processes take place in the internal mind; however, the mark of the cognitive in 

the extended mind is when the interaction of the internal neural manipulations 

and bodily manipulations of “information-bearing vehicles” (p. 236; e.g., Otto’s 

notebook) in completing a task transforms the cognitive process. Thus the focus 

of integrationists is on the type of bodily manipulations in the external world and 

how these integrate with neural processes (Menary, 2010b). The purpose of 

these manipulations is to achieve a particular goal, whether to solve a problem 

or complete some other task that might be considered a cognitive activity. There 

is, to some extent, acquisition and learning involved in manipulating these 

external vehicles that transform an individual’s cognitive capacities. Menary 

provided an example of using a computer keyboard for the purpose of writing 

where the manipulation of the tool, in this case the keyboard, enables the writer 

to read, erase, rewrite, read, store and continue to develop new ideas or 

construct meaningful sentences. Without the keyboard, there would be a much-

reduced level of competency; it would be an extremely difficult if not impossible 

task to complete in the head alone. This exemplifies the bodily manipulations of 

the artefact as an external process being complementary to, although different 

from, the internal process (Menary, 2010b; Sutton, 2010). 

In addition to the concepts of manipulation and transformation, one of the 

defining aspects of cognitive integration theory as developed by Menary (2015) 

is the consideration of the embodied and embedded nature of cognition through 

the lens of enculturation. Menary’s (2015) proposal of cognitive integration 

addressed this issue by describing how cognitive capacities are transformed 

through real time social interactions, interactions with artefacts and the inherited 

cultural practices of previous generations. The use of mathematical calculations 

by the Brazilian market vendors in Carraher, Carraher, and Schliemann’s (1985) 
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study, is an example of this cognitive transformation across time and space. 

Carraher et al. (1995) report how the market vendors rapidly calculated the cost 

of items on the market stalls without any formal mathematical knowledge, 

learning over time from the interaction with customers and other market 

vendors, as opposed to learning through the traditional education system. 

 Menary also proposed as part of the cognitive integration theory that, 

gradually over time, the plasticity of the brain permits neural changes initiated 

by cultural practices and constraints (see also Malafouris, 2013). This is 

illustrated by the ability to acquire new cultural capacities as a child develops. 

Humans are not born with the ability to read, it is acquired through learning. 

However, there is strong evidence that due to the neural plasticity of the brain, 

structural and functional changes to the brain occur as learning of words 

progresses and the child’s brain develops (Menary, 2015). The argument 

proposed is that these changes are not part of normal brain development; 

rather the circuitry of the brain is changed as a result of learning and this 

learning only takes place as we interact with the world (Dehaene, Piazza, Pinel, 

& Cohen 2003). Learning is acquired through interaction with others, such as 

teachers, peers, family, and interaction with the physical world. In the case of 

reading, this interaction with the physical world frequently involves the use of 

artefacts, such as books, pens, paper, and computers. This argument suggests 

that artefacts are not only components of the ecological cognitive landscape as 

a scaffold for thinking online, but also for scaffolding functional changes to 

thinking determined by the plasticity of the biological brain (Menary, 2015). This 

in turn implies that interactivity with artefacts might be considered to both 

upload and download knowledge as part of a dynamic cognitive system. 

Artefacts ‘upload’ knowledge in the sense that interacting with artefacts may 
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create new thoughts and new knowledge structures which is reflected in new 

neural circuitry. The looping back and forth process of interactivity between 

internal resources and artefacts can ‘download’ knowledge to facilitate the 

emergent thinking process within the extended cognitive system. 

Material Engagement and Material Agency 

As the boundaries of the mind were recast by theories arguing against an 

internalist view of cognition, Malafouris (2008, 2013) discussed an additional 

theoretical framework, Material Engagement Theory, grounded in the 

relationship between cognition and material culture. This framework continued 

with the agenda of breaking away from traditional cognitivism, drawing on work 

from disciplines such as philosophy of mind, archeology, anthropology, 

enactive, distributed, and extended cognition. Malafouris, in addressing the 

embodied approach to cognition, believed the paradigm had made great steps 

toward resolving the mind-body problem by conceptualising the body as an 

active, constituent element in cognition. However, he perceived limitations to 

this approach as the embodiment theory did not completely dispel the 

boundaries of cognition, rather it shifted them by failing to collapse the 

boundaries between the skin and the material world; thus the material remained 

external to cognition. While the extended mind thesis (Clark & Chalmers, 1998; 

Wilson & Clark, 2009) addressed this issue in part by dispelling the demarcation 

between the internal and external, Malafouris believed the theorists did not go 

far enough with the boundaries between the mental and the physical remaining. 

The theory of material engagement proposed that by moving to an approach 

whereby resources, internal and external, are dynamically configured and in 

synergy, boundaries do not apply. The mind is not found either inside or outside 
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the head. Whatever is outside the head can still be part of the mind as, 

“cognition has no location” (Malafouris, 2013, p. 85). 

Of particular interest is the active role attributed to objects in Malafouris’s 

Material Engagement theory. One of the key tenets of this theory is that agency 

is not exclusive to humans; the relational properties of agency can also be 

applied to material things. This is not to ascribe agency to artefacts in an 

anthropomorphic sense; the agency of objects and things is an emergent 

product of material engagement of the individual with the world. Artefacts are 

not construed as passive objects that an individual acts upon, rather the artefact 

is something active with which the individual engages and interacts; thus the 

premise of Malafouris’s proposal is that matter, things, artefacts, and objects 

can have agency. Malafouris is clear in stating that the agency of things is not 

to say things have human properties. Things are considered to have agency 

within the theory of material engagement, as the particular object or artefact 

exists as a distinct entity or component of an action. Therefore, it follows from 

this argument that studying the interaction between people and artefacts is 

fundamental in understanding the processes of human cognition.  

Conclusion 

Advocates of the situated approach to cognition were critical of traditional 

cognitive science for relegating the body and the lived-in world to a passive role 

in cognition proposing an alternative approach of situated cognition. This 

alternative way of thinking about cognition became a springboard for an 

increasing number of theoretical frameworks that were no longer bounded by 

the delineation of mind, body, and world. Subsequently, a new debate unfolded 

among those supporting the notion that cognition was not brain-bound. 

Arguably, the variety in interpretations of cognition proposed by these theories 
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may offer independent claims about thinking in the world, or they may be 

inextricably linked by the notion of the agent and the world comprising a 

dynamic thinking system (Ward & Stapleton, 2012). However, irrespective of 

this argument, ensuing theories and research began to investigate in more 

detail the role of the environment, and the body in cognition; including 

sociocultural influences, sensorimotor experiences and artefacts. As illustrated 

by Lave’s (1988) study on arithmetic in the lived-in world, it may prove difficult to 

isolate the various components of a problem solution entity. However, as part of 

Wilson and Clark’s (2009) explanation for a possible methodology in analysing 

a problem-solving ensemble, they suggested it might be useful to analyse the 

system as whole in the form of TECS, in turn providing insights into how the 

solver exploits and interacts with the artefact-rich world in which the solver is 

embedded. Clark and Chalmers (1998) illustrated the extended mind using the 

hypothetical Otto’s notebook. Gradually, as artefacts, objects, and things, being 

part a dynamic cognitive system, have come increasingly into focus within 

accounts of cognition, Malafouris (2008, 2013) developed the Material 

Engagement Theory proposing the radical notion that objects as distinct entities 

can have agency through action. 

The active role played by artefacts in cognition through interactivity, has 

been alluded to in the first and second wave extended mind theory, with a more 

detailed treatment in Material Engagement Theory (Malafouris, 2013; Sutton, 

2010). Cognition is spread across the mind and the external world, with 

artefacts within the milieu of the individual having the potential to change and 

manipulate thinking. Therefore, this underscores how an understanding of the 

role artefacts play in thinking is fundamental in defining and approaching 

cognitive properties within psychology and cognitive science.   
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Chapter 4 

Distributed Cognition, Interactivity, and the Role of Artefacts in Cognition 

Overview 

In Things That Make Us Smart, Norman (1993a) recommended readers 

follow the debate surfacing from a controversial new approach to studying 

cognition called “situated action” (p. 265). As discussed in previous chapters of 

this thesis this new approach to cognition initiated innovative theories and 

research into human thinking processes. As an extension to the situated 

approach to cognition, distributed cognition emerged to address some of the 

apparent shortcomings of traditional cognitive science by extending the 

cognitive outside the mind of the individual to the wider external environment 

(Hollan, Hutchins, & Kirsh, 2000; Perry, 2003). Ensuing from Norman’s interest 

in the development of technology, and the potential impact on society and the 

human mind, he considered the role of artefacts in cognition as being under-

explored with little understanding of the interaction between artefacts and users 

in daily activities (Norman, 1991). Norman (1993a) received the creation of 

artificial devices with both enthusiasm and trepidation, as he believed that they 

could make us “smart” (p.3) by expanding human cognitive capabilities, or 

“stupid” (p.3) by impeding creativity and human interactions with each other. 

Norman was working alongside other researchers, such as Hutchins (1995a, 

1995) Kirsh (1995a, 1995b), in advocating a systems approach to cognition that 

extended beyond the individual. Hutchins (1995a) undertook an extensive 

ethnographic study of navigation on a US Navy ship. The resulting publication, 

Cognition in the Wild, was a significant contribution to the development of the 

systemic approach to cognition and the development of a theory of distributed 

cognition (Hollan, Hutchins, & Kirsh, 2000). This systemic perspective explained 
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cognition through the tight coupling of the internal mind and the external world 

resulting in the spreading of memory and computational burden of thinking 

across a distributed cognitive structure (Hollan, Hutchins, & Kirsh, 2000). 

Interaction between the individual and artefacts as part of the distributed 

cognitive system alters the nature of the activity or problem, changing the 

cognitive properties of the system (Norman, 1991, 1993a). Although Norman 

(1991, 1993a) recognised the interaction between people and things, the 

interactivity per se, was not explored. This chapter will discuss interactivity with 

artefacts as facilitating emergent thinking in the distributed cognitive system, 

illustrating the importance of investigating interactivity between the individual 

and physical artefacts that configures a cognitive system. 

Introduction 

The theory of distributed cognition as part of the postcognitivist movement 

emerged toward the end of the last century, through empirical and ethnographic 

research (Sørensen, 2012). As a scientific enquiry into cognition, the distributed 

approach begins with the premise that cognitive activity is spread between and 

across the internal mind and the external world over space and time (Hollan, 

Hutchins, & Kirsh, 2000; Zhang & Patel, 2006). This distributed network 

functions as a cognitive system where the interaction between individuals, 

within groups, and with artefacts is guided and constrained by the physical, 

social and cultural context in which individuals are situated (Hutchins, 1995a; 

Zhang & Patel, 2006). Therefore, unlike traditional cognitive science, distributed 

cognition does not take the individual as the unit of analysis. Rather the unit of 

analysis is the distributed cognitive system as the cognitive properties of the 

larger system better reflect the entirety of the cognitive process than the 
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properties of discrete elements taken in isolation (Hutchins, 1995b; Zhang & 

Patel, 2006).  

Distributed cognition depicts thinking in terms of internal and external 

representations, where more recent interpretations of systemic cognition have 

adopted a nonrepresentational approach (e.g., Harvey, Gahrn-Andersen, & 

Steffensen, 2016; cf. Kirsh, 2009b, 2013; Zhang & Norman, 1994)3. This 

chapter will illustrate how changing the external representation influences the 

outcome of problem solving as the interaction with the physical structure 

facilitates changes to the internal representation, which in turn promotes novel 

thoughts and actions on the path to solution (Vallée-Tourangeau & Cowley, 

2013; Zhang & Norman, 1994). In particular, the focus of this chapter will be on 

distributed cognition and the interactivity between individuals and artefacts, 

where interactivity enables the bidirectional flow of knowledge and information 

across the internal and external resources of the cognitive system (Zhang & 

Patel, 2006).  

Distributed Cognition 

Hutchins (1995a) and Norman (1993a) (see also Kirsh, 1995a; Saloman, 

1997; Zhang, 1997) began developing a theoretical framework for a distributed 

approach to cognition through a series of extensive studies. These studies 

illustrated how the smooth operation of systems such as naval vessels, 

airplanes, and nuclear power stations require verbal and nonverbal 

                                                 
3 The debate over representations as part of non-internalist theories of cognition is a somewhat 

contentious issue. For the purposes of this thesis it is considered a more philosophical debate 
and will not be addressed here (see Hutto & Myin, 2013 for radical embodied cognition; 
Malafouris, 2013 for an external representationalist approach in Material Engagement Theory ; 

Harvey, Gahrn-Anderson and Steffensen, 2016, for a non-representationalist approach in 
researching interactivity; Thompson, 2007, for the enactive approach to representationalism). 
However, in keeping with work by Zhang and Norman (1994) and Kirsh (2009b, 2013) the 

approach adopted will be that representations play a role in cognitive processing whether 
distributed or not. 
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communication along with the synchronisation of activities between members of 

the team and the use of artefacts (Norman, 1993a). Hutchins (1995a) work in 

documenting the navigational skills of those on board the U.S. naval ship Palau 

is frequently attributed with expanding the framework in extensively 

demonstrating how cognitive processes may be distributed across social 

groups, across internal and external resources, and across time. While inclusive 

of the situated perspective, the distributed approach to cognition is receptive to 

the conventional approach of cognitive science using a computational basis for 

understanding human behaviour where cognition is viewed as a process of 

generation and transformation of representations (Hutchins, 2001; Perry, 2003). 

However, the distributed model of thinking goes further by proposing that 

cognition does not occur solely through representations of symbolic 

manipulations in the head, rather, cognition is shared across a system 

comprising of both internal processes and external resources (Hutchins, 2001; 

Saloman, 1997; Zhang & Norman, 1994).  

This approach to cognition proposing the distribution of thinking across the 

internal mind and external world, offers an alternative and complementary 

perspective to some of the theories discussed in Chapters 2 and 3. Theories of 

situated, extended, distributed cognition, and embodied cognition advocate an 

ecological approach to cognition whereby cognitive processes span beyond the 

boundaries of the mind and body into the environment inhabited by the 

individual. As discussed in previous chapters the situated approach to cognition 

as introduced by researchers such as Lave (1988), Greeno (1989) and 

Hutchins (1995a) foregrounded the importance of context and setting in 

cognitive processes, becoming the foundation for many subsequent theories of 

ecological cognition. Within the distributed cognition framework, thinking is 
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embodied and extended, however, this approach does not anticipate thinking as 

being initiated from a particular locus within the cognitive system—“Distributed 

cognition looks for cognitive processes, wherever they may occur, on the basis 

of functional relationships of elements that participate together in the process” 

(Hollan, Hutchins, & Kirsh, 2000, p. 175). Therefore, as with other non-

internalist perspectives, the focus of attention is no longer on the individual, as 

cognition is not bounded by the manipulation of symbols within the head of the 

individual agent nor is the cognitive process confined to the boundaries of the 

skin and skull (Hutchins, 2001). The distributed cognitive system is dynamic and 

only constrained by the functional coupling of its constituent elements 

irrespective of location (Hollan, Hutchins, & Kirsh, 2000).  

Distributed cognition is somewhat aligned with traditional cognitive science 

in a fundamentally representational approach to problem solving. The traditional 

approach to representational states is that all thinking takes place in the head 

with symbolic representations of the external world being manipulated by 

internal process of the mind. External representations are considered to be 

simply stimuli or inputs to these internal processes. A fundamental difference to 

this approach within the distributed cognition framework is that representations 

are not brain-bound. According to this account of cognition it is not necessary to 

construct an internal model of the world to facilitate action, as information from 

the external environment can be directly accessed by the cognizer acting and 

adapting as is appropriate within that particular situation and setting (Zhang, 

1997). Not unlike the information-processing approach to problem solving, the 

theory of distributed cognition also conceptualises the problem space in terms 

of representational states, where the problem space consists of the initial state, 

a goal state and between these two states is the path to solution. However, the 
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navigation of a problem space through the transformation of the problem 

between the transitory stages from the initial state to goal state is across 

internal processes and external representation of the problem, not exclusively 

through internal representations (Perry, 2003). Hollan, Hutchins and Kirsh 

(2000) discussed representations in general terms, however they did not 

specifically discuss distributed cognition in terms of internal or external 

representations. Kirsh (1995a, 2009b, 2013), on the other hand, discussed the 

distribution of cognition across external and internal representations empahising 

the role of external representations in augmenting cognition in making sense of 

the world. 

By way of addressing some of the representational issues in the 

distributed cognition model, Zhang and Norman (1994) proposed a theory of 

distributed representations. They described three experiments using three 

puzzle isomorphs based on the Tower of Hanoi problem, although the three 

puzzles were formally the same they differed in terms of their physical 

presentations4. These experiments were particularly novel as participants were 

required to manipulate artefacts in solving the problem (although the focus of 

the analysis was not on interactivity per se). The participant was asked to 

imagine these were problems to be solved by a waiter or waitress in an unusual 

restaurant. One presentation of the problem used three different sized 

doughnuts and three pegs in a slight modification of the Tower of Hanoi puzzle; 

a second used three different sized oranges and three plates; and a third used 

three different sized coffee cups filled with real coffee and three plates (for 

details see Zhang & Norman, 1994). The coffee cup puzzle was a reverse 

                                                 
4 Zhang and Norman (1994) generally referred to the problem presentations as external 
representations. 
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Tower of Hanoi problem with the cups initially stacked in size order, with the 

largest on top and the size of the plates were such that when more than one 

cup was on a plate it would have to be stacked on top of the other cups (see 

Figure. 4.1). This problem is of particular interest as it illustrates how some of 

the rules of the problem are coded in the physicality of the objects, affording 

some moves over others. The goal was to un-stack the cups onto the saucers, 

following specific rules so that the largest cup would be on the left, the midsized 

cup in the middle and the smallest on the right (see Figure 4.2). Essentially the 

first rule was only one cup could be moved at a time; the second rule was a cup 

could only be transferred to a saucer where it would be the largest; with the 

third rule being only the largest cup on the saucer can be transferred to another 

plate. The other two problems (i.e. one using doughnuts, the other oranges) 

were functionally the same as the coffee cup puzzle, with participants being 

shown the same three rules for each problem presentation, with slight 

adjustments to accommodate the appropriate artefacts. However, participants 

found the coffee cup problem to be the simplest to solve, next was the 

doughnut presentation with the oranges being the most difficult, producing more 

moves, more errors and more time required than the other two problems 

(Norman, 1993a). The disparities in performance could be explained by differing 

physical constraints offered by the properties of the artefacts as part of the 

problem’s external representation. Essentially the participant did not want to 

spill the coffee so the second and third rules, although stated, were redundant 

as the coffee would be split if the small cup was placed inside the large cup and 

the saucers were not large enough to accommodate two cups side by side so 

there was no choice but to stack them. Therefore two of the three rules were 

built into the physical structure of the problem, this reduced the number of rules 
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being maintained as part of the internal representation, making the problem 

easier to solve due to a reduction in the burden on internal resources such as 

working memory. As a result, this novel approach devised by Zhang and 

Norman illustrated how the physical artefacts were not just aids to cognition, the 

functionality embedded in the artefacts offered varying constraints on the 

movements in the problem space. This in turn changed the problem landscape 

facilitating different performances in solving three puzzles with the same three 

rules. While the rules for the problems were formally the same, they were 

distributed differently for all three problems across the internal and external 

representations of the problem. According to Zhang and Norman, the problem 

space was changed dependent on the combination of internal and external 

rules. This might be construed as encouraging a dichotomous approach to 

cognition which is not consistent with systemic theories. However, from a 

distributed representational perspective, the problem space is composed of an 

external problem space and an internal problem space, with these problems 

spaces co-joined to create an abstract problem space (Zhang & Norman, 1994). 

Zhang and Norman defined their notion of problem space, where an external 

problem space is made up of external rules; an internal problem space 

constructed by internal rules; and a mixed problem space of both internal and 

external rules (Zhang & Norman, 1994). On this basis, these three problems 

offered varying combinations of internal and external rules; thus creating 

different problem spaces. The coffee cup problem required the internalisation of 

fewer rules, as two of the three rules were implicit in the physical constraints of 

the artefacts as part of the external representation. This constrained the 

possible movements within the problem space providing an explanation for the 

differing results between the three problems.  
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Figure 4.1. The initial state for the coffee cups problem (Zhang & Norman, 

1994). 

 

 

Figure 4.2. The goal state for the coffee cups problem (Zhang & Norman, 1994). 

As Norman (1993a) also explained, in solving these three puzzles, despite 

being isomorphic, participants possibly did not perceive them as the same 

problem, rather as three different problems. This was similar to the point made 

by Lave (1988) when explaining that context and situatedness affect learning 

transfer from abstract knowledge acquired in the classroom to the mapping of 

this knowledge on to real world problem solving. The cognizer does not 

necessarily recognise problems as being similar when the problem presentation 

is different—this may be due to context, setting, or physical structure. In these 

experiments by Zhang and Norman the physical features—in particular the 

artefacts—offered affordances and constraints that assisted the reasoner, not 
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only as an aid to memory and computationally, but in the perception of problem 

to be solved (Norman, 1993a).  

Zhang and Norman (see also Norman, 1993a) also suggested that in 

analysing problem solving behaviour, there might be a third representation of 

the problem to consider. First the problem is represented internally in the mind 

of the solver, second the physical structure of the problem as an external 

representation, and third the problem is represented in the mind of the 

researcher. The third representation was an interesting observation from the 

perspective of the design of laboratory experiments. Norman (1993a) 

suggested that to the computer programmer or the research scientist all three 

problems were probably viewed as the same problem, where as suggested 

earlier, the problems might be considered as different to the solver. As these 

experiments revealed, while the formal structure of problems may be identical, 

changing the physical structure of a problem may alter the internal and external 

representation, in turn creating a new problem space affecting the approach to 

the problem by the solver. Essentially not only did the physical form of the 

artefacts influence the cognitive strategies of the solver, the tasks may have 

been perceived by the participant as quite different problems also impacting the 

ease with which the puzzles can be solved (Norman, 1993a; Vallée-

Tourangeau & Krüsi Penney, 2005). 

The distributed perspective shares another alliance with the traditional 

cognitive science approach in applying the notion of computationalism to 

cognition. Just as this distributed cognitive view conceives of the representation 

of a problem as not limited to the internal mind of the individual, so too are 

computations of the internal mind viewed as part of a larger computational 

system (Hutchins, 1995a). In discussing this computational account, Hutchins 
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(1995a) suggested that the same principles as those of the traditional 

information-processing approach to cognition could be applied to a larger 

system, with “computation realized through the creation, transformation, and 

propagation of representational states” (p. 51). The notion of systemic cognition 

as computation applies to computations such as maths inside the head of an 

individual; interactions between individuals; between people and groups; and 

people with artefacts. In Cognition in the Wild Hutchins (1995a) undertook an 

extensive examination into the navigational skills on board the US Naval ship 

Palau from a situated perspective. Similar to Lave, this was an exercise in 

studying cognition in context using ethnographic methodologies, however 

Hutchins was not investigating knowledge transfer or learning, as he was 

concerned with documenting the social interaction between people and the 

interaction of people with the physical world. Hutchins described in detail how 

the ship’s navigation system operated as a large nested computational system 

with the different components such as nautical charts created over time, the 

crew sharing experience and knowledge, the physical features of the vessel all 

acting and interacting in a broad dynamical process to steer the ship on its 

journey. As changes to the environment occur new information and interactions 

result between the crew, transforming the representational structure of the 

navigational plan. New elements were created, for example, in the form of 

pencil marks on the charts and logbooks as permanent records of the events 

(Hutchins, 1995a). Hutchins was not denying that some computations take 

place inside the head of the individual. However, those computations by one 

person would not suffice in the task of navigating the ship. Rather, it was the 

actions of the agent as one of the components of the distributed cognitive 

system across the material, cultural and social structure that effectively 
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completed the task of steering the vessel safely into port (Hutchins, 1995a; 

Vallée-Tourangeau & Cowley, 2013). The coordinating of the properties of all 

elements, including the people and the artefacts, as part of the dynamic 

cognitive system, shaped and determined the successful pilotage of the Palau. 

As Giere (2007) explained, a distributed cognitive system is ‘cognitive’ as 

the output if attributed to an individual would be considered as a cognitive 

product. This cognition can be distributed over a social setting with artefacts, as 

illustrated by Hutchins’s (1995a) navigational system, or in the absence of 

others an individual with a pencil completing a Sudoku puzzle in The Times 

over breakfast. Kirsh (2006) believed that in scrutinising distributed cognition, 

the question is how the resources that comprise the elements of a dynamic, 

tightly coupled system are coordinated in order to achieve the required 

outcomes. This coordination is facilitated by interactivity as the individual makes 

sense of the world she inhabits (Kirsh, 2006). The unit of analysis is no longer 

the individual but the distributed cognitive system with the thinking distilled by 

the interaction between the elements of the system, rather than the distinct 

elements themselves driving the emergence of the thinking (Vallée-

Tourangeau, 2013; Zhang & Patel, 2006). Therefore, interactivity is of particular 

interest in understanding a distributed system of cognition. 

Interactivity 

People are constantly interacting with their environment in a sense-making 

process, prodding the surrounding world to better understand it, to solve 

dilemmas, or perhaps to simplify a task (Kirsh, 2013). This interactivity with the 

world is a cycle of execution through actions on the world, and evaluation in 

comparing the outcome of actions to expectations and goals (Norman, 1991). It 

proceeds in a dynamic, looping back and forth flow within a tightly coupled 
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system between the individual and the world; where the individual and world act 

and react to each other resulting in changes to both (Kirsh, 2013). Actions are 

frequently undertaken to make a task simpler, faster or reduce errors as the 

cognitive process migrates within the system to wherever the overall cost of 

cognition is lowest (Kirsh, 2013; Maglio, Matlock, Raphaely, Chernicky & Kirsh, 

1999).  

In Zhang and Norman’s (1994) account of representational distributed 

cognition, while the role of artefacts in external representations was addressed, 

interactivity with the artefacts was largely ignored in their conclusions. A more 

reflective approach to interactivity from a distributed perspective was in word 

production tasks where participants were asked to produce words from a list of 

letters with and without the use of lettered tiles (Maglio et al., 1999; Vallée-

Tourangeau & Wrightman, 2010). When undertaking these tasks, participants 

were unsurprisingly able to produce words generated by essentially internal 

processes; however overall, more words were produced when it was possible to 

manipulate the lettered tiles. In addition, the researchers found that the greater 

the task difficulty the more the solver engaged with the external environment by 

utilising the lettered tiles to create new words (Maglio et al., 1999; Vallée-

Tourangeau & Wrightman, 2010). These results demonstrated that the 

components of the task environment played a pivotal role in the possibilities 

available to enable the reasoner on the path to solution (Kirsh, 1995a). By 

manipulating lettered tiles in a game such as Scrabble, a player will generally 

move the tiles to create the optimum letter combination (or any letter 

combination in the first instance). The player may push the letter ‘q’ next to a 

letter ‘u’ and then move vowels into the next position looking for a prompt for a 

suitable letter combination thus computing with the tiles what is the next best 
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action for a suitable word output. This promotes a back and forward interaction 

within the distributed cognitive system between the individual’s internal 

cognitive processes and the remaining tiles, by moving the tiles and through 

mental computations. Just as the external components impact the outcome 

reached by the solver, so do the internal capabilities of this solver, such as 

memory recall for learnt vocabulary in this case (Vallée-Tourangeau & 

Wrightman, 2010).  Kirsh (1996) explained how introducing a tool or a physical 

artefact to a task environment changed the agent’s “action repertoire” (p.438), 

for it was now possible to achieve outcomes that may not have been previously 

attainable without the additional resource integrated as part of the cognitive 

system. In rearranging the tiles to search for words, the external actions of the 

task complemented the internal resources in computing the final words resulting 

in a “complementary action or strategy” (Kirsh, 1996, p.443). In problem solving 

a complementary action occurs as part of a restructuring strategy. This 

complementary action interleaves physical and mental actions to restructure the 

environment or recruit external resources, improving the efficiency of cognitive 

processes in such a way that would not have been possible with mental or 

physical actions alone (Kirsh, 1995b, 1996). In the interactive process of 

searching for words, the physical actions in moving the tiles provided the 

opportunity for the cognizer to take advantage of the cost benefits to the overall 

cognitive process offered by the external environment, making the task simpler, 

faster, or more accurate. 

Lave’s (1988) study on adult maths in the lived-in world, also presented a 

number of examples illustrating interactive behaviour, as shoppers moved 

through the supermarket environment when making purchasing decisions, and 

dieters devised ingenious ways of measuring food in the kitchen. These 
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interactions were observed through the relationship between ongoing activities 

of persons acting in a setting, with problems emerging and strategies for 

solution evolving through a self-generative process enacted through the setting. 

Lave explored the notion that the setting of the supermarket was not merely a 

mental map in the shopper’s mind; it provided synergy between the experience 

and expectations of the shopper with the organisation of the commodities within 

the shopping arena. This synergy was evident in an example mentioned in 

Chapter 2 of this thesis, where the activity of a shopper performing a routine 

purchase of noodles is altered by actions and the packaging display in the 

supermarket. Although the shopper entered the supermarket prepared to 

purchase a particular brand of noodles, as she believed it to be the best value, 

the interaction in the supermarket prompted her to ultimately change her mind. 

The shopper approached the noodle display unable to remember which item 

she purchased previously, it was only upon scanning the packages that she 

recognised the exact product. She took the package from the shelf placing it in 

the trolley explaining to the researcher that she usually looked at different 

brands in the supermarket for items on sale, but this was the usual package 

purchased as this was generally offered the best value. By way of 

demonstrating to the researcher that she had made a shrewd decision the 

shopper then compared the intended purchase with some of the other noodles 

on display, calculating unit prices (it was unclear from Lave’s account whether 

the shopper touched the packages as throughout the book, descriptions of the 

shoppers and dieters interactions with artefacts was not detailed by Lave). The 

shopper noted by physical observation of the packages on display that there 

were discrepancies in her assumptions about the weight of certain packages. 

This in turn required recalculation of the unit price, resulting in the resolution by 
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the shopper that the noodles in her trolley were not the best value after all. 

Therefore, as a consequence of these actions and interactions, the shopper 

purchased a different packet of noodles than originally intended. The shopper’s 

purchasing dilemma was both created, and resolved by the looping back and 

forth interaction between the individual’s mental processes, the physical grocery 

display, and the researcher as part of a dynamic cognitive system. Lave’s 

analysis of this shopping activity illustrated the transformation of the problem 

through the changing maths strategies offered by the setting. While 

acknowledging the interaction between the researcher and the shopper, Lave 

was not convinced that this interaction resulted in a changes to the decisions 

made by the shopper. Lave was of the opinion that the shopper assumed that 

the role of the researcher was to be more of an arbiter of normative maths 

practice. Therefore, the dialogue showcased the ongoing nature of the decision 

making activity rather than the interaction between the shopper and the 

researcher making a substantive difference to the unfolding decision making 

process of the shopper. Lave did briefly acknowledged how the items on the 

shelf may be relevant aspects in a supermarket setting for the initiation of the 

purchasing decision making process, although this line of explanation was not 

pursued. Thus, although Lave identified the synergies of the setting as 

impacting the decision of the shopper, interactivity between the researcher, 

artefacts, and the shopper or dieter were not specifically identified as part of the 

shopper’s sense-making process. 

Problem solving is situated, contextual and proceeds interactively in the 

world in which an individual is embedded. In problem solving an agent may not 

be able to mentally simulate the transformation of the problem to the goal state, 

however through interaction with the material world, problems and solutions 
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frequently unfold with thinking distilled by interactivity rather than dictated by a 

plan (Vallée-Tourangeau, 2013). Actions and the manipulation of artefacts 

provide new information, unveil new affordances, and configure a more 

cognitively congenial problem presentation (Guthrie, Vallée-Tourangeau, 

Vallée-Tourangeau, & Howard, 2013; Kirsh, 1996). Interactivity, as revealed in 

activities such as playing Scrabble or shopping at the supermarket, once 

identified, is manifestly evident as coordinating the sense-making process in 

almost every human experience and activity (Kirsh, 2009b; Maglio et al., 1999; 

Vallée-Tourangeau & Wrightman, 2010; Steffensen, 2013). However, 

interactivity is invisible, often going unnoticed; this invisibility makes it 

challenging to test or isolate for analysis, as these interactions between internal 

and external resources are non-linear and looping in nature, it is difficult to 

separate the inner and outer processes (De Jesus, 2015; Norman, 1993a). The 

belief or hope of the information-processing approach to cognition was not to 

characterize the agent and environment relationship as transactional, rather to 

cast the agent as separate from the environment. Folk notions of intelligence 

and expertise are frequently modeled on this internalist perspective of human 

intelligence, perceiving of thinking as a process that takes place entirely in the 

head. This is illustrated in the popular television quiz programme Mastermind 

(https://en.wikipedia.org/wiki/Mastermind_(TV_series), where a contestant 

answers an impressive array of challenging specialist and general knowledge 

questions; the name itself fulfills the folk notion of intelligence as the individual 

is proclaimed to be a master of the mind. The contestant exhibits expert 

knowledge drawing on impressive internal mental capacities and capabilities 

including long-term memory storage, recall, and working memory in a hands-

down, low interactive situation. In terms of folk psychology this may be sufficient 
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evidence to label the contestant as an intelligent thinker. However, this success 

at answering a series of challenging quiz questions is not necessarily an 

indication that the contestant’s knowledge is transferable to successfully 

thinking in or with the world. From a situated, extended mind, or distributed 

perspective this is not a complete picture of the cognitive system. Indeed, 

Greeno (1989) and Lave’s (1988) accounts of knowledge transfer would 

suggest that learning in one domain does not necessarily readily transfer to 

another, as situatedness impacts the thinking process with the application of 

acquired knowledge is not necessarily being stable across contexts and 

settings. The performance in solving best-buy maths problems in the 

supermarket of the shoppers in Lave’s (1988) Adult Math Project was generally 

far superior to when the same participants were asked to employ similar 

mathematical skills in a school-like maths tests at home. Returning to the 

example of the case of the Mastermind contestants, this is not to say that a 

Mastermind contestant might not perform equally well in situations away from 

the question and answer setting on of a television quiz show. However, working 

memory capacity, for example, may predict performance in one task ecology, 

but as the cognitive landscape changes so might the impact of working memory 

capacity as a predictor of performance. It may be tempting as cognitive 

psychologists to profile the cognitive abilities of the agent separately from the 

environment as this entails a far less complex explanation, however, this does 

not tell the entire story of the agent acting in the lived-in world. An impressive 

performance on the quiz programme Mastermind does not capture the cognitive 

system in its entirety, just as merely profiling the internal processes of an 

individual cannot accurately predict cognitive performance across all situations; 

this is to be blinded to the connectivity between the agent and the environment. 
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In attempting to provide a complete account of the human cognitive system, it is 

not possible to define one of the constituent components of the cognitive 

system without reference to the other. The dynamic system of thinking is 

constituted though bodily actions with artefacts, indicating a causal dependency 

between the body and material artefacts when people are thinking and acting in 

the world (Malafouris, 2013). The interactions and the physical association 

between the body and artefacts should be treated as important forms of 

thinking, not simply taken as being indicators of some unobservable internal 

mental processes; the cognitive processes happen in part through mental 

processes in the brain, however much of the thinking occurs as a result of 

interaction with the world (Malafouris, 2013). It follows then, that the ontology of 

thinking is relational: the agent—mind and body—and the environment are 

inextricably connected, with thinking emerging from the dynamic interactive 

processes occurring between them. Therefore, by separating agent from action 

in the world, as an internalist perspective would maintain, is to present a 

disconnected, disembodied, and static depiction of cognition. Thinking as an 

emergent property of interactivity between the individual and the world is not 

necessarily explained by profiling of the individual’s mental capabilities alone. 

Malafouris (2013) proposed the human thinking process could be portrayed as 

a “hylonoetic field” (p. 226) where an ontologically of thinking proceeds “through 

and with matter” (p. 236). However, this depiction of the cognitive processes 

enacted between and within the constituent components of the distributed 

cognitive system, does not necessarily reflect the action that drives the 

emergence of thinking. The essential coupling of components through 

interactivity as the cognitive process unfolds suggests a kinesionoetic (from the 
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Greek kinima for movement, and nous for mind) ontology of cognition, where 

thinking emerges through action.5  

Observations of interactivity with artefacts, such as gestures and with 

other people are possible, however the understanding of the dynamics of 

human interactivity as part of the distributed cognitive system are complex and 

an explanatory model of interactivity is, so far, elusive (Steffensen, 2013). 

Further obscuring the investigation of interactivity is the heteroscalar nature of 

environment-agent coupling (Harvey, Gahrn-Andersen, & Steffensen, 2016). 

Harvey et al. (2016) explained that the events, processes and patterns relevant 

to an individual carrying out one action over another might happen almost 

simultaneously but also exist on multiple timescales. A problem may be solved 

by drawing on experience from the past, the information available in the present 

context, and with an eye to the consequences for the future. This was illustrated 

by the actions of the navigation team on board the Palau, in Hutchins’s (1995a) 

study of the ship’s navigation system, as they plotted a safe course to the ship’s 

final destination. They referred to previous professional experience, maps and 

charts produced through prior journeys, the prevailing weather conditions at the 

time of sailing, and projected ahead to possible situations that could affect 

weighing anchor. These events were also happening in timescales of varying 

magnitude; some segments of the problem-solving process might unfold in pico-

scales of action while others were stretched across large-scale actions. The 

interaction may be affected or as a result of prior experiences or the interaction 

may be so remote from the output that resulting feedback from the world is 

delayed in time (Norman, 1991). Norman (1991) also pointed out that 

                                                 
5 An original term developed through discussions with Professor Fred Vallée-Tourangeau and 
Dr. Elena Polycarpou. 
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interaction could be direct, like using a pen and paper, or indirect by asking 

someone else to write down thoughts on our behalf. Therefore interactivity 

brings together these resources across time and space. Without interactivity as 

the co-joining link, the coupling between the resources would not be possible 

wherever located in the system. 

The Role of Artefacts in Cognition 

Two of the distinctive characteristics of human beings as a species are the 

capability to first, create artefacts through which modifications to the 

surrounding environment are made, and second, to transmit this accumulation 

of modifications to future generations (Norman, 1991). As Norman (1991, 

1993a) pointed out the world is saturated with artefacts that contribute to 

overcoming the many limitations of the body, the mind and constraints within 

the environment (see also Malafouris, 2013) Clothing, heating and housing 

enable communities to flourish in areas that would otherwise impose impossible 

climatic conditions for human habitation; cars, trains, planes allow travel faster 

than the unaided human body could accomplish; technologies help to make us 

smart with massive on-line databases that provide access to details in seconds 

(Norman, 1993a). Despite the importance and prevalence of artefacts in daily 

lives, the impact of artefacts on cognition has been largely ignored in the 

exploration of the human mind. When investigating, for example, memory, 

perception, language, and attention, the mind is generally studied within 

mainstream psychology unaided by or in isolation of external resources, and the 

use of artefacts frequently goes unacknowledged in analysis (Norman, 1993a; 

Sutton, 2010; Vallée-Tourangeau, 2014).  

Norman (1991) coined the term “cognitive artefacts” (p. 17) to describe 

artificial, man-made or human-modified objects serving as aids to cognition, 
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performing functionally as part of an external representation (Perry, 2003). 

Hutchins (1999) later described cognitive artefacts in broader terms as, 

“physical objects made by humans for the purpose of aiding, enhancing, or 

improving cognition” (p.126). Cognitive artefacts operate as more than memory 

aids that amplify existing human abilities, they transform the task at hand by 

offering the potential for reallocation of resources across the problem space to 

make the best use of the resources available to the reasoner—both internal and 

external (Norman, 1991, 1993a; Perry, 2003). The extended mind theory 

developed by Clark and Chalmers (1998) offers a similar view, where a 

nonneural resource must play a functionally active role to be considered as an 

integrated component of an extended cognitive system—not merely a resource 

used by the agent while carrying out a task (Wilson & Clark, 2009). Artefacts 

provide the prospect for cognition to be distributed in a number of ways: across 

time, setting, people, and divided across other artefacts as the opportunities for 

interactivity expand with the unfolding of the problem and scaffolding of 

solutions. In addition artefacts can transform the approach an individual takes to 

acting on the task by providing structure (Baber, 2003; Norman, 1993a; Zhang 

& Norman, 1994). For example, a shopping list is completed prior to the activity 

of shopping—perhaps written in the kitchen, enacted in the supermarket, it can 

be added to by other people, and the supermarket displays can prompt the 

purchase of other items in the store (Baber, 2003). The structure of the 

shopping list can, in turn, determine the path taken when purchasing the 

groceries in the supermarket. A cognitive artefact functions as part of the 

distributed cognitive system changing the nature of the task and the way an 

individual performs a task. 



 126 
 

The agent adaptively structures and re-structures the environment in 

which she is embedded organising and re-organising artefacts and the physical 

world as part of the processing of information when undertaking a task or 

activity (Perry, 2003). Of course, for the artefact to function as part of the 

cognitive system it must have meaning-in-context for the user, this can be 

illustrated by the hypothetical Otto’s notebook as described by Clark and 

Chalmers (1998). The notebook would only enhance Otto’s cognitive abilities if 

it contained information required for the task at hand, if Otto needed to find his 

way to the museum but the notebook did not hold the relevant information then 

it would not be a constituent part of the cognitive process (Perry, 2003). Norman 

(1993a) considered that, in general, artefacts change the tasks people do, 

artefacts do not facilitate changes to cognitive abilities. Norman’s point of view 

may be debatable as artefacts have potentially been shown to alter cognitive 

abilities and changes to neural substrates in activities such as learning 

mathematics and reading (Dehaene, Piazza, Pinel, & Cohen, 2003; Malafouris, 

2013; Menary, 2007, 2015). Regardless of this debate, for researchers and 

theorists of a systemic view of cognition the overall performance of a task is not 

determined solely by the cognitive abilities of the individual or the properties of 

the artefact (Perry, 2003). According to Norman (1991,1993a) there are two 

representational functions for cognitive artefacts, one is from the personal 

viewpoint, and the second is the system viewpoint. From the personal 

viewpoint, that of the user of an artefact, the artefact has altered the way the 

task is performed or may offer a new set of tasks. From the system point of view 

the sum of the individual and the artefact is smarter than either component 

alone. Every artefact has a personal and system point of view, therefore the 

performance of the task for the individual can be altered and the wider cognitive 
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system enhanced by the representational function of the artefact (Norman, 

1991).  

Norman (1991, 1993a) suggested artefacts might play a part in enhancing 

performance to make people smart, however in his opinion they do not enhance 

or amplify the abilities of the individual. From the perspective Norman 

suggested the example of a pair of spectacles, which could be considered an 

artefact for amplifying the inadequate capacities of vision for an individual, but 

not the abilities. However, a more accurate explanation of the functionally active 

role of spectacles in a cognitive system is as an object that redefines the 

information available to the wearer enabling a physical change to the external 

representation of an activity and a restructure of the task that would not have 

been possible to the individual without the spectacles (Baber, 2003). A tool, 

such as a hammer, is an artefact that is manipulated by a user, to bring about 

changes to some aspect of the surrounding environment (Baber, 2003). 

Although it may not have been designed to make people smarter, it also plays a 

cognitive role as it extends the existing capabilities of the user in reaching the 

required goal. In joining two pieces of wood together with a nail, the tool— 

whether it is a hammer or perhaps the heel of a shoe—is an active component 

of the cognitive system integral in reaching the final goal. The user’s existing 

knowledge of working with a hammer is complemented by the action of the 

hammer, which in turn offers sensory feedback. The looping feedback between 

the user and the direct interaction with the hammer, and the subsequent indirect 

interaction with the nail, provides an opportunity for the user to perform and 

adjust actions with the hammer, such as pressure, until the nail is in place. 

Hutchins (1999) considered a piece of string tied around the finger as a 

reminder to complete a task, sufficient to be classified as a cognitive artefact, 
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explaining that material cognitive artefacts are only of use when coordinated 

with the knowledge of how to use the object. Artefacts that are allocated an 

active cognitive function within a task should be considered an integral 

component of a cognitive system (Baber, 2003). Therefore artefacts emerge as 

having a cognitive role through interactivity in a distributed cognitive system, 

making humans smarter (Norman, 1991, 1993a).  

Conclusion 

Distributed cognition frames problem solving in terms of representations 

and processes that are not bounded by the brain (Perry, 2003). Cognitive 

processes are dynamically distributed, stretched, and constrained across the 

internal resources, body, and external representations of the world as perceived 

by the individual. The operations of thinking shift bidirectionally across and 

within this tightly coupled system of internal and external resources, migrating to 

wherever resources are most efficiently utilised (Fu, 2011; Gray, Sims, Fu, & 

Schoelles, 2006; Kirsh, 2013; Vallée-Tourangeau & Cowley, 2013). The 

execution of the task may not result in improved precision or accuracy, however 

the cost benefit evaluation undergone during the process is transacted within 

the capabilities of the individual given the resources available at the time. The 

resources are engendered with constraints and boundaries, along with 

opportunities for manipulation to maximise potential affordances within a world 

that is shaped by the experiences of the individual. When the external 

representation offers a greater opportunity for interactivity, the capabilities of the 

reasoner are frequently enhanced and transformed. This may encourage not 

only a quantitative change in performance in problem solving, but also a 

qualitative difference in the trajectories enacted in reaching a solution. The 

interaction between the artefact and the individual brings forth the potentiality of 
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the affordances offered by the artefact as part of the external physical structure 

(Vallée-Tourangeau & Cowley, 2013). This interaction may be in the form of 

perception and action or it may be using the object as a referent to make sense 

of a situation (Kirsh, 2009b). Through this interaction, the material agency of the 

artefact emerges as a property of the tight coupling of the cognizer with the 

artefact that is deemed an integral component of the extended and distributed 

cognitive process (Malafouris, 2013). Thus, interactivity with artefacts can enact 

paths to solution that might have otherwise been elusive to the cognizer (Kirsh, 

2013; Vallée-Tourangeau & Cowley, 2013). 

When acting in the world individuals use artefacts as mediators with the 

environment, to execute actions resulting in changes to the world, and to 

perceive the state of the world through detection and interpretation of changes 

to the surrounding environment (Norman, 1991). Different artefacts, with the 

opportunities for action, constraints, and affordances offered, generate different 

representations, in turn affecting subsequent interactions (Norman, 1991). 

When individuals are presented with a task environment where it is possible to 

manipulate objects to solve the problem, the actions in the physical world result 

in interactivity as an interleaving process between internal and external 

resources—artefacts and other people—within the constraints bounded by the 

world and the body (Norman, 1993a). The intelligent actions of humans require 

a vast amount of knowledge, memory storage, and retrieval capabilities; 

executive functions such as planning, decision making, and problem solving are 

hugely complex and demanding on internal resources (Norman, 1993a). When 

there is tight coupling between the internal resources and the physical 

environment, the structure offered by this distribution of cognition assumes 

some of the memory and computational load, easing the internal cognitive 
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burden (Norman, 1993a). As was evidenced by the work of Zhang and Norman 

(1994) and others (e.g., Baber, 2003; Guthrie & Vallée-Tourangeau, 2015; 

Kirsh, 1995a; Kirsh & Maglio, 1994; Maglio et al. 2003; Vallée-Tourangeau, 

2013), it is not only identifying the artefacts utilised by the cognizer that is 

imperative to distributed cognition as a framework for analysis in problem 

solving, but how the artefacts are used and the changes made to the physical 

representation of the problem as the path to solution unfolds through 

interactivity (Perry, 2003). The combination of the informational processing 

capacities of the artefact with those of the user creates a system that expands, 

potentially enhances, and transforms the capabilities of the components within 

the system. However, without interactivity to coordinate this combination of 

individual and artefact, the artefact does take on the role of an integral 

component of the distributed cognitive system (Norman, 1991). The connectivity 

and coordination of interactivity is the glue that bonds the distributed cognitive 

system.  

As people interact with the world, dilemmas or problems arise; solutions 

unfold though actions with the world in which the person is embedded. In 

solving a problem the person may not be able to simulate the path to solution 

mentally—as a traditional cognitivist interpretation presupposes—the emerging 

solution is a product of thinking in the world that is distilled through interactivity. 

This looping back and forth process between the internal mind and the external 

world encourages actions and the manipulation of artefacts, which in turn 

provides new information and unveils new affordances to configure a more 

cognitively congenial problem presentation. Therefore, artefacts are not just 

memory aids but provide opportunities to organise and re-organise the 

distributed cognitive system to make best use of internal or external processes. 
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In this chapter and in previous chapters, a number of non-internalist 

approaches to cognition have been discussed. Irrespective of which approach 

is followed, it is evident that interactivity is central to the systemic cognitive 

process. Naturally occurring interactivity often goes unnoticed as folk engage in 

daily life. Not only is this interactivity invisible to those in the everyday world, 

researchers and commentators on research often fail to seek and analyse it. 

This thesis attempts to bring some of this naturally occurring interactivity into 

the lab by investigating problem solving with artefacts. 
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Chapter 5 

Individual Differences 

Overview 

Measuring individual differences offers a window onto explaining 

disparities in performance when people carry out the same task. In the 

experiments described in this thesis, the differences in cognitive abilities and 

affect of individuals is of interest as the level of interactivity available to people 

when undertaking a task may alter the impact of any individual differences on 

performance. This chapter outlines the various individual difference measures, 

including a measure of affect, across the five experiments reported in this 

thesis. Some modifications were made to the original tasks to better 

accommodate requirements of the experimental design, and not all 

measurements were part of the suite of tasks for every experiment. The details 

of modifications and tasks used will be included in the reporting of each 

experiment in the chapters to follow. 

Introduction 

Individual differences may moderate performance in thinking and 

reasoning tasks. Stanovich and West (1998) proposed that deviations from 

normative responses on reasoning and thinking tasks might not be solely 

accounted for by performance errors, such as momentary lapses in attention or 

memory. Individual differences also offer an explanation for the departure in 

behaviour from normative models. Within the framework of individual 

differences, they distinguished between cognitive capacities (e.g., working 

memory) and thinking dispositions (e.g., willingness to switch perspectives or 

maths anxiety). Cognitive capacities are considered more effected by long-term 

practice than instruction, whereas thinking dispositions or cognitive styles being 
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related more to belief formation and decision making, are more malleable 

therefore potentially teachable (Baron, 1985). The results from four studies led 

Stanovich and West to argue that while cognitive abilities explained 

performance differences to some extent, after partialling out cognitive abilities, 

thinking dispositions continued to be a strong predictor of individual differences 

on reasoning tasks. They support suggestions by Baron (1985) that when an 

individual is unable to compute the normative model, it is usual to engage in 

cognitive strategies that approximate the normative model as closely as 

possible. Stanovich and West discuss the limitations of an individual’s cognitive 

abilities, including a cursory acknowledgment of environmental and situational 

constraints that may also contribute to disparities in an individual’s performance. 

However, they fail to pursue the potential influences of situatedness and 

environment on performance in their experiments. Therefore, this invites 

investigation into the elements of cognitive capacity and cognitive style, 

alongside situational and environmental settings as factors affecting 

fundamental cognitive abilities, by modifying the context within which thinking 

and reasoning tasks are presented to the participants. 

 Working memory, planning and the need for diligent thinking may impact 

a success result in problem solving activities. Factors such as anxiety, self-

efficacy and expertise in mathematics have been shown to contribute to 

differing levels of arithmetic performance (Butterworth, 2006; Hembree, 1990; 

Hoffman, 2010; Moore, Rudig, & Ashcraft, 2015). In addition, a person’s 

engagement when undertaking a task may also be relevant to problem solving 

performance; with a positive approach toward the task contributing favourably to 

the problem solving activity, possibly resulting in deeper comprehension 
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(Newmann, Wehlage, & Lamborn, 1992; Schiefele & Csikszentmihalyi, 1995; 

Storbeck & Clore, 2007). 

Working Memory  

Working memory is generally considered a fundamental theoretical 

construct, offering an explanation for the temporary memory processes required 

for many cognitive activities such as language, reading comprehension, 

mathematical calculations, decision making, and reasoning (Unsworth, Redick, 

Heitz, Broadway, & Engle, 2009). Working memory differs from other memory 

systems as it is responsible not only for storage, but also the simultaneous 

storage and processing of information, albeit limited in capacity (Salthouse & 

Babock, 1991). Although theories differ in the specifications of working memory, 

it is generally agreed that it consists of multiple subsystems working in unison to 

activate task-related information, and inhibit task-irrelevant information during 

cognitive tasks (Miyake & Shah, 1999; Yuan, Steedle, Shavelson, Alonzo, & 

Oprezzo, 2006). Baddeley and Hitch (1974) proposed an early multi -component 

model of working memory consisting of an overarching central executive system 

controlling two temporary memory systems. One of the systems, the 

phonological loop, processes verbally coded information; the second system, 

the visuo-spatial sketchpad, processes visual and spatially coded information 

(Baddeley & Hitch, 1974). A later modification to the three-component model of 

working memory was the addition of a fourth component, the episodic buffer 

(Baddeley, 2000). This fourth system, assumed to be controlled by the central 

executive, provides a temporary interface between long-term memory and the 

two slave systems, that is, the phonological loop and the visuo-spatial 

sketchpad (Baddeley, 2000). As with all components of working memory, the 

episodic buffer is conceived of as a temporary processing and storage system 
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of limited capacity. Investigations into working memory have shown repeatedly 

that these limitations vary between individuals (Daily, Lovett, & Reder, 2001; 

Just & Carpenter, 1992). Individual differences in working memory limitations 

are tested using simple and complex span tasks. Simple span tasks assess the 

storage capabilities of an individuals working memory, where complex span 

tasks assess working memory capacity by measuring both storage and 

processing (e.g., Daneman & Carpenter, 1980; Turner & Engle, 1989).  

Simple span tasks. Digit Span and Corsi Block tasks are examples of 

tasks that measure the storage aspect of an individual’s working memory. 

These are often called simple span tasks where the individual being tested 

repeats a sequence of items in order of presentation (Redick et al., 2012). The 

Corsi block-tapping task has been used extensively as a nonverbal task in 

testing the capacity of the visuo-spatial sketchpad or as it is commonly termed, 

the visuo-spatial working memory (Berch, Krikorian, & Huha, 1998; Logie, 

1995). The original task, as designed by Corsi (1972), was very simple: It 

comprised of a series of nine blocks irregularly arranged on a board; the 

researcher taps out a randomised sequence on the blocks, with the sequence 

increasing in length over the duration of the experiment. The participant is 

required to tap out the same sequence immediately after the researcher. This 

continues until the participant no longer produces as accurate replication of the 

sequence (Berch et al., 1998). 

Complex span tasks.  In complex span tasks the storage aspect of 

simple span tasks is interleaved with a processing task, such as reading a 

sentence or carrying out simple sums in order to assess working memory 

capacity (Daneman & Carpenter, 1980). Daneman and Carpenter (1980) 

developed a reading span task as a reliable tool to measure working memory 
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capacity. In so doing they showed that complex span tasks measure working 

memory as a dynamic system of both processing and storage. Subsequently, 

other complex span tests were developed including computation span tasks 

where the participant is required to solve a series of arithmetic problems while 

remembering the last digit of each problem (e.g., Salthouse & Babock, 1991). In 

some tasks the participant is expected to answer the problem, in others the 

correct answer is selected from a choice of three. In either case, following the 

completion of a series of problems the participant must write a list of the last 

digit of each the problem (Salthouse & Babock, 1991). 

Planning 

The ability to effectively plan ahead has the potential to impact the 

performance of an individual in successfully solving a problem (Phillips, Wynn, 

McPherson, & Gilhooly, 2001). A widely used measure of planning ability in the 

clinical and nonclinical population is the three-disc and five-disc versions of the 

Tower of London (ToL) task (Phillips et al., 2001; Ward & Allport, 1997). In the 

original three-disc version of the puzzle as devised by Shallice (1982), three 

beads, one red, one green, and one blue, were positioned in an initial position 

on three vertical wooden rods of different lengths. The participants were asked 

to move the beads to a goal position in a minimum number of moves. The initial 

state was the same for all twelve problems in the experiment, however, the goal 

states for the problems were changed so as to increase the minimum number of 

moves required, thereby increasing the difficulty with each of the three groups 

of four problems. In reaching the goal state the easiest four problems needed at 

least two or three moves, the midrange problems required 4 moves and the 

most difficult was a minimum of five moves. As a measure of planning ability, 

the interpretation is that the closer a participant’s performance is to the 
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minimum number of moves in reaching the goal state the greater the planning 

abilities (Phillips, Wynn, Gilhooly, Della Sala, & Logie, 1999).   

Need for Cognition 

Cohen, Stotland, & Wolfe (1955) identified the tendency by an individual to 

enjoy and engage in effortful thinking as the need for cognition. Cacioppo, 

Petty, Feinstein, & Jarvis (1996) suggested such a disposition by an individual 

in thinking diligence had the potential to impact performance in cognitively 

challenging activities, such as problem solving, decision making and reasoning.  

This led to Cacioppo & Petty (1982) developing a Need for Cognition scale 

(nCog). The fundamental difference between those high and low in the need for 

cognition, is those with a high need for cognition intrinsically experience greater 

satisfaction when engaging in effortful cognitive tasks than those with low need 

for cognition. As a consequence an individual with a high score on the nCog 

scale might be expected outperform someone with a lower score. 

Maths Anxiety  

The strain on working memory during mental arithmetic may be 

exacerbated when the individual experiences maths anxiety as this anxiety 

utilises cognitive resources that would otherwise be directed at the problem 

(Ashcraft & Kirk, 2001; Ashcraft & Ridley, 2005). Maths anxiety is typically 

associated with feelings of tension, uneasiness, confusion, and fear when faced 

with solving maths problems either in the classroom, workplace, or daily life 

(Ashcraft & Moore, 2009; Richardson & Suinn, 1975). Maths-anxious individuals 

have repeatedly been shown to perform less well in maths than their less 

anxious counterparts (Hembree, 1990; Lyons & Beilock, 2011; Ma, 1999). Ma 

(1999) conjectures that those exposed extensively to mathematics may have 

greater control over their anxiety, even suggesting that these feelings of anxiety 
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may be channeled to an improved level of performance. In a study investigating 

maths anxiety and interactivity Vallée-Tourangeau, Sirota, and Villejoubert 

(2013) found that maths anxiety was highly correlated with calculation error in a 

low interactivity condition where participants could not modify the problem 

presentation nor use their hands to point at numbers. However, in a high 

interactivity condition where participants were able to shape and reshape the 

problem presentation, maths anxiety was no longer a predictor of calculation 

error. They argued that in the higher interactivity condition, a dynamic problem 

presentation wrought through action transforms working memory capacity, not 

only in terms of storage but also executive function skills, mitigating the impact 

of performance anxiety.  

Maths Self-efficacy 

 In addition to maths anxiety, maths self-efficacy may also impede 

mathematical cognition (e.g., Betz & Hackett, 1983; Hoffman, 2010; Pajares & 

Kranzler, 1995; Parker, Marsh, Ciarrochi, Marshall, & Abduljabbar, 2014). The 

construct of maths self-efficacy is derived from Bandura’s (1977) theory on self-

efficacy expectations where one’s own self-belief in the ability to successfully 

achieve an outcome in a particular task may influence behaviours (Bandura, 

1977). Bandura proposed that efficacy expectations might mediate behaviours 

influencing outcome expectations, which in turn mediates the final outcome for 

the task. This may, for example, result in avoidance of a task or situation if there 

is a lack of belief in one’s own ability to cope with that task or situation. 

Alternatively, strong belief in one’s own capabilities may instill confidence to 

attempt a task that may otherwise be considered intimidating (Bandura, 1977). 

Bandura suggested that self-efficacy may be a learned behaviour and any 

interventions aimed at increasing self-efficacy expectations should be domain 
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specific. Based on Bandura’s self-efficacy theory and their own research into 

the relationship between self-efficacy and career related behaviours, Betz and 

Hackett (1983) developed a self-report scale to assess maths-related self-

efficacy (Hackett & Betz, 1981). There is strong evidence that maths self-

efficacy is a predictor of mathematical achievement, underscoring the 

importance of addressing maths self-efficacy in educational settings (Hoffman, 

2010; Pajares & Kranzler, 1995; Parker et al., 2014). The relationship between 

self-efficacy and levels of anxiety has been shown to co-vary inversely, thus 

suggesting that any intervention successfully targeting a reduction in anxiety 

should also result in an increase in self-efficacy (Betz & Hackett, 1983; 

Hoffman, 2010; Jain & Dowson, 2009).  

Expertise  

Expertise in a particular domain is often attributed to innate aptitudes 

(Ericsson & Charness, 1994). Galton (1892) proposed that “intellectual powers” 

(p. 16), along with the enthusiasm for hard work were inherited gifts with these 

innate abilities almost certainly guaranteeing eminence. In response to his 

cousin’s opinion, Darwin maintained, “men did not differ much in intellect, only 

zeal and hard work; I still think this is an eminently important difference” 

(Galton, 1908, p. 290). Ensuing research and theories have indicated that high 

levels of performance and expertise are mediated by ongoing acquisition and 

consolidation of skills (Ericsson & Charness, 1994; Sternberg, 1999). In the 

case of mathematical expertise, a number of factors have been identified as 

contributors to exceptional performance including deliberate practice, intrinsic 

reward in the success of solving a problem and working memory (Butterworth, 

2006; Ericsson & Charness, 1994).  
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Working memory capacity may reflect the maths proficiency of an 

individual as the ability to, for example, retain interim totals for additions while 

reaching a solution may be enhanced or impeded by the limitations of working 

memory. Highly skilled individuals appear to have the capacity to manipulate 

greater amounts of information when performing tasks within the domain of their 

expertise than novices (Kirsh, 1995a). To account for this apparent larger 

working memory capacity and the rapid retrieval of skillful knowledge stored in 

long term memory (LTM) by experts, Ericsson and Kintsch (1995) argued for an 

extension to existing models of temporary working memory storage. This 

extension would encompass an additional mechanism in the hierarchy of 

retrieval of information within long term memory, namely long term working 

memory (LT-WM). LT-WM would offer a more stable storage component than 

that of short term working memory (ST-WM), which is generally acknowledged 

to hold around seven chunks of information for only a few seconds (Ericsson & 

Kintsch, 1995; Miller, 1956). A specific node of encoded information in LT-WM 

is subsequently associated with a retrieval cue held in ST-WM that can be 

called up when required. In short, the larger chunk of information is stored in 

LT-WM for rapid retrieval by a cue in ST-WM. This offers one account for an 

expert’s apparent increased working memory capacity when performing tasks 

such as mental arithmetic. 

Interactivity in problem solving has been attributed with diminishing the 

load on working memory as some of the limited internal memory storage is 

unburdened onto the external world (Kirsh, 1995a; Vallée-Tourangeau, 2013). 

Furthermore, other executive functions and strategy selection may benefit from 

the dynamic problem configuration enacted through interactivity. Experts and 

novices have been shown to devise shortcuts and procedures drawn from their 
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interaction with the world in order to reduce the load on working memory 

(Butterworth, 2006; Kirsh, 1995a). 

Affect: Task Engagement and Flow  

The concept of flow was proposed by Csikszentmihalyi (1975/2000) to 

describe a state of consciousness when an individual is totally absorbed in an 

activity. Csikszentmihalyi (1990) considered flow to be the “optimal experience” 

(p. 3) in reaching a total sense of exhilaration and deep enjoyment when 

engaged in a task. According to Csikszentmihalyi’s model, to achieve flow there 

must be a positive balance between the challenge of the activity and the skill 

level of the individual. The challenge or opportunity for action in a task should 

be neither too easy nor too demanding. At the same time, the individual’s skills, 

or capabilities for action should not exceed the action opportunities, thus 

avoiding boredom and preventing anxiety if skills are perceived to be 

inadequate for the challenges of the task. When a person reaches the optimum 

point where the action opportunities in an activity match their capabilities it is 

possible to experience flow (Csikszentmihalyi, 1975/2000). In addition, the 

attention of the individual or “attentional involvement” (Abuhamdeh & 

Csikszentmihalyi, 2012, p. 257) must be focused on the activity at hand 

resulting in total absorption. This attentional involvement in the activity has been 

shown to be a potential mediator in reaching the optimal state of engagement of 

being in flow (Abuhamdeh & Csikszentmihalyi, 2012; Csikszentmihalyi, 

1975/2000). Csikszentmihalyi (1990; 1975/2000) suggested that attentional 

involvement might also channel attention away from self toward the task at 

hand simultaneously increasing the salience of some objects used in the task 

while decreasing the salience of other aspects. This redirection of attention 

away from self may increase the value of the experience by devoting attentional 
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resources toward satisfactory aspects of the task, or by positively offsetting any 

sense of negativity toward more unfavorable aspects of the activity 

(Abuhamdeh & Csikszentmihalyi, 2012). According to Nakamura and 

Csikszentmihalyi (2002) a fundamental aspect of the flow model is 

“interactionism” (p. 90), where the focus is not on the person enacting the task 

being detached from context, rather the emphasis is on the interaction between 

the individual and the situatedness of the task. Here the model underscores the 

importance of the act of being engaged in a task as a “dynamic system 

composed of person and environment” (Nakamura & Csikszentmihalyi, 2002, p. 

90). Therefore, in terms of interactionism as a feature of the flow model, the 

experience of learning and achievement in formal education are influenced by 

factors that include active engagement by students in the performance of 

academic tasks conducted in the classroom. Students reported a greater sense 

of engagement, enjoyment, perception of control, and relevance to the real 

world when involved in academic and nonacademic subjects offering active 

participation with a balance between challenge and skill (Newmann, Wehlage, 

& Lamborn, 1992; Shernoff, Csikszentmihalyi, Schneider, & Shernoff, 2003). 

More active learning experiences such as participating in projects, building 

models, and performing in plays as opposed to the passive states of listening to 

lectures or completing worksheets maximised engagement for students 

(Newmann et al., 1992; Shernoff et al., 2003). Affective variables such as 

enjoyment, interest, and challenge have been associated with academic 

success; consequently, positive emotions elicited by the task experience have 

been shown to contribute to such factors as mathematical achievement (Fisher, 

Dobbs-Oates, Doctoroff, & Arnold, 2012; Hembree, 1990; Ma, 1997; Schiefele 

& Csikszentmihalyi, 1995). Conversely the relationship between affect and 



 143 
 

cognition suggests that difficulty in performing tasks may be experienced as a 

result of negative emotions (Storbeck & Clore, 2007). Improvements in task 

performance as a result of being in flow or engaged in a task appear to occur 

over time. This is explained by the desire of an individual to persevere and 

return to a task many times, stemming from the cumulative effects of the deep 

intrinsic rewards experienced, in turn encouraging the development of skills 

(Nakamura & Csikszentmihalyi, 2002).  

Increasing the level of interactivity when solving a maths problem has 

been shown to positively impact the level of engagement (Guthrie & Vallée-

Tourangeau, 2015). This implies that giving participants greater control over 

their environment may directly increase affect and engagement in the task 

compared to the level of engagement in a low interactivity environment. 

However, this greater of level of engagement may not necessarily translate into 

improvements in performance when the individual is only exposed once or twice 

to a task as there has been limited opportunity to hone skills. As Nakamura and 

Csikszentmihalyi  (2002) suggested, any improvements due to flow may only be 

experienced gradually over time with increased exposure to the task. Therefore, 

although flow or engagement in the task may be improved by greater 

opportunity to interact with the world, it may not necessarily be the explanation 

for any changes in results with changes to mode of interaction with the world in 

one off tasks. 
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Chapter 6 

The River-Crossing Problem 

Overview 

Outside the psychologist’s laboratory, thinking proceeds on the basis of a 

great deal of interaction with artefacts that are recruited to augment problem 

solving skills. The role of interactivity in problem solving was investigated using 

a transformation problem, namely the river-crossing problem. In Experiment 1, 

participants completed the same problem twice, once in a low interactivity 

condition, and once in a high interactivity condition (with the order 

counterbalanced across participants). Learning, as gauged in terms of latency 

to completion, was more pronounced when the high interactivity condition was 

experienced second. When participants first completed the task in the high 

interactivity condition, the transfer to the low interactivity condition during the 

second attempt was limited. Participants thus showed greater facility to transfer 

their experience of completing the problem from a low to a high interactivity 

condition. Experiment 2 was designed to determine the amount of learning in a 

low and high interactivity condition; in this experiment participants also 

completed the problem twice, but the level of interactivity was manipulated 

between subjects. Learning was evident in both the low and high interactivity 

groups, but latency per move was significantly faster in the high interactivity 

group and this on both presentations; so-called problem isomorphs instantiated 

in different task ecologies draw upon different skills and abilities. A distributed 

cognition perspective may provide a fruitful perspective on learning and 

transfer.  
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Introduction 

Problems are encountered frequently through everyday activity, varying in 

complexity and occurring across a diverse array of settings. In solving these 

problems, or indeed making sense of situations, people interact with local 

resources, both cultural and material (Kirsh, 2009a). Traditionally, problem 

solving has been cast and understood in terms of information-processing 

models of move selection in a clearly defined problem space (see Newell & 

Simon, 1972) or more recently of the shifts in excitatory and inhibitory activation 

in layered networks of “knowledge elements” (Ohlsson, 2011, p. 105) that result 

in the restructuring of a problem representation in working memory. An 

emphasis on mechanisms of information processing does not foreground the 

codetermination of an agent’s representation of the problem and a problem’s 

physical presentation wrought by interactivity (Kirsh, 2009a, 2009b; 2013).  

Transformation problems have been the focus of research in cognitive 

psychology for the past 50 years. In these problems, a well-defined path 

connects an initial and a goal state. Legal moves are defined in terms of simple 

rules and enacted with simple operators. Participants must reach the goal state 

by transforming the initial state through a series of intermediate states. A well-

studied class of transformation problems are river-crossing problems. In these 

problems, objects—people, animals, or things—must be carried from one 

‘riverbank’ to another on a ‘boat’, but there are constraints (in the form of 

defined rules) on the moves that can be selected to reach the goal. A common 

version involves three missionaries and three cannibals (Reed, Ernst, & Banerji, 

1974; or three hobbits and three orcs, Knowles & Delaney, 2005; Thomas, 

1974). In transporting all cannibals and missionaries from one bank to the other, 

cannibals must not outnumber missionaries on either bank. The boat can take 
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at most two passengers, and at least one. The problem space is relatively 

narrow since illegal moves cannot produce blind alleys of any depth (Reed et 

al., 1974) and the problem can be completed in a minimum of 11 moves (see 

Figure 6.1).  

 
 

Figure 6.1. Depiction of the problem space for legal moves in the chicken (C) 
and wolves (W) version of the river-crossing problem. The states are labelled in 
the right hand corner of each rectangle with the initial state marked as 0 and the 

goal state marked as 11. The asterisk represents the position of the raft in each 
state. The vertical line is the river. (Adapted from Knowles & Delaney, 2005). 

 
In different versions, problem difficulty is a function of the rules that 

constrain the number of objects that can be moved at any one time—which 
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combinations of objects are allowed on the boat, the number of protagonists 

and which combinations can be left on either bank (e.g., Simon & Reed, 1976). 

The number of objects and the rules that govern their transport, map out a 

problem space that links the initial state with all objects on one side of the river 

to a goal state with all objects on the other riverbank. Cognitive psychologists 

have used this task as a window onto problem solving, particularly planning and 

search and move selection (Reed et al., 1974; Simon & Reed, 1976). As such 

river-crossing problems have been used as a testing platform for a number of 

process models of search and move selection, strongly influenced by 

developments in Artificial Intelligence (Simon & Reed, 1976).  

Greeno (1974) suggested that individuals learn from repeated attempts at 

completing the river-crossing task, reflected primarily through a sounder 

appreciation of which move is correct in each state. Knowles and Delaney 

(2005) investigated ways to reduce the number of illegal moves generated by 

participants, reporting that with certain incentives, illegal moves could be 

reduced with repeated attempts. Reed et al. (1974) investigated the effects of 

experiencing this type of problem twice in a series of three experiments, 

examining transfer and learning using analogous problems (e.g., the river-

crossing problem and the jealous husbands problem). They found that learning 

occurred with repetition of the same problem, however, transfer of knowledge 

between analogous problems was limited. Analogous or isomorphic problems 

are those with a similar structure having identical constraints, problem spaces, 

and goal structures, thus requiring essentially the same path to solution (Pierce 

& Gholson, 1994). The expectation is that once the solution has been learned 

for one problem it can be mapped onto the isomorphic problem. As described 

by Lave (1988) these problems have frequently been used to test learning 
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transfer, however the results have been inconsistent. Greeno (1989) and Lave 

were also skeptical of successful learning transfer occurring across contexts 

and situations, particularly in the application of knowledge learnt in the 

classroom being readily mapped onto everyday situations. Examining the 

impact of interactivity may be valuable in contributing to the understanding of 

analogical transfer between isomorphs across differing problem presentations.  

Interactive Problem Solving 

The river-crossing task involves moving people or things across a surface, 

and as such, foregrounds the importance of interacting with a physical model of 

the task in problem solving. However, interactivity in solving the river-crossing 

problem has never been an explicit and systematic focus of investigation. The 

manner with which the river-crossing task has been implemented varies a great 

deal across studies. For example, Reed, Ernst, and Banerji (1974) used 

different types of coins to represent missionaries and cannibals. Jeffries, 

Polson, Razran, and Atwood (1977) developed a basic computer interface 

where participants typed in the objects they wanted to put in the boat on a given 

crossing. The interface accepted only legal moves and updated the simple 

representations (often with letters and numbers, such as ‘3M’ for three 

missionaries) on either side of the riverbank. Participants continued typing in 

their moves until they managed to transport all objects from one bank to the 

other. Knowles and Delaney (2005) designed a more realistic interface wi th 

icons representing travellers against a backdrop of a river with two banks and a 

boat. Participants selected moves by clicking on the travellers, which then 

appeared next to the boat on the screen. In all these instances participants 

were never offered a three-dimensional work surface on which objects 

transparently corresponding to the scenario protagonists are manipulated and 
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moved by hand. In contrast, developmental psychologists who worked with the 

river-crossing task, being less sanguine about formal operations presumably, 

have taken care to design rich interactive thinking environments with physical 

materials representing the boat, the river, and figurines corresponding to the 

cover story characters (e.g., Gholson, Dattel, Morgan, & Eymard, 1989).  

A more explicit experimental focus on interactivity may unveil important 

aspects of problem solving performance, aspects that correspond more closely 

to problem solving performance as observed outside the laboratory. Previous 

research by Vallée-Tourangeau, Euden, and Hearn (2011) presented evidence 

that in another transformation problem interactivity substantially altered problem 

solving behaviour. They reported that mental set was significantly reduced in 

Luchins’s volume measurement problems when participants interacted with a 

physical presentation of the problem. The actual manipulation of jars and water 

created a dynamic problem presentation revealing solutions that were not 

simulated mentally. The selection of moves was guided and governed by the 

pragmatics of manipulating real objects in a wet environment to achieve a goal, 

and participants were less likely to persevere in using a more complicated 

solution for the test problems. In a river-crossing task, interactivity may help 

participants work out the quality of different moves not by simulating their 

consequences mentally, but rather by simply completing the move and 

observing the results. Such moves are then “epistemic actions” (Kirsh & Maglio, 

1994, p. 513): moves that may not, in themselves, necessarily help narrow the 

gap with the goal state, but rather provide information as to what to do next. 

Kirsh and Maglio (1994) demonstrated that it is faster and easier to physically 

rotate the tetrominoes in Tetris than to simulate their rotation mentally, leading 

to better and more efficient problem solving behaviour. Move selection in the 
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river-crossing task can be opportunistic, although not necessarily mindless; 

rather the strategic consequences of a certain move can simply be observed. In 

a high interactivity context, planning need not take place ‘in the head’—moves 

may not be premeditated; rather the trajectory through the problem space is 

enacted through the moves. Thus, in a high interactivity environment, there may 

be less pressure on reasoners to simulate mentally a path to a goal state and 

move selection may not be dictated by a plan (cf. Suchman, 1987). Problem 

solving performance could well be influenced by the ease with which reasoners 

can enact moves. In a context that favours interactivity, participants may 

produce more moves in solving the river-crossing problem, but do so more 

quickly than in a context in which implementing a move is slower and more 

costly in terms of mental planning effort.  

Some have argued that as a result, high interactivity may retard the 

acquisition of a more abstract representation of the task and hence may not 

lead to the same degree of learning (O’Hara & Payne, 1998; Svendsen, 1991). 

With a river-crossing problem, a low level of interactivity may force participants 

to think longer before selecting a move and may encourage the development of 

a sounder appreciation of the logical structure of the task. This may help 

participants transfer their knowledge to a different presentation of the same or 

similar problems. These participants, once presented with the problem a second 

time, but in a high interactivity condition, may proceed to solve the problem 

much faster. In turn, solving a river-crossing problem first in a high interactivity 

condition, may promote a more procedural appreciation of the task that might 

be bound to the exact physical characteristics of the reasoning context. Hence 

any learning may transfer poorly when participants complete the problem a 

second time in a different context of lower interactivity. The goal of the present 
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experiments was twofold: To determine the impact of interactivity on 

performance in the river-crossing problem and to determine the amount of 

learning across two presentations of the problem as a function of interactivity.  

River-Crossing: Experiment 1  

Experiment 1 examined performance in the river-crossing problem when 

presented with or without artefacts as an aid to solution. This was measured in 

terms of the number of moves to solution, latency to completion, and latency 

per move. In both conditions the problem was described on a piece of paper. In 

a high interactivity condition, the problem was presented with a board, a raft 

and six figurines: Participants were expected to solve the problem by moving 

the figurines on the raft across the board to register a move, continuing until 

they had moved all six figurines from one bank to the other. In a low interactivity 

version, participants were asked to keep their hands flat on the table and 

verbalise the moves they would make to reach the goal. They completed the 

problem twice, once with the high interactivity version and once with the low 

interactivity version; the order was counterbalanced across participants. 

Participants also undertook a number of other tasks in order to profile any 

relevant abilities or attitudes in determining any internal resources that might 

predict performance on the river-crossing problem. Therefore, the two attempts 

at the river-crossing problems were interleaved with two working memory tasks, 

the need for cognition scale and the task engagement scale. It is expected that 

working memory would be taxed in the low interactivity condition. However, the 

opportunity for interactivity with artefacts in the high interactivity condition would 

reduce the load on working memory thereby diminishing the impact of any 

individual differences in working memory storage and capacity (Vallée-

Tourangeau, 2013). It is also expected that in the low interactivity condition 
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those rating highly on the need for cognition scale would outperform those with 

a lower score, while any differences would dissipate with an increase in 

interactivity. With the opportunity to engage more in the task, it is anticipated 

that the river-crossing attempt with the greater interactivity will prompt greater 

feelings of being in the flow, resulting in higher scores on the task engagement 

scale for the high interactivity condition than the low interactivity hands-down 

condition. 

Experiment 1 employed a mixed design with the interactivity level as the 

repeated measures factor and order—low interactivity first, high interactivity 

first—as the between subjects factor. As moves can act as epistemic actions, it 

is predicted that participants would produce more moves, would solve the 

problem faster, and hence latency per move would be shorter in the high 

compared to the low interactivity condition. In addition, it is predicted that 

participants would complete the second presentation of the task more quickly 

than the first since they would be familiar with the procedure and may well 

exploit an episodic record of their trajectory to help them select better moves, 

and select them more quickly. However, the nature of the experience during the 

first crossing as a function of interactivity level could influence the amount of 

learning. On the basis of the arguments formulated in O’Hara and Payne (1998; 

see also Svendsen, 1991), low interactivity forces participants to plan and 

contemplate moves and their consequences; the additional time and effort 

encourage more deliberation, and as a result participants are more likely to 

develop a sounder understanding of the problem and select fewer but better 

moves. When the problem is experienced a second time, this time in a high 

interactivity condition, performance improvements should be steep. In turn, 

experiencing the problem in a high interactivity condition first, may reduce the 
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investment in deliberative efforts, perhaps mitigating the development of a more 

abstract, hence transferable, representation of the problem: There should be 

limited evidence of learning when the problem is experienced a second time in 

a low interactivity condition.  

Sample Size. Reed, Ernst, and Banerji (1974) studied the effect of 

transfer between two problems with similar problem states, the Missionaries 

and Cannibals and the Jealous Husbands problems. The experimental design 

for their Experiment 2—the first experiment was inconclusive and the third 

addressing issues too dissimilar from the ones explored here—was a two factor 

mixed design, with problem type and order as the factors. They recruited a 

sample of 54 participants, with 50 successful solvers, 25 in each problem 

condition. An a priori power analysis was completed using G*Power 3.1 (Faul, 

Erdfelder, Buchner, & Lang, 2009) to estimate the sample size required to 

obtain a similar effect. The observed p
2 = .149 for the 2 × 2 interaction effect 

on latency per move in a pilot river-crossing experiment, not reported here, 

corresponded to a large effect size (f = .42, see Cohen, 1992), with a correlation 

between repeated measures of .016. Based on these estimates, the a priori 

power analysis indicated that a total sample size of 40 would be sufficient to 

detect a similar effect size. Given the sample depletion due to participants not 

completing one or both attempts, as well as the possibility of having to remove 

long latencies to control for skewness, it was estimated collecting between 60 -

70 participants would be acceptable. 

Method  

Participants 

Sixty-five university undergraduate and postgraduate students participated 

in the experiment in return for course credits. Twelve participants did not 
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complete the task and were excluded from further analysis; the final sample 

comprised of 53 participants (43 Females, Mage = 21.5, SD = 3.93). 

Materials and Procedures 

River-crossing problem. Chickens and wolves were the protagonists in a 

river-crossing scenario. The objective was for the six animals to be transported 

from the left riverbank to the right one. The selection of a move had to comply 

with the constraints and rules of the problem. The same instruction sheet 

explaining the objective of the task and the rules of the problem was used for 

both conditions and could be read by the participants throughout the duration of 

the task. The instructions read: 

“Three wolves and three chickens on the left bank of a river seek to 

cross the river to the right bank. They have a boat that can carry only 

two animals at a time, but there must always be an animal on the boat 

for it to move. However if at any time the wolves outnumber the 

chickens on either bank the wolves will eat the chickens. Thus you 

cannot move the animal(s) in a manner that will result in the wolves 

outnumbering the chickens on either bank. The goal of the task is to 

move all the animals from the left bank to the right bank.” 

 

In the low interactivity version of the task, the researcher transcribed each 

move as verbalised by the participant onto a record sheet. The record sheet 

was a simple representation of the raft between the left and right banks of the 

river, with slots to record the nature and number of the animals on either side 

(which was denoted with a “C” for chickens and “W” for wolves; see top panel of 

Figure 6.2); each page represented only one move. At any one time, 

participants could only inspect their previous move as they dictated their next 

move to the experimenter. As soon as the next move was dictated, the sheet 

with the previous move was turned over. Thus participants could not inspect a 
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historical record of previous moves. Illegal moves proposed by the participant 

were noted, but the experimenter did not transcribe the nature of the illegal 

move on the recording sheet, nor were participants advised the nature of the 

illegal move. Rather, participants were invited to reread the task instructions to 

discover why such a move was not allowed. 

 

 

 

 

 

 

 

 

 

 
Figure 6.2. Top panel: The record sheet for the river-crossing moves in the low 
interactivity condition. The small box in the top right-hand corner is the move 

(trial) made within that attempt at solving the problem. That is, a “1” in the box 
would denote the first move, “2” the second move and so on. The small box in 

the lower right-hand corner is the notation of any illegal moves made in that 
trial. The bar in the middle of the sheet represents the raft. The researcher 
would draw an arrow on the raft indicating to which bank the raft was heading. 

The boxes on either side were used to indicate the number of wolves (W) or 
chickens (C) situated on each river-bank. Bottom panel: The board, raft, and 

figurines (wolves and chickens) for the high interactivity condition. 
 

Legal moves were the moves made by the participant from the first move 

to the final move that met the constraints or rules as set out in the instructions 

sheet available to all participants throughout each attempt, whereas Illegal 
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moves were denoted as any moves that did not meet these constraints. The 

decision to include all violations of the rules as illegal moves was made in order 

to measure the total number of moves completed by the participant during the 

entirety of the attempt. Knowles and Delaney (2005) did not include violations of 

the rules that negated the movement of the boat if either empty or carrying more 

than two passengers on the grounds that participants may make errors in using 

the computer interface or through lack of understanding of the rules. In the 

experiments presented here there was no computer interface to negotiate. In 

addition, the rules and instructions were available in a printed format for all 

participants throughout both attempts; in fact, participants were actively 

encouraged to refer to the rules throughout the task.  

The high interactivity version of the task involved the use of six plastic 

figurines, three wolves (9cm x 7cm x 2cm) and three chickens (4cm x 5cm x 

1.5cm), one pop-stick raft (9cm x 6cm) and a painted board (60cm x 45cm) 

representing the river and banks (see bottom panel of Figure 6.2). As the 

participants interacted with the artefacts, the experimenter recorded the moves, 

but this record was never shown to the participants; as with the low interactivity 

condition this ensured that participants could not review the problem-solving 

trajectory. An illegal move prompted the experimenter to instruct participants to 

move the raft and the animals back to the previous state and, as in the low 

interactivity condition, they were invited to reread the instruction sheet to 

determine which moves were possible. In both conditions participants were 

given up to 15 minutes to complete the river-crossing problem. Participants 

were not asked to prioritise the number of moves made or the time in making 

moves, nor were they explicitly told how long they would be given to complete 

the task. If the participant questioned the amount of time allowed to solve the 
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problem, the researcher explained that a reasonable amount of time would be 

allowed within the confines of the experimental session time. However, any 

participant unable to finish one or both attempt within 15 minutes was excluded 

from subsequent analyses. 

The experimental session began with one or two of the individual 

difference tasks as described below; these tasks were counterbalanced across 

the session. This was followed by one condition of the river-crossing problem 

(either low or high interactivity). After attempting the river-crossing problem in 

the first condition the participants completed another individual differences task. 

The river-crossing problem was presented again in the alternate condition to 

that which was presented first; the order was counterbalanced across 

participants. The remaining individual difference tasks completed the 

experimental sessions. The independent variables manipulated were condition 

(low interactivity, high interactivity) and order (low interactivity first, high 

interactivity first) in a 2×2 mixed design. Performance in both conditions was 

measured in terms of latency to solution, the total number of moves to solution, 

and latency per move. The latter offers the more interesting window onto 

problem solving performance across interactivity conditions since it provides a 

gauge of how quickly, on average, participants generate each move. In keeping 

with previous river-crossing studies legal and illegal moves are reported 

separately. The latency per move data was determined using the total number 

of moves.  

Working memory. Two working memory tasks were included in the 

experimental session. 

Computation span (C-span). The computation-span task (Ashcraft & 

Kirk, 2001; Salthouse & Babock, 1991), evaluates working memory capacity by 
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testing both processing and storage of numbers. Participants were asked to 

answer simple arithmetic problems (e.g., 6 - 2 and 2 + 9) before recalling the 

second number of the problems (e.g., 2, 9). Sequences of sums began with one 

sum before recall, then two sums before recall and so on until there were seven 

sums before recall of the last digits. Therefore, participants had to correctly 

answer the sums, in the processing phase of the task, and list the relevant 

digits, as the storage component, to score a point. This was a PowerPoint 

presentation on a computer screen; all instructions were part of the on-screen 

presentation. The participants called out the answers to the sums and the list of 

digits to the researcher, who recorded the responses onto a preprinted answer 

sheet that was not visible to the participant at any time. The only feedback 

given to the participant after completion of the task was that the activity was 

difficult and it had been successfully completed.  

Corsi block. Working memory storage was tested using a modified version 

of the Corsi block-tapping task (Corsi, 1972). This was a PowerPoint 

presentation on a computer screen with all instructions, including two practice 

sequences, as part of the on-screen display. Participants were shown a series of 

grids, each grid was divided into 4 x 4 cells, and only one grid would appear on 

the screen at any time. One cell (or block) on each grid was randomly blocked-

out.  After each sequence the participant was asked to complete a recall sheet 

by indicating the order and location of the blocks using numbers (see Figure 

6.3). Participants were shown twelve sequences, with the number of cells 

blocked-out increasing from a two block series to a six block series. The total 

number of blocks correctly identified in order and position were used as the 

measure for working memory capacity. The maximum score possible was 40. 

Participants were not given any feedback upon completion of the task. 
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Figure 6.3. Example of a sequence of grids from the modified Corsi task. Grids 

1, 2, and 3 would be visible in sequence on the screen. The participant would 

then be prompted to recall the shaded cells by recording the order and position 
on a blank response grid sheet. 

 
Task engagement scale (TES). This is a 9-item scale based on three key 

components of task engagement: concentration, enjoyment and interest 

(Shernoff, Csikszentmihalyi, Schneider and Shernoff, 2003). The scale was 

designed to assess a participant’s flow through engagement and enjoyment 

during an activity or task (Csikszentmihalyi, 1990, 2000). Questions included 

“Did you enjoy the task?”, “Did you feel challenged by the task?”, and “Did you 

feel absorbed by the task?”. Participants completed a paper-based 

questionnaire where they were asked to rate each item on an 8-point Likert 

scale, labeled from zero (definitely not) to seven (definitely yes): The higher the 

score the more positive the attitude toward the task. Each participant completed 

the TES scale twice, once following each attempt at the river-crossing task. The 

alpha reliability of the nine-item scale for both interactivity conditions was 

acceptable (Low, Cronbach’s α = .83; High, Cronbach’s α = .81). 

 

2
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Answer

Figure 1. Exampe of a sequence of grids in the modified Corsi tasks. Participants would see grid 
1, 2, and 3 in sequence, and then prompted to recall the order of the shaded figure by placing a 

number on a blank response grid that corresponded to the order of presentation.
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Need for cognition scale (nCog). The Need for Cognition scale 

(Cacioppo and Petty, 1982) was used to test the trait of thinking diligence. It 

was a pen and paper activity where participants were requested to rate 18 

statements on the satisfaction they gained from thinking. The scale was a six-

point range from “completely false” to “completely true” and included questions 

such as “I would prefer complex to simple problems” and “I really enjoy a task 

that involves coming up with new solutions to problems”.  

Results 

Performance Measures 

Latency. Indices of skewness indicate that the latencies in the four 

experimental conditions were normally distributed. Latencies to solution are 

shown in Table 6.1; the pattern of findings closely replicated what was observed 

in Experiment 1A. The faster change in crossing latency was observed in the 

high interactivity condition when participants first completed the task in the low 

interactivity condition. A 2×2 mixed ANOVA showed the main effect of 

interactivity was not significant, F(1, 51) = 3.45, p = .069, p
2 = .063, while the 

main effect of order was significant, F(1, 51) = 5.12, p = .028, p
2 = .091; the 

interactivity condition by order interaction was also significant, F(1, 51) = 9.76, p 

= .003, p
2 = .161. Post hoc tests indicated that latencies in the low interactivity 

condition did not decrease significantly from the first to the second presentation, 

t(51) = 0.358, p = .419. In turn participants were faster in the second attempt at 

the problem than the first in the high interactivity condition, t(51) = - 4.097, p < 

.001. When participants completed the low interactivity condition followed by the 

high interactivity condition, they were significantly faster in the second attempt, 

t(23) = 4.297, p < .001. When participants completed the high interactivity 
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condition first then the low interactivity condition there was no significant 

decrease in the time taken to complete the problem, t(28) = .820, p = .419.  

Moves. The high interactivity condition elicited a greater mean number of 

legal moves compared to the low interactivity condition in the first attempt (see 

Table 6.1). With the number of legal moves in the second attempt being similar 

for both conditions. In turn, the mean number of illegal moves was higher in the 

high interactivity condition than the low interactivity condition when it was 

experienced first, but in the second attempt the number of illegal moves was 

lower in the high interactivity than the low interactivity condition. Overall, then, 

total moves were greatest in the high interactivity condition for the first attempt 

but in a 2×2 mixed ANOVA the main effects of interactivity, F(1, 51) = 1.27, p = 

.265, p
2 = .024, and order, F(1, 51) = 2.70, p = .107, p

2 = .050, were not 

significant, nor was the interaction, F(1, 51) = 2.34, p = .132, p
2 = .044.  

 

Figure 6.4. Mean latency per move in the two interactivity conditions (low, high) 

for the first and second attempt. The group that experienced the high interactivity 
condition first is represented by a broken line and the group that experienced the 
low interactivity condition first is represented by a solid line. Error bars are 

standard errors of the mean. 
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Table 6.1 
 

Mean Latencies and Mean Number of Moves to Completion (with standard deviations for all means). Order Indicates the Order 
of Interactivity Undertaken in the Experimental Session (L = Low Interactivity and H = High Interactivity). First and Second 

Represents the First or Second Attempt in the Experimental Session.  
 

Order M SD M SD M SD M SD M SD M SD M SD M SD

L/H 463.92 236.71 246.04 139.77 17.46 7.27 17.17 8.18 3.04 4.41 2.50 4.19 20.50 10.42 19.67 10.51

H/L 493.97 267.51 438.62 271.15 19.07 7.22 16.97 7.66 7.55 4.61 4.14 6.87 26.62 10.14 21.10 13.29

Moves

Latency (s) Legal Illegal Total

First Second First Second First Second First Second
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Latency per move. Latency per move (see Figure 6.4) in the low 

interactivity condition appeared to be largely unaffected by order, however 

participants were faster at enacting moves in the high interactivity condition, and 

this was particularly evident on the second attempt. In a 2×2 mixed ANOVA the 

main effect of interactivity was significant, F(1, 51) = 39.17, p = .001, p
2 = .434, 

but the main effect of order was not, F(1, 51) = 1.42, p = .238, p
2 = .027; 

however, the condition by order interaction was significant, F(1, 51) = 10.2, p = 

.002, p
2 = .167. Post hoc tests indicated that the difference in latency per move 

was not significantly different between the two low interactivity attempts, t(51) = 

.646, p = .521, but the time taken to select a move during the second attempt in 

the high interactivity condition being significantly faster than during the first 

attempt, t(51) = - 3.42, p = .001. In addition, participants were faster in making 

moves in the high interactivity condition following experience in the low 

interactivity condition, t(23) = 8.36, p = .001; latency per move remained 

unchanged when the high interactivity preceded the low interactivity condition, 

t(28) = 1.97, p = .059. 

Predictors of performance 

To examine the possible influence of internal resources on performance in 

solving the river-crossing problem, the participant’s working memory, need for 

cognition and engagement in the task were assessed. There was no pattern of 

significant correlations revealed between the Need for Cognition scale and 

performance measures. However it was note-worthy that the computation span 

working memory test and the task engagement scale correlated with some 

performance measures. 
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Working memory. The measure for visuo-spatial working memory, Corsi, 

was highly correlated with computation span, r (22) = .457, p < .001 indicating 

that both tests measured some similar aspect of working memory. As the span 

task is a gauge of storage and processing capacities in working memory, it is 

possibly the storage aspect that contributed to the common variance. However, 

Corsi did not correlate with any other predictors of performance or measures of 

performance. 

On the other hand, computation span (C-span), correlated with some of 

the performance measures in the low interactive condition when it was the first 

task; legal moves, r (51)= -.471, p = .025; total moves, r (51)= -.495, p = .014; 

latency, r (51) = -.485, p = .016. Correlation almost reached significance with 

illegal moves, r (51)= -.393, p = .058 and was not significant with latency per 

move or any other performance measures  

Task engagement. When comparing engagement in the task across all 

participants, they reported feeling more engaged in the high interactivity 

condition (M = 46, SD = 9.6) than in the low interactivity condition (M = 40.8, SD 

= 9.9). This difference was significant, t (52) = -3.66, p = .001.  

The TES results were analysed further to assess whether the order of the 

river-crossing task made a difference participants’ feelings of engagement. 

When completing the low interactivity version first, TES was greater for the high 

interactive condition (M = 46.4, SD = 10.6) than the low interactivity condition (M 

= 42.8, SD = 10.5). This difference was significant t (23) = -2.3, p = .031. When 

the condition was reversed the results also showed participants reported 

greater engagement when undertaking the high interactivity token version of the 

task first (M = 45.6, SD = 8.9) then the hands-down version (M = 39.1, SD = 

9.24) with the difference also significant, t (23) = -3.66, p = .001. In summary, 



 165 
 

regardless of the task order, participants always felt more engaged in the high 

interactivity condition. 

The correlations between the performance measures and TES were only 

significant when the high interactivity condition was completed following the low 

interactivity condition, with the exception of latency per move, which was not 

significant (see Table 6.2). 

Table 6.2 

 
Significant correlations including confidence intervals (CI) for the task 

engagement scale with performance measures (df = 22). LI = Low interactivity 
condition; HI = High interactivity condition; L/m = Latency per move.(df = 51). 

 

 

Discussion 

This experiment investigated the impact of interactivity on problem solving 

performance for a river-crossing problem. Participants were required to solve 

the problem twice, once in a low interactivity context in which moves were 

simulated mentally and dictated to an experimenter and once in a high 

interactivity context where moves could be enacted through a three-dimensional 

display that corresponded to the main features and protagonists of the problem. 

A high level of interactivity generally encouraged participants to make more 

moves in reaching a solution than when they completed the low interactivity 

Order
Performance 

Measure
r p 95% CI

LI first/Hi second HI legal moves -.451 .027 [-.722, -.059]

HI Illegal moves -.442 .031 [-.717, -.047]

HI Total moves -.527 .008 [-.767, -.157]

HI Latency -.556 .005 [-.783, -.197]

HI L/m .002 .993 [-.401, .405]
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condition. The latency per move data indicated that participants were always 

quicker to select a move in the high interactivity condition, and were generally 

quicker to select a move during the second presentation of the problem. 

However, the more important pattern in these data was the interactivity 

condition by order interaction observed in this experiment: Latency per move 

dropped precipitously when the second presentation of the problem occurred in 

the high interactivity condition. Post hoc tests showed order did not affect 

latency per move in the low interactivity condition, but did so in the high 

interactivity condition. In addition, there was no difference in latency per move 

between the low and high interactivity conditions if the high interactivity 

condition was attempted first, but latency per move was substantially reduced 

when the high interactivity condition was attempted second.  

The second presentation of the problem offered the opportunity to gauge 

the degree of learning and transfer from one interactivity context to another. 

There was much evidence of learning, when the second opportunity to solve the 

problem took place in a context that favoured a high level of interactivity: 

Participants completed the problem in less time and selected moves at a faster 

rate in the high interactivity context than when the second presentation of the 

problem was in the low interactivity condition. In fact, when the low interactivity 

condition was experienced second, performance reflected little learning and 

transfer. This pattern of results suggests two competing explanations: (i) the 

process and quality of knowledge acquisition is different as a function of the 

level of interactivity or (ii) interactivity is a performance facilitator and a high 

level of interactivity more clearly showcases learning. Each explanation is 

evaluated in turn. 
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First exposure to the problem without much interactivity might have 

fostered the acquisition of a sounder and more actionable representation of the 

task and appreciation of an efficient sequence of moves to solution. In contrast, 

experiencing the problem in a context that fosters a high level of interactivity 

might not be accompanied by the same investment in cognitive effort, 

proceeding primarily on the basis of procedural learning, which in turn might 

interfere with the development of an accessible and transferable conceptual 

representation of the problem. As a result, when the problem is encountered for 

the second time in a condition without much interactivity, the procedural 

knowledge does not facilitate transfer; however, when the second presentation 

occurs in the high interactivity condition, performance substantially benefits from 

the knowledge acquired on the basis of the experience in the low interactivity 

condition. The pattern of results from this experiment offers some support for 

this conjecture. 

Alternatively, the substantial improvement in the high interactivity condition 

when participants are presented the problem a second time might not reflect 

differences in the type and quality of learning but rather release from a 

performance bottleneck. In other words, interactivity is a performance facilitator. 

Cognitive efforts and task demands are more exacting with low interactivity—as 

evidenced by the significantly longer latency per move. When participants 

encounter the problem a second time but this time can benefit from cheaper 

move selection by moving artefacts on the board, they experience a release 

from the cognitive demands of the low interactivity condition and are quicker at 

producing moves, and hence quicker to reach a solution. The river-crossing 

problem is narrow analytic problem with a tightly defined problem space: 
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participants cannot wander off-piste very far. Faster move selection and the 

production of more moves leads to reaching the goal state quicker. 

The task engagement scale was included to assess whether participants’ 

feelings about the different tasks affected their performance. It is clear from the 

results that, irrespective of the task order, individuals were more engaged with 

the task when presented with artefacts to manipulate than when asked to keep 

their hands on the table while attempting to solve the problem. Participants’ 

performance was related to TES in the second attempt of the task, but only 

when interactivity was high. This indicates that even when given a second 

opportunity to solve the problem, the hand down condition was no more 

engaging than the first attempt. Therefore the order was not the sole factor that 

raised the levels of engagement; rather it was the chance to attempt the 

problem again with a greater opportunity to interact with the world.  

The design of this experiment, however, cannot provide data to adjudicate 

the relative merits of these conjectures since attempt and interactivity level were 

not decoupled. Experiment 2 was designed to disentangle the effects of order 

and interactivity on learning by manipulating the levels of interactivity between 

subjects. Thus, as in experiment 1, participants completed the river-crossing 

problem twice, however they did so either in a low or a high interactivity context 

both times. In this manner, Experiment 2 could provide data to determine the 

magnitude of learning as reflected in improvement in performance across the 

two presentations. In light of O’Hara and Payne’s (1998) conjecture that 

planning impacts performance for different levels of interactivity, Experiment 2 

also sought to measure independently participants’ planning abilities by having 

them complete a series of Tower of London problems during the experimental 

session. The Tower of London (ToL) is a transformation problem used to 
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assess planning skills in healthy and neuropsychological patients (Shallice, 

1982; Unterrainer, Rahm, Leonhart, Ruff, & Halsband, 2003; Ward & Allport, 

1997). The inclusion of a planning task in this experiment sought to determine 

the degree to which planning performance with a series of three-disk ToL 

problems could predict river-crossing performance. Specifically, it was predicted 

that planning skills would correlate with river-crossing performance in the low 

interactivity condition; however, in a high interactivity context, the ease of 

selecting and implementing moves, should level off individual differences in 

planning abilities. 

River-Crossing: Experiment 2 

Method 

Participants 

Eighty-nine university undergraduates participated in exchange for course 

credits. Thirteen participants did not complete the river-crossing problem within 

the allocated time and were subsequently excluded from further analysis. 

Following tests for skewness in the latency data a further 6 participants were 

removed from the analysis to ensure the data were normally distributed. The 

final sample was composed of 70 participants (58 females, Mage = 22.9, SD = 

5.5). 

Materials and Procedure 

The same procedure designed for Experiment 1 was employed in 

Experiment 2 save for two changes. First, participants were randomly allocated 

to either the low or high interactivity group, and therefore completed the river-

crossing problem in the same interactivity condition twice. Second, the number 

of individual difference tasks was altered to accommodate a Tower of London 

planning task. In addition to a computation span task and the need for 
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cognition, participants completed a series of Tower of London (ToL) problems 

during the experimental session. The task engagement scale and modified 

Corsi were not included due to time constraints. Half the participants completed 

the ToL before the first attempt at completing the river-crossing task, the other 

half after the second attempt. The ToL task was adapted from Shallice’s (1982) 

version by using paper pegs printed on an A4 card and coloured paper disks 

that could be moved about on the card (see Figure 6.5). The rules were printed 

on an A4 sheet of white paper and read: (i) move only one disk at a time; (ii) 

move only the top disk; (iii) no more than two disks on the middle peg and no 

more than one disk on the shortest peg. The disks and pegs were placed in 

front of the participant in the initial state. The nature of the task was explained 

to the participant. It was also explained that the researcher would note the time 

taken and number of moves completed for each of the four problems. They 

were not given the opportunity to practice; no instructions were given on 

planning or time allowed for completion of the problems. Participants were then 

asked to read the rules before beginning the task, and to state that they 

understood the rules and the goal of the task. The rules were then removed 

from sight. Participants were shown four different goal-state configurations of 

the three disks on three pegs of different heights in an identical format to the 

card. At the start of each problem, the disks were set at the same initial state, 

participants were shown a new goal-state configuration and were then required 

to rearrange the disks one by one to match the goal state. Each problem could 

be completed in a minimum of five moves. 
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Figure 6.5. The three-disk Tower of London task adapted from Shallice (1982). 

All trials began with the same starting position (right-hand panel). The goal 
position varied on each trial (left-hand panel). 

 
Results 

Performance Measures 

Latency. The latency data were skewed in three of the four experimental 

conditions. Removing the six slowest participants ensured that indices of 

skewness were within the acceptable range (Z in all conditions < 1.96). The 

mean latencies to completion in both groups for both attempts are reported in 

Table 6.3. Latency to completion declined considerably from the first to the 

second attempt in both interactivity groups. In a 2×2 mixed ANOVA the main 

effect of attempt was significant F(1, 68) = 63.7, p < .001, p
2 = .483; however, 

the main effect of group was not , F < 1, nor was the attempt by group 

interaction, F < 1. 

Moves. Participants in the high interactivity group produced a greater 

number of legal moves than those in the low interactivity group during the first 

and second attempt, but participants in both groups selected fewer moves 

during the second attempt (see Table 6.3). The mean number of illegal moves 

was also greater in the high interactivity group than in the low interactivity group 

(see Table 6.3); however, both groups selected fewer illegal moves during their 

second attempt. A similar pattern was produced with the overall number of 
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Table 6.3 

Mean Latencies and Mean Number of Moves to Completion (with standard deviations for all means). Order Indicates the Order 

of Interactivity Undertaken in the Experimental Session (L = Low Interactivity and H = High Interacti vity). First and Second 
Represents the First or Second Attempt in the Experimental Session . 
 

Order M SD M SD M SD M SD M SD M SD M SD M SD

L/L 408.12 165.04 217.21 78.35 13.45 3.80 12.06 1.87 3.39 2.76 1.15 1.66 16.85 5.65 13.21 2.47

H/H 399.16 186.25 233.59 96.25 16.41 5.81 15.41 4.99 4.73 2.85 2.86 2.54 21.14 7.58 18.19 6.35

Moves

Latency (s) Legal Illegal Total

First Second First Second First Second First Second
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moves: More overall moves were made in the high interactivity group than in the 

low interactivity group, but fewer moves were made in the second attempt and 

this in both groups. In a 2×2 mixed ANOVA on total moves the main effect of 

attempt was significant F(1, 68) = 11.0, p = .001, p
2 = .139, the main effect of 

group was significant F(1, 68) = 21.3, p < .001, p
2 = .238, but the attempt by 

group interaction was not, F < 1. 

Latency per move. The latency per move data are illustrated in Figure 

6.6. There are two patterns of note. First, latency per move decreased during 

the second attempt in both groups; second, high interactivity participants were 

faster at selecting moves than the low interactivity participants during both 

attempts. In a 2×2 mixed ANOVA the main effect of attempt was significant, 

F(1, 68) = 77.9, p < .001, p
2 = .534, as was the main effect of group F(1, 68) = 

12.6, p = .001, p
2 = .157; the group by attempt interaction was not significant 

F(1, 68) = 2.15, p = .147, p
2 = .031. 

 

Figure 6.6. Mean latency per move in the two interactivity conditions (low, high) 
for the first and second attempt. Error bars are standard errors of the mean. 
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Predictors of Performance 

Measures of working memory, the need for diligent thinking and planning 

were investigated in order to assess any influence internal resources might 

have on performance in solving the river-crossing task. Analyses of computation 

span and need for cognition revealed no pattern of significant correlations. 

However, analysis of the Tower of London planning skills task did reveal some 

significant results. 

Planning skills. The mean latency to complete each of the four ToL 

problems was 26.9s (SD = 13.5) for participants in the low interactivity group, 

and 31s (SD = 18.9) for those in the high interactivity group; the difference 

between groups was not significant, t(68) = -1.04, p = .302. The mean number 

of moves for each ToL problem in the low interactivity group was 8.67 (SD = 

2.63) and 9.94 (SD = 3.71) in the high interactivity group: the difference was not 

significant, t(68) = -1.64, p = .105. Thus, planning skills as determined by this 

measure did not differ between the two groups of participants. However, ToL 

latencies moderately correlated with the latencies for the first, r(31) = .344, p = 

.05, and strongly with the second attempt, r(31) = .524, p = .002, in the low 

interactivity condition. Thus, the faster participants were at completing the ToL 

problems, the faster they were at completing the river-crossing problems for 

both attempts in the low interactivity group. In contrast, participants’ ToL 

latencies did not predict the time to complete the river-crossing problem in the 

high interactivity group, either for the first, r(35) = .071, p = .675, or the second 

attempt, r(35) = -.151, p = .372.  

Discussion 

Experiment 2 was designed to offer additional data to adjudicate the 

conjectures formulated in explaining performance during the second 
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presentation of the task in Experiment 1. In experiment 1, latency and latency 

per move were substantially lower, suggesting significant learning, when the 

high interactivity but not the low interactivity condition was experienced second. 

Since interactivity was manipulated within-subjects in these experiments, the 

nature of the learning experience during the first crossing was not controlled 

across the two presentations of the problem. A couple of conjectures were 

offered that could only be tested with an experiment where the interactivity level 

was manipulated between subjects, hence controlling for interactivity level 

across the two presentations. 

The data from Experiment 2 painted a relatively unambiguous picture: 

Learning was evident in both the low and high interactivity conditions. Thus, the 

substantial learning in terms of reduced latency and latency per move in the low 

interactivity condition in this experiment lends some support to the notion that, 

in Experiment 1, experience in a high interactivity condition first may have 

retarded transfer when the second attempt took place in low interactivity 

context. In addition, this performance improvement cannot be attributed to a 

performance bottleneck caused by the relative cost of move selection in the low 

interactivity condition. In Experiment 2 participants who completed the first 

crossing in the low interactivity condition were significantly faster completing the 

second crossing in the same condition. However, latency per move was faster 

in the high interactivity condition than in the low interactivity condition for both 

attempts at solving the problem. The absence of a significant interaction 

between interactivity and attempt in these data indicates that the performance 

improvement was similar in both interactivity conditions. Indeed, the average 

decrease in latency per move from the first to the second attempt at completing 

the problem was 7.86s (SD = 6.78) in the low interactivity group, and 5.62s (SD 
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= 6.06) in the high interactivity group, a nonsignificant difference, t(68) = 1.47, p 

= .147. 

It was conjectured that learning in the high interactivity condition of 

Experiment 1 when experienced during the second presentation of the problem 

reflected a sounder appreciation of the task obtained through a more sustained 

planning effort during the first presentation with low interactivity. This hypothesis 

is not supported by the data obtained in the present experiment. Researchers 

such as O’Hara and Payne (1998; see also Svendsen, 1991) have argued that 

a low interactivity environment—in which it is relatively more costly in terms of 

efforts to produce a move—encourages people to plan more before selecting a 

move which results in a richer and more transferable problem representation. 

However, in the experiment reported here, participants who completed the 

problem in the high interactivity condition did so significantly quicker during the 

second presentation. Admittedly, a lower cost structure, where moves are 

cheap, encourages more moves; indeed participants in the high interactivity 

group always selected more moves than participants in the low interactivity 

group. However, latency per move was significantly faster in the second 

presentation, and indeed significantly faster than the latency per move for 

participants in the low interactivity group. Thus, the argument that learning is 

mitigated by the low cost structure is not supported by the latency per move 

data reported here. 

Finally, participants in both groups did not differ in their planning abilities 

as reflected by the similar average latency to complete each of the four ToL 

problems. Of greater interest was the fact that ToL latencies were strongly 

positively correlated with latencies to complete the river-crossing task, and this 

for both attempts, in the low interactivity group. In contrast, the river-crossing 
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latencies did not predict participants’ performance on the ToL problems in the 

high interactivity group. To be sure, this pattern of correlational evidence 

indicates that higher interactivity may reduce the contribution of forward 

planning in the selection of moves. Perhaps more important, it suggests that 

high levels of interactivity may elevate the performance of participants with poor 

planning abilities, such that their performance is comparable to participants with 

higher planning abilities. 

General Discussion 

Outside the psychologist’s laboratory, scientists and lay people alike 

naturally create and build artefacts or recruit existing ones to configure highly 

interactive contexts of reasoning and facilitate problem solving. Thus, solving 

jigsaw puzzles involves physically juxtaposing different pieces to gauge their fit; 

in Scrabble, letter tiles are physically rearranged to facilitate word production; in 

Tetris, tetrominoes are physically rotated to determine their optimal slot. Beyond 

puzzles and games, experts structure an external environment to support 

thinking. Scientists use physical objects and their arrangement in space to 

formulate and test hypotheses: Watson (1968) described how he cleared his 

desk, cut out shapes corresponding to the four nucleobases, and manipulated 

them until he saw which ones could be paired to hold the double helix together 

(see Vallée-Tourangeau, 2014). 

The key driver of thinking in these examples is interactivity, how features 

of the world that configure a certain problem are arranged and rearranged 

dynamically over time to evince a certain solution, to produce a desirable goal 

state. The work reported here shares a number of theoretical commitments with 

the seminal characterisation of the role of external representations in problem 

solving outlined in Zhang and Norman (1994), as well as the elegant 
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experiments and modeling efforts on soft constraints that determine when the 

world or internal memory is consulted in a wide range of tasks (e.g., Fu, 2011; 

Gray, Sims, Fu, & Schoelles, 2006). While Zhang and Norman demonstrated 

how problem solving performance is facilitated when certain rules and 

dimensions are externally represented, they said little about interactivity as 

such, although it is at the heart of their participants’ performance. In turn, the 

interactive behavior described in the resource allocation experiments and 

models supporting the soft constraints hypothesis, is one that reflects the quick 

iterative sampling of information from either an internal source—memory—and 

the world (Gray & Fu, 2004; Gray et al., 2006). These researchers did not 

address the role of interactivity in modifying the physical arrangements of a 

problem, and the contingent spatio-temporal itinerary that maps the problem’s 

solution.  

In the case of the river-crossing problem, interactivity as designed in the 

high interactivity condition, did not change the nature of the problem or 

reconfigure it in a more cognitively congenial manner (unlike, for example, in 

Tetris or Scrabble, see Maglio, Matlock, Raphaely, Chernicky, & Kirsh, 1999). 

What interactivity did was to promote a more fluid way to explore the problem 

space, involving as it were limited cognitive resources to enact changes. The 

state of the world—as modeled by the artefacts—cues the next move. What is 

particularly interesting then is the tight coupling between the agent and the 

world. The raft, animal figurines, and river board are better thought as 

configuring a world that is representative of the real world, not a representation 

of it (see Noë, 2012): participants in the high interactivity condition directly 

manipulated the world not unlike how scientists manipulate three dimensional 

models of molecules (see Toon, 2011; Watson, 1968). This coupling may be 
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maintained by perception-action loops that may not be mediated by complex 

representations. In addition, this level of interactivity may be accompanied by a 

greater degree of task engagement. Svendsen (1991) reports that participants 

who experienced a greater degree of interactivity in a low implementation cost 

condition of the Tower of Hanoi enjoyed the task more, were more likely to 

recommend the interface, and believed it was quicker to use and solve the 

problem. The problem space that described the river-crossing problem 

employed in the low and high interactivity condition was the same. However, 

from an ecological perspective, the problems were different in the two 

conditions. The two presentations afforded a different behavioural repertoire, 

supported by different perceptual and cognitive processes. Thus, the cognitive 

ecosystem (cf. Hutchins, 2010a) implemented in the low and high interactivity 

condition was different, and important questions about learning and transfer can 

and should be raised in these different ecosystems.  

Previous work on the river-crossing problem demonstrated learning across 

repeated presentation of the same problem; however evidence of learning 

transfer across analogous problems is more equivocal (Reed et al., 1974). 

Knowles and Delaney (2005), using computer generated images, also 

investigated learning in the river-crossing problem by attempting to improve 

performance through the reduction of illegal moves. However, what was being 

learnt was not made clear beyond offering the conjecture that learning reflected 

“enhanced rule verification skills” (Knowles & Delaney, 2005, p.679). But these 

additional skills were not independently assessed and measured, and the 

conjecture did not offer much beyond a redescription of the data. Unlike 

Knowles and Delaney, the focus of the experiments reported here was not on 

improving performance in the number of moves made with a cost manipulation; 
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rather it was to investigate how different levels of interactivity using artefacts, 

not computer generated images, influenced problem solving performance and 

learning.  

The experiments presented here indicated that learning proceeds in both 

interactivity contexts. In addition, Experiment 1 offered a potentially interesting 

window on the nature of the transfer of learning from low to high interactivity: 

Participants performed the task fastest in a high interactivity context when they 

had first experienced it in a low interactivity context. Over repeated 

presentations of the same problem, it would be expected that performance 

would improve, as it did. However, a change in problem solving mode may 

mitigate the learning effect in that participants must learn a new way to play the 

game, as it were (Norman, 1993a). The data reported here suggested that it 

was easier to adapt when the change was from a low to a high interactivity 

condition, rather than the reverse. The embodied immediacy of the contact with 

the problem, unmediated by symbolic representations, favoured a quicker 

selection of moves, which resulted in a quicker solution of the problem when 

going from the low to the high interactivity context. However, adapting to a new 

task environment was more challenging when participants moved from a high to 

a low interactivity condition. The transfer from a high interactivity to a low 

interactivity condition resulted in a slower adaptation to the change in the task 

ecology because move selection was mediated through an indirect symbolic 

representation of the task. The results of the second experiment made clear 

that both interactivity conditions promoted learning, although participants 

remained quicker in the high interactivity condition. As previously speculated, 

procedural learning in the high interactivity condition may not facilitate transfer. 

However, learning in the low interactive context was likely more deliberative, 
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resulting in enhanced declarative learning. As a result, participants could rely on 

a more explicit understanding of the problem, which could be implemented 

quickly in the high interactivity condition during the second presentation of the 

problem. Problem solving performance was more efficient if participants 

experienced its abstract version first and then encountered the problem with the 

opportunity of a greater degree of interactivity on the second attempt. 

Lave’s (1988) ethnographic research investigated the transfer of 

knowledge learnt at school as it is applied to activities in everyday life, such as 

supermarket shopping, revealed the different heuristics people employed in 

solving maths problems in practical everyday situations. Lave questioned the 

common view within education and psychology, that arithmetic strategies as 

learned in school are carried away by students from the supposedly context-

free learning environment of the classroom, as transportable tools for direct 

application to practical situations and problems (see Chapter 2 of this thesis). 

She suggested that this assessment of learning was characteristic of an 

information-processing view of the individual as a “self-contained, disembodied 

technology of cognition” (Lave, 1988, p.17), which excluded the impact of 

context and setting as an individual acts in a particular situation. Therefore, 

Lave was interested in whether knowledge transferred from abstract traditional 

teachings in school to more practical, concrete situations in everyday life. 

Lave’s study showed that individuals did use maths learnt in school—additions, 

subtractions, ratios. However, through experience and actions in the lived-in 

world these basic maths capabilities were transformed into practices and 

strategies that did not appear to reflect the strategies learnt in school, rather the 

situatedness of the person acting in the setting of the activity. The transfer 

asymmetry observed in Experiment 1 supported Lave’s findings indicating that 
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knowledge acquired through traditional abstract teaching methods followed by 

an interactive experience using manipulable artefacts may result in improved 

transfer and learning beyond the expected learning of repeated problem 

presentations. In reflecting on Greeno’s (1989) conundrum of devising a 

situated framework for learning transfer, the asymmetry of transfer may also 

indicate a way forward in connecting the gap he identified between mental 

processes and external physical representations of objects and events (see 

Chapter 2 of this thesis). In general, the results from Experiment 1 suggest that 

there are interesting implications for a better understanding of problem 

isomorphs especially as teaching and learning tools. The experiments reported 

here may lay a foundation to address these concerns with empirical evidence 

indicating that learning an abstract concept followed by consolidation with 

concrete three-dimensional recognisable artefacts embodied with the same 

rules and constraints of the original concept significantly enhances learning. 

O’Hara and Payne (1998) discussed the planning-acting continuum in 

analytic problem solving, and investigated the task, environment, operator, and 

agent contingencies that influence the amount of planning. Clearly, a high 

degree of interactivity may encourage quicker and more fluid action that shapes 

and reshapes the problem presentation without much prior planning. A lower 

degree of interactivity may force reasoners to think more carefully in the 

process of identifying the best move in a sequence. While a higher level of 

interactivity enhanced the performance of an individual in terms of how quickly 

moves were made, when measuring the number of moves taken to complete 

the problem, low interactivity encouraged better performance. Therefore, 

determining which level of interactivity better promotes learning can only be 

answered relative to considerations of efficiency themselves relative to a 
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particular context of reasoning. In other words, the cost structure for a particular 

task is relative to a set of situated parameters: sometimes it is useful to think 

long and hard (e.g., carefully planning a move in chess) and sometimes it is 

best to act quickly (e.g., moving a zoid in Tetris). The efficiency metric is 

dependent on the situation: If it is costly to make moves, then it is important to 

invest time into the contemplation of each move to be made; if the number of 

moves made is unimportant, but time is of the essence, then acting quickly is 

the efficient use of available resources. As Lave (1988) observed in the 

supermarket, shoppers would readily abandon or switch purchases requiring 

difficult calculations: if the supermarket shelf offered an alternative item where 

the calculations were less complex, then the benefit of picking up the alternative 

product off the shelf exceeded the mental cost of the calculations. Still, there 

remains an important challenge for research on interactivity: Namely, to 

determine the nature of the learning and the knowledge representation evinced 

by different levels and modes of interactivity.  

In the experiments presented here, the functional constraints and rules of 

the problem do not change between problem presentations; however, 

interactivity in the physical world alters the cognitive landscape across the 

distributed system. In offering a more interactively congenial problem 

presentation with the board and artefacts, the external representation of the 

river-crossing problem differed from the hands-down presentation. While to the 

researcher the assumption might be that the problems are the same; however, 

in changing the physical structure, it is possible from the perspective of the 

solver the tasks are quite different, resulting in differing performance outcomes 

and thinking trajectories to solution (Norman, 1993a). These experiments have 

shown that performance outcomes vary with interactivity. People naturally 
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interact with the surrounding environment; frequently this interactivity goes 

unnoticed, with commentators on research failing to observe the impact of 

interactivity. The exploration of the thinking trajectories of the problem solver in 

the lab, when encountering a changing cognitive landscape across different 

problem presentations could potentially shed light on naturally occurring 

interactivity in the world. In addition the amount of transfer and learning were 

seen to be contingent on the sequence with which the problem presentation 

was experienced. These results suggest that outcomes for learning and 

problem solving may differ when using the body and the concrete world to 

explore the problem space. Education is rapidly advancing toward the use of 

computer centered learning; coupling bodies to a dynamic and modifiable world 

during learning, problem solving and decision making poses important 

pedagogical questions (Kirsh, 1997; Klahr, Triona, & Williams, 2007; Moreno & 

Mayer, 2007; Renken & Nunez, 2013). Interactivity is now often couched in 

terms of interaction with a computer interface, knowledge and skills learnt from 

that mode of interactivity need to be assessed against interaction with the lived 

in physical world. Future research on this front would likely yield findings with 

important pedagogical implications as well as offering guidance to researchers 

working on the innovation and learnability of scaffolding interfaces (cf. Bolland, 

2011). 
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Chapter 7 

Mental Arithmetic 

Overview 

The two river-crossing experiments discussed in the previous chapter 

illustrated how, by offering solvers different physical presentations for 

analogous problems, performance may change as a function of interactivity. 

The experiments showed the extent to which interactivity impacted the number 

of moves and latency to completion of the problem as well as the differences in 

learning with repeated presentation of the problem. These results showcased 

how from a distributed cognition perspective, through interactivity, the search 

process shapes and reshapes the problem space (Kirsh, 2009a). 

The three experiments presented in this chapter continued the 

investigation of problem solving from a distributed cognition perspective, 

examining the impact of interactivity on mental arithmetic. Similar to Lave’s 

(1988) motive for using maths in the Adult Math Project, these maths problems 

were chosen as useful tools for research into the lived-in world as using 

arithmetic is ubiquitous in everyday life.  

In all three maths experiments the problems were long arithmetic sums 

with the number of digits varying between experiments. In addition predictors of 

performance including maths anxiety, working memory and engagement in the 

task were measured. The initial experiment presented the participants with 

sums comprising of 7 or 11 digits. All participants were tested in two levels of 

interactivity; one being a high interactivity condition using numbered wooden 

tokens and the other a hands-down paper based low interactivity condition. The 

second experiment used 11-digit sums with all participants experiencing four 

conditions; the hands-down paper condition, the wooden token condition, a 
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pointing condition and a pen with paper condition. In the final experiment 

participants with varying levels of expertise in mathematics were asked to solve 

problems of 11 and 17 digits. The results support the outcomes from the river-

crossing experiments indicating that interactivity with the environment affords 

opportunities to solve problems and achieve results not necessarily attainable in 

relying on internal resources of the mind alone. 

Introduction 

Mathematical problems are embedded in everyday life in a variety of 

different shapes and forms, with mental arithmetic commonly construed as a 

mathematical operation to be completed in the head by virtue of the word 

‘Mental’. However, in practice individuals, adults and children alike frequently 

use the world around them to complete even simple maths tasks. When 

confronted with an arithmetic task, people often rearrange the physical display 

of the problem by interacting with the environment. They might move coins 

while counting their money, note subtotals with a pen, use their hands to 

gesture or fingers to point or count (Carlson, Avraamides, Cary, & Strasberg, 

2007; Goldin-Meadow, Nusbaum, Kelly, & Wagner, 2001; Kirsh, 1995b; Neth & 

Payne, 2001). Scripture (1891) explained how the eminent “calculators” (p. 2) of 

the day used artefacts when learning the fundamentals of maths. These maths 

prodigies described learning arithmetic from pebbles, peas, marbles, shot, and 

dominoes, at times without any awareness of rudimentary terms such as 

multiply. Their expertise in completing large calculations using simple times 

tables was acquired through the physical arrangement of these manipulatives.  

Children appear to learn to calculate by using their fingers in conjunction 

with repeating the names of the numbers aloud (Butterworth, 2005). In addition 

Alibali and DiRusso (1999) found that while gesturing is an aid to encouraging 
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counting accuracy in children, touching items when counting facilitates more 

accurate performance than simply pointing to countable items. Classrooms 

frequently use interactive instruction when introducing mathematical concepts to 

children (Fyfe, McNeil, Son, & Goldstone, 2014; Martin & Schwarz, 2005). 

Martin and Schwartz (2005) explain how children use objects resembling pie 

wedges as partitions of a pie, when learning to calculate fractions. These pie 

wedges are used as tokens to indicate how to partition out or subdivide the pie 

into say quarters. Just as children use artefacts to progress through stages of 

development when learning complex maths skills, it is possible to draw parallels 

with Palaeolithic artefacts, such as calendars and clay tokens, as contributors 

toward the evolution of human numerical concepts (see Figure 7.1; De Smedt & 

De Cruz, 2011; Malafouris, 2013). 

 

 

Figure 7.1. The images on the left and center provide representations of pie and 

wedges used as manipulatives when learning fractions in a classroom. The 
images on the right are clay accounting tokens from the Uruk period (4000 

B.C.–3500 B.C). Copyright 2009 Marie-Lan Nguyen / Wikimedia 
Commons / CC-BY 2.5. 
 

 

In tracing the evolution of human numerical cognition over millennia, it 

becomes apparent that sociocultural influences have gradually stimulated the 

development of innate abilities for basic approximation of magnitude and 

quantity toward highly developed skills in counting and complex calculations. 

https://commons.wikimedia.org/wiki/Main_Page
https://commons.wikimedia.org/wiki/Main_Page
http://creativecommons.org/licenses/by/2.5/
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Pre-verbal human infants and nonhuman animals alike display strong basic 

numerical intuition for changes in quantities of up to four items (Butterworth, 

2005; Malafouris, 2013; Spelke, 2000). However, it appears that humans alone 

have moved beyond this basic system of approximation to more exact 

numerical cognitive processes. It has been suggested that this innate number 

sense or approximate number system (ANS) is strongly linked to particular 

neural substrates (Dehaene, Piazza, Pinel, & Cohen, 2003; Malafouris, 2013). 

Neuroimaging techniques have identified three areas within the parietal lobe 

that are systematically activated during number processing: the horizontal 

segment of the intraparietal sulcus (HIPS); posterior parietal lobule (PSPL); and 

the left angular gyrus (AG) (Dehaene et al., 2003). The findings by Dehaene et 

al. (2003) were consistent across different participants, a range of nationalities 

and differing educational achievements in mathematics leading them to 

hypothesise that the internal mechanisms for numeracy are biologically 

determined as “pre-existing cerebral circuits” (p. 499). Further they postulate 

that these internal mechanisms have consequently served as foundations for 

the cultural construction of arithmetic over time. 

In isolating the HIPS region, Dehaene and colleagues found there was 

consistent activation during mental arithmetic in particular with the emphasis on 

quantity processing. Although not conclusive, further testing identified this 

region as potentially being numerically domain specific. They proposed that 

management by this system of numerical quantities could be likened to an 

internal spatial map or a mental number line (MNL) on which “numbers are 

organised by their proximity” (Dehaene et al., 2003, p. 498). The other two 

regions, the AG and the PSPL, were identified as possibly supplementing the 

“core quantity system” (Dehaene et al., 2003, p. 487) identified in the HIPS. 
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Unlike the HIPS, increased activity in the PSPL did not indicate domain 

specificity for numbers, as this part of the brain also plays a central role in 

visuo-spatial tasks such as eye movements, hand movements (including 

reaching, grasping and pointing), and spatial working memory. Therefore the 

PSPL may play a role in the spatial orientation of number based attention on a 

MNL. In other words, focussing attention on say deciding which is the larger of 

two quantities, or putting numbers in order of magnitude. 

In reassessing these conclusions, with an eye to the interactions between 

the mind, body, and environment, the evidence presented by Dehaene et al. 

(2003) supports the notion that interactivity has an impact on mathematics. 

Dehaene and colleagues conjecture that fundamental number mechanisms, 

such as the mental number line, may be in place within the brain. However, it 

was only through the cultural evolution of this innate numeracy that arithmetic 

came into being within societies, directly implicating the role of interaction with 

the world beyond the brain. In addition, the speculation of the existence of an 

MNL deduced from their evidence of the overlapping activation within the 

parietal lobe between numeric tasks and visuo-spatial tasks, suggests there is 

an interaction between the internal domain of mentality, the body, and the 

external environment. These pre-existing cerebral circuits appear to be 

activated by interfacing with the physical world (Malafouris, 2013).  

From a cognitive archaeological perspective, Malafouris (2013) presents 

further evidence that interfacing with the material world drove the transition from 

an innate basic sense of numbers to the human ability for more exact and 

complex calculations. The development of explicit and complex calculations, 

Malafouris argues, is not attributable to any preceding physiological adaptations 

in cognitive structure, but rather to embodied experience supported by changes 
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in the medium representing numbers and socio-temporal conditions. He 

identifies clay tokens and tablets in the Neolithic New Eastern accounting 

systems (7000-3000 B.C.) for recording and computing expenditure as one of 

the earliest examples of artefacts connected to the development of numerical 

thinking. The concept of numbers was yet to be developed in these early stages 

of counting, thus each clay token was a physical representation of an 

approximate quantity of a specific category of item. This made it possible to 

approximate the quantity of many different items beyond the narrowness of 

counting in just ones, twos, or threes. The clay tokens were manipulable, 

visible, and tangible—physical properties that provided impetus for the 

emerging process of counting. This exemplifies the role of materiality in 

affording the bridge between embodiment and the world as the clay tokens 

potentially provide the stimulus to build neural connections that otherwise may 

not have been possible. This interaction between artefacts and innate basic 

numerosity promotes a bringing together of the mind and the world to embody 

an “extended system of numerical cognition” (Malafouris, 2013, p. 116).  

Thinking in the World 

Mental arithmetic tasks often entail strategic, deliberate, and effortful 

thinking. Besides basic, well-rehearsed sums, computations can place high 

demands on limited working memory storage capacity and processes (Ashcraft, 

1995; Butterworth, 2006; DeStefano & LeFevre, 2004). Numbers are held, 

added, and manipulated in order to solve the problem drawing on working 

memory resources and executive functions. In reducing the load on internal 

resources, people naturally mine their external surroundings in order to 

augment cognition (Kirsh, 2013). Cognitive processes migrate to wherever 

computations are most easily performed, extending to external resources in a 
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dynamic distributed cognitive system (Kirsh, 2013). The physical actions of an 

individual within the environment are not only integral in distributing working 

memory load, they also provide a scaffold that can enact new strategies and 

expand the range of cognition (Gray & Fu, 2004; Kirsh, 2013; Vallée-

Tourangeau, 2013). Thinking does not simply take place ‘in the head’ but rather 

emerges from an interaction with artefacts in the world. In other words, 

“cognition has no location” (Malafouris, 2013, p. 85), it is a dynamic interplay 

between internal and external resources.  

The cognitive and physical resources deployed to tackle a problem may 

be also taxed by various features of the task—such as time pressure, level of 

difficulty, and fatigue. Reasoners naturally recruit artefacts and use the physical 

space in which they are situated to make thinking easier and more efficient 

(Kirsh, 1995a). This interplay between the cognitive and motor system has been 

associated with improvements in performance, indicated by increased accuracy 

and speed (Goldin-Meadow et al., 2001). Movement execution such as 

nodding, pointing and the manipulation of a problem’s spatial arrangement help 

to surpass the original limitations of working memory capacity thus lowering the 

expense of internal resources necessary to solve the task and guide attention 

(Goldin-Meadow, Alibali, & Church, 1993; Vallée-Tourangeau, 2013). Kirsh 

(1995b) describes an organising activity that recruits external elements to 

reduce the load on internal resources as a complementary strategy to internal 

mental processes. Therefore, interacting with the environment and utilising 

artefacts can improve performance by distributing the storage and 

computational demands of the task across resources internal and external to 

the reasoner. Such distributed cognitive processes shift the cognitive load from 
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the reasoner onto a system in which she is embedded (Vallée-Tourangeau, 

2013). 

The distribution of the computational cost across resources can enhance 

performance when solving a problem. However, this distribution of cognition 

concomitant with the dynamics of interactivity can also enact the application of 

different problem solving strategies, which can improve performance. Yet, it is 

not only the problem itself or its complexity that impacts how accurately or 

efficiently an individual performs in a mathematical task. The physical features 

of the problem presentation can guide behaviours and strategic choices in the 

path to a solution (Vallée-Tourangeau, Euden, & Hearn, 2011; Zhang & 

Norman, 1994). One of the outcomes of Lave’s Adult Maths Project (1988) was 

to illustrate, through observations of everyday maths practices, how individuals 

employed different strategies when solving similar problems across differing 

settings. People solved best-buy problems in the supermarket, underwent 

school-based maths tests and solved simulated best-buy problems in their 

home. The setting of the supermarket offered an environment rich with 

opportunities to interact with the physical world, coupling internal capabilities 

with external resources as part of a dynamic problem solving system. The 

maths problems presented to shoppers for assessment of maths practice 

across settings were based on comparing ratios, although this was not 

transparent in the best-buy problems in the supermarket, the school-based 

arithmetic test ratio problems were not disguised. The solvers used different 

strategies and were more accurate in the supermarket best-buys, than when 

solving the same maths ratio problems in the maths tests where the problem 

presentation was altered. However, solvers were almost as accurate in 

calculating best-buys when undertaken in a simulation experiment in their home 
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as that in the supermarket, and were more accurate than when completing the 

school-like maths tests also performed in their home. This suggested that the 

presentation of the problem as well as the setting might affect the strategy and 

performance of individuals. In turn, a hypothesis was extrapolated from Lave’s 

findings that the same problem presented in a different way, in the same 

setting, might prompt different strategies on the path to solution. Therefore, the 

intention of the experiments discussed here is to show that the affordances 

offered by varying the cognitive landscape potentially alter the dynamic 

cognitive system. 

Distributed thinking. Cognitive psychologists have long recognised the 

importance of the environment in shaping the content and function of cognitive 

processes with their investigations taking differing paths (e.g., Greeno 1989; 

Simon, 1996; Zhang & Norman, 1994). One research strategy is to explore 

problem solving performance across superficially different but structurally 

isomorphic problems. Using isomorphic problems makes it possible to retain the 

same problem space while at the same time changing the cover story by 

varying the rules or move operators. It has long been suggested that these 

changes can cause individuals to construct different (internal) problem 

representations resulting in differences in the solution process (Hayes & Simon, 

1977). Zhang and Norman (1994) demonstrated the importance of external 

representations in an elegant series of experiments on transformation problem 

solving (using Tower of Hanoi isomorphs). Problems were structurally 

isomorphic but were presented with different objects. In using different artefacts 

the external rules and constraints for the problem were changed, which had a 

substantial impact on problem solving performance. However, in Hayes and 

Simon (1977) and Zhang and Norman (1994) the role of interactivity in shaping 
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and reshaping the external problem presentation is largely ignored. Embedded 

in the problem presentation are the varying possibilities for interaction, the 

nature of these interactions having the potential to direct strategic choices (Neth 

& Payne, 2001; Kirsh, 2013). Through manipulations of artefacts, a dynamic 

loop of information and action flows between a person and the outside world, 

new perspectives are observed leading to new strategies improving the 

prospect of problem solving (Magnani, 2007). Processing of the problem is 

shared between the environment, and the body and mind of the agent, 

configuring a distributed thinking system (Kirsh, 1995a). 

Mental Arithmetic  

Previous research on mental arithmetic has investigated gesturing (e.g., 

Goldin-Meadow et al., 2001), interactivity, and additions utilising a computer 

interface (e.g., Neth & Payne, 2001; Neth & Payne, 2011), interactivity and 

working memory (e.g., Vallée-Tourangeau, 2013) and simple coin counting 

strategies (Kirsh, 1995b). Results indicated that interactivity influences 

performance and the ways by which participants achieve solutions. However, 

the picture is piecemeal, fragmented by different methodologies, and no study 

as yet has compared a wide range of different types of interactive behavior 

using artefacts. Consequently, the following experiments investigated the role of 

interactivity in adult participants using tangible artefacts with which the problem 

presentation could be modified through the completion of an arithmetic task in 

the form of simple additions. The decision to use simple additions for the 

exploration of interactivity in mental arithmetic was motivated by three 

considerations. First, a task was chosen requiring only fundamental arithmetic 

skills well within the expected capabilities of university undergraduates. This is 

particularly important since participants who experience mathematics anxiety 
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might feel threatened by more difficult arithmetic calculations resulting in 

withdrawal from the experiment. Second, artefacts, such as tokens and pen and 

paper that closely resemble commonly used items, were artefacts that could be 

introduced in the experimental session with relative ease and efficiency. Finally, 

the relative length of the sums would make it possible to map the participants’ 

progress in terms of interim totals and hence map the trajectory to solution.  

As discussed earlier, ‘Mental’ arithmetic in common parlance is construed 

as mathematical operations accomplished ‘in the head’. The use of the word 

‘mental’ in the term ‘mental arithmetic’ when referring to maths tasks using 

artefacts may appear to be inaccurate when the process involves external 

resources. ‘Mental’ in the context of these problems is the calculation of sums 

without the aid of a device such as calculator, which would greatly diminish the 

load on internal resources, such as working memory, and indeed shoulder most 

if not all the computation complexity and cost. The calculator, in essence, would 

be doing the computations for the problem solver. However, in the case of the 

maths tasks presented here, interactivity relocates part of the computational 

load to the external world by offering a scaffold for the problem solver to shape 

and reshape the path to solution. The cognitive load is distributed between the 

agent and the world, thus the problem solver is computing the answer and not 

the artefact. 

Fundamental to the understanding of interactivity as an element of 

distributed cognition, is that interaction is “essentially nonlinear and loopy, 

making it impossible to clearly demarcate an ‘inner’ domain of mentality from an 

‘outer’ domain of environmental causal factors” (De Jesus, 2015, p. 393; Hutto 

& Myin, 2013). Thus all problems are solved within this looping process, 

meshing resources offered by brain, body, and environment.  
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Individual Differences 

As discussed in Chapter 5 profiling individual differences provides an 

insight into determining different internal resources that might predict 

performance in problem solving and reasoning (Stanovich & West, 1988). 

Factors such as anxiety, self-efficacy, and expertise in mathematics have been 

shown to contribute to differing levels of arithmetic performance (Butterworth, 

2006; Hembree, 1990; Hoffman, 2010; Moore, Rudig, & Ashcraft, 2015). It has 

been suggested that an individual’s inclination toward the need to engage in 

effortful thinking may contribute to improved performance in problem solving, 

reasoning, and decision making (Cacioppo & Petty, 1982; Cacioppo, Petty, 

Feinstein, & Jarvis, 1996; Nair & Ramnarayan, 2000). In addition, a person’s 

engagement when undertaking a task may also be relevant to problem solving 

performance; with a positive approach toward the task contributing favourably to 

the problem-solving activity possibly resulting in deeper comprehension 

(Newmann, Wehlage, & Lamborn, 1992; Schiefele & Csikszentmihalyi, 1995; 

Storbeck & Clore, 2007). 

The Current Experiments 

Here, a series of three experiments are reported investigating the effect of 

interactivity on mental arithmetic, with participants completing sets of simple 

sums in varying modes of interactivity. Increased levels of interactivity have 

been linked to better performance, possibly due to a stronger focus of attention 

and better distribution of the load on internal resources (Carlson, Avraamides, 

Cary & Strasberg, 2007; Goldin-Meadow, Nusbaum, Kelly & Wagner, 2001; 

Vallée-Tourangeau, 2013). In a previous experiment, Vallée-Tourangeau (2013) 

showed that in changing the physical presentation of a problem it is possible to 

improve an individual’s performance when solving simple additions. In all three 
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experiments participants completed the sets of simple arithmetic sums in at 

least two reasoning contexts: One being a low-interactivity context where 

participants were shown a random configuration of numbers, and were asked to 

calculate the sum with hands flat on the table. In a second, high-interactivity 

context, the same configurations were presented with number tokens, and 

participants were free to move them and rearrange the problem presentation as 

they calculated an answer. The sums comprised of varying combinations of the 

numbers 1 to 9, to create a mix of problems ranging in difficulty. The length of 

the sums for the different experiments ranged from seven single-digit additions 

to seventeen single-digit additions. Within each experimental session a number 

of individual difference measures were interleaved with the arithmetic tasks as 

potential predictors of performance. 

The first experiment was designed to further explore the findings of Vallée-

Tourangeau (2013) by examining the possibility that altering the problem 

presentation using two differing modes of interaction, namely low interactivity 

and high interactivity, may alter the performance in arithmetic of those folk that 

are maths anxious or have low sense of maths self-efficacy. The integration of 

artefacts in Experiment 1 offered reasoners the opportunity to reconfigure the 

physical presentation of the problem, enacting different arithmetic strategies. 

The artefacts appear to enable a shift in the affordance landscape as the 

problem trajectory is enacted through interactivity. A change in the type of 

interactivity or artefacts used may offer insight into whether it is simply an 

increase in the interaction with the environment or the affordances offered by 

different artefacts that affects performance. Experiment 2 builds on these 

findings exploring the affordances offered by alternative interactive modes. Two 

additional types of interactivity were introduced thus generating four modes of 
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interactivity to assess performance and differing strategies prompted by varying 

the problem presentation. This experiment also investigated the effect of the 

differing modes of interactivity on participant engagement in the maths tasks 

using the task engagement scale (TES). The third experiment explores how 

expertise in mathematics, maths anxiety and task engagement contributed to 

mental arithmetic performance in a high and low interactivity context. 

Measures of performance. Performance in each of the three experiments 

was measured in terms of four dependent variables: accuracy, latency, absolute 

deviation error and efficiency. Accuracy was measured as the number of sums 

correctly solved by the participant; latency being the time taken to complete the 

answer; absolute deviation error (ADE)6 was calculated as the absolute 

deviation from the correct solution, for example if the correct solution was 40 an 

incorrect answer or 42 or 38 would result in an absolute deviation error of 2; 

efficiency, as explained in detail below, was operationalised as the ratio of the 

proportion of correct answers for a set of sums divided by the proportion of time 

(out of the maximum time) invested in completing the sums. 

Latency. To gain an accurate measurement of latency the researcher 

placed a screen (a box measuring 24cm by 37cm) on the table between the 

sums and the participant. The researcher explained to the participant that this 

screen was used as an occluder behind which the researcher would prepare 

the maths task before revealing it to the participant. Once the maths task was 

ready the researcher removed the screen exposing the task and simultaneously 

asked the participant to “start”. The participant had previously been instructed to 

announce the answer to the researcher once a solution had been reached. 

                                                 
6Absolute deviation error was termed the absolute error in Vallée-Tourangeau, 
2013. 
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Thus, the latency was the number of seconds taken by the participant to 

announce the answer after the screen had been removed. 

Efficiency. Efficiency in cognition potentially offers a more complex 

window onto performance than the measures of accuracy, latency, and 

absolute deviation error. Hoffman (2012) defines cognitive efficiency as 

“qualitative increases in knowledge gained in relation to the time and effort 

invested in knowledge acquisition” (p. 133). Efficiency has the potential to be a 

useful tool for measuring performance as it provides a greater understanding of 

the amount of time and effort required to master a skill or complete a task. This 

understanding may help inform educators when improving teaching techniques 

in order to enhance the performance of learners. Researchers might also 

benefit from investigations into efficiency when attempting to determine the 

effect of working memory and executive functions on areas such as problem 

solving (Hoffman & Schraw, 2010). In determining efficiency for the purposes of 

these experiments it was calculated as a ratio of the proportion of correct 

answers for a given problem set over the proportion of time invested in solving 

that set (out of the longest time the slowest participants invested in solving that 

set). For each of the four conditions, participants were first ranked according to 

their averaged latencies. The average of the slowest 25% served as a 

reference point and represented the maximum effort one could expend in that 

condition. Thus the efficiency ratio denominator was a given participant’s 

latency over the average latency for the slowest quartile; the numerator was 

that participant’s proportion correct solutions in that condition. For example, a 

participant in a given condition may have solved three out of the five sums, for a 

proportion .6 correct. In turn, the participant’s average latency for completing 

the five sums in that condition might have been 30 seconds. If the average 
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latency for the slowest quartile was 40 seconds, then that participants invested 

75% (30/40) of the total possible time for completing the sums in that condition. 

The efficiency ratio for that participant would then be .6/.75, or .8. Ratios at or 

above 1 reflect efficient reasoning; ratios below 1 reflect inefficient reasoning. 

Preferred measure of performance. To better focus on the predictors of 

performance one of the four measures, accuracy, latency to completion, 

absolute deviation error and efficiency was selected for final analysis. Absolute 

deviation error was chosen for further analysis in order to capture the most 

important aspect of arithmetic performance: the solutions themselves. 

Accuracy, although a rudimentary gauge of performance, as a binary measure 

producing a correct or incorrect solution was considered a comparatively 

coarse-grained measure. In addition, accuracy does not discriminate between 

small and large deviation errors and latency to completion does not reflect the 

participant’s answers.  

It is anticipated that different strategies enacted through interactivity would 

be observed, and hence performance would be best in the conditions that 

afforded rearrangement of the initial problem presentation. Therefore when 

individuals are given an opportunity to interact with a dynamic physical problem 

presentation performance may be enhanced. This will be manifested in the high 

interactivity condition by improved solution accuracy, slightly more time taken to 

completion due to token movement, fewer calculation errors, and increased 

efficiency. 

Predictors of performance. The predictors of performance are also 

expected to reflect the benefits of increased interactivity. The reduced load on 

working memory should improve the performance of the maths anxious 

individuals by freeing up internal resources otherwise consumed by the 
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rehearsal of anxious thoughts. In turn, a reduction in maths anxiety is expected 

to assist in alleviating low self-expectations of performance and improve maths 

self-efficacy, thereby yielding improved problem solving outcomes. Using 

artefacts to distribute the thinking may also afford the perception that a problem 

is easier to solve when using familiar objects thus raising the level of perceived 

self-confidence resulting in improved problem solving outcomes (Hoffman, 

2010). An individual’s need for cognition was expected to dissipate in the high 

interactivity condition, as the use of artefacts would possibly reduce cognitive 

load (Cacioppo & Petty, 1982). Expertise may predict deviation error in the low 

interactivity condition, that is, a higher degree of expertise may be linked with a 

lower deviation error; however, the high interactivity condition is expected to 

augment the skills of those with low expertise resulting in reducing any 

discernable difference in performance based on an individual’s maths 

knowledge or experience. Finally, the measurement of flow is anticipated to 

predict greater task engagement in the high interactivity condition than the low 

interactivity condition as participants experience greater control over the 

environment in which they are working. It may also be the case that the 

negative feelings of those maths anxious folk when completing arithmetic 

calculations may be reduced when using tokens, as attention is redirected away 

from the self toward the artefacts. Although it is predicted that participants will 

report being more engaged in the task when the interactivity level is higher, it is 

not anticipated that any improvement in maths performance, when the level of 

interactivity is increased, would be attributed to flow. 
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Mental Arithmetic: Experiment 1 

Mental Arithmetic and Interactivity 

Introduction 

This first experiment in a series of three mental arithmetic experiments 

was designed to provide a basis from which to explore the differences in an 

individual’s performance in reaching solutions to simple addition problems when 

presented with two different modes of interactivity. Vallée-Tourangeau (2013) 

showed that an individual’s efficiency and accuracy when completing simple 11-

digit sums was elevated in a learning environment that encourages interactivity. 

In addition participants’ levels of maths anxiety and maths self-efficacy were 

assessed to establish any relationship between performance in two differing 

modes of interactivity when completing short and long sums.  

It is anticipated that a change in the mode of problem presentation by way 

of increased interactivity, when using the tokens over the more static, low 

interactivity presentation offered in the paper condition in calculating the 

solution, will foster an enhanced performance. Individuals are expected to solve 

more sums correctly, deviate less from the correct answer, and execute the 

problems more efficiently in the token condition. In reducing the load on internal 

resources such as working memory it is also expected that an intervention in 

the form of increased interactivity when solving the sums will benefit those with 

high maths anxiety and low maths self-efficacy when using the tokens. These 

anticipated improvements in performance emerge as the participants use the 

tokens to reach a solution, distributing the computation process across the 

internal and external domains of the problem space. 
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Method 

Participants 

Ninety-one undergraduate and postgraduate students (80 females, overall 

Mage = 24.0, SD = 7.53) received course credits for their participation. 

Materials and Measures 

Maths anxiety. Maths anxiety was measured using the Mathematics 

Anxiety Scale–UK (MAS-UK; Hunt, Clark-Carter, & Sheffield, 2011). This 23-

item scale measures maths evaluation anxiety (e.g., “being asked to calculate 

£9.36 divided by 4 in front of several people”), everyday/social math anxiety 

(e.g., “working out how much time you have left before you set off to work or 

place of study”) and maths observation anxiety (e.g., “listening to someone talk 

about maths”). For each of these items, participants rate how anxious they 

would feel using a 5-point scale, anchored at 1 (“not at all”) and 5 (“very much”). 

The maths anxiety score for a participant was the sum of the ratings across the 

23 items and could range from 23 to 115; the mean maths anxiety score was 

55.5 (SD = 15.1; Cronbach’s α = .91). 

Maths self-efficacy. This scale developed by Betz & Hackett (1983) 

consisted of 18 questions evaluating maths self-efficacy (MSE) by asking an 

individual how much confidence he or she would have in successfully 

undertaking particular maths related problems. Problems such as “Figure out 

how long it will take to travel from London to Cardiff driving at 40 mph” and “Add 

two large numbers (e.g., 5379 + 62543 in your head”. Participants were asked 

to rate their confidence on a 9-point scale (1 = “No confidence at all” and 9 = 

“Complete confidence”). The responses were summed to produce a maths self-

efficacy score out of 162; the mean MSE score was 87.3 (SD = 27.4; 

Cronbach’s α = .91). 
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Numeracy. Numeracy was measured using a subjective numeracy scale 

and an objective numeracy scale.  

Subjective numeracy. The subjective numeracy scale was designed as a 

self-assessment measure of numeracy (Fagerlin et al., 2007) consisting of eight 

questions (such as ‘‘ how good are you at working with percentages”). 

Participants responded using a 6-point scale (1 = ‘‘ not good at all’’ and 6 = ‘‘ 

extremely good’’). The subjective numeracy score was computed as a sum of 

the responses out of a total of 48; the mean score was 29.4 (SD = 13.2; 

Cronbach’s α = .77). 

Objective numeracy. A basic arithmetic scale (BAS) was used to test 

participants’ objective numeracy. It consisted of 45 simple arithmetic problems 

which included additions, subtractions, multiplications (such as 3 × 3 = ?), and 

did not include divisions. Participants were required to write the answers on the 

paper provided, in the order presented, completing as many as possible in 60 

seconds. The score was calculated as the correct number of solutions with a 

mean score of 28.5 (SD = 10.8). 

Working memory. The computation-span task (Ashcraft & Kirk, 2001) 

tests both processing and storage of numbers in working memory. Participants 

were required to answer simple arithmetic problems (e.g., 2 + 8 = ?, 12 – 4 = ?), 

before recalling the second number of these problems (e.g., 8, 4). Sequences 

of equations ranged from 1 – 7 and participants had to process each sum and 

recall the relevant digit correctly to score a point. The mean for computation-

span was 26.1 (SD = 9.2). 

Need for cognition scale. The thinking diligence scale by Cacioppo and 

Petty (1982) was presented as a pen and paper task. Participants were asked 

to rate 18 statements on the satisfaction they gained from thinking.  
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Figure 7.2. Examples of single-digit additions from the short sums (7 single-digit 
additions on the left panels) and the long set (11 single-digit additions on the 

right panels) shown in the low interactivity condition (top panels) and the high 
interactivity condition with the wooden tokens (bottom panels). Participants 
completed 5 additions from both sets for a total of 10 with problems presented 

in a randomized order for each individual.  
 

Arithmetic task. All participants were presented with problems in two 

interactivity conditions. A low interactivity condition (see Figure 7.2, top panels) 

which consisted of the task printed on a single page of white A4 paper and a 

high interactivity condition where the format of the problem was presented using 

round numbered wooden tokens (see Figure 7.2, bottom panels). The mental 

arithmetic task was composed of 10 single digit additions consisting of five short 

sums (7 numbers; see Figure 7.2, left panel) and five longer sums (11 numbers; 

see Figure 7.2, right panel). Tokens were randomly distributed in order to 

reduce predetermined pathways to adding up the digits. The arrangement of the 
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sums was designed such that the numbers were not presented in a grid or 

linear structure that would otherwise facilitate allocation of attention and help 

participants to scan rows or columns in a systematic manner. Adding up digits 

on the page in a random order rather than in a row would be a greater burden 

working memory, as not only did provisional totals need to be held, the digits 

already included in the addition would need to be retained.  

As detailed previously performance was measured in terms of the 

accuracy, latency to solution, absolute deviation error, and efficiency.  

Procedure 

The arithmetic tasks and other scales (as described above) were 

embedded in an experimental session that lasted approximately 60 minutes. 

The presentation order of the MAS-UK was counterbalanced across participants 

such that it was completed either at the start of the session or at the end of the 

session with the arithmetic tasks separated by at least one of the scales. The 

five short and five long sums were mixed to create a set of 10 sums with the 

order of presentation being randomised for each participant. Participants 

completed these sums twice, once in a low interactivity condition, and once in a 

high interactivity condition. Thus, for one presentation participants performed 

the additions with their hands on the table facing them (the low interactivity 

condition) and announced their answer out loud. For the second presentation, 

round numbered tokens (2.2cm diameter) were used, arrayed in a manner 

identical to the presentations employed in the low interactivity condition; 

participants were encouraged to move the tokens in whatever manner to help 

them add the numbers. As in the low interactivity condition, once participants 

were done moving the tokens to arrive at a solution, they announced the 

solution for each problem out loud. The order of condition (low interactivity, high 
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interactivity) was counterbalanced across participants. Thus, the length of the 

additions (7 or 11 digits) and level of interactivity (high, low) were repeated 

measures factors the factorial combination of which yielded four conditions. 

Results 

Accuracy 

The mean number of correct answers (accuracy) is shown in the top left 

panel of Figure 7.3. In completing the 7-digit sums participants’ accuracy 

appeared to be slightly improved by interactivity, with even greater accuracy in 

the high interactivity condition for the 11-digit sums than in the low interactivity 

condition. A 2 (interactive condition: high, low) by 2 (sum length: 7 digits, 11 

digits) repeated measures analysis of variance (ANOVA) showed that the main 

effect of condition was significant, F(1, 90) = 11.9, p = .001, p
2 = .117. The 

main effect of sum length was also significant, F(1, 90) = 39.8, p < .001, p
2 = 

.307, however, the condition by sum length interaction did not reach 

significance, F(1, 90) = 3.32, p = 072, p
 2 = .036. 

Latency  

Participants were slightly slower in the high interactivity condition for both 

sum lengths with the 11-digit sums taking longer to complete than the shorter 7-

digit sums as would be expected (see Figure 7.3, top right panel). A 2×2 

repeated measures ANOVA indicated that there was a significant main effect of 

condition, F(1, 90) = 24.3, p < .001, p
2 = .212, with the main effect of sum 

length also being significant, F(1, 90) = 455, p < .001, p
2 = .835. There was no 

condition by sum length interaction, F(1, 90) = 2.64, p = .108, p
2 = .028 

Absolute Deviation Error 

In the bottom left panel of Figure 7.3 it is evident that the magnitude of the 

errors made in calculating the correct answers in both conditions was very 
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similar for the shorter sums. However, the high interactivity condition 

systematically produced smaller errors than in the low interactivity condition 

when participants completed the longer sums. A 2×2 repeated measures 

ANOVA revealed the main effect of condition to be significant, F(1, 90) = 12.4, p 

= .001, p
2 = .121. The main effect of sum length was also significant, F(1, 90) = 

40.2, p < .001, p
2 = .308 as was the condition by sum length interaction, F(1, 

90) = 15.9, p < .001, p
2 = .150. Post hoc tests confirmed there was no 

significant difference between interactivity conditions for the shorter sums, t(90) 

= 1.11, p = .271 however there was a significant difference between conditions 

when participants completed the longer 11-digit sums, t(90) = 4.05, p < .001. 

Efficiency 

The efficiency ratios are reported in the bottom right panel of Figure 7.3. 

When participants experienced short additions in the high interactivity condition 

they appeared slightly more efficient than when calculating the totals for similar 

sums in the low interactivity condition. This difference in efficiency increased 

with the longer sums individuals appeared considerably more efficient in the 

high interactivity than in the low interactivity condition. However, 2×2 repeated 

measures ANOVA showed that the main effect of interactivity was not 

significant, F(1, 90) = 3.63, p < .060, p
2 = .039 with the main effect of length 

being significant, F(1, 90) = 29.9, p < .001, p
2 = .249, and the condition by sum 

length interaction also reaching significance F(1, 90) = 4.05, p = .047, p
2 = 

.043. 

Post hoc tests confirmed there was no significant difference between 

interactivity conditions for the shorter sums, t(90) = .475, p = .636, however 

there was a significant difference between conditions when participants 

completed the longer 11-digit sums, t(90) = -2.47, p < .016. 
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Figure 7.3. Mean percent correct (top left), mean latency in seconds (top right), 

mean absolute deviation error (bottom left) mean efficiency (bottom right) as a 
function of sum length (7-digit and 11-digit sums) in the low (light grey bars) and 
high (dark grey bars) interactivity condition. Error bars are standard errors of the 

mean. 
 

Individual differences 

In order to examine any possible influence of dispositions and cognitive 

capacities on performance, the correlations between performance measures 

and individual differences (viz. maths anxiety, maths self-efficacy, subjective 

numeracy, objective numeracy, and working memory) were calculated (see 

Table 7.1). There was no significant pattern of correlations for Need for 

Cognition with any performance measures. 

The absolute deviation error was used as the preferred performance 

measure for investigation into the relationship with predictors of performance 
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(as previously discussed in this chapter). Initial correlation analyses over all 

length and interactivity conditions revealed that correlations between absolute 

deviation error and individual difference measures were not influenced by sum 

length. Therefore the mean deviations in the 7-digit and 11-digit sums were 

averaged for each participant to create a new variable average absolute 

deviation error, which will be continue to labeled ADE but will no longer be 

segmented by sum size.   

As would be expected, MAS-UK being a measure of anxiety in dealing 

with maths related problems in academic and daily life correlated moderately 

with the objective measure of numeracy. MAS-UK also correlated moderately 

with self-report measures of maths ability, MSE and subjective numeracy (see 

Table 7.2; Richardson & Suinn, 1972). While no significant relationship was 

detected between absolute deviation error and maths anxiety in either 

interactivity condition (see Table 7.1), scatterplots for all four experimental 

conditions revealed that an increase in sum length from 7 digits to 11 digits 

induced a trend toward a positive correlation between the two variables in the 

low interactivity condition (see Figure 7.4). 

Notably MSE correlated with average absolute deviation error in the low 

interactivity condition, whereas there was an absence of correlation between 

this measure in the high interactivity. There was a similar pattern for subjective 

numeracy. In confirmation of the findings by Betz and Hackett (1983) maths 

self-efficacy also moderately inversely correlated with maths anxiety. Objective 

numeracy and the measure of working memory, C-Span, both correlated 

inversely with absolute deviation error in both the low and high interactivity 

conditions.  
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Table 7.1 
 
Correlation matrix for average deviation error for 7-digit and 11-digit sums, 

individual difference measures of maths anxiety, maths self-efficacy, subjective 
numeracy, objective numeracy, working memory (computation-span) in both 

interactivity conditions (df = 89) 
 

.  

 
Note. MAS = Maths anxiety; MSE = Maths self-efficacy; Subj-N = Subjective 
numeracy; Obj-N = Objective numeracy; C-span = Computation-span; ADE-
Avg-L = Average absolute deviation error in the low interactivity condition; 

ADE-Avg-H= Average absolute deviation error in the high interactivity 
condition. * p < .05, ** p < .01. 

  

1 2 3 4 5 6 7

MAS MSE Subj-N Obj-N C-Span
ADE-

Avg-L

ADE-

Avg-H

1 - -.423 ** -.384 ** -.342 ** -.079 .132 .009

2 - .190 .229 * .026 -.253 * -.118

3 - .291 ** .260 * -.288 ** .090

4 - .370 ** -.448 ** -.336 **

5 - -.322 ** -.245 *

6 - -.231 *

7 -
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Table 7.2  
 
Significant correlations including confidence intervals for individual difference 

measures of maths anxiety, math self-efficacy, subjective numeracy, objective 
numeracy, working memory (computation-span) (df = 89). 

 
 
 

Note. MAS = Maths anxiety; MSE = Math Self-efficacy; Subj-N = Subjective 

numeracy Obj-N = Objective numeracy (basic arithmetic skill); C-span = 
Computation-span; ADE-Low = Average absolute deviation error in the low 
interactivity condition; ADE-High = Average absolute deviation error in the high 

interactivity condition.  
  

Variable 1 Variable 2 r p 95% CI

MAS MSE -.423 <.001 [-.578, -.238]

Subj-N -.384 <.001 [-.194, -.130]

Obj-N -.342 .001 [-.147, -.082]

MSE Obj-N .229 .030 [.025, .415]

ADE-Low -.253 .016 [-.436, -.050]

Subj-N Obj-N .291 .005 [.091, .468]

C-span .260 .013 [.058, .422]

ADE-Low -.288 .006 [-.466, -.088]

Obj-N C-Span .370 <.001 [.178, .535]

ADE-Low -.488 <.001 [-.630, -.314]

ADE-High -.366 .001 [-.531, -.174]

C-Span ADE-Low -.322 .002 [-.495, -.125]

ADE-High -.245 .019 [-.429, -.042]

Individual Differences



 213 

 
 
 

Figure 7.4. Scatterplots of maths anxiety and mean absolute deviation errors in 

the four experimental conditions revealed a discernable positive relationship 
between the two variables in the low-interactive11-digit condition only. The 

linear trends were not significant for any of the experimental conditions.  
 
 

Discussion 

This experiment investigated the impact on mental arithmetic performance 

when participants could modify the physical presentation of simple addition 

problems. All participants completed 10 sums in a low interactive condition, with 

hands flat on the table; and 10 sums in a high interactive condition using 

numbered wooden tokens. The 10 sums comprised of a mix of short (7 digits) 

and long (11 digits) sums. The presentation of the problems influenced the 

magnitude of the deviation error, with the sums completed using the wooden 

tokens, on average, resulting in smaller calculation errors, this was particularly 

evident in the longer sums. The number of sums a participant answered 

correctly was elevated in the higher interactivity condition as was efficiency, with 

the effect greatest in the 11-digit sums. These results principally reflect those 
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presented in Vallée-Tourangeau (2013), endorsing the hypothesis that given an 

opportunity to interact with a dynamic physical problem presentation 

performance may be enhanced. As expected, the use of tokens in extending 

the affordance landscape of the problem space provided the individual with the 

prospect of using external resources to improve performance, not by solving the 

problem for them but as a scaffold for thinking.  

There appeared to be limited influence of maths anxiety on the absolute 

deviation errors during the completion of these maths problems when averaged 

over low and high sums. However, maths anxiety significantly correlated with 

maths self-efficacy, subjective and objective numeracy, suggesting that it did 

indeed measure some level of affect in individuals when either exposed to 

maths problems or when asked to think about maths problems. Maths self-

efficacy, subjective numeracy, objective numeracy and working memory all 

correlated with the performance measure of absolute deviation error in the low 

interactivity condition. However the correlations were nonsignificant in the high 

interactivity condition for MSE and subjective numeracy with the relationship 

between average deviation error and the measures of objective numeracy and 

working memory weakening. This indicates that altering the presentation of the 

problem may alleviate the lack of confidence in maths ability experienced by 

individuals.  

It is possible to conjecture that the sums may have been too simple to illicit 

maths anxiety, while at the same time there is an indication that increasing the 

level of interactivity, even with these simple sums, ameliorated performance for 

those lacking confidence in their mathematical competency. Therefore it may be 

conceivable to speculate that in contradiction to Bandura’s (1977) suggestion 

that the magnitude of the task impacts efficacy, with respect to maths self-
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efficacy, magnitude may not be not an influential factor. The thought of 

attempting a problem of any magnitude within the domain of mathematics may 

be sufficient to induce low personal expectations when approaching any maths 

related problem. 

Turning to a more focussed analysis on the impact of sum length on 

performance, this first experiment revealed that even a small increase in sum 

length, from 7 digits to 11 digits, produced a decline in performance across all 

measures. Our participants were less accurate; the deviation from the correct 

answer was greater; as would be expected they were slower in completing the 

calculations; and as a result their efficiency suffered. In reviewing the 

relationship between maths anxiety and absolute deviation error, it was not 

significant for any of the four experimental conditions. However, further 

investigation indicated that as the sum size increased the performance of the 

maths anxious folk was impaired with the magnitude of errors increasing when 

asked to maintain a hands-down position but not when using the tokens in 

calculating the answers. Given these results the influence of sum length on 

performance appears to be worthy of further exploration. Thus in order to give 

further consideration to the impact of interactivity on maths anxiety the following 

experiments, while examining other factors, will implement an increase in the 

length of sums thereby incrementally increasing the difficulty of the sums.  
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Mental Arithmetic: Experiment 2 

Mental Arithmetic and Problem Presentation 

Introduction 

In the experiment discussed here the external problem presentation tracks 

the dynamic interface between the agent’s internal representation and the 

world. Interactivity and the potential to reshape the problem presentation were 

manipulated in terms of four conditions aimed at simulating the tools that might 

be used by individuals outside the psychologist’s laboratory. The four conditions 

consisted of a low interactivity hands-down condition and three additional 

conditions whereby interactivity is increased; a pen and paper condition, a 

pointing condition, and a condition where numbered wooden tokens were 

available to use when calculating the sums.  

In the first experiment, as in Vallée-Tourangeau (2013), participants 

certainly performed better with a greater degree of interactivity, but what is not 

shown in the first experiment is whether problem solving efficiency is enhanced 

by interactivity through the elaboration of qualitatively different strategies. 

Consequently, the analysis in this experiment profiles performance in 

quantitative terms—accuracy, latency, absolute deviation error, and efficiency—

but also in qualitative terms by describing the different strategies enacted 

through different forms of interactivity. In addition this experiment explored the 

influence of interactivity on the attitude of participants to the tasks undertaken 

by measuring the engagement in the task or the flow and whether being in flow 

impacts performance (Csikszentmihalyi, 1990). As these three components 

address differing aspects of the one experiment they will be attended to in turn 

followed by a general discussion summarising the outcomes of the experiment. 
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It is anticipated that participants will perform best in the token condition as 

this offers the greatest degree of interactivity in all four conditions. In addition, 

by supplying participants with the familiar artefacts of pen and paper or letting 

them freely point and mark the paper using their fingers we will also observe a 

greater ability to calculate the sums correctly than with their hands flat on the 

table. Results from experiment 1 suggest that with a sum size of 11 digits, 

maths anxiety will be more evident in the low interactivity condition than the 

token condition; the expectation is that this will also apply to the other two 

conditions as they offer a greater level of interactivity than the hands-down 

condition. In assessing task engagement participants are expected to score 

more highly in the conditions offering greater interactivity rather than the more 

static, low interactivity condition as they experience greater engagement with 

those tasks. However it is not expected that performance will be anticipated by 

task engagement, as any improvement in performance will be due to the greater 

degree of interface with the world offered by any increase in interactivity. 

Method 

Participants 

Sixty participants (40 females, mean age 23.3, SD = 4.41) were recruited 

for this experiment. Undergraduate and postgraduate students either 

volunteered or received course credits for their participation in the experiment. 

Materials and Measures 

Arithmetic task. Participants were presented with five problems in four 

conditions on a wooden board measuring 39cm by 34cm. In the first condition, 

participants were asked to add a sequence of single-digit numbers with their 

hands down and in a second they were allowed to point at the numbers. Thus in 

these two conditions, the problem presentation could not be modified, but 
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participants could engage in some complementary actions in the latter. In the 

other two conditions participants could reshape the problem presentation. In the 

third condition, participants were given a pen. Using this pen and the paper on 

which the digits were presented, they could then recast the sum as they saw fit. 

In the fourth, the sums were presented as a set of wooden numbered tokens 

(2.2cm in diameter) that participants were invited to move around the board to 

arrive at the correct sum. Therefore a total of 20 sums were presented to 

participants across the four conditions; the sums were randomly allocated to 

each of the four conditions and the order of the conditions was counterbalanced 

across participants. Participants were requested to calculate each set as quickly 

and accurately as possible. Each unique sum consisted of eleven single digit 

numbers arrayed in a random configuration (see Figure 7.5). For the purpose of 

the present study, single-digit numbers between one and nine were first 

categorised as low (1-4) or high (5-9) in order to generate the range of possible 

sums in a more principled manner. Four groups of sums were created: Group I 

(5 low, 6 high), Group II (only high), Group III (3 low, 8 high) and Group IV (4 

low, 7 high). A set of only low numbers was not included to reduce ceiling 

effects. The sets of sums presented to participants consisted of two sums from 

group I and three from groups II to IV. Each of these groups was assigned to 

one of the four interactivity conditions, and this assignment was 

counterbalanced across conditions. As a result each participant was presented 

with a unique set of sums in each condition.  
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Figure 7.5. Twenty unique sums were created, each sum consisting of 11 

single-digit numbers between one and nine. The numbers were categorised as 
low (1-4) or high (5-9) in order to generate a range of sums in a principled 

manner. A set of five sums was randomly allocated to each of the four 
experimental conditions. 

 

In all four modes of interactivity the problems appeared in the same format 

with 11 randomly distributed circles (2.2cm diameter) on A4 size templates. For 

all but the token condition the templates were produced using white paper with 

the digits printed in the circles on the page. In the token condition the numbered 

wooden tokens were initially arranged using templates of tracing paper, created 

with the same configuration of the constituent numbers as the paper version of 

the other conditions (to ensure that the perceptual starting point was the same 

in each condition). Before each set of sums participants were shown an A4 

page with the instructions for the forthcoming task. The wording was similar for 

all four conditions with changes made to reflect the interactivity opportunities 

and constraints. Other than in the low interactivity condition where they were 

instructed not to move their hands, participants were under no obligation to use 

the pen, the tokens or point, whichever was relevant to the current experimental 

condition. In order to maintain consistency of experience across conditions and 

participants, each sum was initially obscured from the view of the participant by 
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a screen, with instructions from the researcher to start once the screen was 

removed. Performance was measured using the four dependent measures as 

described earlier in this chapter—accuracy, latency, absolute deviation error 

and efficiency. 

Maths anxiety. Maths anxiety was measured using the Mathematics 

Anxiety Scale-UK (MAS-UK; Hunt, Clark-Carter, & Sheffield, 2011) as described 

in Experiment 1. The maths anxiety score for a participant was the sum of the 

ratings across the 23 items and could range from 23 to 115 (M = 50.7, SD = 

16.4; Cronbach’s α = .94). 

Numeracy. Numeracy was measured using a subjective numeracy scale 

and an objective numeracy scale, also as described in Experiment 1. The 

subjective numeracy score was computed as a sum of the responses (M = 30.8, 

SD = 7.49; Cronbach’s α = .79). The score for objective numeracy was 

calculated as the correct number of solutions. 

Need for cognition scale. Cacioppo and Petty’s (1982) scale for testing 

thinking diligence scale was presented as a pen and paper task, as in 

Experiment 1. 

Task engagement scale. An eight-item scale to assess participants’ 

attitude towards the familiar and novel tasks presented in this experiment was 

developed. The objective being to ascertain whether any performance 

differences were attributable to the use of artefacts with questions such as 

“Were you able to concentrate well on the task?” and “Did you find the task 

interesting?”. The seven-point likert scale ranged from 0 – 7 with response of 

“definitely no” to “definitely yes”. The scale was printed on an A4 page of white 

paper and was presented to participants after each condition, thus they 

completed four questionnaires in each experimental session. The scale was 
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found to be highly reliable in all four conditions (Low interactivity, Cronbach’s α 

= .80; Pen-paper, Cronbach’s α = .77; Pointing, Cronbach’s α = .78; Tokens, 

Cronbach’s α = .77).  

Mental Arithmetic Performance I:  

Quantitative Results and Discussion 

Results 

Accuracy 

The mean number of correct answers was greatest in the token (M = .69, 

SD = .22) and the pen-paper (M = .69, SD = .23) conditions (see Figure 7.6 top 

left panel). The pointing condition (M = .66, SD = .26) produced fewer accurate 

deviations, with the low-interactive condition producing the weakest 

performance (M = .60, SD = .30). A one-factor repeated measures ANOVA 

indicated a significant difference between conditions, F(3, 177) = 3.12, p = .027, 

p
2 = .050. Post hoc tests revealed a significant difference between the low 

interactive and the pen-paper conditions (p = .006) and the low interactivity and 

tokens conditions (p = .020), but no significant difference between the pen-

paper and tokens conditions. 

Latency 

The lower left panel of Figure 7.6 shows that participants generally took 

about the same amount of time to complete the task across the four conditions 

(low interactivity M = 26.79, SD = 9.88; pen-paper M = 27.26, SD = 9.73; 

pointing M = 25.70, SD = 10.09; tokens M = 26.58, SD = 10.41). The main 

effect of interactivity in the one-way repeated measures analysis of variance 

(ANOVA) was not significant, F < 1. 
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Absolute Deviation Error 

As illustrated in the top right panel Figure 7.6, the more interesting trends 

in performance were evident in the deviation from the correct answers: the best 

results being observed in the token condition and the worst in the hands-down 

low interactivity condition. Deviation from the correct answer was lowest when 

using the tokens (M = 1.41, SD = 1.69); the pen-paper (M = 1.61, SD = 1.65) 

and the pointing (M = 1.90, SD = 2.43) conditions produced higher deviations 

with the low interactivity condition (M = 2.64, SD = 2.39) eliciting the poorest 

results with the highest mean absolute deviation error. The one-factor repeated 

measures ANOVA revealed a significant difference between interactivity 

conditions, F(3, 177) = 6.34, p < .001, p
2 = .097, with post hoc tests indicating 

no significant difference between pen-paper and tokens, but again there was a 

significant difference between the pen-paper and the tokens conditions when 

compared to the low interactivity condition (p = .005, p < .001 respectively).  

Efficiency 

As these efficiency ratios were defined, higher ratios mean relatively better 

performance as a function of the resources invested in completing the problem. 

As the lower right panel of Figure 7.6 shows, performance was most efficient in 

the tokens (M= 1.20, SD = .62) and the pen-paper conditions (M = 1.15, SD = 

.60) with the low interactivity (M = 1.05, SD = .71) and the pointing (M = 1.12, 

SD = .59) conditions being least efficient. While the low interactivity condition 

produced the lowest level of efficiency, the main effect of interactivity was not 

significant however, F(3, 177) = 1.39, p = .247. 

Individual Differences 

There was no pattern of correlation between performance measures and 

the Need for Cognition scale. Maths anxiety correlated with the two numeracy 
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measures indicating that maths anxiety reflects both the individuals self-report 

of their own maths ability and the more concrete maths ability assessed by the 

objective numeracy task (see Table 7.3 and Table 7.4). However, the results for 

predictors of performance for average deviation error did not concur with our 

expectations. As in Experiment 1, there were no significant correlations 

between maths anxiety and the calculation error, in fact the relationships now 

appear to be reversed whereby the low interactivity condition appears to induce 

slightly less maths anxiety than the other three conditions. Another conflicting 

result to Experiment 1 is that subjective numeracy correlated in a negative 

direction with the token condition but no longer with the low interactivity 

condition.  

 

 

Figure 7.6. Mean percent correct answer (top left panel), mean deviation from 
the correct answer (top right panel), mean latency (bottom left panel) and mean 

calculation efficiency (bottom right panel) in the four experimental conditions. 
Error bars are standard errors of the mean.  
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Table 7.3 
 

Correlation matrix for absolute deviation error for individual difference measures 
of maths anxiety, subjective numeracy and objective numeracy in all four 

interactivity conditions (df = 58).  
 

 

Note. MAS = Maths anxiety; Subj-N = Subjective numeracy; Obj-N = Objective 

numeracy; ADE-Low I = Absolute deviation error in low interactivity condition; 
ADE-P&P = Absolute deviation error in pen and paper condition; ADE-Point = 
Absolute deviation error in pointing condition; ADE-Tokens = Absolute 

deviation error in tokens condition * p < .05, ** p < .01. 
 

Table 7.4 
  

Significant correlations including confidence intervals for individual difference 
measures of maths anxiety, subjective numeracy, objective numeracy (df = 58) 
 

 
 

Note. MAS = Maths anxiety; Subj-N = Subjective numeracy; Obj-N = Objective 

numeracy; ADE-P&P = Absolute deviation error in the pen and paper condition; 
ADE-Tokens = Absolute deviation error in the tokens condition. 

1 2 3 4 5 6 7

MAS Subj-N Obj-N
ADE-

Static

ADE-

P&P

ADE-

Point

ADE-

Tokens

1 - -.452 ** -.353 ** .057 .180 .160 .228

2 - .453 ** -.132 -.326 * -.226 -.347 **

3 - -.227 -.049 -.015 -.174

4 - .125 .559 ** .456 **

5 - .294 * .314 *

6 - .395 **

7 -

Variable 1 Variable 2 r p 95% CI

MAS Subj-N -.452 <.001 [-.633, -.244]

Obj-N -.353 .006 [-.556, -.109]

Subj-N Obj-N .453 <.001 [.225, .633]

ADE-P&P -.326 .011 [-.535, -.079]

ADE-Tokens -.347 .007 [-.552, -.103]

Individual Differences
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Discussion 

The performance differences across the conditions revealed that even with 

these very simple sums, interactivity with artefacts helped to transform the 

execution of the calculations. While the participants used around the same 

amount of time to complete the sums regardless of the interactivity condition, 

they made more errors and the magnitude of the errors was larger when no 

artefacts were in use. Although there was no significant main effect of 

interactivity for efficiency, it is noteworthy that efficiency of performance 

between the hands-down, low interactivity condition and the high interactivity 

tokens condition approached significance (p = .060). The curious difference in 

the results between this experiment and Experiment 1 when investigating the 

relationship between maths anxiety and average deviation error, may suggest 

that it is not only sum length but the number of sums in each condition that 

impacts maths anxiety when calculating the sums. In this experiment there were 

only five sums in each block of sums, where there were ten sums in the 

previous experiment, the small number of additions may not be enough to 

produce a sense of anxiety. Next we turn to a more qualitative characterisation 

of performance to examine the potential strategies explored by participants in 

differing problem presentations, this may offer an interesting window onto how 

artefacts alter performance. 

Mental Arithmetic Performance II: Qualitative Observations and 

Discussion 

Observations 

In the present study, the performance of a random selection of participants 

(n = 26) was captured on video in order to analyse the pathways to solution as 

they unfolded for these simple additions. Each participant consented to the 
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video recording, which took place across the entire experimental session in a 

purpose-built laboratory with unobtrusive and noise-free cameras. The sample 

was determined by the availability of the audio-video observation lab and 

participants’ consent to being filmed. The analysis of the participants’ problem 

solving trajectory was based on two simple measures, namely the nature of the 

groupings of numbers, and whether these groupings were ‘good provisional 

sums’ (GPS; defined as Σ 5 MOD =0; Vallée-Tourangeau, 2013), offering 

congenial stepping-stones to promote more efficient problem solving. For 

example, grouping a ‘7’ and an ‘8’ to form an interim total of ‘15’, may 

encourage participants to group a ‘6’, a ‘4’ and a ‘5’ to create ‘30’ as the next 

interim total on the way to the final solution. 

Here the actions of one participant will be explored in detail, concentrating 

on a selection of the sums completed (see Figure 7.7 for an example of how the 

digits were arranged), for three of the interactive conditions. (The low 

interactivity condition is excluded from analysis as the video revealed no insight 

into the calculations). A number of video recordings were discarded from 

analysis due to technical reasons such as the hands or head obscured the 

camera’s view of the participant’s actions. From the remaining sample, the 

performance of a 21 year old, right-handed male undergraduate psychology 

student was selected for detailed discussion. His performance was considered 

typical to other participants as he utilised the pen and paper, pointed and 

grouped the tokens in a similar manner to those participants analysed frame by 

frame. In addition, as these behaviours were identifiable across all conditions 

for this individual, there is the opportunity to build a picture of how the 

presentation of the sums subtly alters his arithmetic strategy. The groupings will 

be labeled in keeping with the protocol established by Vallée-Tourangeau 
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(2013) as good provisional sums (GPS). In addition those groupings made up of 

the same digits, for example grouping all the nines together, will be called same 

digit groupings (SDG).  

The Token Condition 

The sums were presented as a random array of wooden tokens. All the 

token movements in this condition made by the participant were of a sliding 

nature. He generally moved the tokens into distinct groupings on different parts 

of the board before adding them together.  

With the first presentation of the initial five sums the participant initially 

arranged some of the tokens into GPS: 2 and 8, then a separate group of 7 and 

3, then 4 and 6. These three groups were moved together to make one large 

group equaling 30. Three further groups were created: 5 and 6, 8 and 3. The 5 

and 6 were moved to the token ungrouped token 9 to make 20. The group of 8 

and 3 was then combined with the 5, 6 and 9 to total 31. Thus 30 from the first 

large group added to 31 from the second large group summed to the correct 

answer of 61.The final order of groupings (with interim totals in brackets) was 2, 

8 (10) + 7, 3 (20) + 4, 6 (30) and 5, 6, 9 (50) and 8, 3 (61). Thus, moving the 

tokens into the three groups of ten then the forming another of 5, 6 unveiled the 

opportunity to add this 9, bringing together the groups in a total of 50 which 

eased the way to add the final 11. 

This pattern of using GPS was clearly evident in the next two problems 

and the fifth one. In the latter, the answer given was wrong by 10. Yet by that 

time, this participant was an efficient mover of tokens, reconfiguring the problem 

space into congenial subtotals of 10, and he generated an answer, albeit an 

incorrect one, in only 11 seconds. A careful analysis of the participant’s 

movements shows that he moved his hand across the groupings created, 
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probably then tallying the GPSs, he missed a grouping that added to 10; hence 

the calculation error.  

When summing the digits it may seem obvious to create good provisional 

sums from the layout of the tokens; however, the important observation is that 

the secondary rearrangement of tokens into the two large groups emerged from 

cues provided by moving the tokens into the original smaller groupings. This is 

a key observation that highlights the importance of interactivity: the affordance 

landscape shifts as the problem trajectory is enacted through interactivity. This 

was also discernable when the participant completed the fourth set of sums 

(see the left most panels of Figure 7.7). In this case the GPS were not as 

obvious and the participant had no choice but to employ a different approach. 

Initially the participant slid tokens into SDG’s—5, 5 then 9, 9, the third 5 was 

moved but not grouped; 7, 7 followed by 8, 8 then 6 and 9. He then proceeded 

to rearrange the tokens into these altered groupings: 5, 5, 5 + 9 + 8, 8 were 

merged to form a group totally 40, then 9 was added and 6 to equal 55 then 9 to 

make 64, which made for an easy addition of 14 from 7 and 7. In changing the 

configuration, initial efforts of grouping cued and prompted a next level of 

grouping that simply could not occur without artefacts and interaction. In other 

words he could only create the final groups after reconfiguring the tokens from 

the first attempt. 

 The Pen and Paper Condition 

The participant employed a strategy of crossing through the digits with the 

pen provided and writing numbers and additions at the bottom of the page using 

the paper on which the digits were printed as a worksheet. This system resulted 

in the largest mean latency across the four conditions. There was evidence of 
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attempted grouping in provisional sums in groups of 10’s; however he used his 

fingers and the pen to point to numbers in order to keep track of his additions.  

The middle panels of Figure 7.7 illustrate a typical effort in this condition. 

The participant began by crossing off 2 and 8 to make 10, then 3 and 7 for 

another interim 10, then 6 and 4. He then pointed to 2, 5 and 4 and wrote 11. 

Next he added the 9 and 9, writing 18. He dragged his pen across the six digits 

crossed through earlier that made up the three groups of 10, and wrote 30. He 

added the transcribed numbers of 11, 18 and 30 to announce the correct total 

of 59.  Note the additional tracking and mapping necessitated by the 

retranscription of the random number configuration into a more canonical 

columnar arrangement (something that was not required nor observed in the 

tokens condition). 

Another sum in this condition (not illustrated) provided a window into how 

the formation of good groupings was not as obvious; the task of mentally 

rearranging digits was more challenging from a fixed arrangement unlike the 

manipulable token presentation. The participant began by crossing off 2 and 8, 

then 4 and 6 writing the number 20 below the printed digits. He then dragged 

his pen across the 4, 5 and 9 and wrote 18 on the worksheet. Again moving his 

pen across 7, 8 he added the figures 9, 9, 6 to the worksheet, then 18 again 

and crossed off the hand written numbers 9, 9 and 6 then wrote 6 above the 20. 

He scanned his pen over the written numbers 18 and then added 40, he 

crossed out 40, writing 36 on the right then below that 20 he penned a 6 and 

announced the answer of 62.  
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Figure 7.7. The three panels show the stages of progress as the participant solves simple math problems in 
varying conditions of interactivity. The first screen shot in each of the three panels shows the initial problem 
presentation. The second screen shot captures the participant part the way through the path to solution. The 
bottom image is a reconstruction of the final stages of the problem solving process as revealed in frame-by-
frame analysis of the participant’s actions. 
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Ultimately this convoluted series of crossing outs and adding on paper resulted 

in a deviation of four from the correct answer. Thus in the pen and paper 

condition, the participant sometimes retranscribed the additions, sought 

judicious pairings, but the mapping process was slow and the participant had to 

be particularly vigilant as he systematically converted struck-off digits into 

provisional sums. 

Unlike the highly manipulable token condition, here the participant 

appeared to enact a form of iterative consulting by switching between his own 

reconstructed representation of figures or crossing-offs on the worksheet, and 

the random array of static digits, potentially increasing the chance of 

transcription error. The marking of the digits into GPS was more hesitant in the 

pen-paper condition than in the token condition, where the tokens were grouped 

together swiftly. It may be the case that the crossing off slowed him down; 

therefore it appears he may have rapidly switched to relying on internal memory 

rather than maximising the use of the external resources. It appears that the 

transcription of digits into calculations on the worksheet became more 

convoluted and time consuming. This indicated a possible cost-benefit trade-off 

occurring during the distribution of cognitive resources across the continuum 

between internal and external memory, even at the risk of making an error (cf. 

Fu and Gray, 2000). 

The Pointing Condition 

The participant used both hands and most fingers to point and to anchor 

counting points. At times throughout the task there was hovering with the 

fingers above numbers, pauses, counting and re-counting of digits. The strategy 
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is mixed with some grouping at the beginning of each task, with more grouping 

of like numbers together than in the token condition. 

In one set, the SDG’s of 5, 5 then 7, 7 then 8, 8 were created then 9, 7 

followed by 6. Therefore the totals were 10, 24, 36, 52, 68 and 74. In the final 

set, there are very few like numbers to group together therefore another 

strategy was required. In this case the participant used congenial totals of 8, 2, 

then 1, 9, then 6, 4 followed by 2, 7, 1. However, in order to achieve this he 

pressed his fingers on top of these 9 digits on the page, in doing so his hands 

obscured the remaining two numbers 5 and 7 (see the right most panels in 

Figure 7.7). The upshot is that upon taking his hands away he added the 4 that 

had already been accounted for and did not touch or point to the 5 that 

remained uncounted, as a result he announced an incorrect answer. 

Discussion 

In scrutinising the movements of the participant frame-by-frame, patterns 

emerge from what appear to be often random, unconnected strategies. 

However, what is particularly interesting is how the emergent pathway to 

solution differs between conditions of interactivity. The different types of 

interactivity transform the initial problem presentation with the agent behaving 

differently as a function of the artefacts offered and hence the distributed 

system reconfigures itself on the path to solution. In using the wooden tokens to 

add the numbers, shifting them into different groupings disclosed a number of 

ways to ease calculation. At times actions resulted in good provisional sums, 

other times same digit groupings were made or tokens were separated from the 

other tokens to ease thinking. This reconfiguration of the problem space 

expands the range of cognition revealing new ways to sum the numbers; ways 

that would not have been achievable without the possibility for arrangement and 
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rearrangement of the artefacts offered by the level of interactivity. The pen and 

paper condition presented the opportunity to use a more traditional method of 

summing numbers. In every sum the participant crossed off some or all of the 

numbers and retranscribed figures onto the page. The examples scrutinised 

here showed that it was more effortful to keep track of groupings and that new 

strategies were not as easily enacted as with the tokens. Similar observations 

were made in the pointing condition, while GPS and SDG’s appeared to be 

easily identified by the participant it was not an easy task to maintain the totals 

using his fingers. There was no evidence that this condition opened new 

pathways to alternative strategies for adding these digits. The frame-by-frame 

scrutiny of movements in problem solving afforded by different artefacts has 

emerged as an important tool in exposing strategies used by this participant. It 

may well be that in future studies verbal protocols or the measurement of eye 

movements in conjunction with filming could uncover different strategies 

employed in a low interactivity condition. 

Task Engagement and Flow 

The attitude of participants was more positive toward the pen-paper (M = 

37.9, SD = 8.38) and the tokens (M = 37.7, SD = 8.94) conditions, than the 

pointing condition (M = 34.1, SD = 8.76) and least favourable for the low 

interactivity condition (M = 31.6, SD = 9.13). In a one-way repeated measures 

ANOVA, the main effect of interactivity was significant, F(3,117) = 17.0, p < 

.001, 2 = .231. Post hoc tests further identified significant differences between 

the low interactivity and the tokens conditions and the low interactivity and pen-

paper conditions (p < .001 for both comparisons). The low interactivity and 

pointing conditions were also significantly different (p = .025). Feelings toward 
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the pointing condition differed significantly from those in the pen-paper (p < 

.001) and tokens conditions (p = .008).  

It is noteworthy that the participants’ attitude towards completing the sums 

in the different conditions paralleled the impact of interactivity on performance. 

Conditions involving external resources, pens or tokens, seemed to elicit a more 

positive, engaged attitude towards the simple arithmetic problems, than the 

restricted, low interactivity condition. Of course, participants were also more 

accurate in the interactive conditions. But the more positive attitudes towards 

the problems cannot be attributed to task success since participants were not 

given feedback about their performance, that is, after announcing each sum, 

the experimenter did not tell participants whether their answer was right or 

wrong. However, results also showed that as task engagement scores 

increased efficiency increased, with marginally significant correlations in the 

tokens (r(58) = .25, p = .056) and pen and paper (r(58) = .26. p = .045 (see 

Table 7.5 and Table 7.6). The token and pen-paper condition being the two 

conditions in which participants exerted some control over problem 

configuration. This suggests that engagement with the task tended to 

encourage more efficient performance. These findings are in keeping with the 

notion that higher levels of personal involvement positively affect performance 

(Shernoff et al., 2003). Also, changing the visual display may ease the task and 

thereby lighten the cognitive load, which increases effectiveness and alters 

attitudes (Vallée-Tourangeau, Sirota & Villejoubert, 2013). It is possible to 

speculate that this preference for the use of artefacts elicits a more positive 

attitude by participants, as utilising pen and paper is a familiar method of 

computation or the use of manipulatives is often considered a “fun” (Moyer, 

2001, p. 175) learning technique. Therefore, one may argue that improvement 
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in performance in the higher interactivity conditions may be explained by affect, 

since employing artefacts seemed to be preferred. However, there is good 

evidence in the correlational data that this cannot be the explanation; that is 

beyond task enjoyment, interactivity simply confers a distinct performance 

advantage. This is revealed in the pattern of correlations between engagement 

and calculation errors in the four conditions (as plotted in Figure 7.8). A 

negative correlation trend between task engagement and absolute deviation 

error was observed in all four conditions (as engagements increased, errors 

decreased) but the correlation between task engagement scores and deviation 

was only significant in the pen and paper condition (see Figure 7.8). The 

absence of correlations in the token condition when compared to the 

correlations for these measures in the pen-paper condition implies that the 

familiarity of using pen-paper may be a large component of performance 

whereas it is the manipulability of the tokens themselves rather than affect 

alone that accounts for the improvement in performance.  

Table 7.5  
 
Correlations between task engagement scores and the performance measures 

in all four experimental conditions (df = 58).  
 

 
 

Note. P&P = Pen and paper condition; Point = pointing condition. * p < .05, ** p 

< .01. 
 
  

Static P&P Point Tokens

Accuracy .171 .315 * .062 .226

Deviation -.215 -.386 ** -.156 -.137

Latency -.175 -.156 -.264 * -.270 *

Efficiency .197 .260 * .174 .248
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Table 7.6  
 
Significant correlations including confidence intervals for task engagement 

scores for the conditions of interactivity pen and paper, pointing and tokens (df 
= 58) 

 

  

Note. P&P = Pen and paper; ADE = Absolute deviation error. 

 

 

Figure 7.8. Scatterplots of task engagement scores and mean absolute 
deviation errors in the four experimental conditions. The slope of the linear 

trend in all four conditions was negative, but only significantly so in the pen and 
paper condition, r(58) = -.386, p = .002. 

Condition
Performance 

measure
r p 95% CI

P&P Accuracy .315 .014 [.067, .526]

ADE -.386 .002 [-.582, -.147]

Efficiency .260 .045 [.007, .482]

Point Latency -.264 .041 [-.485, -.011]

Tokens Latency -.270 .037 [-.490, -.018]
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General Discussion 

In calculating long arithmetic sums, individuals usually create opportunities 

to deploy a range of complementary strategies as a function of the level of 

interactivity that binds mental and physical resources. Studying systems rather 

than individuals poses theoretical and methodological challenges. Theoretically, 

the nature of the problem representation and the trajectory of the solution as it 

evolves from an embryonic to a fully formed answer, should perhaps be 

understood as being distributed and configured in terms of a transaction 

between the participants’ internal resources and the shape and nature of the 

resources in the external environment. Attempting to segment and 

independently specify the components of a cognitive system, namely the 

thinking agent and his or her immediate environment, is not as productive as 

seeking to characterise the system as a whole (Baber, Parekh, & Cengiz, 

2014). The methodological implications of this transactional perspective are 

important. Of course, systems can be more complex, and composed of a much 

wider range of functional elements, which challenges the traditional toolkit of 

experimental cognitive psychologists designed to deal with a cognitively 

sequestered individual in a laboratory environment that generally prevents 

interactivity. The findings and methods reported here suggest that a more 

qualitative idiographic cognitive science supported by an observational toolkit 

that can code at a much smaller time scale the evolution of a problem 

representation and its solution would make a substantial contribution to problem 

solving research. 

In considering the impact of interactivity on problem solving it is not only 

the performance and task engagement that is altered with a changing problem 

presentation but also the affordances offered by the artefacts to hand. The 
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qualitative analysis here clearly illustrated how the agent behaved differently as 

a function of the artefacts offered and hence how the system reconfigures itself 

on its path to solution. “An artifact is not a piece of inert matter that you act 

upon, but something active with which you engage and ‘interact’ ” (Malafouris, 

2013, p.149). Interactivity encourages the reconfiguration of the problem space, 

opening windows to new strategies, improving efficiency and enjoyment.   
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Mental arithmetic: Experiment 3 

Interactivity and Expertise 

Introduction 

Highly enactive approaches to maths have been shown to increase 

efficiency and accuracy, while reducing calculation error (Vallée-Tourangeau, 

2013). In the current experiment, participants varying in maths expertise were 

invited to complete simple arithmetic additions, with sets of sums composed of 

11 and 17 digits. While it is anticipated that this task does not challenge the 

arithmetic knowledge and skills of participants, accuracy potentially requires 

good working memory capacity and executive function skills especially when 

dealing with longer sums. The aim was to investigate whether any changes in 

performance were related to the mode of problem solving. The focus being on 

the effect of interactivity without and with artefacts, namely the wooden tokens, 

in facilitating an improvement in performance, in relation to expertise. In addition 

the size of the sums may have been a contributing factor to maths anxiety in the 

previous two experiments, therefore the number of digits in some of the sums 

was increased to 17. A selection of tests and questionnaires were also included 

in the experimental session to measure individual differences implicated in 

mental arithmetic such as maths anxiety, working memory, numeracy, maths 

expertise, and engagement. A dynamic, high interactivity environment using 

artefacts as opposed to a low interactivity quasi-static one may encourage more 

efficient calculations, reflecting better skills, through the dynamic reconfiguration 

of the problem. A high degree of interactivity may improve performance for 

participants with lower maths expertise. In contrast, the performance of 

participants with a higher degree of maths expertise may not vary greatly as a 

function of interactivity since their well-practiced internal resources may work 
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efficiently and creatively when dealing with numbers. While individual difference 

measures in Experiment 1 were not significantly influenced by sum length, the 

trend for maths anxiety was such that an increase in sum length might impact 

maths performance if larger sums were introduced, as this would be expected 

to induce greater feelings of anxiety in the maths anxious. However, it is 

anticipated that this anxiety would diminish through interactivity with the tokens 

due to the shift in cognitive load from internal processes only, to one shouldered 

by the resources created thorough the agent-environment coupling. Therefore, 

as the length of the sums in this experiment have been increased to 17, both an 

average and a comparison between the two sum lengths for the individual 

difference measures will be undertaken.  

Method 

Participants 

Sixty participants (38 women, Mage = 21.3, SD = 2.37) were recruited from 

a variety of academic backgrounds. Thirty-two psychology undergraduates 

participated in exchange for credits, 21 undergraduates from other disciplines 

volunteered to participate and seven additional participants either working in a 

highly numerical field (e.g., accounting), or recently graduated with a maths 

discipline degree also participated voluntarily.  

Materials and Measures 

Arithmetic task. Each participant was presented with two sets of simple 

additions, each composed of five 11 and five 17 single-digit numbers. As in the 

previous experiments, these additions were performed in two interactivity 

conditions. In the low interactivity condition, participants were given a sheet of 

A4 paper, with numbers to be summed distributed randomly on the page (see 
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Figure 7.9, left panel). While adding the numbers, participants were instructed 

to keep their hands flat on the table. In the high interactivity condition, 

participants were given a similar set of sums, with the same distribution, but 

presented as moveable numbered wooden tokens (1.2 cm in diameter; see 

Figure 7.9, right panel). On completing each sum participants were requested to 

announce the answer aloud to the researcher. 

 

Figure 7.9. The sum was presented on a sheet of A4 as a random configuration 
of digits in the low interactivity condition (left panel); participants in that 
condition kept their hands flat on the tabletop. In the high interactivity condition, 

the sums were presented with movable wooden tokens (right panel) which 
participants touched, moved, grouped, as they saw fit. 

 

Maths anxiety. Participants completed a 25-item Mathematics Anxiety 

Scale-UK (MAS-UK; Hunt, Clark-Carter, & Sheffield, 2011). The questionnaire 

consisted of a series of situations with participants asked to indicate how 

anxious they would feel in those situations, on a Likert-style scale, with 1 = “not 

at all” and 5 = “very much”. Items included statements such as “Working out 

how much your shopping bill comes to” or “Taking a math exam”. (M = 51.9, SD 

= 15.6; Cronbach’s α = .93). 

Objective numeracy. A basic arithmetic scale (BAS) was used to test 

participants’ objective numeracy. It consisted of 60 simple arithmetic problems 

Low Interactivity HIgh Interactivity 
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(such as 7×8 = ?). Participants were required to write the answers on the paper 

provided, in the order presented, completing as many as possible in 60 seconds 

(M = 29.8, SD = 16). 

Working memory. Participants completed two working memory tasks. 

The computation-span task, testing both processing and storage of numbers, 

while a nonnumerical visuo-spatial task, the Corsi block task, testing the 

temporary storage of visual and spatial information. 

Computation-span. The computation-span task (Ashcraft & Kirk, 2001) 

required participants to answer simple arithmetic problems (e.g., 2 + 8 = ?, 12 – 

4 = ?), before recalling the second numbers of these problems (e.g., 8, 4). 

Sequences of equations ranged from 1 – 7 and participants had to process 

each sum and recall the relevant digit correctly to score a point (M = 23.6, SD = 

8.8). This was presented on a computer screen with the responses recorded by 

the researcher. 

Corsi block. In this version of the Corsi Block task participants were 

shown ten sequences of shaded blocks in a 4 × 4 matrix on a computer screen. 

The number of blocks to be remembered in each sequence increased from 2 to 

6 blocks in length. The participant recorded their responses on an A4 sheet of 

paper by marking the squares on a grid preprinted on the paper resembling the 

grid that appeared on the screen. Participants scored one point for each 

correctly ordered block, thus the maximum score was 40 (M = 33.2, SD = 4.4). 

Maths expertise. An instrument was developed to evaluate maths 

expertise based on experience. Four questions were related to maths grades at 

school such as, “Have you taken maths GSCE (or equivalent)?”, this was 

scored as a binary ‘yes’ = 1, ‘no’ = 0; “If yes, please indicate which grade”, this 

was scored as ‘A*/A’ = 4, ‘B’ = 3, ‘C’ =2, ‘<C’ =1 ‘N/A’ = 0. Three questions 
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asked for details on current university degree, any past university degree and 

current job if applicable. The responses were given a score from 1 - 4 where 4 = 

a maths-heavy degree or job and 1 = no degree or job. The highest score from 

these three questions was used to measure maths experience in terms of 

degree and employment. This score was added to the responses on maths 

education to provide a continuous numerical measure of maths expertise. 

Task engagement scale. The task engagement scale (TES) was 

developed to gauge a participant’s engagement and enjoyment during a task. 

The nine-item scale (a slightly modified version of the task used in Experiment 

1) was based on Shernoff et al. (2003) who identified three key components of 

task engagement: concentration, enjoyment, and interest. The scale asked 

participants to rate how anxious they felt; how easy, pleasurable, fun, 

threatening, stressful, tiresome, or effortful the task was; and how motivated 

they were to perform well in the task. Each item was scored on an 8-point Likert 

scale, labeled from zero (definitely not) to seven (definitely yes): The higher the 

score the more positive the attitude toward the task. Each participant completed 

the TES scale twice once following each of the two sets of sums across 

interactivity conditions. The alpha reliability of the nine-item scale for both 

interactivity conditions indicated that the scale had good reliability (Low, 

Cronbach’s α = .77; High, Cronbach’s α= .81).  

Procedure 

The length of the additions (11 or 17 digits) and level of interactivity (low, 

high) were repeated measures factors yielding four conditions. The presentation 

order of these conditions was counterbalanced across participants. The sets of 

sums for each interactivity condition were separated by at least one other task 

(either the MAS-UK, BAS, Computation-span or Corsi Block). The other tasks 
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were presented at either the beginning or the end of the session and their order 

was counterbalanced across participants. Each experimental condition was 

followed by the TES, and the experiment ended with a maths experience 

questionnaire. The working memory tasks were presented on a computer with 

all other tasks being presented on paper. The experimental session lasted 

approximately an hour.  

In keeping with the previous two experiments mental arithmetic 

performance was measured in terms of accuracy (proportion of sums correct), 

latency to solution, absolute deviation error, and efficiency. Also in keeping with 

the previous two experiments mean absolute deviation was used for analysis 

except where stated. 

Results 

Accuracy 

The mean percent correct, as reported in the top right panel of Figure 

7.10, was greater in the high interactivity condition than the low interactivity 

condition for both sum lengths (11 digits and 17 digits). A 2×2 repeated 

measures analysis of variance (ANOVA) indicated a significant main effect of 

interactivity, F(1,59) = 30.0, p < .001, p
2 = .34 and sum length, F(1,59) = 21.23, 

p < .001, p
2 = .265. However, there was no significant interaction, F < 1. 

Latency  

While latency to completion was influenced by sum length, interactivity 

level resulted in very little difference in latency (see Figure 7.10, top right panel). 

A 2×2 repeated measures ANOVA produced no significant main effect of 

interactivity, F(1,59) = 1.42, p = .239, p
2 = .02. However, there was a 
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significant main effect of sum length, F(1,59) = 201, p < .001, p
2 = .78 and a 

significant interaction, F(1,59) = 6.68, p = .012, p
2 = .10. 

Absolute Deviation Error 

The mean absolute deviation error from the correct answer as shown in 

Figure 7.10 (bottom left panel) was lower in the high interactivity condition than 

in the low condition regardless of the sum length. A 2×2 repeated measures 

ANOVA indicated a significant main effect of interactivity, F(1,59) = 11.0, p = 

.002, p
2 = .16 and sum length, F(1,59) = 17.2, p < .001, p

2 = .23. However, 

there was no significant interaction, F < 1. 

Efficiency 

Participants were less efficient when calculating the sums in the low 

interactivity condition than when using tokens across both sets of sums (see 

Figure 7.10, bottom right panel). The efficiency ratio decreased for longer sums, 

although it was still larger in the high interactivity condition. A 2×2 repeated 

measures ANOVA indicated a significant main effect of interactivity, F(1,59) = 

22.0, p < .001, p
2 = .27 and sum length, F(1,59) = 17.1, p < .001, p

2 = .22. 

However, the interaction was not significant, F < 1. 

Task Engagement 

Participants were more engaged in the high interactivity condition (M = 

44.1, SD = 9.2) than in the low interactivity condition (M = 37.8, SD = 8.8). This 

difference was significant, t (59) = -6.16, p < .001. There were no significant 

correlations between the task engagement scale (TES) and the measures of 

performance (see Table 7.7). 

  



 246 

  

 

Figure 7.10. Mean percent correct (top left), mean latency (top right), mean 
absolute error (bottom left), mean calculation efficiency (bottom right) as a 

function of sum length (11-digit and 17-digit sums) and interactivity condition. 
Error bars are standard errors of the mean. 
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Table 7.7  

 
Correlation matrix for average deviations, individual difference measures of maths anxiety, objective numeracy, working memory 
(computation-span and Corsi blocks), maths expertise and task engagement in both interactivity conditions (df = 58). 
 

 

Note: MAS = Maths anxiety; OBJ-N = Objective numeracy (basic arithmetic skill); C-span = Computation-span; Corsi = Visuo-spatial 
working memory; Exp = Maths expertise (continuous measure); TES-L = Task engagement in the low interactivity condition; TES-H = 
Task engagement in the high interactivity condition; ADE-L = Absolute deviation error in the low interactivity condition; ADE-H = Absolute 

deviation error in the high interactivity condition. * p < .05, ** p < .01 

1 2 3 4 5 6 7 8 9

MAS OBJ-N C-Span Corsi Exp TES-L TES-H ADE-L ADE-H

1 - -.47 ** -.47 ** -.25 -.68 ** -.13 .08 .51 ** .27 *

2 - .60 ** .30 ** .65 ** .18 -.02 -.48 ** -.28 *

3 - .39 ** .59 ** .25 -.05 -.50 ** -.30 *

4 - .36 ** -.04 -.08 -.17 -.10

5 - .14 .02 -.52 ** -.11

6 - .61 ** -.23 -.23

7 - .04 .18

8 - .42 **

9 -
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Expertise, Working Memory, and Maths Anxiety  

The individual difference measures of expertise, working memory and 

maths anxiety were analysed as an average of the mean absolute deviations 

errors in the 11- and 17-digit sums in order to maintain consistency with 

experiment 1. As the sum length was increased to 17 for this experiment, the two 

sum lengths were also correlated with individual difference measures, as it was 

anticipated that the greater sum length would impact the outcomes. 

As mentioned earlier in this chapter, relative to calculation error, accuracy is 

a coarse-grained measure; and accuracy does not discriminate between small 

and large calculation errors. Absolute deviation error was therefore chosen for 

further analysis above the other three performance measures for its resolution 

and for capturing the most important aspect of arithmetic performance: the 

solutions themselves.  

Average sum length. In keeping with Experiment 1, the mean absolute 

deviation errors in the 11- and 17-digit sums were averaged for each participant 

creating two new variables, overall mean absolute deviation error in the low 

interactivity condition (M = 3.38, SD = 3.49) and in the high interactivity condition 

(M = 1.85, SD = 2.27). The mean absolute deviation error in the low interactivity 

condition was significantly greater than in the high interactivity condition, t(59) = 

3.31, p = .002. 

In order to evaluate the influence of individual differences on performance, 

maths anxiety, numeracy, working memory, and expertise were correlated with 

mean absolute deviation error (see Table 7.7. and Table 7.8). There were a 

number of highly significant correlations observed in the low interactivity 

condition: Maths anxiety, r(58) = .51, p < .001; objective numeracy, r(58) = -.48, 

p < .001; computation-span, r(58) = -.50, p < .001; expertise, r(58) = -.52, p < 
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.001. While in the high interactivity condition the correlations were weak: maths 

anxiety, r(58) = -.27, p = .04; objective numeracy, r(58) = -.28, p = .03; 

computation-span, r(58) = -.30, p = .02. Expertise was not significantly correlated 

with average deviation in the high interactivity condition. The difference between 

the correlation for the high and low conditions with expertise was significant, p = 

.013. There were no significant differences between any other correlations for 

absolute deviation error. 

The impact of sum length. Given the discussion in the previous 

experiments regarding sum length, it was also noteworthy that the average 

deviation in the larger sums of 17 digits was significantly correlated with maths 

anxiety in the low interactivity condition, r(58) = .44, p < .001, however maths 

anxiety was not significant in the high interactivity condition (see Table 7.9 and 

Table 7.10: Corsi and TES were excluded as the correlations produced no 

additional information). The difference between these correlations was not 

significant. Computation span was correlated with the 11- and 17-digit sums in 

the hands-down condition, r(58) = -.49, p < .001, r(58) = -.41, p < .001 

respectively. However, computation span was not correlated with deviation in the 

high interactivity 11-digit sums, and the correlation was weak in the 17-digit high 

interactivity condition, r(58) = -.28, p = .030. There was a significant difference in 

correlations between the 11-digit high and low conditions for computation span, p 

= .051. Expertise was not significantly correlated to the high interactivity 

condition in either the short or long sums, with strong correlations in the low 

interactivity condition in both sum lengths r(58) = -.46, p < .001, r(58) = -.06, p < 

.001 respectively. The difference between the expertise correlations for both 

conditions was significant for the 11-digit sums, p = .05 and the 17-digit sums, p 

= .02.  
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Table 7.8 
 
Significant correlations including confidence intervals for individual difference 

measures of maths anxiety, objective numeracy, working memory (computation-
span and Corsi blocks), maths expertise (df = 58). 

 

 

Note. MAS = Maths anxiety; Obj-N = Objective numeracy (basic arithmetic skill); 

C-span = Computation-span; Corsi = Visuo -spatial working memory; Expertise 
= Maths expertise (continuous measure); ADE-Low = Absolute deviation error in 

the low interactivity condition; ADE-High = Absolute deviation error in the high 

interactivity condition.  
 

Variable 1 Variable 2 r p 95% CI

MAS Obj-N -.466 <.001 [-.646, -.246]

C-Span -.464 <.001 [-.639, -.234]

Expertise -.681 <.001 [-.796, -.516]

ADE-Low .514 <.001 [.300, .679]

ADE-High .265 .040 [.012, .486]

Obj-N C-Span .598 <.001 [.409, .742]

Corsi .303 .019 [.050, .514]

Expertise .650 <.001 [.475, .775]

ADE-Low -.480 <.001 [-.654, -.258]

ADE-High -.282 .030 [-.500, -.031]

C-Span Corsi .386 .002 [.152, .585]

Expertise .591 <.001 [.396, .733]

ADE-Low -.495 <.001 [.282, .668]

ADE-High -.303 .020 [-.517, -.054]

Corsi Expertise .360 .005 [.117, .562]

Expertise ADE-Low -.519 <.001 [-.682, -.306]
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Table 7.9  
 
Correlation matrix deviations for 11-digit and 17-digit sums, individual difference measures of maths anxiety, objective numeracy, working 

memory (computation-span) and maths expertise in both interactivity conditions (df = 58). 
 

 

 
Note: MAS = Maths anxiety; OBJ-N = Objective numeracy (basic arithmetic skill); C-span = Computation-span; Exp = Maths expertise 

(continuous measure); ADE-L-11 = Absolute deviation error in the low interactivity condition for 11-digit sums; ADE-H-11 = Absolute 
deviation error in the high interactivity condition for 11-digit sums; ADE-L-17= Absolute deviation error in the low interactivity condition for 

17-digit sums; ADE-H-17 = Absolute deviation error in the high interactivity condition for 17-digit sums. * p < .05, ** p < .01. 

1 2 3 4 5 6 7 8

MAS OBJ-N C-Span Exp
ADE-L-

11

ADE-

H-11

ADE-L-

17

ADE-

H-17

1 - -.47 ** -.47 ** -.68 ** .49 ** .28 * .44 ** .16

2 - .60 ** .65 ** -.43 ** -.12 -.43 ** -.28 *

3 - .59 ** -.49 ** -.17 -.41 ** -.28 *

4 - -.46 ** -.13 -.46 ** -.06

5 - .37 ** .56 ** .33 **

6 - .15 .17

7 - .33 **

8 -
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Table 7.10  
 
Significant correlations for deviations for 11-digit and 17-digit sums including 

confidence intervals for individual difference measures of maths anxiety, 
objective numeracy, computation-span and maths expertise (df = 58). 

 
 

Note: MAS = Maths anxiety; Obj-N = Objective numeracy (basic arithmetic 

skill); C-Span = Computation-span; Expertise = Maths expertise (continuous 
measure); ADE-Low-11 = Absolute deviation error in the low interactivity 
condition for 11-digit sums; ADE-High-11 = Absolute deviation error in the high 

interactivity condition for 11-digit sums; ADE-Low-17= Absolute deviation error 
in the low interactivity condition for 17-digit sums; ADE-High-17 = Absolute 

deviation error in the high interactivity condition for 17-digit sums.  
 

Discussion 

Participants completed two sets of addition problems: one set was 

completed with restricted hand movement reducing interactivity; the other using 

round numbered wooden tokens increasing the opportunity to reconfigure the 

problem presentation as the sum was calculated. Generally, participants 

answered more sums accurately, achieved higher efficiency ratios and the 

Variable 1 Variable 2 r p 95% CI

MAS Obj-N -.466 <.001 [-.646, -.246]

C-Span -.464 <.001 [-.639, -.234]

Expertise -.681 <.001 [-.796, -.516]

ADE-Low-11 .489 <.001 [.269, .660]

ADE-High-11 .282 .029 [.029, .498]

ADE-Low-17 .437 <.001 [.206, .621]

Obj-N C-Span .598 <.001 [.409, .742]

Expertise .650 <.001 [.475, .775]

ADE-Low-11 -.431 <.001 [-.617, -.199]

ADE-Low-17 -.426 <.001 [-.613, -.193]

ADE-High-17 -.282 .029 [-.500, -.031]

C-Span Expertise .591 <.001 [.396, .733]

ADE-Low-11 -.495 <.001 [-.665, -.276]

ADE-Low-17 -.411 <.001 [-.602, -.176]

Expertise ADE-Low-11 -.463 <.001 [-.682, -.306]

ADE-Low-17 -.462 <.001 [-.640, -.236]
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calculation error was lower in the high interactivity condition. Latency, however, 

remained constant across the two levels of interactivity for the short and long 

additions, suggesting improvements in other measures were related to the 

mode of problem solving, rather than the time required in completing the 

addition. This improvement in performance could not be attributed to 

extraneous between-subject factors, such as individual differences, because of 

the repeated measures design employed in this experiment: all participants 

completed the sums in both interactivity conditions.  

All participants completed a questionnaire in order to assess the 

individual’s fundamental level of expertise in maths. The strong correlation 

between objective numeracy and expertise, r(58) = .65, p < .001, indicated that 

this measure of expertise reflected the arithmetic proficiency of the individual. 

With a low interactivity problem presentation and hands down on the table, 

participants’ performance reflected their arithmetic and working memory skills. 

The lack of correlations with arithmetic performance and expertise in the high 

interactivity condition implied that the manipulation of the numbered tokens 

augmented the arithmetic skills of participants with less maths expertise such as 

to render their performance indistinguishable from those with greater expertise. 

This supports the notion that a greater degree of interactivity may improve the 

performance of those with less maths expertise in these simple arithmetic 

problems. 

The influence of maths anxiety on performance was very different as a 

function of interactivity. When interactivity with the world was low, maths anxiety 

had a significant impact on performance: Higher maths anxiety scores were 

strongly related to greater calculation error. In turn, the high interactivity context 

reduced the variance in performance explained by maths anxiety, in fact when 
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the sums were longer, high interactivity eliminated the impact of maths anxiety. 

This implies that even on these simple maths tasks, a dynamic presentation 

offering a greater level of interactivity may assist in reducing or controlling the 

impact of maths anxiety on mental arithmetic performance. 

In the previous experiments sum length was identified as a possible factor 

in performance impacted by interactivity. Further exploration of performance 

when measured as the absolute deviation from the correct answer revealed that 

correlations with maths anxiety, numeracy, working memory capacity and 

expertise were lower for the high interactivity condition in both the long and 

short sums. Of particular note was when participants were asked to complete 

the long 17-digit sums in the high interactivity condition the influence of maths 

anxiety and expertise dissipated considerably, suggesting that as the arithmetic 

became more challenging, high interactivity was of particular assistance not 

only for the maths anxious folks but also for those with poorer maths skills.  

The enhancements in performance of the lesser skilled individuals in the 

high interactivity condition may be attributed to off-loading working memory onto 

the external environment. However, a closer examination of the results revealed 

that cognitive artefacts potentially have a more complex role in enhancing the 

capabilities of internal resources such as working memory. In this experiment, 

computation-span correlated highly with numeracy and expertise supporting 

claims that working memory is a contributing factor to mental arithmetic skill 

(see Butterworth, 2006). The computation-span test used in this experiment 

was designed to reflect a conventional complex span task requiring some 

numerical skill; unsurprisingly, this correlated with measures of maths skill in the 

low interactivity condition, more interestingly the correlation with performance 

was weak in the high interactivity condition. The Corsi task, as a measure of 
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visuo-spatial working memory was deliberately selected to reduce the reliance 

on numeracy. Corsi scores did not correlate with performance in either condition 

of interactivity. The findings here are consistent with previous mental arithmetic 

research conducted in lower interactivity environments indicating that the short-

term storage component of the visuo-spatial sketchpad played a small role in 

mathematical performance (Lee, Ng, Ng, & Lim, 2004). The two measures of 

working memory, computation-span and the Corsi block task, were moderately 

correlated, indicating that they measure similar but not identical components of 

working memory. Span tasks, such as the computation-span assess an 

individual’s working memory in both processing and storage, whereas the Corsi 

test as designed here gauges storage capacity only. These results suggest high 

interactivity does not simply function as a means for off-loading working 

memory storage, rather the manipulation of the tokens scaffolds thinking 

enhancing the participants’ calculations (Kirsh, 2013). 

Individuals were more engaged in the task when given the opportunity to 

use the tokens than when they had to maintain their hands on the table. This 

pattern in the level of engagement did not change as a function of math 

expertise. Notably performance, as measured by absolute deviation error, was 

not influenced by how engaged participants were in the task. Participants might 

have felt more engaged when completing the task with tokens, but the level of 

engagement did not in itself explain the improvement in arithmetic performance 

in the high interactivity condition.  

Expertise in the domain of mathematics may be attributable to factors 

including practice, intrinsic reward and components of working memory. 

However, this chapter has shown that a systemic perspective on mental 

arithmetic helps us better understand how resources internal and external to the 
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participants are configured dynamically to reflect expertise and skills at solving 

simple mathematical problems. 

Chapter Summary and Conclusion 

Over the centuries many devices have been created to ease the burden 

on internal resources when undertaking mental calculations—such as the 

abacus, the slide rule and the digital calculator (Moore, McAuley, Allred, & 

Ashcraft, 2015). There are good reasons for these inventions as mental 

arithmetic taxes internal resources including working memory and executive 

functions when strategies for commencement of the problem are devised then 

numbers are manipulated, held and carried forward during processing. 

However, these devices may not be to hand when a challenging arithmetic 

problem arises, in which case individuals may creatively mine the environment 

in order to share the cognitive load with other artefacts, such as coins, 

matchsticks or pebbles. Even simple sums similar to the ones presented in 

these three experiments, benefit from the interaction with objects, such as 

tokens, when arriving at the correct solution. 

Whether it is everyday problem solving, school-based learning or 

experiments on cognition in the lab, individuals are interacting with the world 

they inhabit. Interactivity with the world is a dynamical, sense-making process 

that coordinates and integrates human actions in the bidirectional coupling of 

the body with others, with artefacts and with practices (Steffensen, 2013). The 

interaction with artefacts has been discussed in this chapter in terms of 

influencing the evolution of mathematics, speculation on the impact on 

biological changes in neural regions as a consequence of the plasticity of the 

brain, distributing the cognitive load and scaffolding cognitive processes 

(Dehaene et al., 2003; Kirsh, 2009a; Malafouris, 2013; Vallée-Tourangeau, 
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2013). Previous work on everyday problem solving based on ethnographic 

methodologies (Carraher et al., 1985; Hutchins, 1995a; Lave, 1988) has 

provided invaluable insight into the processes of distributed cognitive systems, 

however, the methodology is time-consuming and it is difficult to isolate 

variables influencing cognitive processes in real-world environments (Hollan, 

Hutchins, & Kirsh, 2000). By exploring one component of the ecology of the 

mathematical problem-solving environment in the lab, using artefacts that 

simulate everyday objects provides the opportunity to create a window onto the 

strategies and processes of interactivity between individuals and the world.  

The Three Experiments 

The experiments presented here contribute to the growing contention that 

thinking does not necessarily take place solely ‘in the head’ but rather emerges 

from an interaction with the world. As an individual’s level of engagement with 

the world increased through changes in the task environment, the performance 

outcomes improved. Clearly illustrating that the task environment must be taken 

into consideration when researching cognition. The first experiment was part of 

a trilogy of experiments designed to investigate interactivity and problem 

solving. In the first experiment all participants completed a set of 10 sums, five 

7-digit sums and five 11-digit sums in two conditions. One was a hands-down, 

low interactivity condition and the second was a high interactivity condition 

using numbered wooden tokens. The results of the first experiment using a low 

level and a high level of interactivity echoed a similar experiment by Vallée-

Tourangeau (2013) where interactivity was shown to have a positive effect on 

the number of correct answers announced by participants. In addition previous 

research had shown that maths anxiety impacted maths performance (e.g., 

Ashcraft & Moore, 2009) of individuals even when completing simple sums. This 
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informed the decision to measure the impact of levels of interactivity against 

maths anxiety and to assess the relationship between maths anxiety and other 

measures of performance. Although there was no significant relationship 

between maths anxiety and the levels of interactivity, scrutiny of the direction of 

the relationship between mean absolute deviation and maths anxiety revealed 

an interesting trend. In the 11-digit sums maths anxiety appeared to be reduced 

when individuals manipulated tokens while solving the problems, suggesting 

that feelings of anxiety in maths anxious folk may be eased by the opportunity 

to use artefacts in solving these problems.  

The second experiment continued the investigation into maths anxiety and 

the effect of changing problem presentation on performance in solving simple 

maths problems. Evidence from previous research has shown, that when 

people use verbal explanations of maths problem solving, hand gesturing and 

pointing, aids learning in children; with hand gestures lightening the cognitive 

load for adults and children alike (Goldin-Meadow et al., 1993; Goldin-Meadow 

et al., 2001). Therefore, in addition to the two conditions used in Experiment 1—

hands-down and tokens—a third condition was included, namely the pointing 

condition, giving individuals the opportunity to use their hands while adding the 

sums. As pen and paper are also common tools for easing the cognitive burden 

in simple and complex maths calculations, this was incorporated as a fourth 

condition. In this experiment all participants completed 20 sums, separated into 

four sets of five 11-digit sums of equal difficulty—one set for each of the four 

differing presentation conditions. In order to scrutinise the strategies used to 

solve the sums more closely, along with a quantitative analysis similar to 

Experiment 1, a video recording of one of the participants completing all four 

conditions was analysed from a qualitative perspective. Even in these simple 
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sums, performance was enhanced when using artefacts as part of a distributed 

cognitive system. As anticipated, the video evidence revealed, differing 

strategies were used in each of the four presentations, supporting the 

conjecture that the affordances offered by changes to the components of the 

distributed thinking system may alter problem solving processes. The variety of 

unfolding strategies and trajectories enacted when participants were presented 

with similar sums in the differing interactive states indicated that cognition was a 

result of on-line activity taking place in the world (O’Regan & Noë, 2001; Wilson 

& Clark, 2009). The thinking was distilled through the interaction with the 

situation in which the reasoner was embedded, rather than dictated by a 

sequence of preplanned actions determined solely by an internal representation 

of the problem solution, where the world offers a dynamic representation 

(Vallée-Tourangeau, 2013). Although the maths problems were unambiguous 

there was evidence from the qualitative micro examination of the movements 

made by participant that the trajectory through the problem space was not as a 

result of a preselected fixed path formulated as an internal representation. In 

using the tokens the unfolding cognitive processes generated actions that were 

scaffolded by the physical environment, demonstrating the coupling of the 

internal and external resources in solving these simple maths sums.  

Unlike Experiment 1 there was no evidence in Experiment 2 of a 

relationship between maths anxiety and absolute deviation error at any level of 

interactivity. This may have been a consequence of fewer sums in each set; as 

a consequence maths anxiety may not have been sufficiently discernible in the 

maths anxious folk for a significant result to emerge. Along with maths anxiety, 

the attitude of participants to the maths tasks was measured in terms of being in 

the flow and whether any changes in performance could be attributed to this 
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feeling of being fully engaged in the activity (Csikszentmihalyi, 1990). Flow, as 

measured using the task engagement scale, was positively affected by a 

greater degree of interactivity, although it was not a predictor of performance. 

Experiment 2 illuminated the strategic differences in reaching a solution 

between various types of interaction; the pathway to solving the problem was 

altered in tandem with improvements in performance when the opportunity to 

manipulate the world was at its greatest. 

The previous two experiments did not take into account the maths 

experience of individuals when assessing mathematical performance. The 

literature on expertise has shown that a number of factors may contribute to the 

higher levels of performance by experts over those less experienced, including 

genes, deliberate practice, intrinsic reward and working memory capacity 

(Butterworth, 2006; Ericsson & Charness, 1994; Galton, 1892; Sternberg, 

1999). A novel proposal for this experiment was that the capabilities of those 

less skilled in maths would be enhanced when offered the prospect of greater 

interaction with the world. Conversely, it was expected that the simplicity of the 

sums would mean that changing modes of interactivity would not affect the 

performance of those proficient in maths. As in the previous experiments all 

participants completed sums in a low, hands-down condition, and a high 

interactivity condition using tokens. However, in this experiment the sums were 

11 and 17 digits in length and information on maths experience for each 

individual was recorded. The results revealed that, as predicted, with 

performance measured as the absolute deviation from the correct answer, there 

was no significant difference in maths performance between experts and those 

less adept at maths when individuals where interactivity with artefacts was 

increased. Parallels can be drawn with the findings by Lave (1988) where maths 
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performance for best-buys in the supermarket was not related to formal maths 

skills as taught in school. Lave concluded that through the shoppers actions in 

the physical environment of the supermarket, accuracy was improved as these 

actions gave rise to the shaping and reshaping of the problems as the shopper 

evaluated information in the supermarket setting. Therefore, both the results 

from mental arithmetic Experiment 3, and Lave’s study provided evidence that 

in the dynamic coupling of the individual and the world, cognition is not 

reducible to knowledge stored in the head, but is enacted, and extended into 

the world shaped by the situatedness of the activity (Gallagher, 2014). 

Unpacking the correlations as a function of sum length showed the 

increased difficulty of the task was evident in the decline in performance 

observed in all four of the performance measures (accuracy, latency, absolute 

deviation error, and efficiency) in the longer sums. However, maths anxiety 

dissipated when individuals used the tokens in completing the longer sums of 

17 digits. On the other hand when interactivity was restricted the reliance on 

internal resources was greater, thus for the maths anxious individuals maths 

performance was hampered as working memory capacity was absorbed by 

anxious thoughts (Ashcraft & Kirk, 2001). This illustrates, as outlined in the 

discussion for Experiment 1 that as would be expected the length of the sum 

might have an impact on maths anxiety. Nonetheless these feelings, that 

otherwise interfere with successfully solving the problem, can be mitigated by 

stretching the cognitive load across mind, body, and the environment, in this 

case by increasing the opportunity to use physical artefacts in problem solving.  

Consistent with findings in Experiment 2, the measure of flow indicated 

that participants were more engaged when using the tokens than when asked 

to solve the problems with restricted hand movements. There was no significant 
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relationship with performance, nor was flow related to expertise or any other 

performance indicators; experts and less skilled mathematician’s alike reported 

feelings of being engaged with the task. These findings also support the 

argument proposed in Experiment 2, that the feeling of flow is attributable to the 

problem presentation not the individual’s change in capabilities. However, over 

time the positive effects of flow combined with the improvements in 

performance may be worthy of further investigation (Nakamura & 

Csikszentmihalyi, 2002). 

Computationalism 

Clearly participants utilised existing knowledge to complete the basic 

additions presented in the three mental arithmetic experiments, it would not 

have been possible to add a series of single digits together without the 

minimum of formal arithmetic knowledge. Wilson and Clark (2009) discussed 

the soft-assembled whole of transient extended cognitive systems (TECS), 

interweaving the problem-solving contributions of the internal resources of the 

human brain with the body and local elements available to enable cognitive 

scaffolding. The maths tasks here provide an example of where the cognizer 

draws on well-used, frequently accessed TECS in the form of simple additions 

knowledge enacted in the world coupled with manipulation of the artefacts to 

enhance performance in arriving at a solution. In addition to being indicative of 

this type of extended cognitive system, the tasks used in these experiments 

potentially present an empirical case showcasing wide computationalism in 

practice. In the micro-examination of movements in Experiment 2, it was 

apparent that the artefacts provided an opportunity to extend the computation 

beyond the internal manipulation of symbols in the mind. From an extended 

computationalist view the computational process was not restricted to 
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processes in the head, the active manipulation of symbols, was spread across 

both the internal process and external representations of the problem (Wilson & 

Clark, 2009). Here, operators and symbols are retrieved from long-term 

memory, and are involved in producing interim totals in the computation of the 

sum. However in moving the tokens into groups of good provisional sums 

(GPS) and same digit groupings (SDG) the computations are also external to 

the cognizer as they are spread across the cognitive system. Therefore from a 

distributed perspective, the executive functions and enactment of strategies are 

best thought of as emergent properties of the agent-environment system, where 

the elements of the computational system are distributed.  

Conclusion 

All three experiments offered varying levels of interactivity. The interactive 

states ranged from a high level of interaction using tokens to a low level with 

only the numbers printed on a sheet of paper, where the interactivity was the 

back and forth process between the external presentation of numbers on the 

page and the internal processes of the brain. However, in all three experiments 

performance was clearly enhanced with a greater opportunity to extend the 

cognitive system into the world.  

Adapting the cognitive psychologist’s laboratory to permit the physical 

manipulation of a problem presentation offers a more representative window 

onto thinking outside the laboratory. To be sure, people can simulate and think 

in their head without physically interacting with the outside world—although this 

internal cogitation may well reflect the internalisation of much interactivity. 

However, as Clark (2010) points out it is worth taking note of how much 

cognitive activity takes place through engagement with the environment: “ 

brains like ours will go to considerable lengths to avoid having to resort to … 
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fully environmentally detached reflection” (p. 24). The data presented here 

reveal the importance of engineering task environments in the lab that support 

distributed problem representations to better understand the engagement of 

individuals as they explore and manipulate the external world to solve 

problems.  
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Chapter 8 

General Discussion 

 

“Human life does not occur in a vacuum, nor is nature a mere stage 

setting for the enactment of its drama” (Dewey, 1916a, p. 267). 

 

Individuals function and think in the world, adapting to changes in the 

surrounding environment, by interacting with things and the people around 

them. As Dewey (1916a) observed, humans do not live in a vacuum and the 

environment is not a passive backdrop to people living in the world, thus it 

follows that research and theories on human cognition should be inclusive of 

this interaction with the world. On this basis, as part of the research programme 

for this thesis, five experiments were designed for a laboratory setting, to 

investigate interactivity between the agent and the world. These experiments 

explored the effect on performance of differing levels of interactivity in problem 

solving by changing the nature of the task ecologies. Cognitive capacities and 

dispositions have been shown to impact performance in problem solving and 

reasoning (Stanovich & West, 1998); with this in mind, the effect of interactivity 

was also evaluated against a range of individual difference measures. The 

outcomes from the experiments reported here led to conclusions supporting 

existing research and theories that cognition emerges through a sense-making 

process of the coupling of agent with world in a dynamic interactive system. 

Overview of Experiments 

The river-crossing experiments. The specific aims in undertaking the 

first two experiments using the river-crossing problem were to determine the 

impact of interactivity on analogical problem solving, and if any learning 
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occurred as a function of interactivity when completing the problem across 

different presentations. The problem was presented in two different formats one 

in a low interactivity context and the other offered a greater level of interactivity. 

The presentation for the lower level of interactivity was developed to maximise 

the burden on the internal resources of the participant, with the individual asked 

to verbalise the moves required in attempting to solve the problem. The 

researcher recorded the moves on paper; however, the only recording 

accessible to the participant was a simple graphical representation of the 

position of the animals on the riverbanks. In the high interactivity context, the 

participants were given artefacts to solve the problem in the form of a river 

painted on a board, a wooden raft and six plastic animals—three chickens and 

three wolves. The participant was free to move the animals and the raft in 

accordance with the rules. In the first experiment participants were asked to 

complete the problem in both the low and high interactivity condition, with the 

order counterbalanced across participants. Therefore, one group of participants 

completed the low interactivity condition first and one group completed the high 

interactivity condition first. When assessing performance based on the time 

taken for each move, overall the high interactivity performance was better than 

in the low interactivity condition irrespective of order. An effect was found when 

the low interactivity condition was completed first followed by the high 

interactivity condition; participants enacted the moves in the high interactive 

context significantly faster than any other attempt at the problem. Thus, in 

addition to showing that greater interactivity encouraged participants to make 

more moves at a faster rate than when asked to simulate a solution mentally, 

there were performance benefits to completing the low interactivity condition 

first, followed by the high interactivity condition. Two possible explanations were 
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discussed in Chapter 6: (i) the process and quality of knowledge acquisition is 

different as a function of the level of interactivity or (ii) interactivity is a 

performance facilitator and a high level in interactivity more clearly showcases 

learning. In further evaluating the effects of interactivity and learning across the 

two presentations, a second experiment was designed to separate the effects of 

order and interactivity by manipulating the levels of interactivity using a 

between-subjects design. Similar to Experiment 1, in Experiment 2 participants 

were asked to complete the river-crossing problem twice, however, this time the 

participants either completed the high interactive version twice or the low 

interactive version twice. Performance mirrored the first experiment in so far as 

the greater level of interactivity using the artefacts resulted in more moves in a 

faster time than when moves were simulated mentally. Learning was also 

evident in the second attempt of the problem in both conditions. However, the 

results showed that the learning in both conditions was similar, that is, the 

performance improvement was the same when completing the task twice in the 

low interactivity condition or completing the task in the high interactivity 

condition. In disentangling the order from the learning, this experiment shed 

light on the results from the first experiment. The indication from these two 

experiments was that greater interactivity using artefacts enhanced the 

capabilities of the reasoner by encouraging the exploration of the world for a 

solution, as the solver enacted more moves faster than when interactivity was 

low. The epistemic actions in moving the artefacts around the board may not 

have been evidence of distributing working memory load. However, the 

implication may be that the manipulation of the artefacts provided a scaffold to 

enact new strategies, suggesting a fruitful avenue for future research in the 

detailed analysis of problem solving strategies. Learning transfer was evident, 
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as the high interactivity condition, where moves were cheap, provided the 

opportunity to operationalise the rules learnt as a result of greater internal 

processing from a low interactivity environment. 

This type of problem, while having the advantage of being adaptable to 

problem presentations of differing levels of interactivity—low and high—was 

also a puzzle with a narrow problem space and moves were tightly constrained 

by the rules. As Lave (1988) pointed out, a shortfall of this type of problem was 

that there were limitations as a representation of real world problem solving as it 

was based on normative models of formal problem solving. While participants 

could make many moves, there was only a narrow path to solution. However, 

the foremost reason for using this task was, not to compare the problem solving 

skills of individuals, rather to investigate the impact of changing the 

presentation. Lave (1988) also noted, and as discussed in Chapter 2, previous 

laboratory experiments did not take into account situation or context, resulting in 

an absence of an account of interactivity when investigating problem solving. 

The experiments presented in this thesis explored situatedness and external 

representations by altering the problem presentations, focusing on the changes 

in interactivity. The improvements in performance from the low to the high 

interactive contexts showed that interactivity with the artefacts augmented the 

capabilities of the individual by extending thinking into the world, with the 

artefacts becoming constituent components of the extended cognitive system. 

In a more specific focus on the extended mind hypothesis, the coupling of agent 

with the world in the river-crossing problem might be classified as a one-off 

Transient Extended Cognitive Systems (TECS) (Clark & Chalmers, 1998; 

Wilson & Clark, 2009). Here the thinking emerging in the coupling of the mind 
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and the artefacts in this setting was only for the purpose of solving this 

particular problem.  

It may be the case that using a different problem-solving task that draws 

on existing knowledge, could be considered as another type of TECS, which is 

more closely related to thinking in the world, possibly producing different results. 

Simple mental arithmetic tasks that required fundamental maths skills were 

chosen for the next experiment, as this was not a test of maths skills per se, 

rather to further the investigation into the effects of changing the problem 

presentation.  

Mental arithmetic experiments. Evidence of problem solving strategies 

prompted through actions in the world was suggested by the increase in moves 

enacted in less time for the first two river-crossing experiments. In previous 

work on interactivity and mental arithmetic, Vallée-Tourangeau (2013) also 

reported an improvement in performance when the interactivity was greater. To 

investigate the possibility that interactivity with different problem presentations 

would affect performance, three experiments involving simple mental arithmetic 

were designed. The aim of these experiments was also to further explore 

complementary strategies, the role of artefacts in cognition, and wide 

computationalism as the distribution of computational cost was expected to 

spread across resources (Kirsh, 2013, Wilson & Clark, 2009). Investigating 

interactivity in varying problem presentations using mental arithmetic 

emphasises the concreteness of mathematics rather than an abstract 

manipulation of symbols taking place only in the mind as in the physical-symbol-

system hypothesis within the classical framework of cognition (Hutchins, 

1995a). This was not to reject the symbol-system hypothesis of traditional 

cognitive science, rather to recognise that the manipulation of symbols as part 
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of the distributed cognitive system that encompasses internal and external 

processes. Returning to the images of the clay accounting tokens of the Uruk 

period (4000 B.C.-3500 B.C.) as discussed in the beginning of Chapter 7, these 

were external symbols manipulated in the physical environment as 

representations of the types and quantities of commodities being traded within 

the community (Malafouris, 2013). Therefore, it could be argued that the internal 

symbols as described by the traditional account of cognition, were formed as a 

consequence of interactions with the world. As Hutchins (1995a) pointed out the 

symbols were formed first in the world, only then were these symbol structures 

re-represented in the mind (also see Malafouris, 2013). In accepting the 

computer as a model of thinking, the assumption became that the manipulation 

of symbols as part of representations was an exclusively mental process. 

Therefore, as illustrated in the maths experiments presented in Chapter 6, 

internal symbol manipulation is only part of the story of the cognitive 

architecture, the representation of these symbols externally and the interaction 

between the constituent components of the dynamic cognitive system impact 

performance in solving a problem. 

The three mental arithmetic experiments progressed from the investigation 

of interactivity across problem presentations through to testing the impact of 

interactivity on individuals with differing mathematical experience. All three 

experiments used as a basis for investigation a series of long sums in at least 

two conditions of interactivity: A low level of interactivity where the participant 

adds a series of numbers with hands on the table; and a second level of 

interactivity also adding up a series of numbers, however this time using 

numbered wooden tokens. Across the three experiments the length of the sums 

and the number of sums added was altered. In the first experiment all 
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participants completed 10 sums—five sums of 7 digits and five sums of 11 

digits—in the low interactivity condition and the high interactivity condition. In 

the shorter sums the performance, when measured as absolute deviation error, 

was very similar, however, in the longer sums performance was greatly 

improved when individuals were given the wooden tokens to manipulate. In the 

second experiment all participants were asked to complete 20 sums of 11 digits, 

these sums were split into four conditions: The low and high conditions, as 

previously described—hands-down and tokens—a pen with paper condition, 

and a pointing condition. The two conditions with the opportunity to use 

artefacts—tokens and pen with paper—resulted in a significantly better 

performance than the other two conditions—hands-down and pointing—with the 

token condition resulting in a slightly better performance than all four conditions. 

The qualitative frame-by frame examination of one participant’s performance 

revealed the differing trajectories to solution in the three higher interactive 

conditions. In the third experiment participants with varying mathematical 

expertise were asked to complete 10 sums—five sums of 11 digits and five 

sums of 17 digits—in the low and high interactivity conditions. When assessing 

the performance of all participants, again measured as absolute deviation from 

the correct answer, performance improved when the task was enacted in the 

high interactivity context than in the low interactivity context in completing both 

the shorter and longer sums. The relationship between expertise and absolute 

deviation from error indicated that when participants relied more heavily on 

internal mental processes, the greater the level of expertise the better the 

performance, however when participants were able to use the tokens to 

calculate the solution the difference in performance dissipated. The results from 

the five experiments implied that when individuals were given greater 
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opportunity to interact with the world, this adjustment to the dynamic coupling of 

individual with environment enhanced cognitive capabilities.  

Cognition: A Circle Not Just an Arc 

In the earlier chapters of this thesis, the discussion on situated and 

extended cognition indicated that the development of many contemporary 

approaches to cognition have some commonalities, although the philosophical 

backdrops may be different7. Some of the commonalties lay in the opposition to 

mind-body dualism of the internalist approach to cognition, the impact of 

situatedness, and the coupling of agent with the world in a dynamic cognitive 

system. However, as will be discussed further, this common ground between 

approaches to cognition such as situated, extended, enactive and distributed 

cognition was foreshadowed by some of the classical pragmatists a hundred 

years ago (Gallagher, 2014). 

The initial foundations of contemporary cognitive psychology were 

influenced by research into artificial intelligence with claims that cognition was 

computational, as the mind essentially functions to manipulate symbolic 

representation as an internal information-processing device (Pylyshyn, 1989). 

According to Simon and Kaplan (1989), the human and the computer use 

similar symbol-manipulating processes with this invariant occurring as 

“computers were made in the image of the human” (p. 40). The ideas of 

cognitive science and artificial intelligence were based on the Cartesian 

assertion that human understanding comprises of the formation of symbolic 

representations; these representations, while modeled on external entities are 

manipulated inside the mind in accordance with sets of formalised rules built up 

                                                 
7 For example, the foundations for enactivism can be found in phenomenology, extended mind 
has roots in analytical philosophy and distributed cognition has some beginnings in cognitive 
science and anthropology (Gallagher, 2016). 
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over time (Hutchins, 1995a). The physical-symbol system of traditional cognitive 

psychology, while indifferent to the perception-action of the body, does not 

entirely ignore the external world, with structures outside the brain—physical, 

social, cultural, historical, contextual—considered, at best as tools aiding 

internal cognitive processes functioning as passive inputs (Hutchins, 1995a). 

However, this over emphasises the capabilities of the internal processes, while 

disregarding the interaction that coordinates the internal processes of the mind, 

with the body and the outer world (Hutchins, 1995a). Hutchins argued that while 

computer programs are able to imitate many aspects of human thinking through 

the automated manipulation of symbols, the computer does not replicate human 

interaction within the situated environment. He described how the conception of 

Babbage’s early hypothetical computer, and later the Turing machine, began 

with the notion of how a mathematician would break down a problem if acting in 

the material world. As Hutchins also argued, the computer was not made in the 

image of the way a person thinks in the world. Rather the computer was 

modeled on one component of the human cognitive process, namely that 

human thinking processes are patterns observed in the world resulting from the 

manipulations of symbols both internally and externally. Turing’s hypothesis for 

his machine originated through the embodied actions of the individual 

generating a computation by the manipulation of symbols in the material world 

(Hutchins, 1995a). Dennett (1991) succinctly described the process of Turing’s 

original rationale: 

He was thinking self-consciously and introspectively, about just how he, a 

mathematician, went about solving mathematical problems or performing 

computations, and he took the important step of trying to break down the 

sequence of his mental acts into their primitive components. “What do I 
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do,” he must have asked himself, “when I perform a computation? Well, 

first I ask myself which rule applies, and then I apply the rule, and then 

write down the result, and then I look at the result, and then I ask myself 

what to do next, and…” (Dennett, 1991, p. 212; quoted in Hutchins 1995a, 

p. 361). 

These concerns raised by Hutchins, regarding theories that the inner 

process of the computer reflect the totality of human thinking processes, were 

not dissimilar to those voiced by Peirce (1887) a century earlier when he 

discussed the reasoning capabilities of Weber’s “adder up” and Babbage’s 

hypothetical “analytical engine” (p. 165). Peirce doubted that the limited 

mechanical functions of the machine represented the full reasoning processes 

of the living mind. He believed these machines had two major deficiencies. The 

first being lack of initiative, thus the machine was incapable of developing 

original ideas resulting in the inability to create original problems other than 

those for which it was programmed. The second was the limitations of capacity, 

not unlike the human mind; however the human had the initiative and ability to 

draw on external resources such as pen and paper to extend and overcome 

cognitive limitations. Gallagher (2014) suggested that Peirce’s views on human 

reasoning processes are identifiable as antecedents to non-internalist theories 

on cognition, such as the extended mind hypothesis. Therefore, it may be 

possible to locate the philosophical precursors to some of the contemporary 

theories of non-internalist cognition in the writings of Peirce and other early 

pragmatists such as Dewey (Gallagher, 2014, Menary, 2010b, 2011). Gallagher 

believed, that the identification of pragmatism as antecedent to the enactive and 

extended conceptions of cognition could potentially resolve some of the 

differences of opinion between these two approaches—enactive and extended 
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cognition—resulting in the creation of a more integrated approach combining 

both approaches (see also Menary, 2010b; 2011). 

Pragmatism  

In order to appreciate Gallagher’s (2014) position on the legacy of 

pragmatism as a possible foundation for an integrated theory of enacted and 

extended cognition, it will be useful to a provide a snapshot of some of the 

philosophical observations of two of the classical pragmatists, Dewey and 

Peirce, writing at the turn of the nineteenth century. The empirical evidence 

offered by the experiments in this thesis resonate with these observations, this 

will be discussed briefly as the theories unfold. This in turn will ally these 

philosophical observations with situated, distributed, and embodied cognition. 

While the non-internalist conceptions of cognition have different origins, as 

discussed previously, woven through many are the common thread of 

situatedness and interactivity.  

Dewey (1896, 1916a, 1916b, 1938) with colleagues Mead, James, and 

Peirce, was an influential pragmatist, at the turn of the nineteenth century. 

Dewey’s philosophical views on psychology were influenced by Darwin’s 

evolutionary theories, and Hegelian philosophy of the self and object as 

mutually constituted (see Bredo, 1998, for a detailed account). In general, the 

pragmatists approach to psychology was to attempt a unified biological and 

sociocultural approach, in order to create a psychological middle ground 

between the associationist psychologists and the Idealist philosophers (Bredo, 

1998). The associationists supported a reductionist approach to the mind where 

it was viewed as a mechanistic process, connecting rudimentary thoughts 

together; metaphorically it was described as a telephone switchboard device 

connecting different associated phone lines (Bredo, 1998). This mechanist 
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approach was committed to mind-body dualism, separating the processes of the 

brain from bodily actions (Bredo, 1998). The other end of the spectrum in the 

account of human mentality was the more culturally holistic view of the mind—

an idealistic representation of the world where human ideas shape society and 

culture, based on ideal principles, where reality is ultimately a mental perception 

(Bredo, 1998). Both these notions were diametrically opposite to the views of 

the pragmatists. The pragmatists were committed to an emphasis on the 

realities of the world, therefore it was not conceivable that the mind was a 

separate entity from the rest of the body and the environment, rather the mind 

was in dynamical interaction with the body and the surrounding world (Bredo, 

1998; Gallagher, 2014). Dewey (1916a) could see no place for mind-body 

dualism when describing the role of the brain in cognition. He discussed how 

the brain, from a biological perspective, was essentially one organ in the body 

that interacted with other organs in the body, and functionally the brain co-

ordinates both the interaction between other organs in the body and the 

reciprocal action between the body and the environment (Gallagher, 2014).  

Dewey and sensori-motor coordination. Dewey’s (1896) opposition to 

mind-body dualism was clearly set out in a critique of a psychological approach 

to human behaviour being proposed at the time, based on the physiological 

account of the mechanical functioning of sensory and motor systems in the 

human body—namely the reflex arc concept. This reflex arc concept emerged 

from physiological research into human reflexes in the early nineteenth century 

and was quickly mapped by psychologists on to the human psyche as an 

explanation for human behaviour.8 The reflex arc is described as the reaction 

                                                 
8 There is no mention by Dewey (1896) of a specific author proposing the reflex arc concept in 
psychology.  
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from a stimulus that results in a reflex action, such as the knee-jerk reaction 

when the knee is hit by a small hammer (Sherrington, 1892). According to the 

reflex arc concept when applied to psychology, human behaviour could be 

explained in a similar physiological manner as a series of stimulus response 

events. To some extent this critique by Dewey of the reflex arc concept in 

psychology was a response in reaction to the associationist model of 

psychology. The intention behind the reflex arc concept as applied to 

psychology was to overcome the dualistic conjectures of the associationists, as 

human behaviour could now be explained by a connection between the mind 

and the body, rather than a distinction between the two (Biesta, Miedema, & 

van IJzendoorn, 1990). However, Dewey (1896) was not convinced, believing 

that the old dualism had been replaced rather than “displaced” (p. 357). Dewey 

described how the “older dualism of sensation and idea is repeated in the 

current dualism of peripheral and central structures and functions; the older 

dualism of body and soul finds a distinct echo in the current dualism of stimulus 

response” (p. 358). Physiological research had shown how the nervous system 

was divided into a sensory component and a motor component with the parts 

being mediated by the brain via the spinal cord, therefore it was suggested 

mentality could be understood in a similar manner (Bredo, 1998). However, 

according to Dewey this new notion for explaining human behaviour was very 

similar to the prevailing associationist approach where complex thoughts were 

considered as a linear association by the internal mind of a series of simple 

ideas.  

Dewey used James’s (1890) child-candle example (Figure 8.1) to illustrate 

how the reflex arc concept separated sensation, idea, and action, portraying 

human behaviour as a disjointed, piecemeal series of events in an activity of 
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“sensation-followed-by-idea-followed-by-movement” (p. 359). In his opinion 

what was required was a concept that did not perceive these constituent parts 

of sensory and motor as distinct entities rather as a members of a circle of 

“sensori-motor co-ordination” (p. 358). Dewey (1896) suggested that the reflex 

arc concept was a narrow view of the human mind, as the response-stimulus 

approach emphasised the physiological muscular reaction, ignoring the self-

organising and the intentional goal directed behaviour of the individual acting in 

the world (Bredo, 1998; Dewey, 1916a). The reflex arc concept only captured a 

broken section—an arc—of the continuous circuit of action by an individual 

acting in the world (Dewey, 1896). The arc was considered by Dewey to be a 

meaningless fragment, where the context of the individual’s action and the 

environment were excluded (Bredo, 1998). He conceived of this circuit of action 

as a continuous reorganisation of the process of experience, as the agent acted 

to change the world, and the agent was changed by the world as part of the 

process (Bredo, 1998; Dewey, 1896). In Dewey’s view “this circuit is more truly 

termed organic than reflex, because the motor response determines the 

stimulus, just as truly as sensory determines movement” (p.363). There is no 

distinct sensory phase and separate motor act, only a “sensori-motor” (Dewey, 

1896, p. 358) co-ordination of the members of the circle of activity—mind, body, 

and environment. To the pragmatists such as Dewey, the sensing of the 

stimulus was not a static internal cognitive state represented as a series of 

disconnected actions; the cognitive process was part of the activity dependent 

on bodily actions and shifted according to the situation. In the child-candle 

example, the mechanistic reflex arc account would portray this a seeing-

reaching process, but this would only capture part of the unbroken sensori-

motor coordination act. As Dewey explained, if the situation where the child 
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reaches for the bright light was considered as a seeing-reaching process—

where sometimes the bright light is a candle resulting in pain and sometimes it 

is not a candle with the reaching resulting finding a treat, the stimulus and the 

response would now be uncertain. The problem for the child is whether to reach 

for the bright light or not, with the encounter dependent on the interaction 

between the mind, body, and the environment as components of the sensori-

motor coordinated circuit of activity, as the situation is different with each 

experience. This explanation also alluded to a view of problem solving not 

unlike that expressed in later theories of distributed cognition. The notion that 

problems and the solutions unfolding through action was evident in Dewey’s 

(1896) reflections on thinking when he explained, “At one moment the various 

activities of reaching and withdrawing will be the sensation, because they are 

that phase of activity which sets the problem, or creates the demand for, the 

next act” (p. 368). 

  

 

Figure 8.1. A representation of James’s (1890) child-candle example, to 
illustrate the experience of the child reaching toward a candle when viewed 

linearly as described by reflex theorists (adapted from Bredo, 1989.) 
 

In describing how the sensori-motor co-ordination was a unity of activity 

and not a series of disjointed events, Dewey’s approach to psychology defined 

the unit of analysis, not as the individual but the person in action, initiated by 

what the individual was doing. For example, in the child-candle instance, 

Dewey’s analysis began with the “act of seeing; it is looking, and not a 

sensation of light” (p. 358 -359). This was echoed in a similar conclusion drawn 

a century later by Lave (1988) following her ethnographic study into cognition in 

Stimulus 1 
(Bright candle) 

Response 1 
(Reach) 

Stimulus 2 
(Pain) 

Response 2 
(Withdraw hand) 
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the lived-in world and others including Hollan, Hutchins, and Kirsh (2000) in 

developing the distributed approach to cognition.  

Situatedness. Dewey (1938) proposed that it was the dynamic organism-

environment interaction that was fundamental in explaining the process of 

cognition, with interaction inextricably linked with the situation: “The conceptions 

of situation and of interaction are inseparable from each other” (p.43). 

According to Dewey’s notion of ‘situation’ it was not the geographical location or 

physical setting in which an individual was acting—situation was considered as 

encompassing the environment. The individual and the environment are 

constituent components of the situation, as the individual does not think or act 

in isolation from the environment, but in a reciprocal circuit of interaction with 

the physical world of objects and people (Dewey, 1896, 1938).  

Dewey’s (1896, 1916a, 1916b, 1938) awareness of the impact of the 

situatedness on cognition was evident in his explanation of how any analysis of 

behaviour should include the context in which the action was occurring. Dewey 

(1896) described the following scenario: if a noise is heard, the experience for a 

listener will differ depending on whether the person is reading a book, hunting, 

undertaking a chemical experiment or in alone in a dark place at night. He 

believed that this was part of the act of hearing that was not explained by the 

biological mechanics of the ear alone. Rather it was the whole organism acting 

in the world, with differing sensori-motor co-ordination arising dependent on the 

situation—such as the tilt of the head, the posture of the body, running from 

danger. As the individual acts to solve a problem by adjusting the environment, 

manipulating objects, using tools, and perhaps interacting with others, in turn 

the bodily actions and behaviours of the agent are also altered (Gallagher, 

2014). Therefore, the situation is not the physical location of the individual 
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during the activity rather it is the state of the agent-environment interaction. This 

is also evident in the results from the experiments described in this thesis, as 

the participants are in the same physical location of the laboratory for each trial 

of the experiment, however in changing the problem presentation the situation 

is changed. The agent-environment interaction has been altered resulting in 

changes to performance and trajectory to solution.  

Thinking in doing. Dewey’s notion of sensori-motor coordinated action is 

a precursor to not only enactivism (Stewart, 2010; Varela, Thompson, & Rosch, 

1991), but also the extended mind hypothesis (Clark & Chalmers, 1998; Wilson 

& Clark, 2009). The evidence can be found in his strong objections to the 

dualism of classical philosophy separating the mind from activity, and in the 

idea of unity between the agent and the environment as constituent 

components in the sensori-motor circuit. This can be paralleled to the depiction 

of cognition used by contemporary cognitive theorists and researchers as 

agent-environment coupling within a dynamic cognitive system (e.g., Clark & 

Chalmers, 1998; Kirsh, 2005; Noë, 2012). Here the philosophy of pragmatism 

firmly assigned “the origin, place, and function of mind in an activity”, a 

philosophy that “sees intelligence to be the purposive reorganization, through 

action, of the material experience” (Dewey, 1916a, p. 377). 

Similar to Dewey, Peirce’s (1931-1935) theories of cognition were a 

precursor to those of enacted, distributed and extended mind (Gallagher, 2014). 

He described Kant’s philosophical views on thinking as “monstrous!”, explaining 

how human reasoning “is not by simple mental stare, or strain of mental vision. 

It is by manipulating on paper, or in the fancy, formulae or other diagrams—

experimenting on them, experiencing the thing” (Peirce, 1931-1935; vol.4, p.86; 

see Gallagher, 2014). Peirce’s (1931-1935) views anticipated the conceptions 
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of extended mind (Clark & Chalmers, 1998) and the notion of the close coupling 

of an individual with the world being essential to thinking processes. This was 

illustrated when Peirce (1931-1935, Vol. 5) described how a chemist dreamt of 

a complicated chemical process; to put this dream into practice he would “carry 

his mind into his laboratory… manipulating real things instead of words and 

fancies” (Vol. 5, p. 363). The solution to chemist’s problem was distilled through 

interactivity with the world. Thinking becomes an intermeshing of the internal 

processes of the mind with the external manipulation of the laboratory 

equipment in an intentional sense coordinated activity. Peirce (Vol. 5) also 

described how problem solving could take place in the mind and in the world, 

with an example comparing a mathematician to a chemist. The mathematician 

might expend minimal mental cost in adding up a column of numbers in his 

head, with the computation being the same if produced with pen and ink. Where 

for a chemist a complicated experiment would require considerable mental cost 

with the added complexity of allowing for varying conditions, therefore 

experimentation in the world would potentially provide the better results. For 

Peirce and Dewey thinking was not an “armchair thing” (Dewey, 1916b, p. 14), 

the body and the physical world were as much part of cognition as the brain.  

An Integrated Approach 

Through this brief interpretation of Dewey and Peirce’s work it is clear that 

their view of cognition was that of an active process that is situated, embodied, 

extended, and enacted. The pragmatists argued that an individual was not 

cognitively independent from the environment. The thinking process was 

conceived of as a dynamic coordinated interaction through the mutually 

constituted coupling of the individual and the environment, only then does the 

organism become a cognitive agent (Gallagher, 2014). The pragmatist’s efforts 
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in foregrounding the importance of analysing the actions of the individual in the 

world as a methodology of understanding the human mind would have clearly 

resonated with the situationalists (e.g., Greeno, 1989; Hutchins, 1995a; Lave, 

1988) of the late twentieth century. However, despite the work of Dewey and 

other pragmatists, the influence of artificial intelligence on psychology in the 20 th 

century, ushered in the return of a mechanistic information-processing approach 

to thinking (Bredo, 1998).  

The pragmatist views on thinking that find purchase in many recent 

developments, also illustrate how the theoretical argument against mind-body 

dualism in psychology has gone full circle. Although the pragmatists’ theories on 

cognition may not be widely credited with the foundations of contemporary anti-

Cartesian philosophies, the insights might be worth revisiting to not only 

adjudicate, but to form the foundation for a cohesive approach to a non-

internalist theory of cognition (See, Gallagher, 2014; Menary, 2007, 2010a). 

The issue of adjudicating the differences between the various contemporary 

approaches to anti-Cartesian accounts of cognition is beyond this thesis. 

However, what should not be overlooked is that the views of the classical 

pragmatists can be used as a resource to unite the various non-brain-bounded 

approaches to cognition in response to wider criticisms from the classical 

internalists (e.g., Adams & Aizawa, 2009; Baddeley & Hitch, 1974; Newell & 

Simon, 1972; Ohlsson, 2011; Vera & Simon, 1993; see Gallagher, 2014).  

Theoretical Reflections and Methodological Observations 

The methods, procedures, and materials for each experiment reported in 

this thesis were detailed in Chapters 6 and 7. However, given the unfolding 

nature of some methodological challenges arising when exploring the role of 

interactivity in cognition, it seemed prudent to briefly reflect on some of these 
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prior to concluding the thesis. As these experiments were novel, although not 

entirely unique (e.g., Kirsh, 1995b; Vallée-Tourangeau, 2013) in approaching 

the investigation of interactivity in problem solving using artefacts, 

methodological antecedents for these experiments were limited. Initially the 

intention was to only undertake a quantitative approach to the analysis of data, 

however this evolved over the course of the experiments to include some 

qualitative analysis. The challenge became not only to identify whether 

interactivity with artefacts made a quantitative difference to performance, but 

also to investigate any qualitative change in behaviour. Therefore, the 

development of an observational toolkit using video resources was initiated. 

Although this analysis was only completed in detail for one experiment—Mental 

Arithmetic, Experiment 2—the results suggested this approach might be a 

springboard to better understand thinking trajectories in problem solving (e.g., 

Steffensen, 2013). In generic terms, cognitive theories attempt to understand 

the processes and organisation of cognitive systems (Hollan, Hutchins, & Kirsh, 

2000). Theoretically, the cognitive process of problem solving is a 

representation-transforming activity involving the traversing of a problem space 

toward a goal (Perry, 2003). Problems arise as people act in the world with 

these problems varying from activity to activity, and resolutions emerging in 

context and situation specific ways (Kirsh, 2009a). Therefore, problem solving 

might be best understood as being situated and distributed in a transactional 

interactive process between a reasoner’s internal resources and the external 

resources available in the environment in which she is embedded. 

Theoretical frameworks of distributed cognition (e.g., Hollan, Hutchins, & 

Kirsh, 2000; Hutchins, 1995a; Kirsh, 1995a, 1995b; Vallée-Tourangeau, 2013) 

and the 4E’s, particularly Clark and Chalmers’s (1998) extended mind 
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hypothesis, were influential in the methodological considerations for these 

experiments. Greeno (1998) advocated a mixed methodology as a framework 

for a situated approach to investigating cognition as a system, consisting of a 

synthesis between traditional cognitivism, where the focus is on the 

informational content of the mind and a behaviourist perspective centered on 

the actions and reactions of people to the environment. Hollan, Hutchins, and 

Kirsh (2000) also noted how studying cognition in the wild could offer the 

answers to many questions about the nature of human thinking in the real 

world. However, the richness of these settings also places limits and constraints 

on the observational methodologies. Hollan et al. (2000) suggested that by 

drawing on naturalistic settings it might be possible to design laboratory 

experiments with constraints not available to real-world ethnographic based 

studies. This would facilitate investigation into particular features or components 

of interactive behaviours, without losing sight of the systemic nature of 

cognition. As Perry (2003) pointed out, the framework offered by distributed 

cognition allows researchers to acknowledge all the constituent factors that are 

pertinent to the activity under scrutiny as a single unit of analysis. The work by 

early situated cognition researchers (e.g., Greeno, 1989; Hutchins, 1995a, 

1995b; Kirsh, 2009a; Lave, 1988) was reflected in developing the aims of this 

thesis, by ensuring the focus of the unit of cognitive analysis was not the 

individual rather the person acting as part of a dynamic cognitive system. As 

Wilson and Clark (2009) pointed out it is important to study the cognitive system 

as a complex whole, however, this a challenging prospect as the interactions 

“may be highly complex, nested, and non-linear” (p. 73). 

Lave (1988) and Hutchins (1995a) discussed the limitations of research in 

the lab when using games and puzzles, as they believed these tasks were 
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designed to be challenging or difficult, testing the cognitive athleticism of 

individuals not how people act in the world. Hutchins (1988) described the use 

of puzzles as tasks to investigate problem solving as being “unrepresentative of 

human cognition” (p. 367). The point he made was that if performance on these 

tasks were of prime concern, then a focus would be on learning how to re-

present the tasks in a manner that would make them easier for solvers to see 

the answer. In reviewing the literature on the river-crossing problem (e.g., Reed, 

Ernst, & Banerji, 1974; Simon & Reed, 1976; Thomas, 1974) this is a valid 

observation as performance was predominantly measured in terms of finding 

the solution. Whereas the research programme undertaken for this thesis, did 

not focus primarily on the participant solving the problem, rather in comparing 

the impact of different representations of the problem on the performance of the 

reasoner in reaching a solution. Despite the reservations by researchers such 

as Lave and Hutchins about the use of puzzles as the basis for designing 

experiments studying cognition, the river-crossing and the mental arithmetic 

problems, as used in the experiments reported here, have both provided useful 

scaffolds for the investigation of human cognition. Thus, the results from these 

experiments using varying presentations of the same problems support a case 

for the use of this genre of puzzles and problems in studying problem solving in 

the lab. While the ethnographic methodology employed by Lave was not used 

in this research programme, the experimental element of the Adult Math Project 

in the form of the best-buy simulation exercise supported the methodological 

choices used in the experiments reported here. Lave’s study foregrounded the 

potential difference not only in the setting of problem solving, but also the 

difference an external representation might make on performance outcomes 

and the strategies used in problem solving.  
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Preceding the experiments described in Chapters 6 and 7, there have 

been many experiments researching analytic problem solving and problem 

isomorphs in the lab (see Gentner & Gentner, 1982, 1983; Gholson, 1989; Gick 

& Holyoak, 1980; Hayes & Simon, 1977; Reed, Ernst, & Banerji, 1974). Very 

few have investigated the impact of different task ecologies (see Zhang & 

Norman, 1994) with none, to my knowledge, having considered both the 

performance outcomes and the interactive thinking trajectories in detail, in one 

experiment. Therefore, limited methodological guidance was available for the 

experiments planned as part of this thesis; a number of methodological 

challenges emerged as the experiments unfolded, with some of these 

addressed as the experiments proceeded. Subsequent to the completion of the 

experiments described in Chapters 6 and 7, research has been initiated in the 

development of detailed methodologies for the analysis of qualitative video data 

(e.g., Steffensen, 2013). The research methodologies described in this thesis 

will potentially assist future researchers in designing methodological protocols 

for use across a broad spectrum of interactive problem solving activities. 

Methodological challenges. This thesis was essentially an investigation 

into interactivity between people and things in analytical problem solving using 

quantitative research methods. The initial aim was to establish any differences 

in performance as a result of changing the interactive nature of the task 

ecologies. The overarching challenge was to design experiments and employ a 

methodology that would encompass traditional cognitive psychological methods 

and analysis with a situated and distributed cognition perspective. In traditional 

cognitive psychology the individual as a problem solver is decoupled from the 

world where the thinking is considered to take place in the head, therefore 

logically, the emphasis when attempting to understand human cognition is to 



 288 

study the processes of the internal mind. However, by excluding the agent 

acting in the world, or not acknowledging the situatedness of cognition in action 

(as it were), the researcher would not be giving consideration to the cognitive 

system in its entirety. As Lave (1988) suggested, the validity of extrapolating 

results from such a narrow research perspective, then mapping them onto the 

wider world may be questionable.  

Initially the decision on the appropriate methodology for all experiments 

was to employ research techniques modeled on a typical quantitative data 

analysis using experimental and correlational designs. This would also provide 

continuity with the experimental work previously undertaken on interactivity and 

artefacts, delivering a suitable baseline from which to make comparisons (e.g., 

Vallée-Tourangeau, 2013; Vallée-Tourangeau, Euden, & Hearn, 2011). The 

experiments were designed to compare the different conditions using various 

independent and dependent variables, with the correlational analysis employed 

to explore relationships with performance measures and individual differences. 

Therefore, to explore the impact of interactivity for different analytical problems, 

in different problem presentations and any relationship with individual 

differences, the analysis of the data and reporting of results would comprise of 

descriptive, inferential, and correlational statistics.  

As the project unfolded it was increasingly apparent that it was not only 

important to describe what was happening by quantifying the actions of 

participants in terms of performance outcomes, but also to attempt to reveal 

how and why these differences were occurring. Thus, an additional challenge 

emerged: to attempt to identify the strategies and trajectories of participants in 

reaching a solution. To address this, in addition to the traditional experimental 

psychological methods for data collection and analysis, it was clear it would be 
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beneficial to develop a toolkit of sorts to observe behaviours in order to offer a 

more accurate and illuminating method for investigating the differing paths to 

solution. The use of verbal protocols was piloted, however, this appeared to 

interfere with the problem-solving process as participants interpreted 

instructions in different ways and this verbalisation frequently encouraged the 

participant to attempt to interact with the researcher by, for example, asking 

questions about the rules of the river-crossing problem. This issue was also 

highlighted by Lave (1988) when researchers were drawn into conversations 

with the shoppers they were observing. Depending on the perspective taken, 

the researcher might be viewed as supporting the shoppers rational for 

decisions or becoming part of the decision making process on the path to 

solution. In addition, during the piloting of verbal protocols for the river-crossing 

and mental arithmetic experiments, in encouraging the participants to verbally 

express internal mental processes, they appeared to find it challenging to align 

the narrative with actions. This made it difficult for the researchers to identify 

actions that were premeditated or planned, from those that were taking place as 

the moves unfolded. Note taking by researchers detailing the moves made by 

participants in the high interactive simple maths condition was useful. However, 

this had many shortcomings, when participants moved artefacts swiftly or used 

both hands, it was difficult to be certain that the note taking was accurate. 

Although there were flaws with these methods of data collection and associated 

analysis, it was apparent that with different task ecologies interactivity with 

artefacts produced differing thinking trajectories, although individuals were 

attempting to solve problems that were functionally identical. To test this 

approach the decision was made to use a mixed approach, by continuing with 

the quantitative analysis and including qualitative video analysis for Experiment 
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2 of the mental arithmetic experiments. This experiment was chosen as 

participants were presented with the maths problems in four different 

presentations, potentially showcasing the difference in thinking trajectories 

when the task ecologies were altered for these problems that were functionally 

the same. 

The experimental sessions for a random selection of participants in mental 

arithmetic Experiment 2 were captured in a purpose-designed laboratory for 

video observation. The participants were aware that the experiment was being 

filmed and signed specific video consent forms. However, the cameras were 

located unobtrusively within the room, in order to minimise any awareness by 

the participants of being videoed. The analysis of the video was completed 

using Elan, an open source software tool for creating detailed annotations from 

video and audio resources. The performance of one participant was randomly 

selected from the video resource. The actions of the participant in the three high 

interactive conditions—pen with paper, pointing, and token—were analysed, 

with the discrete moves regarded as indicative of directly contributing to the 

adding up process noted and used for further exploration of the trajectories to 

solution. For example, in the token condition, moving the wooden token was 

considered to be part of the adding up process. From these recorded actions a 

depiction of the trajectory of movements to the final solution was created for 

each of the conditions. The analysis of these videos was more time consuming 

than expected. As this was not part of the original timetable for thesis, it was not 

possible to complete more than one analysis. However, as discussed in 

Chapter 7, the results of the qualitative analysis revealed a rich of source 

information with which to evaluate the impact of differing task ecologies on 

problem solving. Although the problems used in the experiments were 
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functionally the same, the problem presentations varied, resulting in the 

participant enacting distinctive trajectories to solution when confronted with 

these differing presentations. The results implied that different trajectories to 

solution should be recognised and accounted for, in order to enhance the 

understanding of cognitive processes involved in problem solving. Thus it would 

be fruitful for future researchers to undertake a similar detailed analysis of the 

problem-solving actions of a group of participants, in order to compare 

participants’ thinking trajectories for differing task ecologies. Through 

experience with the analysis of only one participant, advice for any researcher 

when considering undertaking similar micro-detailed analysis would be to allow 

potentially hundreds of hours of time to complete the work. In addition, pilot the 

analysis for one or two participants prior to recording the performance of all 

participants to be certain that all information required is correctly captured. 

Subsequent to the analysis on the mental arithmetic experiment 2, Steffensen 

(2013) has been instrumental in the continued development of a technique for 

data analysis namely Cognitive Event Analysis (CEA), which has proved to be 

an invaluable tool for the analysis of fine-grained actions during problem solving 

tasks, both in the laboratory and the workplace (e.g., Steffensen, Vallée-

Tourangeau, & Vallée-Tourangeau, 2016). It was not possible to video all 

participants in this experiment due to logistical issues, including time constraints 

on both the video lab used for observations and participant availability. However 

a future experiment of this type, with the experimental sessions designed to 

capture the problem-solving performance of all participants on video, would be 

useful in providing data for a full comparative analysis between and across the 

performance of a number of individuals. As a consequence of the results from 

these experiments, using quantitative methods in conjunction with the additional 
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information that surfaced through qualitative observations of the participant’s 

performance, it appears that it is possible to develop a mixed-methodology 

grounded in a synthesis of the two approaches. This could be viewed as a 

systemic methodology blending the nomothetic and idiographic methods drawn 

from across the social science spectrum. The nomothetic approach would be 

extracted from the macro view of performance outcomes and measures 

provided by the quantitative data, and the ideographic approach from the micro 

examination of the qualitative evidence (as discussed by Lave, 1988; also see 

this thesis, Chapter 2). Such a methodology proposes a direction for 

researchers to explore a more holistic approach toward the understanding 

human cognitive processes. This would also facilitate the identification and 

comprehensive reporting of interactivity in lab experiments guiding researchers, 

regardless of their approach to cognition, to be attuned to the impact of 

interactivity and an awareness of the effects of varying task ecologies on 

experimental outcomes. 

General observations on methodology. The study of systems rather 

than individuals poses theoretical and methodological challenges. Theoretically, 

the nature of the problem representation and the trajectory of the solution as it 

evolves from an embryonic to a fully formed answer, should perhaps be 

understood as being distributed and configured in terms of a transaction 

between the participant’s internal resources and the shape and nature of the 

resources in the external environment. Attempting to segment and 

independently specify the components of a cognitive system, namely the 

thinking agent and her immediate environment, is not as productive as seeking 

to characterise the system as a whole (see Baber, Parekh, & Cengiz, 2014). As 

Lave, Murtaugh, and de la Rocha (1984) pointed out, it is difficult to analyse 
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these dialectically formed problems where the actions and the situation both 

create and change each other, with problems being generated and resolved 

during the ongoing activity of the individual. 

Of course, systems can be more complex, and composed of a much wider 

range of functional elements, which challenges the traditional toolkit of 

experimental cognitive psychologists designed to deal with a cognitively 

sequestered individual in a laboratory environment that generally prevents 

interactivity. The findings and methods reported here suggest that a more 

qualitative idiographic cognitive science supported by an observational toolkit 

that can code at a much smaller time scale the evolution of a problem 

representation and its solution would make a substantial contribution to problem 

solving research. 

Future Directions and Concluding Remarks 

In leaving out the influence of situatedness and interactivity when 

explaining human cognition, as in an internalist approach, is to leave out a large 

portion of the account of how people think in the world. Dewey’s (1896) critique 

of the reflex arc concept in psychology nicely illustrated how the physiological 

brain-bounded account of human behaviour was only part of the circuit of 

sensori-motor coordinated action. Dewey’s work may not be widely 

acknowledged as having an influence on contemporary theories of non-

internalist approaches to cognition, however the notion that thinking is not brain-

bounded has continued to be a consistent theme in philosophy and psychology 

in the past century, despite the strong influences of traditional cognitive science 

on theories and research. As revealed by Lave’s (1988) work on arithmetic, 

Greeno’s (1989; 1998) discussions on situated methodologies, and in the 

reflections on methodology in this thesis, the task of including the lived-in world 



 294 

into both quantitative and qualitative investigations is easy to identify, but a 

difficult one to fulfill (Lave, 1988). However, work by researchers such as Lave 

(1988), Hutchins (1995a, 1995b), Zhang and Norman (2004) and Vallée-

Tourangeau (2013) showed that this was not armchair theorising by providing 

empirically based evidence that cognition was situated and distributed.  

Future Directions  

The experimental work presented in this thesis was designed to further 

investigate the fundamental premise that thinking is not brain-bounded; rather it 

is a coupling of agent and environment as part of a dynamic situated system. 

The methodology employed was based on investigating situatedness and 

interactivity using problem solving and artefacts in a laboratory setting with the 

results laying the foundation for further investigation into interactivity using 

problem solving and artefacts. Additional testing of learning transfer enacted 

through interactivity could proceed over longer time frames—allowing days or 

weeks between the second attempt—rather than over one experimental session 

as in the river-crossing experiments described here. As computer centered 

education is on the rise, comparing learning through computer-based 

interactivity against the three-dimensional interactivity with the physical world as 

discussed in this thesis, would be useful from a pedagogical perspective (Klahr, 

Triona & Williams, 2007; Moreno & Mayer, 2007; Renken & Nunez, 2013). In 

addition, further development of the qualitative methodology, as discussed 

earlier in this chapter, to study the effect of changing the external representation 

on problem solving trajectories, would shed light on how interacting with 

artefacts alters the way people solve problems in the world. These micro-scale 

investigations might also reveal the nuances of interactivity exposing the 

various phases of problem solving, for example, identifying the stages in 
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problem solving when individuals are near or far from reaching a solution by 

studying their interactions. Finally, these experiments have shown it is possible 

for research into cognition in the wild to be examined under laboratory 

conditions; but such research must be engineered to allow agents to interact 

with a physical presentation of the problem. In this way, the laboratory data 

offers a more representative window onto how people solve problems in the 

lived-in world. 

Concluding Remarks: The Kinesionoetic Field 

Against the backdrop of theories on cognition spanning over one hundred 

and twenty years, the experiments reported in Chapters 6 and 7 have shown 

that varying the situation by changing the problem presentation can affect 

performance in problem solving. Altering the situatedness does not necessarily 

mean locating the problem in a different physical location. In the case of the 

experiments discussed in this thesis, the same participants completed the same 

problems in the same environment; however changing the presentation of the 

problem affected the situation. The interaction between the agent and the world 

was altered by this change to the problem. This is evidence that the situation is 

not a geographical locale but is constituent of the agent-environment 

interaction, through this coupling of the individual and the world emerges the 

cognitive agent (Gallagher, 2014). With the many threads of commonality 

between the non-internalist approaches to thinking, a focus on interactivity and 

situatedness may offer the grounding for an integrated approach to ecological 

methodologies and theories on cognition. By way of illustrating the extended 

mind hypothesis and similar accounts of systemic cognition, the changes in 

problem presentation as described in the experiments reported here, have 

shown how artefacts are not just passive inputs to aid internal cognition. The 
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artefacts in these experiments augmented cognition by modifying the cognitive 

system, altering the trajectory to solution, resulting in adjustments to the 

situation that improved performance (Clark & Chalmers, 1998; Wilson & Clark, 

2009). Providing individuals with the opportunity to manipulate artefacts in these 

problems provided a scaffold to enact new strategies. Part of the investigation 

into interactivity also explored individual differences in performance by altering 

the components in an extended cognitive system. In the case of expertise in the 

final mental arithmetic experiment, the results revealed that reliance on internal 

processes was altered by adjusting the external representation, supporting 

claims by non-internalists that cognition functions as a holistic dynamic system 

not as discrete components as the classical internalist approach maintains.  

Much of the research and theory on the role of artefacts in cognition 

examined in this thesis was inspired by Norman’s research (1991,1993) and the 

Theory of Material Engagement (Malafouris, 2013). In discussing the impact of 

material engagement on human cognition, Malafouris proposed a “hylonoetic” 

ontology of thinking (p. 236; a neologism composed of the Greek word hyle for 

matter and nous for mind). Here cognitive processing is portrayed as emerging 

from a hylonoetic field comprised of the mind and material artefacts, where 

“thinking occurs through and with matter” (Malafouris, 2013,p.236). However the 

results from experiments reported here foreground action, rather than 

materiality, as the impetus for emerging cognitive processes in problem solving. 

This suggests that the field is kinesionoetic, (from the Greek kinima for 

movement, and nous for mind) where thinking unfolds and is shaped through 

movement or actions. Thinking is enacted as the individual and environment are 

situated in a cognitive system that emerges across time and space, with the 

properties of the agent-environment system configured through interactivity.   
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