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Abstract 

Cardiac physiology and hypertrophy are regulated by the phosphorylation status of 

most proteins, which is controlled by the opposing reactions of protein kinases and 

phosphatases (PP). The type 2A protein phosphatase family is comprised of PP2A, 

PP4 and PP6, due to the high amino acid homology of their catalytic subunits 

(PP2ACα/β, PP4C and PP6C). The activity and expression of this family are partly 

regulated by alpha4, a common regulatory protein that is essential in type 2A 

phosphatase holoenzyme biogenesis. In the heart, more than 98% of protein 

dephosphorylation is mediated by serine/ threonine protein phosphatases, of which 

type 2A protein phosphatases along with protein phosphatase 1, contr ibute 

approximately 90%. Currently, the role(s) of type 2A protein phosphatases and their 

regulation by alpha4 in the heart is poorly defined and requires detailed 

investigation.  

In this study, quantitative PCR analysis demonstrated that PP2ACβ mRNA was most 

abundant in H9c2 cardiomyocytes and neonatal rat ventricular myocytes (NRVM) 

whilst, in adult rat ventricular myocytes (ARVM), PP2ACα mRNA was the most 

abundantly transcribed. Surprisingly, immunoblotting analysis, using catalytic 

subunit-specific antibodies, identified the expression of all type 2A protein 

phosphatase catalytic subunits in H9c2 cardiomyocytes and NRVM, however, 

ARVM only expressed PP2AC and PP6C protein. PP4C protein expression was only 

detectable in ARVM following proteasomal inhibition with compound MG132. 

Using siRNA to selectively knockdown type 2A protein phosphatase catalytic 

subunits, it was revealed that PP2ACα alone dephosphorylates CaV1.2-Ser1928. The 
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data also suggested that PP2ACα, PP2ACβ and PP4C dephosphorylate 

phospholemman at both Ser63 and Ser68 in cardiomyocytes. siRNA-mediated 

knockdown of alpha4 protein expression rapidly reduced the expression of all type 

2A catalytic subunits. Interestingly, expression of both PP2AC and alpha4 protein 

expression was elevated in pressure overload-induced left ventricular (LV) 

hypertrophy. Even though PP6C expression was unchanged, expression of PP6C 

regulatory subunits (i) SIT4-associated protein 1 (SAP1) and (ii) ankyrin repeat 

domain (ANKRD) 28 and 44 proteins were upregulated, whereas SAP2 expression 

was downregulated in hypertrophied LV tissue. Co-immunoprecipitation 

experiments revealed that the cellular association between alpha4 protein and 

PP2AC or PP6C subunits was either unchanged or reduced in hypertrophied LV 

tissue, respectively. Exposure of cardiomyocytes to hydrogen peroxide increased 

levels of H2AX phosphorylation (γH2AX), indicating hydrogen peroxide-induced 

DNA damage, which was unaffected by the knockdown of PP6C, however, levels of 

both total H2AX and γH2AX were diminished by the knockdown of alpha4 protein.  

The novel findings in this study collectively, demonstrate the differences in th e 

expression, stability, substrate specificity and altered alpha4-mediated regulation of 

the type 2A protein phosphatases in normal and hypertrophied myocardium and 

provide new insights into the molecular mechanisms involved in cardiac calcium 

homeostasis and DNA repair and thereby help to identify potential targets for the 

development of new and improved therapies against cardiac pathological 

hypertrophy. 



Acknowledgments 
 

 

iv 

 

Acknowledgments 

First of all, I want to thank my principal supervisor Dr Andrew K. Snabaitis for his 

support, continuous patience and encouragement as well as his contribution of time 

and ideas throughout my PhD studies. Without his invaluable guidance, this 

dissertation would not have been possible.  

Also, I am very grateful to the rest of my supervisor team: Prof Michael J. Shattock 

and Dr Ali Ryan, for all their support and insightful comments on my work. The 

guidance they offered, motivated me to widen my research from various 

perspectives.  

I would also like to thank my examiners, Prof Jian-Mei Li and Prof Tony Walker for 

the enjoyable discussion during my viva and for their suggestions on the thesis 

revision. 

I would like to thank King’s College of London for allowing me to work 

occasionally at the Rayne Institute. I would also like to acknowledge Dr Andrii 

Boguslavskyi, Dr Shiney Reji, Dr Asvi Francois and Dr Richard Heads, for their 

contribution in key experiments described in this thesis. Their expertise and 

thorough demonstration of the experimental processes were greatly appreciated.  

A special thank you goes to Dr Brian E. Wadzinski, who kindly donated the catalytic 

subunit-specific antibodies used in this study. Further, I want to thank Dr Ioannou 

Niko and Prof Helmout Modjtahedi for providing me specific cell lysates. Also, I 

thank the British Heart Foundation for funding this PhD. My grateful thanks are also 



Acknowledgments 
 

 

v 

 

extended to Prof Edith Sim, for the opportunity she provided me to join their team as 

an intern and her friendly advice during my studies.  

I am particularly grateful to Dr Michael R. Longman, Dr Cowan Jonathan, Dr 

Polycarpou Elena, Dr Vargo Elizabeth, Dr Griffin Ruth, Nico Lambri, Dr Crescente 

Vincenzo, Holland Sinead, Goncalves Da Silva Ronni and Dr Mulcahy-Ryan Lauren 

for their support and friendship.  

Finally, I would like to thank my parents, my sister and my husband for all their 

constant love and encouragement. Their precious support was indispensable for the 

realisation of this research.  



List of Publications and Presentations 
 

 

vi 

 

List of Publications 

Eleftheriadou, O., Boguslavskyi, A., Longman, M.R., Cowan, J., Francois, A., Heads, R.J., 

Wadzinski, B.E., Ryan, A., Shattock, M.J. and Snabaitis, A.K., 2017. Expression and 

regulation of type 2A protein phosphatases and alpha4 signalling axis in cardiac health and 

hypertrophy. Basic Research in Cardiology 112, doi:10.1007/s00395-017-0625-2. 

(Copy attached). 

 

 

List of Presentations 

Expression and regulation of the type 2A protein phosphatase-alpha4 signalling axis in 

cardiac health and hypertrophy. 
Poster presentation; The British Pharmacological Society (BPS) annual meeting, London, 

UK, December 2016. 

“Matters of the Heart”: Role of the type 2A protein phosphatase family. 
Oral presentation; The three-minutes thesis competition, Kingston University London, 

Kingston upon Thames, UK, February 2016. 

Expression of the type 2A protein phosphatases in cardiac health and disease. 
Poster presentation; 34th International Society for Heart Research European Section (ISHR-

ES) meeting, July 2015, Bordeaux, France. 

Expression of the type 2A protein phosphatases in cardiac health and disease. 
Poster presentation; The British Society for Cardiovascular Research (BSCR) Autumn 

meeting, Reading, UK, September 2014. 

Expression of the type 2A protein phosphatases in cardiac health and disease. 
Oral and poster presentation; Interdisciplinary Hub Conference for the Study of Health and 

Age-related conditions (IhSHA), Kingston University London, Kingston upon Thames, UK, 

June 2014. 



Contents 
 

 

vii 

 

Contents 

Declaration ................................................................................................................ i 

Abstract.................................................................................................................... ii 

Acknowledgments ................................................................................................... iv 

List of Publications ................................................................................................. vi 

List of Presentations ................................................................................................ vi 

List of Tables ........................................................................................................ xiv 

List of Figures ........................................................................................................ xv 

Abbreviations ......................................................................................................... xx 

Chapter 1.................................................................................................................................. 1 

1.1 Prevalence of cardiovascular disease in the UK ......................................................................... 1 

1.2 Cardiac hypertrophy ................................................................................................................... 2 

 Cardiac growth ................................................................................................................. 2 1.2.1

 Physiological and pathological cardiac hypertrophy ........................................................ 3 1.2.2

 Concentric and eccentric hypertrophy .............................................................................. 4 1.2.3

 Molecular mechanisms of physiological LV hypertrophy ............................................... 5 1.2.4

 Molecular mechanisms of pathological LV hypertrophy ................................................. 6 1.2.5

1.2.5.1 Concentric hypertrophy .......................................................................................... 6 

1.2.5.2 Eccentric hypertrophy ............................................................................................ 9 

1.3 Excitation-contraction of ventricular cardiomyocytes ............................................................... 9 

 Action potential of ventricular cardiomyocytes ............................................................... 9 1.3.1

 Cardiac excitation-contraction coupling ........................................................................ 12 1.3.2

 Autonomic control of cardiomyocyte contraction .......................................................... 14 1.3.3

1.4 Serine/ threonine phosphatases ................................................................................................ 18 

1.5 Type 2A protein phosphatase family in the heart ..................................................................... 19 

 PP2A holoenzyme assembly and activity ...................................................................... 20 1.5.1



Contents 
 

 

viii 

 

1.5.1.1 PP2A holoenzyme assembly ................................................................................ 20 

1.5.1.2 PP2AC activity in cardiomyocytes ...................................................................... 21 

 PP4 holoenzyme assembly and activity ......................................................................... 22 1.5.2

 PP6C holoenzyme assembly and activity ....................................................................... 23 1.5.3

 Type 2A protein phosphatase catalytic subunit post-translational modification ............ 25 1.5.4

1.5.4.1 PP2AC phosphorylation at Thr304 and Tyr307 ................................................... 25 

1.5.4.2 PP2AC carboxylmethylation at Leu309 ............................................................... 25 

1.5.4.3 PP2AC ubiquitination .......................................................................................... 26 

1.5.4.4 PP4C and PP6C carboxymethylation ................................................................... 29 

 Association of type 2A protein phosphatases and the alpha4 regulatory protein ........... 29 1.5.5

 Type 2A protein phosphatase family in heart disease .................................................... 30 1.5.6

1.6 Dissertation focus ..................................................................................................................... 31 

Chapter 2................................................................................................................................ 32 

2.1 Animal tissue ............................................................................................................................ 32 

2.2 Cell culture ............................................................................................................................... 32 

 Culturing of H9c2 cardiomyocytes ................................................................................ 33 2.2.1

2.2.1.2 Cryopreservation and recovery of H9c2 cardiomyocytes .................................... 35 

 Isolation of adult rat ventricular myocytes (ARVMs) .................................................... 35 2.2.2

2.2.2.1 Culturing of ARVM ............................................................................................. 37 

 Determination of H9c2 cardiomyocyte number ............................................................. 38 2.2.3

2.3 Knockdown of protein expression by small interfering RNA .................................................. 39 

 siRNA transfection of H9c2 cardiomyocytes ................................................................. 39 2.3.1

 Recognition of siRNA off-target effects towards non-target mRNAs ........................... 42 2.3.2

2.4 Determination of gene expression by quantitative real-time polymerase chain reaction ......... 43 

 Purification of total RNA from mammalian cells .......................................................... 43 2.4.1

 Quality assessment of total RNA ................................................................................... 45 2.4.2

2.4.2.1 Total RNA quantification and quality control by NanoVue Plus ......................... 45 

2.4.2.2 Quantification of RNA integrity using 2100 Bioanalyzer .................................... 45 

2.4.2.3 RNA quality evaluation by agarose gel electrophoresis ....................................... 47 

 Two-step reverse transcriptase polymerase chain reaction (RT-PCR) ........................... 48 2.4.3

 SYBR Green quantitative polymerase chain reaction .................................................... 49 2.4.4



Contents 
 

 

ix 

 

 Relative quantification in qPCR ..................................................................................... 51 2.4.5

2.4.5.1 Validation of reference genes ............................................................................... 51 

2.4.5.2 Relative quantification by Cq comparative method ............................................. 51 

2.4.5.3 Relative quantification by modified qbase
+
 software approach ........................... 53 

2.5 Protein expression analysis by western blotting (immunoblotting) ......................................... 54 

 Protein sample preparation ............................................................................................. 54 2.5.1

 SDS-polyacrylamide gel electrophoresis (PAGE) ......................................................... 55 2.5.2

 Determination of protein expression by western blotting .............................................. 55 2.5.3

2.5.3.1 Quantitative western blotting using the enhanced chemiluminescence (ECL) 

detection system .................................................................................................................. 56 

2.5.3.2 Quantitative fluorescent western blotting ............................................................ 58 

 Total protein staining with Coomassie Blue R-250 ....................................................... 59 2.5.4

2.6 Measuring cell viability with MTT assay ................................................................................. 59 

2.7 Statistical analysis .................................................................................................................... 60 

Chapter 3................................................................................................................................ 61 

3.1 Introduction .............................................................................................................................. 61 

 Transcriptional regulation of PP2ACα, PP2ACβ, PP4C and PP6C subunits ................. 61 3.1.1

3.1.1.1 Regulation of PP2ACα and PP2ACβ transcription .............................................. 61 

3.1.1.2 Regulation of PP4C transcription ......................................................................... 62 

3.1.1.3 Regulation of PP6C transcription ......................................................................... 63 

 Post-translational regulation of type 2A protein phosphatase catalytic subunits by the 3.1.2

ubiquitin-proteasome-mediated system .......................................................................... 63 

3.2 Specific objectives ................................................................................................................... 64 

3.3 Methods .................................................................................................................................... 65 

 Neonatal rat ventricular myocyte isolation and cell culture ........................................... 65 3.3.1

3.3.1.1 Isolation of neonatal rat ventricular myocytes (NRVMs) .................................... 65 

3.3.1.2 Cell culture of NRVMs and inhibition of fibroblast growth ................................ 67 

 Inhibition of 26S proteasome activity in ARVMs .......................................................... 68 3.3.2

 Quantification of transcript levels of PP2ACα, PP2ACβ, PP4C and PP6C by qPCR 3.3.3

analysis ........................................................................................................................... 68 

 Comparison of PP2ACα, PP2ACβ, PP4C and PP6C mRNA expression by qPCR 3.3.4



Contents 
 

 

x 

 

analysis in NRVM with and without cytosine arabinoside (AraC) ................................ 69 

 Western blotting analysis ............................................................................................... 69 3.3.5

3.4 Results ...................................................................................................................................... 70 

 Transcript expression profile of type 2A protein phosphatases in H9c2 cardiomyocytes, 3.4.1

NRVMs and ARVMs ..................................................................................................... 70 

3.4.1.1 Validation of RNA quality for qPCR analysis ..................................................... 70 

3.4.1.2 Validation of ACTB and GAPDH reference genes .............................................. 72 

3.4.1.3 mRNA expression levels of PP2ACα, PP2ACβ, PP4C and PP6C in H9c2 

cardiomyocytes, NRVMs and ARVMs ............................................................................... 73 

 Effects of cytosine arabinoside (AraC) treatment in the mRNA expression levels of 3.4.2

PP2ACα, PP2ACβ, PP4C and PP6C in NRVMs ........................................................... 76 

3.4.2.1 Validation of RNA quality for qPCR analysis ..................................................... 76 

3.4.2.2 Validation of ACTB and GAPDH reference genes .............................................. 77 

3.4.2.3 Comparison of mRNA expression levels of PP2ACα, PP2ACβ, PP4C and PP6C 

in NRVMs with and without cytosine arabinoside (AraC) .................................................. 78 

 Detection of protein expression of PP2AC, PP4C and PP6C in cardiomyocytes .......... 79 3.4.3

 Effect of proteasome-mediated degradation in type 2A protein phosphatase catalytic 3.4.4

subunits expression in ARVMs ...................................................................................... 82 

3.5 Discussion ................................................................................................................................ 84 

 Expression of the type 2A protein phosphatase catalytic subunits in cardiomyocytes .. 84 3.5.1

 Effects of cytosine arabinoside (AraC) treatment on the expression of type 2A protein 3.5.2

phosphatase catalytic subunits in NRVMs ..................................................................... 88 

3.6 Summary .................................................................................................................................. 90 

Chapter 4................................................................................................................................ 91 

4.1 Introduction .............................................................................................................................. 91 

 siRNA-mediated RNAi mechanism ............................................................................... 91 4.1.1

 Overcoming the challenges of in vitro siRNA transfection ........................................... 93 4.1.2

4.1.2.1 Off-target effects of siRNA transfection .............................................................. 93 

4.1.2.2 In vitro cationic lipid-mediated siRNA delivery: mechanism and challenges ..... 94 

4.2 Specific objectives ................................................................................................................... 97 

4.3 Methods .................................................................................................................................... 98 



Contents 
 

 

xi 

 

 cDNA and protein sequence alignment .......................................................................... 98 4.3.1

 Cell culture and IncuCyte® cell count proliferation assay............................................. 98 4.3.2

 Optimisation of siRNA transfection in H9c2 cardiomyocytes ....................................... 99 4.3.3

 Gene expression silencing of type 2A protein phosphatase catalytic subunits and alpha4 4.3.4

protein .......................................................................................................................... 100 

 Co-transfection of both PP2ACα and PP2ACβ siRNAs .............................................. 101 4.3.5

 Verification of PP2ACα and PP2ACβ mRNA knockdown by qPCR analysis ............ 101 4.3.6

 Verification of siRNA-mediated protein knockdown by western blotting analysis ..... 102 4.3.7

4.4 Results .................................................................................................................................... 103 

 cDNA and protein alignment of PP2ACα, PP2ACβ, PP4C and PP6C ........................ 103 4.4.1

 Confirmation of the sequence specificity of siRNAs molecules .................................. 104 4.4.2

 The effects of siRNA delivery in H9c2 cardiomyocytes on viability and cell 4.4.3

proliferation rate ........................................................................................................... 105 

4.4.3.1 DharmaFECT#1 concentration dependent screen .............................................. 105 

4.4.3.2 siRNA transfection efficiency in H9c2 cardiomyocytes .................................... 107 

 Evaluation of the non-targeting siRNA (siC) off-target effects towards the type 2A 4.4.4

protein phosphatase catalytic subunits and alpha4 protein expression ......................... 109 

 Determination of siRNA-mediated gene silencing of PP2ACα and PP2ACβ .............. 111 4.4.5

4.4.5.1 Validation of RNA quality for qPCR analysis ................................................... 111 

4.4.5.2 Validation of ACTB and GAPDH reference genes ............................................ 112 

4.4.5.3 siRNA-mediated mRNA knockdown of PP2ACα and PP2ACβ ........................ 113 

 siRNA-mediated protein knockdown of PP2ACα/β, PP2ACα, PP2ACβ, PP4C and 4.4.6

PP6C 116 

 Evaluation of the off-target and on-target effects in the expression of PP2ACα/β, 4.4.7

PP2ACα, PP2ACβ, PP4C and PP6C ............................................................................ 117 

 Effects of alpha4 knockdown in the expression of PP2AC, PP4C and PP6C .............. 123 4.4.8

4.5 Discussion .............................................................................................................................. 127 

 Establishing siRNA-mediated knockdown of type 2A protein phosphatase catalytic 4.5.1

subunits ........................................................................................................................ 127 

 Effects of alpha4 protein knockdown on type 2A protein phosphatase expression ..... 130 4.5.2

4.6 Summary ................................................................................................................................ 132 



Contents 
 

 

xii 

 

Chapter 5.............................................................................................................................. 133 

5.1 Introduction ............................................................................................................................ 133 

 CaV1.2-Ser1928 phosphorylation in cardiomyocytes ................................................... 135 5.1.1

 Regulation and function of phospholemman in cardiomyocytes ................................. 135 5.1.2

5.2 Specific objectives ................................................................................................................. 137 

5.3 Methods .................................................................................................................................. 138 

 Western blotting analysis ............................................................................................. 138 5.3.1

5.4 Results .................................................................................................................................... 139 

 Effects of PP2ACα, PP2ACβ, PP4C or PP6C protein knockdown on the 5.4.1

phosphorylation of CaV1.2-Ser1928............................................................................. 139 

 Effects of PP2ACα, PP2ACβ, PP4C or PP6C protein knockdown on the 5.4.2

phosphorylation of PLM-Ser63 and PLM-Ser68 ......................................................... 141 

5.5 Discussion .............................................................................................................................. 144 

 Regulation of CaV1.2-Ser1928 dephosphorylation by the type 2A protein phosphatase 5.5.1

catalytic subunits .......................................................................................................... 144 

 Regulation of PLM-Ser63 and PLM-Ser68 dephosphorylation by the type 2A protein 5.5.2

phosphatase catalytic subunits ..................................................................................... 146 

5.6 Summary ................................................................................................................................ 150 

Chapter 6.............................................................................................................................. 151 

6.1 Introduction ............................................................................................................................ 151 

 Pressure overload-induced cardiac hypertrophy .......................................................... 151 6.1.1

 Oxidative stress and heart disease ................................................................................ 153 6.1.2

 DNA double-strand break in pathological cardiac hypertrophy ................................... 154 6.1.3

6.2 Specific objectives ................................................................................................................. 156 

6.3 Methods .................................................................................................................................. 157 

 Murine myocardial hypertrophy model ........................................................................ 157 6.3.1

6.3.1.1 Transaortic constriction (TAC) of the abdominal aorta in the mouse ................ 157 

6.3.1.2 Assessment of hypertrophy ................................................................................ 158 

6.3.1.3 Homogenisation and sample preparation of murine LV tissue .......................... 159 

 Immunoprecipitation of alpha4 from cardiomyocytes ................................................. 159 6.3.2

 Quantification of total protein concentration by bicinchoninic acid (BCA) assay ....... 161 6.3.3



Contents 
 

 

xiii 

 

 Measuring cell viability by MTT assay ........................................................................ 162 6.3.4

 Hydrogen peroxide-induced oxidative stress in H9c2 cardiomyocytes ....................... 162 6.3.5

 Western blotting analysis ............................................................................................. 163 6.3.6

6.4 Results .................................................................................................................................... 164 

 Measurement of pressure overload-induced cardiac hypertrophy ................................ 164 6.4.1

 Protein expression of type 2A protein phosphatase catalytic subunits and alpha4 in LV 6.4.2

hypertrophy .................................................................................................................. 165 

 Expression of PP6C regulatory subunits in LV hypertrophy ....................................... 167 6.4.3

 Association of alpha4 with type 2A protein phosphatase catalytic subunit complexes in 6.4.4

normal and hypertrophic myocardium ......................................................................... 170 

 Effects of PP6C protein knockdown on H9c2 cardiomyocyte viability ....................... 174 6.4.5

 Effects of PP6C protein knockdown on γH2AX in response to oxidative stress ......... 175 6.4.6

 Effects of alpha4 protein knockdown on γH2AX in response to oxidative stress ........ 179 6.4.7

 Investigation of sequence complementation-dependent alpha4-siRNA-mediated off-6.4.8

target effects against H2AX expression ....................................................................... 181 

 Phosphorylation status of H2AX in pressure overload-induced LV hypertrophy ........ 182 6.4.9

6.5 Discussion .............................................................................................................................. 184 

 Pressure overload-induced LV hypertrophy in mice .................................................... 184 6.5.1

 Expression of PP2AC, PP4C, PP6C and their association with alpha4 regulatory protein 6.5.2

in LV hypertrophy ........................................................................................................ 184 

 Expression of PP6 regulatory subunits in LV hypertrophy .......................................... 187 6.5.3

 Oxidative stress and γH2AX foci formation in cardiomyocytes .................................. 188 6.5.4

 Does PP6C affect γH2AX and cell viability in cardiomyocytes? ................................ 189 6.5.5

 Role of alpha4 in regulating γH2AX in cardiomyocytes ............................................. 190 6.5.6

 Pressure overload-induced LV hypertrophy and DNA damage repair ......................... 194 6.5.7

6.6 Summary ................................................................................................................................ 197 

Chapter 7.............................................................................................................................. 198 

References ........................................................................................................................... 201 



List of Tables 
 

 

xiv 

 

List of Tables 

Table 2.1 List of siRNAs ....................................................................................... 40 

Table 2.2 Primers for qPCR ................................................................................... 50 

Table 2.3 List of antibodies and working dilutions.  ................................................ 57 

Table 3.1 Expression stability of the reference genes (ACTB and GAPDH) in H9c2 

cardiomyocytes, NRVMs and ARVMs. .................................................................. 73 

Table 3.2 Expression stability of the reference genes (ACTB and GAPDH) in 

untreated NRVMs and NRVMs treated with cytosine arabinoside (AraC) ............... 78 

Table 4.1 Open reading frame region sequence pair alignment by EMBOSS Needle 

online tool (Rice et al., 2000) of PP2ACα (GenBank® ID: NM_017039.2), PP2ACβ 

(GenBank® ID: NM_017040.1), PP4C (GenBank® ID: NM_134359.1) and PP6C 

(GenBank® ID: NM_133589.2)............................................................................ 104 

Table 4.2 Expression stability of the reference genes (ACTB and GAPDH) at 2 and 

4 days post-transfection ........................................................................................ 113 

Table 4.3 mRNA expression of PP2ACα and PP2ACβ in cells transfected with 

PP2ACα-siRNA (siPP2ACα) or PP2ACβ-siRNA (siPP2ACβ) relative to the control 

respective mRNA expression values in cells transfected with non-targeting control 

siRNA (siC) ......................................................................................................... 115 

Table 4.4 Evaluation of PP2ACα-, PP2ACβ -, PP4C- and PP6C-siRNA specificity 

by immunoblotting analysis. ................................................................................. 121 

Table 4.5 Common inhibitors of type 2A protein phosphatase used in the … 

literature. ............................................................................................................. 128 



List of Figures 
 

 

xv 

 

List of Figures 

Figure 1.1 Different forms of cardiac hypertrophy ................................................... 5 

Figure 1.2 A schematic illustration of signalling pathways involved in the induction 

of physiological or pathological cardiac hypertrophy ............................................... 8 

Figure 1.3 Cardiomyocyte structure and sarcomere organisation.  ........................... 10 

Figure 1.4 Action potential of ventricular cardiomyocytes ..................................... 11 

Figure 1.5 β-αdrenergic receptor stimulation by sympathetic and parasympathetic 

system activation and phosphorylation of targets relevant to excitation-contraction 

coupling ................................................................................................................. 16 

Figure 1.6 A simplistic model of reversible protein phosphorylation.  .................... 18 

Figure 1.7 Schematic illustration of the PP2A holoenzyme and non-canonical 

PP2AC-alpha4 complex .......................................................................................... 21 

Figure 1.8 Schematic illustration of PP4 holoenzyme assembly.  ............................ 23 

Figure 1.9 Schematic illustration of PP6 holoenzyme. ........................................... 24 

Figure 1.10 Simplified schematic representation of the ubiquitin-proteasome-

mediated system (UPS) .......................................................................................... 27 

Figure 2.1 Images of H9c2 cardiomyocytes by IncuCyte® ZOOM System (Essen 

BioScience, USA) with 15%, 30%, 80% and 100% confluency after 1, 3, 6 or 7 days 

in culture. ............................................................................................................... 34 

Figure 2.2 Image of adult rat ventricular myocytes (ARVMs) under the microscope, 

showing both healthy (rod shaped) and dead (round) myocytes.  ............................. 38 

Figure 3.1 Electrophoresis of total RNA isolated from H9c2 cardiomyocytes (lane s 

1-2) or ARVMs (lanes 3-4). .................................................................................... 71 

Figure 3.2 Electropherograms and calculated RIN values of total RNA obtained by 

the RNeasy protect cell mini kit (Qiagen) from (A) H9c2 cardiomyocytes, (B) 

NRVMs or (C) ARVMs. ......................................................................................... 72 

Figure 3.3 Fold change of the mRNA expression levels of the catalytic subunits of 

type 2A protein phosphatases, relative to PP2ACα mRNA expression and normalised 

with ACTB (or GAPDH) (PrimerDesign) in (A) H9c2 cardiomyocytes, (B) NRVMs 

and (C) ARVMs ..................................................................................................... 75 

Figure 3.4 Electropherograms and calculated RIN values of total RNA obtained by 

the RNeasy protect cell mini kit (Qiagen) from (A) untreated NRVMs and (B) 

treated with 20 μM cytosine arabinoside (AraC) for 48 hours.  ................................ 77 



List of Figures 
 

 

xvi 

 

Figure 3.5 Fold change of the mRNA expression levels of (A) PP2ACα, (B) 

PP2ACβ, (C) PP4C and (D) PP6C in NRVMs treated with 20 µM cytosine 

arabinoside (AraC) for 48 hours ............................................................................. 79 

Figure 3.6 Protein expression of the type 2A protein phosphatase catalytic subunits, 

in H9c2 cardiomyocytes and ARVMs ..................................................................... 80 

Figure 3.7 Protein expression of the type 2A protein phosphatase catalytic subunits, 

in untreated NRVMs and NRVMs treated with 20 µM cytosine arabinoside (AraC) 

for 48 hours ............................................................................................................ 81 

Figure 3.8 The expression of ubiquitin-conjugated cellular proteins and total 

PP2AC, PP4C and PP6C in cultured ARVMs, exposed to MG132 (1 μM) for 0, 2, 4, 

8 and 24 hours ........................................................................................................ 83 

Figure 4.1 Simplified schematic representation of the RNAi mechanism ............... 92 

Figure 4.2 Schematic diagram of cationic lipid-mediated siRNA cellular uptake ... 96 

Figure 4.3 Multiple amino acid sequence alignment of PP2ACα (UniprotKB ID: 

P63331), PP2ACβ (UniprotKB ID: P62716), PP4C (UniprotKB ID: Q5BJ92) and 

PP6C (UniprotKB ID: Q64620) ............................................................................ 104 

Figure 4.4 Cell viability in H9c2 cardiomyocytes seeded at (A) 15% (n=6), (B), 

30% (n=6) and (C) 50% (n=5) confluence density and treated with 0.1%, 0.2% or 

0.4% or non-treated (NT) (v/v) DharmaFECT#1 for 4 days .................................. 106 

Figure 4.5 Cell viability of untreated (NT) H9c2 cardiomyocytes or transfected with 

either 50 nM rat non-targeting control siRNA (siC) or TOX-siRNA (siTOX) for (A) 

1 day or (B) 4 days ............................................................................................... 108 

Figure 4.6 Cell viability of untreated (NT) H9c2 cardiomyocytes or transfected with 

either 100 nM rat non-targeting control siRNA (siC) or TOX-siRNA (siTOX) for (A) 

1 day or (B) 4 days post-transfection .................................................................... 109 

Figure 4.7 H9c2 cardiomyocytes were transfected with 50 nM non-targeting control 

siRNA (siC) or were non-treated (NT) for 4 days to detect any non-targeting siRNA 

effects of rat non-targeting control siRNA towards the total PP2AC, PP4C, PP6C 

and alpha4 expression. ......................................................................................... 110 

Figure 4.8 Representative electropherograms and calculated RIN values of total 

RNA obtained by the RNeasy protect cell mini kit (Qiagen) from H9c2 

cardiomyocytes transfected with 50 nM rat (A) non-targeting control siRNA (siC), 

(B) PP2ACα-siRNA (siPP2ACα) or (C) PP2ACβ-siRNA (siPP2ACβ) for 2 days (2d) 

or transfected with 50 nM rat (D) non-targeting control siRNA (siC), (E) PP2ACα-

siRNA (siPP2ACα) or (F) PP2ACβ-siRNA (siPP2ACβ) for 4 days (4d). .............. 112 

Figure 4.9 Fold change of the mRNA expression of (A) PP2ACα or (B) PP2ACβ, in 

H9c2 cardiomyocytes transfected with 50 nM rat non-targeting control siRNA (siC), 

rat PP2ACα-siRNA (siPP2ACα) or PP2ACβ-siRNA (siPP2ACβ) for 2 days, relative 

to the expression levels in the control samples (siC) ............................................. 115 

Figure 4.10 Fold change of the mRNA expression of (A) PP2ACα or (B) PP2ACβ, 

in H9c2 cardiomyocytes transfected with 50 nM rat non-targeting control siRNA 

(siC), rat PP2ACα-siRNA (siPP2ACα) or PP2ACβ-siRNA (siPP2ACβ) for 4 days, 



List of Figures 
 

 

xvii 

 

relative to the expression levels in the control samples (siC)  ................................ 116 

Figure 4.11 Protein expression of total PP2AC in H9c2 cardiomyocytes, transfected 

with 50 nM rat (A) PP2ACα-, (B) PP2ACβ-siRNAs (si) or non-targeting control 

siRNA (siC) for 1-4 days ...................................................................................... 118 

Figure 4.12 Protein expression of total PP2AC in H9c2 cardiomyocytes, co-

transfected with 50 nM rat PP2ACα- and PP2ACβ-siRNAs (si) or 100 nM non-

targeting control siRNA (siC) for 1-4 days ........................................................... 119 

Figure 4.13 Protein expression of PP4C in H9c2 cardiomyocytes, transfected with 

50 nM rat PP4C-siRNA (si) or non-targeting control siRNA (siC) for 1-4 days .... 119 

Figure 4.14 Protein expression of PP6C in H9c2 cardiomyocytes, transfected with 

50 nM rat PP6C-siRNA (si) or non-targeting control siRNA (siC) for 1-4 days .... 120 

Figure 4.15 Protein expression of (A) PP4C and (B) PP6C in H9c2 cardiomyocytes, 

transfected with 50 nM rat PP2ACα-siRNA (si) or non-targeting control siRNA 

(siC) for 1-4 days. ................................................................................................ 121 

Figure 4.16 Protein expression of (A) PP4C (n=3) and (B) PP6C (n=4) in H9c2 

cardiomyocytes, transfected with 50 nM rat PP2ACβ-siRNA (si) or non-targeting 

control siRNA (siC) for 1- 4 days ......................................................................... 122 

Figure 4.17 Protein expression of (A) total PP2AC and (B) PP6C in H9c2 

cardiomyocytes, transfected with 50 nM rat PP4C-siRNA (si) or non-targeting 

control siRNA (siC) for 1-4 days .......................................................................... 122 

Figure 4.18 Protein expression of (A) total PP2AC and (B) PP4C in H9c2 

cardiomyocytes, transfected with 50 nM rat PP6C-siRNA (si) or non-targeting 

control siRNA (siC) for 1-4 days .......................................................................... 123 

Figure 4.19 Protein expression of alpha4 in H9c2 cardiomyocytes, transfected with 

50 nM rat alpha4-siRNA (si) or non-targeting control siRNA (siC) for 1-4 days .. 124 

Figure 4.20 Protein expression of total PP2AC in H9c2 cardiomyocytes, transfected 

with 50 nM rat alpha4-siRNA (si) or non-targeting control siRNA (siC) for 1-4 

days.. ................................................................................................................... 125 

Figure 4.21 Protein expression of PP4C in H9c2 cardiomyocytes, transfected with 

50 nM rat alpha4-siRNA (si) or non-targeting control siRNA (siC) for 1-4 days .. 125 

Figure 4.22 Protein expression of PP6C in H9c2 cardiomyocytes, transfected with 

50 nM rat alpha4-siRNA (si) or non-targeting control siRNA (siC) for 1-4 days .. 126 

Figure 5.1 Simplified schematic representation of sodium and calcium transport 

during cardiac excitation-contraction coupling, including involved functional 

proteins which are regulated by phosphorylation .................................................. 134 

Figure 5.2 Phosphorylation level of CaV1.2-Ser1928 in H9c2 cardiomyocytes, 

transfected with rat PP2ACα- (siPP2ACα) (A), PP2ACβ- (siPP2ACβ) (B), PP4C- 

(siPP4C) (C), PP6C- (siPP6C) (D) siRNAs or non-targeting control siRNA (siC) for 

4 days ................................................................................................................... 140 

Figure 5.3 Phosphorylation level of PLM-Ser63 (A) or PLM-Ser68 (B) and total 



List of Figures 
 

 

xviii 

 

expression level of PLM in H9c2 cardiomyocytes, transfected with rat PP2ACα-

siRNA (siPP2ACα) or non-targeting control siRNA (siC) for 4 days .................... 142 

Figure 5.4 Phosphorylation level of PLM-Ser63 (A) or PLM-Ser68 (B) and total 

expression level of PLM in H9c2 cardiomyocytes, transfected with rat PP2ACβ-

siRNA (siPP2ACβ) or non-targeting control siRNA (siC) for 4 days .................... 142 

Figure 5.5 Phosphorylation level of PLM-Ser63 (A) or PLM-Ser68 (B) and total 

expression level of PLM in H9c2 cardiomyocytes, transfected with rat PP4C-siRNA 

(siPP4C) or non-targeting control siRNA (siC) for 4 days .................................... 143 

Figure 5.6 Phosphorylation level of PLM-Ser63 (A) or PLM-Ser68 (B) and total 

expression level of PLM in H9c2 cardiomyocytes, transfected with rat PP6C-siRNA 

(siPP6C) or non-targeting control siRNA (siC) for 4 days .................................... 143 

Figure 6.1 Simplified schematic diagram of the main pathophysiological effects of 

oxidative stress in the heart .................................................................................. 154 

Figure 6.2 Transaortic abdominal aorta constriction model in the adult mouse  .... 158 

Figure 6.3 Pressure overload-induced cardiac hypertrophy in SHAM- and TAC-

operated mice ....................................................................................................... 164 

Figure 6.4 Protein expression of the type 2A protein phosphatase catalytic subunits, 

in the LV tissue of SHAM (n=4)- and TAC (n=6)-operated mice, 28 days post-

surgery ................................................................................................................. 166 

Figure 6.5 Protein expression of the alpha4, in the LV tissue of SHAM (n=4) - and 

TAC (n=6)-operated mice, 28 days after surgery .................................................. 167 

Figure 6.6 Protein expression of the PP6C sit4-associated protein domain subunits 

(SAP1-3), in the LV tissue of SHAM (n=4)- and TAC (n=6)-operated mice, 28 days 

post-surgery ......................................................................................................... 168 

Figure 6.7 Protein expression of the PP6C regulatory ankyrin repeat domain 

subunits (ANKRD28/44/52), in the LV tissue obtained from SHAM (n=4)- and TAC 

(n=6)-operated mice, 28 days after surgery ........................................................... 169 

Figure 6.8 Immunoprecipitation of alpha4 in H9c2 cardiomyocyte lysates  ........... 170 

Figure 6.9 Immunoprecipitation of alpha4 in ARVM lysates ............................... 171 

Figure 6.10 Immunoprecipitation of alpha4 in LV tissue lysates obtained from 

SHAM (n=4)- and TAC (n=4)-operated mice ....................................................... 172 

Figure 6.11 The association of PP2AC with alpha4 was investigated during LV 

hypertrophy .......................................................................................................... 173 

Figure 6.12 The association of PP6C with alpha4 was investigated during LV 

hypertrophy .......................................................................................................... 174 

Figure 6.13 Effects of siRNA-mediated PP6C protein expression knockdown on cell 

viability ................................................................................................................ 175 

Figure 6.14 Protein expression of PP6C in H9c2 cardiomyocytes, transfected with 



List of Figures 
 

 

xix 

 

50 nM rat PP6C-siRNA (si) or non-targeting control siRNA (siC) for 8 days and 

treated with 300 µM H2O2 or PBS (vehicle control) ............................................ 176 

Figure 6.15 Protein expression of (A) total PP2AC (n=5) and (B) PP4C (n=4) in 

H9c2 cardiomyocytes, transfected with 50 nM rat PP6C-siRNA (si) or non-targeting 

control siRNA (siC) for 8 days and treated with 300 µM H2O2 or PBS (vehicle 

control) ................................................................................................................ 177 

Figure 6.16 Protein expression of (A) γH2AX, (B) H2AX and (C) γH2AX/H2AX 

ratio in H9c2 cardiomyocytes, transfected with 50 nM rat PP6C-siRNA (si) or non-

targeting control siRNA (siC) for 8 days and treated with 300 µM H2O2 or PBS 

(vehicle control) ................................................................................................... 178 

Figure 6.17 Protein expression of alpha4 in H9c2 cardiomyocytes, transfected with 

50 nM rat alpha4-siRNA (si) or non-targeting control siRNA (siC) for 4 days and 

treated with 300 µM H2O2 or PBS (vehicle control)  ............................................ 180 

Figure 6.18 Protein expression of (A) γH2AX, (B) H2AX and (C) γH2AX/H2AX 

ratio in H9c2 cardiomyocytes, transfected with 50 nM rat alpha4-siRNA (si) or non-

targeting control siRNA (siC) for 4 days and treated with 300 µM H2O2 or PBS 

(vehicle control) ................................................................................................... 181 

Figure 6.19 Protein expression of (A) γH2AX, (B) H2AX and (C) γH2AX/ H2AX 

enrichment in the LV tissue of SHAM (n=4)- and TAC (n=6)-operated mice, 28 days 

after surgery ......................................................................................................... 183 

 



Abbreviations 
  

 

xx 

 

Abbreviations 

Abs Absorbance  

ACTB β-actin 

Ang-II Angiotensin II  

ANKRD Ankyrin repeat domain 

AraC Cytosine arabinoside  

ARVMs Adult rat ventricular myocytes  

ATM Ataxia-telangiectasia mutated 

atm atmosphere 

ATP Adenosine-5’-triphosphate 

ATR ATM- and Rad3-Related 

BCA Bicinchoninic acid 

BSA Bovine serum albumin 

BW Body weight  

C Catalytic subunit 

Ca
2+ Calcium ions 

CAL Calibrator gene  

CaMKII Ca
2+

/calmodulin–dependent kinase II  

cAMP Cyclic adenosine monophosphate 

CaV1.2 LTCC α1C subunit 

cDNA Complementary DNA 

cm Centimetre 

CRE cAMP response element  

CREB CRE binding protein  

CV Coefficient of variation  

DMEM Dulbecco's Modified Eagle Medium 

DMSO Dimethyl sulfoxide  

DNA Deoxyribonucleic acid 

DNA-PK DNA-dependent protein kinase 

dsDNA double-stranded DNA 

E1 Ubiquitin-activating enzyme 

E2 Ubiquitin-conjugating enzyme  

E3 Ubiquitin ligase enzyme 

ECL Enhanced chemiluminescence  

EDTA  Ethylenediaminetetraacetic acid disodium salt dihydrate 

EGTA Ethylene-bis(oxyethylenenitrilo)tetraacetic acid 

ENA Na
+
 equilibrium potential  

ERK Extracellular signal-regulated kinase  

ERK1/2 Extracellular signal-regulated kinases 1/2 

ET-1 Endothelin-1  

FBS Foetal bovine serum 

FC Fold-change 



Abbreviations 
  

 

xxi 

 

FXYD1 FXYD-domain containing ion transport regulator 1 

g Grams  

g Relative centrifugal force 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

GOI Gene of interest  

GPCRs G protein-coupled receptors 

GTS Targeted gene of treated samples  

h Hour 

H
+
 Hydrogen ion 

H2AX Histone 2A variant X  

HCl Hydrochloride acid 

HEPES 4-(2-Hydroxyethyl)piperazine-1-ethanesulfonic acid 

HW Heart weight  

ICa calcium current  

ICaL L-type Ca
2+

 current 

IGBP1 Immunoglobulin binding protein 1 

IK Potassium current 

IK1 Inward rectifying potassium current 

IKr Rapid component of the delayed rectifier potassium current 

IKs Slow component of the delayed rectifier potassium current 

IKur Ultrarapid delayed rectifier potassium current 

INa Sodium current  

INa/Ca Na
+
/Ca

2+
-exchanger current 

IP Immunoprecipitation  

IP3 Inositol 1,4,5-triphosphate  

Ito Transient outward K
+
 current  

K
+
 Potassium ions 

kg Kilograms  

L Litter 

Leu Leucine residue 

LV Left ventricular  

LVW Left ventricular weight  

Lys Lysine residue 

M Molar 

MAPK Mitogen-activated protein kinase  

mg Milligram  

min Minutes 

ml millilitre 

mM Millimolar 

mRNA Messenger RNA  

MTT 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide  

Na
+
 Sodium ion 

NADPH Nicotinamide adenine dinucleotide phosphate  

NCX Na
+
/Ca

2+
-exchanger  

NF Normalisation factor  

NKA Na
+
/K

+
 ATPase  

no-RT No reverse transcriptase 



Abbreviations 
  

 

xxii 

 

NRQ Normalised relative quantities  

NRVMs Neonatal rat ventricular myocytes  

NT Non-treated 

PBS Phosphate buffered saline  

PCR Polymerase chain reaction 

PKA Protein kinase A 

PKC Protein kinase C  

PKG Protein kinase G 

PLM Phospholemman  

PP Protein phosphatase 

PP1 Protein phosphatase 1 

PP2A Protein phosphatase 2A 

PP2B protein phosphatase 2B or calcineurin 

PP4 Protein phosphatase 4 

PP6 Protein phosphatase 6 

PR65 Regulatory subunit of PP2A 

qPCR Quantitative polymerase chain reaction  

r Pearson coefficient of correlation  

redox reduction–oxidation  

RIN RNA integrity number 

RNA Ribonucleic acid 

RNAi RNA interference  

ROS Reactive oxygen species  

rpm Revolutions per minute 

RQ Relative quantity  

RT Reverse transcription  

RT-PCR Reverse transcriptase polymerase chain reaction 

RyR2 Ryanodine receptor type 2 

SAP Sit4-associated protein  

SD Standard deviation  

SDS Sodium dodecyl sulfate 

SEM Standard error of the mean 

Ser Serine residue 

SERCA  SR Ca
2+

-ATPase  

si Small interfering 

siAlph4 ON-TARGET plus™ Rat Igbd1 siRNA SMARTpool 

siC ON-TARGET plus™ Non-Targeting siRNA  

siPP2Cα ON-TARGET plus™ Rat Ppp2ca siRNA SMARTpool 

siPP2Cβ ON-TARGET plus™ Rat Ppp2cb siRNA SMARTpool 

siPP4C ON-TARGET plus™ Rat PPP4C siRNA SMARTpool 

siPP6C ON-TARGET plus™ Rat PPP6C siRNA SMARTpool 

siRNA Small interfering Ribonucleic acid 

siTox  TOX™ Transfection Control 

TAC Transaortic constriction  

Tap42 PP2A-associated protein 42 

TBE Tris-borate-EDTA  

TBST buffer 1xTris-based buffer containing Tween-20 0.1 % (v/v) 



Abbreviations 
  

 

xxiii 

 

Thr Threonine residue 

TL Tibia length 

TOX-siRNA TOX™ Transfection Control siRNA  

Tris tris(hydroxymethyl)aminomethane 

Ub Ubiquitin 

unk Unknown sample  

Vm Membrane potential  

α-AR α-adrenergic receptor  

β-AR β-adrenergic receptor  

γH2AX Phosphorylated H2AX  

µg Microgram  

µl Microlitre  

µM Micromolar  

 

 

 

 

 

  

 



Chapter 1 
  

 

1 

 

Chapter 1  

General Introduction 

1.1 Prevalence of cardiovascular disease in the UK 

Cardiovascular disease still remains one of the leading causes of death worldwide 

(Naghavi M et al., 2015; Roth et al., 2015; Townsend et al., 2016) and is the second 

leading cause of death in the UK1. Cardiac hypertrophy (section 1.2), is a major 

predictor of cardiovascular morbidity and mortality (Levy et al., 1990; Brown et al.; 

Havranek et al., 2008; Okwuosa et al., 2015). It is associated with nearly all forms 

of heart failure and other cardiovascular diseases, such as essential hypertension, 

coronary heart disease and is also considered an independent risk for myocardial 

infarction, arrhythmia and sudden death (Kannel et al., 1987; Koren et al., 1991; 

Brown et al.; East et al., 2003; Frenneaux, 2004; Smits and Smits, 2004; Meijs et al., 

2007).  

Heart failure, is a cardiovascular condition where the heart cannot pump blood 

sufficiently to the rest of the body and is associated with increasing mortality rates  

and hospitalisation (Nicol et al., 2008; McMurray et al., 2012; Guha and McDonagh, 

2013; Ponikowski et al., 2014; Bhatnagar et al., 2015; Gerber et al., 2015). In the 

UK, more than 500,000 people have been diagnosed with heart failure according to 

                                                   
1
British Heart Foundation cardiovascular disease statistics compendium 2017; 

https://www.bhf.org.uk/research/heart-statistics/heart-statistics-publications/cardiovascular-disease-

statistics-2017  

https://www.bhf.org.uk/research/heart-statistics/heart-statistics-publications/cardiovascular-disease-statistics-2017
https://www.bhf.org.uk/research/heart-statistics/heart-statistics-publications/cardiovascular-disease-statistics-2017
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British Heart Foundation statistics 20172. Most common causes of heart failure are 

hypertensive and coronary heart disease (Velagaleti and Vasan, 2007; Dunlay et al., 

2009). The primary abnormality is impaired function of the left ventricle and fall in 

cardiac output (McMurray et al., 2012). Several compensatory mechanisms exist in 

mammals to augment cardiac output sufficiently which mainly include the Frank -

Starling mechanism (Katz, 2002), development of ventricular hypertrophy (section 

1.2.5) and increased sympathetic drive to the heart (section 1.3.3). However, over 

time, all these adaptive mechanisms, become maladaptive and may trigger 

progression to a decompensated phenotype and heart failure (Hein et al., 2003; 

Gradman and Alfayoumi, 2006; El-Armouche and Eschenhagen, 2008). 

Current therapies for heart failure provide only symptomatic relief or provisionally 

impede disease progression (McMurray et al., 2012; Ponikowski et al., 2014). Thus, 

a better understanding of the molecular mechanisms underlying cardiac 

pathophysiology may provide new possibilities for the development of new and 

improved therapies to prevent or treat pathological cardiac hypertrophy, heart failure 

and other types of cardiovascular disease. 

1.2 Cardiac hypertrophy 

 Cardiac growth 1.2.1

In mammals, the heart is one of the first organs to form and function during fetal 

development (Cleaver and Krieg, 2010). Under normal conditions, cardiomyocytes 

comprise approximately 70-80% of the adult heart’s mass, even though they 

represent nearly one-third of the total cell population (Nag, 1980; Popescu et al., 

2006). Though, prenatal cardiac growth depends on hyperplasia of cardiomyocytes, 

                                                   
2
Cardiovascular statistics – British Heart Foundation UK facts sheet; 

 https://www.bhf.org.uk/research/heart-statistics  

https://www.bhf.org.uk/research/heart-statistics
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shortly after birth, most cardiomyocytes exit the cell cycle and lose their ability to 

divide (Li et al., 1996; Porrello et al., 2008; Maillet et al., 2013; Alkass et al., 2015). 

Subsequent growth of the heart, during postnatal development, is primarily reliant 

on hypertrophy (enlargement) of individual cardiomyocytes (Li et al., 1996; Porrello 

et al., 2008; Mollova et al., 2013; Senyo et al., 2013; Alkass et al., 2015; Bergmann 

et al., 2015). Nevertheless, recent studies have provided evidence of cardiomyocyte 

turnover (most studies report < 1% per year) during a human lifespan that gradually 

declines with age, which is thought to contribute to the development of the heart 

along with hypertrophy (Bergmann et al., 2009; Mollova et al., 2013; Bergmann et 

al., 2015). 

Cardiac hypertrophy can be defined as an increase in cardiac mass due to an 

enlargement in cardiomyocyte size, which is achieved by an increase in protein 

synthesis and the number of sarcomeres in the component myofibrils. In response to 

an increase in workload, imposed by physiological or pathological stimulation, the 

heart undergoes hypertrophic growth to normalise ventricular wall stress . Depending 

on the stimulus, cardiac hypertrophy can be divided into physiological and 

pathological hypertrophy, which are characterised by distinct remodelling and 

molecular mechanisms, discussed in the following sections (sections 1.2.2-1.2.5) 

(review by Maillet et al., 2013). 

 Physiological and pathological cardiac hypertrophy 1.2.2

Cardiac hypertrophy, that occurs in normal growth (postnatal hypertrophy), 

pregnancy or chronic exercise training, is usually referred to as physiological 

hypertrophy. This type of cardiac hypertrophy is characterised by normal or 

enhanced contractile function, normal morphology and organisation of heart 

structure (Pluim et al., 2000; Schannwell et al., 2002; Iemitsu et al., 2003; Konhilas 
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et al., 2004; Eghbali et al., 2005) (Figure 1.1). In contrast, cardiac hypertrophy, 

induced in settings of a disease such as hypertension, aortic stenosis or following 

heart injury (myocardial infarction), is referred to as pathological hypertrophy. 

Pathological hypertrophy is mostly considered irreversible and is commonly 

associated with contractile dysfunction, interstitial fibrosis, upregulation of fetal 

cardiac genes (such as atrial and brain natriuretic peptides) and increased mortality 

(Levy et al., 1990; Hein et al., 2003; McMullen et al., 2003; Drazner et al., 2004; de 

Simone et al., 2008). 

 Concentric and eccentric hypertrophy 1.2.3

Cardiac hypertrophy is typically caused by pressure or volume overload, leading to 

different forms of left ventricular (LV) hypertrophy with distinct morphology, 

molecular mechanisms and gene expression profiles, at least at an early stage 

(Figure 1.1). Therefore, physiological and pathological hypertrophy have been 

subdivided into concentric and eccentric hypertrophy (review by Maillet et al., 

2013). 

 Physiological stimulus can result in concentric or eccentric hypertrophy, however, 

this category of remodelling is considered reversible. Isometric or static exercise, 

such as weightlifting, results in a pressure load on the heart and leads to concentric 

hypertrophy with a small or no change in chamber volume whilst, isotonic exercise 

such as running or pregnancy, increases venous return to the heart, which results in 

volume overload and eccentric hypertrophy characterised by chamber enlargement 

and a proportional change in wall thickness (McMullen et al., 2003; Mihl et al., 

2008; Xiao et al., 2014). Pathological stimulus, such as hypertension or aortic 

stenosis, produces an increase in systolic wall stress and results in concentric 

hypertrophy, which is characterised by an increase in relative wall thicknes s and 
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cardiac mass, with a reduction in left ventricular volume, where  the addition of new 

sarcomeres in parallel increases cardiomyocyte size. Alternatively,  a pathological 

stimulus such as chronic myocardial infarction or valvular insufficiency, causes an 

increase in diastolic wall stress and can lead to wall dilation with  the preferential 

lengthening of cardiomyocytes by the addition of new sarcomeres in series 

(Grossman et al., 1975; McMullen et al., 2003). 

 

Figure 1.1 Different forms of cardiac hypertrophy (taken from Maillet et al., 2013). Postnatal 

hypertrophy is associated with the normal development of the postnatal heart until 

adulthood. Physiological hypertrophy during pregnancy or in response to chronic exercise 

training, is reversible and characterised by normal cardiac morphology and function. In 

contrast, hypertrophy that occurs in settings of disease is detrimental to cardiac structure and 

function and can lead to heart failure. Pressure overload stimulus causes thickening of the left 

ventricle wall due to the addition of sarcomeres in parallel and results in concentric 

hypertrophy. Volume overload stimulus induces an increase in muscle mass via the addition of 

sarcomeres in series and results in eccentric hypertrophy. MI: Myocardial infarction. 

 Molecular mechanisms of physiological LV hypertrophy 1.2.4

Cardiac hypertrophy is typically stimulated by intracellular signal transduction 
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pathways in response to either neuroendocrine factors or mechanical stretch–sensing 

apparatus (review by Maillet et al., 2013). The molecular mechanism for the 

pregnancy-induced LV hypertrophy (eccentric phenotype) is poorly understood yet, 

however, postnatal and exercise-induced hypertrophy is stimulated by high serum 

levels of growth factors such as insulin-like growth factor 1 (IGF1). IGF1 is 

involved in the activation of phosphoinositide 3-kinase and protein kinase B, which 

regulate the progress of physiological hypertrophy (Figure 1.2) (McMullen et al., 

2003; Luo et al., 2005). In a previous study, transgenic mice, with reduced 

phosphoinositide 3-kinase activity, showed suppressed developmental growth and 

attenuated physiological hypertrophy in response to exercise training (Luo et al., 

2005).  

 Molecular mechanisms of pathological LV hypertrophy 1.2.5

1.2.5.1 Concentric hypertrophy 

In response to pathological pressure overload, autocrine or paracrine neurohormonal 

factors, such as angiotensin II (Ang-II), endothelin-1 (ET-1) or noradrenaline, are 

released and induce cardiomyocyte growth (Schunkert et al., 1990; Arai et al., 1995; 

Rapacciuolo et al., 2001; Yayama et al., 2004) (Figure 1.2). Ang-II, ET-1 or 

noradrenaline bind to their cognate G protein-coupled receptors (e.g. Ang-II 

receptors, ET-1 receptors or α1-adrenergic receptors, respectively) that are coupled 

to heterotrimeric Gq proteins of the G protein family and cause the dissociation of 

the Gα (Gαq/11) and Gβγ subunits (Lambright et al., 1994; Sondek et al., 1996; 

review by Rockman et al., 2002). The activated Gαq/11 then activates phospholipase 

C, which catalyses the cleavage of the phospholipid phosphatidylinositol 4,5 -

bisphosphate into inositol 1,4,5-triphosphate (IP3) and diacylglycerol (Rozengurt, 

1986; Trepel et al., 1988; Simon et al., 1991). IP3 production induces intracellular 
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calcium (Ca2+) release from the sarcoplasmic reticulum via stimulation of the IP 3 

receptors to activate the Ca2+/calmodulin–dependent kinase II (CaMKII) and 

calcineurin (Molkentin et al., 1998). However, due to the low density of IP3 

receptors on the sarcoplasmic reticulum of ventricular cardiomyocytes, 

calcineurin/CAMKII activation is primarily driven by Ca2+ released during β-

adrenergic receptor stimulation or introduced into the cell via the transient receptor 

potential canonical channels 3 and 6 subtypes, which can be activated by their 

association with phospholipase C or diacylglycerol (Mackenzie et al., 2004; 

Nakayama et al., 2010; Wu et al., 2010). Overall, calcineurin (also known as protein 

phosphatase 2B (PP2B)) is a Ca2+-dependent protein phosphatase that activates the 

nuclear factor of activated T cells family of transcription factors, which in turn 

enhance the transcription of hypertrophic genes that, in their majori ty, are typically 

maladaptive (Molkentin et al., 1998; Wilkins et al., 2004). Diacylglycerol activates 

serine/ threonine-protein kinase C (PKC), which in turn enables the MEK1/2 

(mitogen-activated protein kinase (MAPK)/ extracellular signal-regulated kinase 

(ERK) kinases 1/2)-ERK1/2 signalling pathway resulting in increased protein 

synthesis and cell growth (Raman and Cobb, 2003; Harris et al., 2004). The 

MEK1/2-ERK1/2 pathway is suggested to drive the adaptive cardiac hypertrophy 

response, however, association of the MEK1/2-ERK1/2 complex with the Gβγ 

subunits enhances autophosphorylation of ERK2 at Thr188 residue and its 

localisation in the nucleus, resulting in the activation of transcription factors and 

increased transcription of hypertrophic genes (Bueno and Molkentin, 2002; Harris et 

al., 2004; Lorenz et al., 2009). The latter event has been suggested to induce 

maladaptive cardiac hypertrophy (Lorenz et al., 2009; Ruppert et al., 2013; Mutlak 

and Kehat, 2015).  

In addition to neurohormonal-dependent stimulation of cardiac hypertrophy, 
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Figure 1.2 A schematic illustration of signalling pathways involved in the induction of 
physiological or pathological cardiac hypertrophy (adapted from Bernardo et al., 2010). Ang II: 

angiotensin II; ET-1: endothelin-1; GPCR: G protein-coupled receptor; IGF-1: insulin-like growth 

factor 1; MAPK: mitogen-activated protein kinase; NA: noradrenaline; PI3K (p110α): 

phosphoinositide 3-kinase p110α; RTK: receptor tyrosine kinase. 

cardiomyocytes can detect directly hemodynamic stress (e.g. pressure overload) by 

an internal sensory apparatus, resulting in activation of stress-activated protein 

kinases (SAPKS) p38 kinases and c-Jun N-terminal kinases branches of the mitogen-

activated protein kinase (MAPK) cascade, which in turn activate transcription 

factors, followed by the induced transcription of hypertrophic genes (Gupta et al., 

1996; Weinberg et al., 1999; Braz et al., 2003; Raman and Cobb, 2003; 

Sopontammarak et al., 2005). Nevertheless, in many studies, their role in the 

development of pathological cardiac hypertrophy appears to be contradictory. 

Activation of JNK has been suggested to either induce a maladaptive cardiac 

phenotype or protect the heart in a setting of pathological pressure overload 

(Choukroun et al., 1999; Minamino et al., 2002; Sadoshima et al., 2002; Liang and 

Molkentin, 2003; Liu et al., 2009). Moreover, evidence has shown an anti-apoptotic 
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or anti-hypertrophic role of p38 kinases (p38α subfamily), whilst other studies 

demonstrated an association between the activated p38 and induction of maladaptive 

cardiac phenotype and/ or cardiomyocyte apoptosis (Wang et al., 1998; Zhang et al., 

2000; Behr et al., 2001; Braz et al., 2003; Kaiser et al., 2004; Nishida et al., 2004). 

1.2.5.2 Eccentric hypertrophy 

Pathological cardiac hypertrophy, induced by volume overload due to valvular 

insufficiency or chronic myocardial infarction, results in eccentric pathological 

hypertrophy. Such a stress mainly activates ERK5 and has been associated with 

progression to dilated cardiomyopathy and sudden death (Nicol et al., 2001).  

1.3 Excitation-contraction of ventricular cardiomyocytes 

 Action potential of ventricular cardiomyocytes 1.3.1

The action potential (i.e. the electrical impulse that initiates contraction) of a typical 

ventricular cardiomyocyte (Figure 1.3A-C) is divided into 5 phases (0-4), beginning and 

ending with phase 4 (Figure 1.4) (Bers, 2001; Nattel and Carlsson, 2006; Giudicessi and 

Ackerman, 2012). At phase 4 (resting phase), the membrane baseline potential is at a steady 

voltage, (between -80 mV to -90 mV), mainly due to a constant K+ ion efflux (inward 

rectifying K+ current, IK1) through the rectifier K+ channels and the activity of the Na+/K+-

ATPase (influx of K+) (Inagaki et al., 1996; Bers, 2001; Nattel and Carlsson, 2006). At this 

stage, voltage-gated Na+ and Ca2+ channels are closed. Phase 0 of the action potential 

begins with the depolarisation of the cell to its threshold due to the passive entrance of Na+ 

from a neighbouring cardiomyocyte or pacemaker cell, through the gap junctions (formed 

primarily of connexin 43) causing an inward Na+ current (INa) that exceeds the IK (Spragg 

and Kass, 2005; Boyett et al., 2006). Voltage-gated Na+ “fast” channels (mainly NaV1.5) are 

then triggered to open (Maier et al., 2002; Blechschmidt et al., 2008), allowing Na+ influx 
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into the cell. This increase in the Na+ inward current (INa) causes a rapid further 

depolarisation of the cell membrane towards the Na+ equilibrium potential (ENa = +70 mV). 

Meanwhile, at Vm=-40 mV, the voltage-gated L-type Ca2+ channels (primarily CaV1.2 in 

 

Figure 1.3 Cardiomyocyte structure and sarcomere organisation. The major cellular 

constituents of the adult myocardium are the cardiomyocytes (>90% in human myocardium) 

(Banerjee et al., 2007; Mollova et al., 2013; Alkass et al., 2015). (A) A backscattered electron 

microscopy image of cardiomyocytes in normal human left ventricular myocardium, 

reproduced by Kanzaki et al. (2010), shows that cardiomyocytes are striated, branched, cells 

that cross-link with those around them in three dimensions. Cell-cell connections by 

intercalated discs (ID, white arrows) and sarcomere striation are observed; scale bar = 50 μm. 

ID: intercalated disc. (B) Transmission electron microscopy image showing the transverse 

tubules (white arrows) and Z line (black arrows) formed between adjacent sarcomeres in 

healthy human myocardium, reproduced by Zhang et al. (2013); scale bar 500 nM. Box insert 

shows higher resolution of the transverse tubule (TT)-sarcoplasmic reticulum (SR) dyadic 

junction marked by the white square; scale bar: 250 nM. TT: transverse tubule; SR: 

sarcoplasmic reticulum; M: mitochondria. (C) A simplified schematic diagram of the thin (actin) 

and thick (myosin) filaments arrangement in the sarcomere, the basic cardiomyocyte 

contractile apparatus. Thin filaments are attached to the Z-lines and expand towards the 

centre of the sarcomere whilst, thick filaments, are positioned at the centre of the sarcomere. 

The central A-band is determined by the length of the thick filaments which are flanked by the 

thin filaments. The centre of the thick filaments is known as M-line. The I-band consists only 

thin filaments, and the area of the thick filaments which is not flanked by thin filaments is 

known as H-band. Z-lines contain mainly α-actinin that crosslinks thin filaments from adjacent 

sarcomeres. 

A B

M

Sarcomere

C

50 μm



Chapter 1 
  

 

11 

 

 

Figure 1.4 Action potential of ventricular 
cardiomyocytes (taken from Giudicessi and 

Ackerman, 2012). A diagram of the phases 

(0-4) of a typical ventricular cardiomyocyte 

action potential is shown. Timing and 

portion of the inward and outward currents 

of the action potential are indicated with 

blue (ventricular cardiomyocyte) or orange 

(nodal cardiomyocyte) bars. SA: Sinoatrial; 

AV: atrioventricular; ICa,L: Ca2+ current 

(through L-type Ca2+ channels); IK1: inward 

rectifier K+ current; IKATP: ATP-sensitive K+ 

current; IKr: rapid component of the delayed 

rectifier K+ current; IKs: slow component of 

the delayed-rectifier K+ current; INa: Na+ 

current; Ito: transient outward K+ current.  

ventricles) open and cause a “slow” inward Ca2+ current (ICa) Kv1.4) and produce a 

transient outward (Mangoni et al., 2003; Takemura et al., 2005; Zhang et al., 2005). 

During that stage, the ventricular cardiomyocytes membrane potential (V m) may 

reach a peak at +30-50 mV due to the continuous leak of K+ (Bers, 2001). 

Depolarisation rapidly shuts off the outward IK1, but voltage-gated K+ channels are 

activated (Kv4.2, Kv4.3 and K+ current, called Ito (Bers, 2001; Giudicessi and 

Ackerman, 2012). At peak potential, where the inward current (INa+ICa) is equal to 

the outward current (mainly due to K+), the voltage-gated Na+ channels close, 

inactivating INa. The next phase is phase 1 (rapid repolarisation phase), where an 

initial rapid repolarisation is induced mainly due to the inactivation of INa and 

activation of transient outward Ito. Phase 2 (plateau phase), is the longest phase of 

the action potential. Ito is inactivated, however, the voltage-gated L-type Ca2+ 

channels are still open, and the main inward is ICa is balanced by the delayed 

rectifier K+ currents IKs, IKur, and IKr (Kv7.1, Kv1.5 and Kv11.1 channels, 

respectively), leading to the plateau (Bers, 2001; Giudicessi and Ackerman, 2012). 

This stage becomes significant in the excitation-contraction coupling process (see 
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section 1.3.2). During phase 3 (late repolarisation), the voltage-gated L-type calcium 

channels are closing. The cells are repolarised with the Vm returning to its resting 

potential, due to the persistent outward K+ currents (mainly by IK1 increase) (Bers, 

2001; Giudicessi and Ackerman, 2012). Furthermore, the extra cytosolic 

concentrations of Na+ and Ca2+ ([Na+]i and [Ca2+]i, respectively) are mainly extruded 

from the cell by the sarcolemmal Na+/ K+-ATPase (NKA), which in turn restores the 

loss of intracellular K+ during the repolarisation phase and the forward mode of 

Na+/Ca2+-exchanger, increasing inward INa/Ca (Ca efflux) (Bers, 2001; Nattel and 

Carlsson, 2006). 

 Cardiac excitation-contraction coupling  1.3.2

Electrical excitation (section 1.3.1) of the cardiomyocyte leads to contraction. This 

process is called excitation-contraction coupling and is well characterised in 

ventricular cardiomyocytes (Bers, 2002). Calcium (Ca2+) is the critical mediator of 

cardiac excitation-contraction coupling, that can act as an intracellular secondary 

messenger and drive contraction. Depolarisation of the sarcolemma by the inward INa 

current during the action potential activates the L-type Ca2+-channels, which allows 

free Ca2+ to enter the cell (also termed inward Ca2+ current (ICa)) (Scriven et al., 

2000; Bers, 2001; Takemura et al., 2005). In addition, during depolarisation, the 

inward INa, may trigger Ca2+ influx via the reverse mode of the Na+/Ca2+-exchanger 

(NCX), contributing to an early increase in [Ca2+]i (Bers, 2001; Lines et al., 2006). 

The L-type Ca2+ channels are primarily located at sarcolemma invaginations into the 

cell interior, called t-tubules (transverse tubules), in close proximity to type 2 

ryanodine receptors (RyR2), which are the Ca2+ release channels of the sarcoplasmic 

reticulum in cardiomyocytes, the primary intracellular calcium store (Nakai et al., 

1990; Scriven et al., 2000; Brette et al., 2004; Zhang et al., 2013). An increase in 

local cytosolic free Ca2+ concentration ([Ca2+]i) near the RyR2, primarily due to the 
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L-type Ca2+ channels activity, binds to and activates them to releases free Ca2+ (also 

termed Ca2+ sparks) from the sarcoplasmic reticulum, in a process known as “Ca2+ 

induced Ca2+ release” (CICR) (Bers, 2001; Bers, 2002). CICR may increase [Ca2+]i 

approximately 10-fold in ventricular cardiomyocytes, as several thousand sparks are 

activated synchronically (high density of RyR2), which causes inactivation of the ICa 

(Bers, 2001). The cytosolic free Ca2+ then binds to the thin filament troponin 

complex, specifically at troponin C, which results in subsequent formation of actin-

myosin cross-bridges to produce contraction of the cardiomyocytes along the 

muscle’s major axis (Bers, 2001). Muscle contraction occurs when the central 

bipolar myosin thick filaments use ATPase-generated force to pull the thin 

filaments, sliding the two types of filaments across each other to reduce sarcomere 

length. 

Following contraction, the Ca2+ dissociates from troponin C, disrupting the actin-

myosin interaction on myofilaments (Hazard et al., 1998; Bers, 2001) and is 

removed from the cytosol by four mechanisms, involving sarcoplasmic reticulum 

Ca2+-ATPase (SERCA2a), sarcolemmal NCX, sarcolemmal Ca2+-ATPase or 

mitochondrial Ca2+ uniport, to allow relaxation of the cardiomyocytes (diastole) 

(Bers, 2002). The activator Ca2+ is predominantly reuptaken into the sarcoplasmic 

reticulum through the SERCA2a. Under normal conditions, the sarcoplasmic 

reticulum usually reuptakes an equal fraction of activator Ca2+ that was released. 

This fraction usually corresponds to approximately 70% or more of the activator 

Ca2+ present in the cytosol, depending on the species (Bers, 1997; Pieske et al., 

1999; Puglisi et al., 1999; Shannon et al., 2000; Bers, 2001; MacLennan and 

Kranias, 2003). The activity of SERCA2a is regulated by phospholamban (Bers, 

2001; MacLennan and Kranias, 2003; Vangheluwe et al., 2005). At low levels of 

cytosolic [Ca2+]i, dephosphorylated phospholamban inhibits SERCA2a activity. 
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However, at high levels of [Ca2+]i, the Ca2+-calmodulin–dependent protein kinase 

(CaMKII), a serine/threonine-specific protein kinase, is activated (Saucerman and 

Bers, 2008). CAMKII phosphorylates phospholamban at the threonine 17 residue 

and relieves its inhibitory function (Bers, 2001; MacLennan and Kranias, 2003; 

Vangheluwe et al., 2005). Phospholamban can also be phosphorylated at serine16 by 

the serine/threonine-protein kinase A (PKA) and increase SERCA2a activity, in 

response to β-adrenergic receptor stimulation, (see section 1.3.3) (Bers, 2002; 

MacLennan and Kranias, 2003). An important fraction (up to 28%) of the activator 

Ca2+ is extruded by the forward mode of the sarcolemmal NCX due to the increased 

[Ca2+]I, which favours the Ca2+ efflux (Bers, 1997; Pieske et al., 1999; Puglisi et al., 

1999; Shannon et al., 2000; Bers, 2001; MacLennan and Kranias, 2003; Liao et al., 

2012). Only a small fraction of the activator Ca2+ is removed from the cytosol by the 

sarcolemmal Ca2+-ATPase or mitochondrial Ca2+ uniport (Bers, 2001). The latter 

appears to have a major role in activation of oxidative metabolism (Territo et al., 

2000; reviewed by Griffiths et al., 2010).  

The excitation-contraction coupling is regulated by the activation of the G protein-

coupled receptors (GPCRs) which are driven by the stimulation of the sympathetic 

or parasympathetic nervous system, causing changes in the phosphorylation status of 

many cardiac proteins and affecting the cardiac rate and output eventually (Bers, 

2001). The mechanism is further described in section 1.3.3.  

 Autonomic control of cardiomyocyte contraction 1.3.3

The autonomic nervous system controls the heart rate (chronotropy), conduction 

velocity through the atrioventricular node (dromotropy), the force of contraction 

(inotropy) and rate of relaxation (lusitropy). Therefore, the autonomic nervous 

system can regulate cardiac output, in response to circulatory requirements of the 
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body. It is divided into two interacting systems: the sympathetic and 

parasympathetic system (Sherwood, 2011; Shen et al., 2012). Overall, activation of 

the sympathetic neurons, under physiological (i.e. exercise; section 1.2.4) or 

pathological conditions (i.e. pressure overload; section 1.2.5), causes the release of 

noradrenaline, a catecholamine, which activates Gs protein-coupled receptors, such 

as the β-adrenergic receptors on cardiac myocytes (Bers, 2002). 

β1-adrenergic receptor is the abundant subtype and is functional at both t-tubules and 

surface sarcolemma of ventricular cardiomyocytes (Brodde, 1991; Moniotte et al., 2001; 

Cros and Brette, 2013). When the sympathetic transmitter noradrenaline binds to β1-

adrenergic receptors, Gαs subunit is activated and dissociates from the Gβγ dimer (Figure 

1.5). Gαs then activates the adenylate cyclase to increase cAMP, which in turn binds to and 

activates cAMP-dependent protein kinase A (PKA) (Defer et al., 2000; Pierce et al., 2002). 

PKA then directly phosphorylates several local substrates on serine/ threonine residues, 

involved in excitation-contraction coupling, such as L-type voltage-gated Ca2+ channels, 

RyR2, phospholamban, troponin I and phospholemman, through its interaction with various 

A-kinase anchoring proteins (AKAPS) (reviewed by Diviani et al., 2011). Phosphorylation 

of the L-type voltage-gated Ca2+ channels, CaV1.2, by PKA, has been commonly reported to 

upregulate its activity, thereby, increasing inward ICa and [Ca2+]i (Osterrieder et al., 1982; 

Gao et al., 1997; Hulme et al., 2006a; Shi et al., 2012). RyR2 has been shown to increase 

calcium release from the sarcoplasmic reticulum and [Ca2+]i, when phosphorylated by PKA 

(Marx et al., 2000b; Xiao et al., 2005; Xiao et al., 2006; Huke and Bers, 2008b). 

Phosphorylation of phospholamban by PKA, relieves its inhibition of SERCA2a, thereby, 

accelerating activator Ca2+ reuptake by the sarcoplasmic reticulum (Bers, 2002; MacLennan 

and Kranias, 2003). The sarcomeric protein troponin I, which is part of the troponin 

complex on thin actin filaments, has been shown to reduce myofilament sensitivity to Ca2+ 

when phosphorylated by PKA whilst, PKA-phosphorylated myosin-binding protein C has 



Chapter 1 
  

 

16 

 

 

Figure 1.5 β-αdrenergic receptor stimulation by sympathetic and parasympathetic system 
activation and phosphorylation of targets relevant to excitation-contraction coupling (taken 

from Bers, 2002). NA: noradrenaline; AC: adenylyl cyclase; ACh: acetylcholine; AKAP: A kinase 

anchoring protein; β-AR: β-adrenergic receptor; M2-Rec: M2-muscarinic receptor; PLB: 

phospholamban; Reg: PKA regulatory subunit; SR: sarcoplasmic reticulum. Ca: calcium cations 

(Ca2+); ATP: Ca2+-ATPase; RyR: ryanodine receptor. 

been identified as a factor that accelerates cardiomyocyte relaxation (Stelzer et al., 

2007; Kooij et al., 2013). Recent studies have emphasised the importance of PKA-

phosphorylation of phospholemman, an accessory protein of NKA, which increase s 

the NKA affinity for [Na+]i, which in turn activates inward INa/Ca (Ca2+ efflux) 

(Pavlović et al., 2007; Despa et al., 2008). 

PKA may also indirectly amplify the phosphorylation of several cardiac proteins 

related to excitation-contraction coupling (such as phospholamban, phospholemman, 

RyR2) by phosphorylation of protein phosphatase inhibitor-1 at Thr35 and 

subsequent inhibition of serine/ threonine protein phosphatase 1 (PP1) (Bers, 2001; 

El-Armouche et al., 2003). In addition, the excessive [Ca2+]i, increases the serine/ 

threonine CAMKII activation, which in turn can also phosphorylate substrates 

involved in Ca2+ handling, such as CaV1.2, RyR2, phospholamban, in a similar 

NA
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manner to PKA (Bers, 2001; MacLennan and Kranias, 2003; Rodriguez et al., 2003; 

Xiao et al., 2005; Huke and Bers, 2008b; Blaich et al., 2010). Furthermore, 

inhibition of PP1, prevents dephosphorylation (de-activation) of CAMKII, thereby, 

increasing its activity (Blitzer et al., 1998). 

Cardiac β2-adrenergic receptors are coupled to both Gs and Gi proteins (Xiao et al., 

1995; Kilts et al., 2000). Even though activation of β2-adrenergic receptors by 

noradrenaline enhances cAMP production and PKA phosphorylation of CaV1.2 (Xiao 

et al., 1994; Chen-Izu et al., 2000), many studies have demonstrated dissociation 

with PKA-dependent phosphorylation of phospholamban, troponin I and positive 

inotropic effect, probably due to the inhibitory function of Gαi towards the adenylate 

cyclase (Xiao et al., 1994; Xiao et al., 1995; Kuschel et al., 1999; Chen-Izu et al., 

2000). Nevertheless, β2-adrenergic receptors have been shown to co-localise with a 

subpopulation of CaV1.2 channels at the sarcolemma surface (Balijepalli et al., 

2006), where it appears to be more functionally present (100 more vs t-tubules) 

(Cros and Brette, 2013). Collectively these observations suggest a very localised β 2-

adrenergic receptor-mediated PKA activation specifically near CaV1.2, thereby 

regulating local ICaL, in contrast to β1-adrenergic receptor stimulation which appears 

to activate PKA more globally. 

In the normal heart, sympathetic stimulation shortens the action potential and 

increases cardiac output. The combined phosphorylation of Ca V1.2 and RyR2, 

rapidly increases ICa and [Ca2+]i thereby, accelerating contractility, which is 

characterised as a positive inotropic effect. The positive lusitropic effect of β-

adrenergic receptor stimulus is mediated by the increased sarcoplasmic reticulum 

Ca2+ reuptake due to phosphorylation of phospholamban primarily and the increased 

Ca2+ insensitivity of filaments due to troponin I phosphorylation, resulting in 

accelerated cardiac relaxation (Bers, 2002; Sigg and Hezi-Yamit, 2009). Continuous 
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catecholamine stimulation of β-adrenergic receptor induces severe myocardial 

damages, including cardiac hypertrophy and apoptosis and has been implicated in 

heart failure and sudden death (Bogoyevitch et al., 1996; Communal et al., 1998; 

Antos et al., 2001; Marks, 2001). 

1.4 Serine/ threonine phosphatases 

Reversible protein phosphorylation, principally on serine or threonine residues, is a 

ubiquitous post-translational protein modification that is central to the regulation of 

most cellular functions and signal transduction pathways, by altering protein activity 

and/ or subcellular localisation (Virshup and Shenolikar, 2009). This mechanism 

(Figure 1.6) is strictly controlled by the opposing activities of protein kinases and 

protein phosphatases (Berg et al., 2015).  

 

Figure 1.6 A simplistic model of reversible protein phosphorylation. Phosphorylation is a post-
translation protein modification in which a phosphate from adenosine triphosphate (ATP) is 
covalently attached to the hydroxyl residues in the side chain of the amino acids tyrosine, 
serine, or threonine by a kinase protein, thereby, altering the conformation, activity and/ or 
subcellular localisation of the protein. Reversible phosphorylation (also known as 
dephosphorylation) is accomplished by protein phosphatases, which catalyse the hydrolytic 
removal of the phosphate group attached to the protein and release inorganic phosphate (Pi) 
into the cytosolic environment. ATP: adenosine triphosphate; ADP: adenosine diphosphate; P: 
phosphate group, Pi: inorganic phosphate. 

In humans, approximately 98% of protein phosphorylation events occur at  serine/ 

threonine residues (Olsen et al., 2006). Currently, more than 400 protein serine/ 

threonine-specific kinases (PSKs), are thought to be encoded in the human genome 
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(Anderson et al., 2006; Shi, 2009). Nevertheless, there are only approximately 30 

protein serine/ threonine-specific phosphatases (PSPs) (Cohen, 2004; Shi, 2009). 

PSPs are classified into three major families, based on signature sequence motifs on 

their catalytic subunit and biochemical properties: i) phosphoprotein phosphatases 

(PPPs), such as PP1, PP2A, PP4, PP6, PP2B, PP5, and PP7, ii) metal-dependent 

protein phosphatases (PPMs), such as PP2C and iii) the aspartate-based 

phosphatases represented by FCP/ SCP (TFIIF- associating component of RNA 

polymerase II CTD phosphatase/ small CTD phosphatase) (Shi, 2009). Even though 

much fewer PSPs (30) are encoded, compared to the number of PSKs (428), the 

assembly of several PPP family members to holoenzymes, using a shared catalytic 

subunit and a large number of regulatory subunits, results in a great diversity 

(Janssens and Goris, 2001; Cohen, 2002; Shi, 2009; Virshup and Shenolikar, 2009). 

Serine/ threonine protein phosphatases (predominantly PP1, PP2A) have been shown 

to regulate a broad array of cardiac proteins involved in Ca2+ handling and 

hypertrophy (review by: Heijman et al., 2013; Weber et al., 2015).  

1.5 Type 2A protein phosphatase family in the heart 

Interestingly, PP1 and PP2A contribute to approximately 90% of protein 

phosphatase activity in the heart (MacDougall et al., 1991; Lüss et al., 2000; 

Virshup and Shenolikar, 2009). PP2A is an abundant and highly conserved 

evolutionary PPP (Shi, 2009; Virshup and Shenolikar, 2009; Lillo et al., 2014). Its 

catalytic subunit (PP2AC) is estimated to represent 0.1-1% of total cellular protein 

in some tissues (Shi, 2009; Virshup and Shenolikar, 2009). This thesis is focused on 

the serine/ threonine type 2A protein phosphatase family of the PPPs, which 

includes PP2A, PP4 and PP6 (Cohen et al., 1990; Shi, 2009; Virshup and Shenolikar, 

2009; Lillo et al., 2014) and their role and regulation in cardiac pathophysiology.  
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PP2A, PP4 and PP6 catalytic subunits (PP2AC, PP4C and PP6C, respectively) share 

approximately 60-65% amino acid identity in humans (Kloeker et al., 2003) and are 

highly conserved among eukaryotic species (approximately 80%) (Cohen et al., 

1990; Brautigan, 2013; Lillo et al., 2014). Crystallographic data suggest that their 

catalytic subunit is highly conserved and bind to two metal ions Mn 2+ and Fe3+, 

which are thought to play a catalytic role through the activation of a water molecule 

for the dephosphorylation reaction (Cho and Xu, 2007; Shi, 2009). PP2AC, PP4C 

and PP6C C-terminals share a region of three 100% conserved residues (YFL) 

(Favre et al., 1994; Hwang et al., 2016) and a group of conserved residues at their 

N-terminal fragment, shown to regulate binding of PP2AC with alpha4 (Jiang et al., 

2013b), the common regulator of type 2A PP family catalytic subunits (Nanahoshi et 

al., 1999; Kong et al., 2009; LeNoue-Newton et al., 2016). Furthermore, PP2AC, 

PP4C and PP6C have also been characterised by a sensitivity to enzymatic inhibition 

by okadaic acid and other natural toxins (Brewis et al., 1993; Hastie and Cohen, 

1998; Prickett and Brautigan, 2006).  

 PP2A holoenzyme assembly and activity 1.5.1

1.5.1.1 PP2A holoenzyme assembly 

The functional PP2A holoenzyme exists as a heterotrimeric complex, containing a 

core dimer (a ~36 kDa catalytic (C) subunit and a ~65 kDa scaffold (A) subunit) 

bound to a regulatory (B) subunit (review by Janssens and Goris, 2001). However, 

the C subunit can also exist in a complex with the A subunit, forming the core dimer 

AC, or in association with alpha4 protein (Kremmer et al., 1997; Murata et al., 1997; 

review by Janssens and Goris, 2001; Jiang et al., 2013). As it can be seen in figure 

1.7, the core dimer formation precedes the recruitment of a regulatory B-subunit (Xu 

et al., 2006). The A and C subunits exist in two forms, PP2AAα or PP2Aaβ and 
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PP2ACα or PP2ACβ (see section 3.1.1 for gene transcription), respectively, which 

are expressed in varying degrees (Green et al., 1987; Arino et al., 1988; Hemmings 

et al., 1990; DeGrande et al., 2013). The B subunit exists in variable isoforms which 

are subdivided into 4 distinct gene families, B, B’, B’’ and B’’’, encoding 13 

different regulatory proteins, from which only 12 were found to be transcribed in the 

heart (except PP2R2C) (review by Janssens and Goris, 2001; DeGrande et al., 2013). 

The recruitment of these B subunits is regulated, at least in part, by post -

translational modifications of the catalytic subunit (see section 1.5.4) (review by 

Sents et al., 2013). Thus, numerous PP2A heterotrimeric holoenzymes can be formed 

with distinct substrate specificity, activity and subcellular localisation (review by 

Janssens and Goris, 2001; Zwaenepoel et al., 2008; DeGrande et al., 2013) .  

 

Figure 1.7 Schematic illustration of the PP2A holoenzyme and non-canonical PP2AC-alpha4 
complex (adapted from Sents et al., 2013). (A) The core enzyme is comprised of the scaffold 

(A) and catalytic (C) forming a dimer (AC). A third regulatory B (B, B’, B’’ or B’’’) subunit can be 

associated with the AC dimmer. (B) Non-canonical PP2AC-alpha4 complex, where alpha4 can 

bind other potential substrates (i.e. Mid1).  

1.5.1.2 PP2AC activity in cardiomyocytes 

The diversity of PP2A holoenzyme formation and distinct substrate targeting, have 
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defined PP2A as a master regulator of major cellular processes, including cell 

growth, DNA damage repair and apoptosis (McConnell et al., 2007; Kong et al., 

2009; review by Wlodarchak and Xing, 2016). In cardiomyocytes, PP2A activity is 

associated with multiple proteins involved in membrane excitability, excitation-

contraction coupling and hypertrophic signalling. PP2AC has been shown to 

downregulate the activity of Na+ channel NaV1.5 (Baba et al., 2004), CaV1.2 via the 

recruitment of B56 or PR59 subunits (Gao et al., 1997; Hulme et al., 2006a; Xu et 

al., 2010; Shi et al., 2012), and the ryanodine receptor (RyR2) via the recruitment of 

B56α or B56δ isoform (Terentyev et al., 2009; Belevych et al., 2011). It has also 

been suggested to dephosphorylate troponin I (Jideama et al., 2006), connexin 43 

(Ai et al., 2011), phospholamban and protein phosphatase inhibitor-1 protein (El-

Armouche et al., 2006a). A limitation of many of these studies is the use of common 

phosphatase inhibitors, which as described in Chapter 4 (section 4.5.1) may also 

affect other members of the PPP family. 

 PP4 holoenzyme assembly and activity 1.5.2

PP4 is the eukaryotic homologue of yeast Pph3p (Brewis and Cohen, 1992; 

Brautigan, 2013). The active PP4 holoenzyme (Figure 1.8) exists as a heterodimer 

(low activity) consisting of the catalytic subunit (PP4C) and a regulatory subunit 

(R1, R2 or R4) or as a heterotrimer formed by PP4C and any two regulatory subunits 

(R1, R2, R3 (isoforms PP4R3α or PP4R3β)), except for R4, which does not bridge 

with the rest regulatory subunits (Kloeker and Wadzinski, 1999; Hastie et al., 2000; 

Chen et al., 2008a). Furthermore, PP4C has been shown to interact directly with 

alpha4 protein (Gingras et al., 2005; Kong et al., 2009; LeNoue-Newton et al., 

2016). There is no information in the existing literature about the function of PP4 

towards cardiac proteins. A known function of PP4 is the activation of the two 

transcription factors c-Rel and NF-κB (Hu et al., 1998). In addition, the PP4C/R2/R3 
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heterotrimeric is suggested to promote cisplatin resistance in mammalian cells 

(Gingras et al., 2005; Hastie et al., 2006). PP4 has been found to localise to the 

centrosome in mammalian cells (Brewis et al., 1993) is thought to regulate 

centrosome maturation and meiosis, as shown in C. elegans (Helps et al., 1998; 

Sumiyoshi et al., 2002). PP4 has also been shown to coordinate DNA damage repair 

in the non-homologous end-joining repair process of DNA double-strand breaks and 

cell cycle checkpoints (Gingras et al., 2005; Liu et al., 2012; Shaltiel et al., 2014). 

Recent studies have provided evidence for post-translational modification of PP4C, 

which may affect the recruitment of the regulatory subunits (section 1.5.4.4) (Lee 

and Lee, 2014; Hwang et al., 2016). 

 

Figure 1.8 Schematic illustration of PP4 holoenzyme assembly. PP4 functional holoenzyme is 

thought to be formed by the interaction of PP4C with either R1, R2 orR4 subunit creating a 

dimer, or a trimer with the association of PP4C and any tow of the regulatory subunits.  

 PP6C holoenzyme assembly and activity 1.5.3

The PP6C subunit is a homologue of the budding yeast sit4p (Arndt et al., 1989). 

Functional mammalian protein PP6 is thought to form an active heterotrimeric 

holoenzyme (Figure 1.9) with the catalytic subunit (PP6C), a Sit4-associated protein 

(SAP) domain subunit (SAP1-3) and an ankyrin repeat domain subunit (ANKRD28, 
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44 or 52) (Luke et al., 1996; Stefansson and Brautigan, 2006; Stefansson et al., 

2008; Guergnon et al., 2009). Similar to PP4C, there is no information in the 

existing literature about the role of PP6 in cardiomyocytes. Overall, studies suggest 

that SAP1 facilitates PP6C-mediated dephosphorylation and activation of DNA-PK 

(Mi et al., 2009; Douglas et al., 2010; Hosing et al., 2012), which in turn 

phosphorylates H2AX at Ser139 (Andegeko et al., 2001; Falck et al., 2005). 

Phosphorylated H2AX (γH2AX) is required for the process of DNA double-strand 

break by non-homologous end-joining (Bassing et al., 2002; Meador et al., 2008; 

Shrivastav et al., 2008b; Shrivastav et al., 2008a). Recent evidence suggests that 

SAP1-3 proteins play a role in cell cycle related to mTORC1 inhibition in 

mammalian cells, a mechanism that appears to be homologues in the yeast (SAP2, 

SAP3) (Morales-Johansson et al., 2009; Wengrod et al., 2015). SAP2 and SAP3 have 

been implicated in homology-directed repair of DNA in cancer tissue (Zhong et al., 

2011). The reported functionality of the ANKRD proteins is limited to ANKRD28 

protein. PP6C:SAP1:ANKRD28 holoenzyme is thought to be involved in regulating 

the inhibitory subunit of nuclear factor kappa B epsilon degradation in response to 

tumour necrosis factor α (Stefansson and Brautigan, 2006). More recently 

ANKRD28 was found to interact with the tumour suppressor breast cancer protein 1 

(Vincent et al., 2016). 

 

Figure 1.9 Schematic illustration of PP6 holoenzyme. The functional trimeric holoenzyme is 

formed by the PP6C, SAP and ANKRD subunits. 
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 Type 2A protein phosphatase catalytic subunit post-translational modification 1.5.4

The majority of post-translational modifications have been characterised on PP2AC. 

The C-terminal conserved tail (304TPDYFL309) of PP2AC undergoes two forms of 

post-translational modifications, which affect PP2A activity and/ or holoenzyme 

assembly: i) threonine 304 (Thr304) or tyrosine 307 (Tyr307) phosphorylation (Chen 

et al., 1992; Longin et al., 2007), and ii) leucine 309 (Leu309) carboxymethylation 

(Favre et al., 1994; Lee et al., 1996). In addition, PP2AC has been shown to be 

subjected to ubiquitination and proteasome-mediated degradation (Trockenbacher et 

al., 2001; McConnell et al., 2010; Watkins et al., 2012; Udeshi et al., 2013; Xu et 

al., 2014). 

1.5.4.1 PP2AC phosphorylation at Thr304 and Tyr307 

PP2AC is subjected to phosphorylation at Thr304 and/ or Tyr307 which has been 

reported to reduce PP2AC activity (Chen et al., 1992; Longin et al., 2007; Schmitz 

et al., 2010). Thr304 phosphorylation is thought to selectively inhibit holoenzyme 

assembly with the PR55/B subfamily, whereas Tyr307 phosphorylation is thought to 

affect interaction with the PR61 (B′) subunits. In addition, PP2AC has shown the 

ability of autodephosphorylation (review by Janssens and Goris, 2001).  

1.5.4.2 PP2AC carboxylmethylation at Leu309 

PP2AC carboxylmethylation at Leu309 by leucine carboxylmethyltransferase-1 

increases its activity and holoenzyme assembly by facilitating the association of 

PP2AC with the subfamily regulatory subunits (Favre et al., 1994; Lee et al., 1996; 

review by Janssens and Goris, 2001; Xu et al., 2006; Longin et al., 2007; DeGrande 

et al., 2013). For example, PP2AC-Leu309 carboxylmethylation is required for the 

recruitment of PR55/B (review by Janssens and Goris, 2001; DeGrande et al., 2013). 



Chapter 1 
  

 

26 

 

This modification is reversed by the protein phosphatase methylesterase -1 (Ogris et 

al., 1999; Longin et al., 2007; review by Sents et al., 2013) . Leucine 

carboxylmethyltransferase-1 appears to interact only with active PP2A holoenzymes 

and convert them into substrate-specific holoenzymes (Stanevich et al., 2011). 

Furthermore, in a recent study, PP2AC carboxylmethylation was proposed to alter 

the subcellular distribution of PP2AC in cardiomyocytes in response to G iPCR 

stimulation (Longman et al., 2014).  

1.5.4.3 PP2AC ubiquitination 

The process of ubiquitination requires the synergy of three enzymes, called E1 (Ub-

activating enzymes), E2 (Ub-conjugating enzymes) and E3 (Ub ligases), that work 

sequentially in a cascade resulting in the attachment of an ubiquitin (Ub) molecule, which is 

a highly conserved small protein, to a lysine residue of a target protein 

(monoubiquitination) (Figure 1.10) (Hershko et al., 1983). Moreover, Ub can be attached to 

more than one lysine residue of the same protein substrate (multiubiquitination) and/ or can 

be targeted for ubiquitination itself via repeated ubiquitination cycles, since it contains 

lysine residues (Lys6, Lys11, Lys27, Lys29, Lys33, Lys48, and Lys63), leading to the 

formation of an Ub chain (polyubiquitination) (Chau et al., 1989; Nguyen et al., 2014). The 

process of ubiquitination can be reversed by a group of enzymes ca lled 

deubiquitinases (Nguyen et al., 2014). Depending on the type of ubiquitination, proteins 

can be targeted for degradation by the proteasome 26S (Hershko et al., 1983; Chau et al., 

1989; Nguyen et al., 2014), an ATP-dependent protease complex (Hough et al., 1986; 

Eytan et al., 1989b; da Fonseca et al., 2012). It was thought that mono- and multi-

ubiquitinated proteins, which are usually involved in many cellular processes such 

as DNA repair and gene expression, are less preferred by the 26S proteasome- 
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Figure 1.10 Simplified schematic representation of the ubiquitin-proteasome-mediated 
system (UPS) (inspired by Nguyen et al., 2014). (A) Enzymatic cascade during mono- and poly-

ubiquitination. First, the Ub molecule is attached by a thioester bond to a cysteine of the E1 

enzyme in an adenosine-5’-triphosphate (ATP)-dependent manner and the Ub molecule is then 

delivered to the active site cysteine of the E2 enzyme. The E3 enzyme then binds both the E2 

enzyme carrying the Ub molecule and the target protein substrate to transfer the Ub molecule 

onto the amino group of a lysine amino acid to generate an isopeptide bond, resulting in 

protein substrate ubiquitination. This process may result in monoubiquitination (one Ub 

attached to the protein), multiubiquitination (Ub molecules are attached to multiple lysine 

residues on protein), or polyubiquitination (Ub is attached on the lysine of another Ub, 

therefore, creating Ub-linked chain on the lysine residue of the targeted protein. (B) 

Determination of the fate of the protein substrate depends on the type of ubiquitination and 

type of the substrate-conjugated polyubiquitin chain. E1: ubiquitin-activating enzyme, E2: 

ubiquitin-conjugating enzyme, E3: ubiquitin ligase, DUB: deubiquitinating enzymes, Ub: 

ubiquitin, Sub: substrate, Lys: Lysine, ATP: adenosine-5'-triphosphate. 
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mediated degradation mechanism than polyubiquitinated proteins (Thrower et al., 

2000; Hoege et al., 2002; Minsky et al., 2008). Nevertheless, a recent study showed 

that mammalian protein substrates following mono- or poly-ubiquitination were 

degraded by proteasome 26S with a similar frequency in human cells (Braten et al., 

2016). Proteins which are conjugated with polyUb chains, formed by linked Ub 

molecules through the Ub Lys48 or Lys11 residues (at least four ubiquitin 

molecules), are known to be recognised by the 26S proteasome (Figure 3.1B) (Chau 

et al., 1989; Deng et al., 2000; Thrower et al., 2000; Jin et al., 2008; Nathan et al., 

2013). On the other hand, protein polyubiquitination, where the attached polyUb 

chain is formed by linked Ub molecules through the Ub Lys63 residue is involved in 

non-proteolytic processes such as kinase activation and DNA repair  (Deng et al., 

2000; Thrower et al., 2000; Hoege et al., 2002; Jin et al., 2008; Nathan et al., 2013). 

The role of other lysine polyUb topologies is not yet well understood. Once the 

protein substrate is bound to the 26S proteasome, the Ub molecules are released 

from the protein substrate by the activity of a deubiquitinating enzyme, allowing Ub 

recycling (Komander et al., 2009). 

Many studies have demonstrated that PP2AC is subjected to ubiquitination and 

proteasome-mediated degradation (Trockenbacher et al., 2001; McConnell et al., 

2010; Watkins et al., 2012; Udeshi et al., 2013; Xu et al., 2014). In addition, in a 

recent proteomic study, it was shown that both PP2A catalytic subunits (PP2ACα 

and PP2ACβ) contain lysine residues, that can be targeted for ubiquitination (Udeshi 

et al., 2013). Thus, ubiquitination can affect the biogenesis of PP2A holoenzymes. 

Ubiquitination of PP2AC has been shown to be achieved mainly by two ligase E3 

enzymes: i) E3 ligase Mid1 interacting with alpha4 and PP2AC and ii) Cullin3 

(Trockenbacher et al., 2001; McConnell et al., 2010; Watkins et al., 2012; Udeshi et 

al., 2013; Xu et al., 2014). Interestingly, even though alpha4 recruits Mid1 E3 
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ligase, its interaction with PP2AC has been shown to either i) promote 

(Trockenbacher et al., 2001; Watkins et al., 2012) or ii) prevent the ubiquitin-

mediated degradation of PP2AC, via either the binding of PP2AC with the alpha4 

ubiquitin-interacting motif or by the monoubiquitination of alpha4 itself within its 

C-terminal domain, which may weaken the association of Mid1 with the E2 

ubiquitin conjugating enzyme (Kong et al., 2009; McConnell et al., 2010; LeNoue-

Newton et al., 2011; Jiang et al., 2013a; review by Sents et al., 2013) . 

1.5.4.4 PP4C and PP6C carboxymethylation 

Recent studies support a similar mechanism for PP4C and PP6C. Leucine 

carboxylmethyltransferase-1-mediated carboxylmethylation of PP4C-Leu307 was 

suggested to facilitate either PP4C:R1, PP4C:R2 or PP4C:R3 complex formation 

(Lee and Lee, 2014; Hwang et al., 2016). While evidence has shown that PP6C is 

methylated on its C-terminal, the position is not confirmed yet (Kloeker et al., 1997; 

Lee and Lee, 2014; Hwang et al., 2016). 

 Association of type 2A protein phosphatases and the alpha4 regulatory protein 1.5.5

Alpha4 is the homolog of yeast Tap42 protein (Di Como and Arndt, 1996; Onda et 

al., 1997). It was first identified as an immunoglobulin binding protein (IGBP1)  in B 

cells (Inui et al., 1995). In yeast, Tap42 is involved in the target of rapamycin (TOR) 

pathway that links nutrient and energy availability to cell growth (Di Como and 

Arndt, 1996; Jiang and Broach, 1999). 

Alpha4 protein can interact directly with the catalytic subunit of PP2A, P P4 and 

PP6, making it a common regulator of the type 2A family phosphatases  (Nanahoshi 

et al., 1999; Kloeker et al., 2003; Hwang et al., 2016; LeNoue-Newton et al., 2016). 

Deletion of alpha4 protein has been shown to lead to progressive loss of all PP2A, 
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PP4, and PP6 catalytic subunits and phosphatase complexes and apoptosis (Kong et 

al., 2009; LeNoue-Newton et al., 2016). Hence, alpha4 plays an important role in the 

stability of the type 2A protein phosphatase catalytic subunits and biogenesis of 

their holoenzymes (review by Sents et al., 2013).  

Overall, it has been proposed, that alpha4 binding with the PP2AC, i) serves a 

critical role in protection of PP2AC from proteasome-mediated degradation (Kong et 

al., 2009; McConnell et al., 2010; LeNoue-Newton et al., 2011; Jiang et al., 2013a), 

however, evidence shows that this interaction may also ii) enhance proteasome-

mediated degradation of the catalytic subunits (Trockenbacher et al., 2001; Watkins 

et al., 2012; McDonald et al., 2014), or iii) either inhibit their activity or altering 

their specificity towards target substrates (Nanahoshi et al., 1999; Jacinto et al., 

2001; Prickett and Brautigan, 2006; Kong et al., 2009). 

 Type 2A protein phosphatase family in heart disease 1.5.6

From the type 2A protein phosphatase family, only PP2A has been characterised and 

studied in the heart, except for some initial reports related to the expression of PP4C or 

PP6C in heart and other tissues (Brewis et al., 1993; Bastians and Ponstingl, 1996; Kloeker 

et al., 2003). In patients with atrial fibrillation, fibrosis and heart failure, both 

overexpression and downregulation of PP2AC has been reported, which was associated 

with altered Ca2+- and Na+- handling in cardiomyocytes (Jelicks and Siri, 1995; Marx et al., 

2000b; Pieske et al., 2002; Baartscheer et al., 2003; Despa et al., 2008; El-Armouche et al., 

2011; DeGrande et al., 2013). Studies in animal models, investigating the consequences of 

either the overexpression or deletion of PP2ACα in the heart, demonstrated impaired 

cardiac function and development of hypertrophy or heart failure (Gergs et al., 2004; Li et 

al., 2016). These studies collectively, many of which are discussed in depth in sections 5.5 

and 6.5, highlight the importance of phosphatase activity regulation in heart disease. 
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1.6 Dissertation focus 

Given the importance of PP2A in cardiac pathophysiology and the lack of 

knowledge about the type 2A protein phosphatase role and regulation in the heart, 

this thesis aims to investigate: i) the expression of the PP2AC (PP2ACα and 

PP2ACβ), PP4C, PP6C in cardiomyocytes, ii) their expression and aspects of their 

regulation in pathological LV hypertrophy and iii) the possible roles of individual 

members of the type 2A protein phosphatase family and alpha4 signalling axis in the 

regulation of either calcium handling or DNA repair in cardiomyocytes.  
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Chapter 2  

General Methods 

This chapter covers methods which are relevant to more than one chapter in this thesis. 

Methods which are specific to a chapter are described in the relevant “Specific methods” 

section of that chapter. 

2.1 Animal tissue  

Animal tissue used in this study was obtained in accordance with the UK Home Office 

Guidance on the Operation of the Animals (Scientific Procedures) Act 1986 (UK), the 

Directive of the European Parliament (2010/63/EU), and received approval by the local 

ethics review board at King’s College London. All protocols were performed by home 

office licensed individuals. 

2.2 Cell culture 

All solutions, glassware and plasticware for in vitro cell culture were pre-sterilised 

or sterilised by autoclaving for 15 min at 121oC and 1.2 atm. Heat-sensitive 

solutions were sterilised by filtration through 0.2-μm sterile syringe filters (Corning 

Inc., USA). Mammalian cell culture work was performed in a laminar air -flow hood 

(Thermo Fisher Scientific, USA), decontaminated with 70% (v/v) industrial 

methylated spirit (IMS) prior to and after use. The surface of all materials was wiped 

by 70% (v/v) industrial methylated spirit before entering the laminar air-flow hood. 
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Cell cultures were maintained at 37°C in a humidified incubator (Thermo Fisher 

Scientific) in an atmosphere of 5% CO2 and 95% air. 

 Culturing of H9c2 cardiomyocytes 2.2.1

The embryonic rat cardiomyocyte-derived H9c2 cell line was obtained from the 

American Type Culture Collection (#CRL-1446; ATCC, UK). H9c2 cardiomyocytes 

were cultured in Gibco™ Dulbecco’s modified Eagle’s medium (DMEM) 

supplemented with 10% (v/v) Gibco™ heat-inactivated Fetal Bovine Serum (FBS) 

from Thermo Fisher Scientific, 100 IU/ml penicillin and 100 μg/ml streptomycin 

(Sigma-Aldrich, USA). This is referred to as complete culture medium. Complete 

culture medium was further filtered through 0.2-μm filter units (Thermo Fisher 

Scientific) and stored at 4oC until required. Cells were grown in cell culture treated 

75 cm2 flasks, 6-well or 96-well plates at 37°C in a humidified atmosphere of 5% 

CO2 and 95% air. The culture medium was renewed every 2 to 3 days according to 

the manufacturer’s instructions. 

H9c2 cardiomyocytes were passaged upon reaching 80% confluency (Figure 2.1C). 

The medium was removed, and the cells were trypsinised in 5 ml of 0.25% (w/v) 

Trypsin - 0.53 mM EDTA (Fisher Scientific) for 1-3 minutes at 37oC. The disrupted 

cell layer was observed through a Motic® AE31 Elite inverted microscope (Ted 

Pella Inc., USA) every minute. The cell suspension was gently aspirated by pipetting 

and mixed with 10 ml of complete culture medium in a 50-ml falcon tube to 

inactivate trypsin. Cells were centrifuged at 150 g for 3 minutes at room 

temperature. The supernatant was removed, and the pellet was gently resuspended 

into 10 ml of complete culture medium. Cell clumps were dispersed by gently 

passing the cell suspension once through a 10-ml syringe with an attached 25-gauge 

needle (0.5 mm diameter). Cells were subcultured into new 75 cm2 flasks or culture 



Chapter 2 
  

 

34 

 

plates, in a subcultivation ratio of 1:10, unless otherwise was stated.  Cells were 

allowed to settle at least 24 hours prior to any treatment at 37°C in 5% CO 2 and 95% 

air. Cultured H9c2 cardiomyocytes between passage numbers 4 to 12 were used for 

experiments, starting from the purchased batch. A new culture was established f rom 

frozen stocks every two to three months. 

 

Figure 2.1 Images of H9c2 cardiomyocytes by IncuCyte® ZOOM System (Essen BioScience, 
USA) with 15%, 30%, 80% and 100% confluency after 1, 3, 6 or 7 days in culture. Scale bars, 

200 μm. 
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2.2.1.2 Cryopreservation and recovery of H9c2 cardiomyocytes 

H9c2 cardiomyocytes were grown in 75 cm2 flasks until 80% confluency was 

achieved. Cells were trypsinised as described above and resuspended in complete 

culture medium. The cell number was counted by trypan blue exclusion assay 

(section 2.2.3), and the cell suspension was centrifuged at 150 g for 3 minutes at 

room temperature. The supernatant was removed, and the cell pellet was 

resuspended in an appropriate volume of cryopreservation medium (complete culture 

medium supplemented with sterile-filtered 5% (v/v) DMSO (Sigma-Aldrich)) at a 

cell density of 1x106 cells/ ml. The cell suspension in cryopreservation medium was 

transferred to 1.5-2.0-ml cryovials and then placed into a cryo-freezing container 

(NALGENE, USA) filled with 100% isopropanol. The cryo-freezing container, 

containing the cryovials, was cooled in a -80°C freezer, allowing the control of 

cooling rate at 1°C per minute. After a minimum of 4 hours to ensure that a stable 

temperature has been reached, the cryovials containing the frozen cells were stored 

in the vapour phase of a liquid nitrogen container.  

To recover stocks of H9c2 cardiomyocytes cryopreserved in liquid nitrogen , the 

cryovials containing the frozen cells were quickly taken out and thawed rapidly by 

gentle agitation in a 37oC water bath (1-2 minutes). Once the cell suspension was 

thawed completely, it was transferred to a 75 cm2 flask containing 10 ml of pre-

warmed complete culture medium. The cells were allowed to settle overnight at 

37°C, in 5% CO2, 95% air and the medium was renewed to remove any traces of 

DMSO. 

 Isolation of adult rat ventricular myocytes (ARVMs) 2.2.2

Adult rat ventricular myocytes (ARVM) were isolated from the hearts of 20 0-250 g 
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Wistar adult male rats (B & K Universal Ltd, UK) by Dr Shiney Reji3, using a 

collagenase-based enzymatic digestion technique (Snabaitis et al., 2005).  

Rats were anaesthetised by an intraperitoneal injection of 50 mg/kg sodium 

pentobarbitone (Sagatal, Rhone Merieux, Ireland), followed by an intraperitoneal 

injection of 150 IU heparin (Leo Laboratories Ltd, Ireland) to prevent blood clot 

formation in the excised heart. Unconsciousness was confirmed by the loss of pedal 

reflex, and the chest cavity was opened by cutting around the rib cage and through 

the diaphragm. The heart was rapidly excised with an adequate length of aorta and 

pulmonary trunk intact and soaked in ice-cold modified Krebs solution (Solution A; 

130 mM NaCl, 0.4 mM NaH2PO4, 1.4 mM MgCl, 0.75 mM CaCl2, 4.2 mM HEPES, 

220 mM taurine, 4.5 mM KCl, 10 mM creatine and 10 mM glucose, pH 7.3). Excess 

tissue was removed, and a blunt stainless-steel cannula was placed into the aorta as 

quickly as possible and tied with a 4/0 surgical silk suture (Johnson and Johnson, 

USA). The heart was then immediately mounted on the Langendorff Perfusion 

system and was perfused for 5 min with modified Krebs solution Solution A at 37ºC 

to remove any residual vascular blood, followed by perfusion with calcium-free 

solution A containing 100 µM EGTA for 4 min. The heart was then perfused for 8 

min with solution A containing 100 µM CaCl2 and 1 mg/ml collagenase (Type II; 

Worthington Biochemical Corporation, USA). The ventricles were then cut into 

small pieces to increase the surface area for collagenase digestion and incubated in 

10 ml of collagenase solution (gassed with 100 % O2, 37 ºC) for a further 10 

minutes. The tissue was gently triturated for less than 2 minutes, using a 2-ml plastic 

dropping pipette to facilitate cell dispersion, until a uniform suspension was 

obtained. This mixture was then filtered through a nylon mesh (mesh size 200 µm) 

to separate isolated ARVMs from the undigested ventricular tissue. The suspension 

                                                   
3
Cardiovascular Division, King's College London, The Rayne Institute, St. Thomas’ Hospital, London, 

United Kingdom. 
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was left to settle for 8-10 minutes allowing the cardiac myocytes to sediment into a 

loose pellet. The supernatant was removed, and the pellet was resuspended in 

solution A containing 500 µM CaCl2 and 1% (w/v) bovine serum albumin (BSA). 

ARVMs were then left to sediment and form a loose pellet for a further 8 -10 

minutes. The supernatant was removed, and the pellet was resuspended in solution A 

containing 1 mM CaCl2. ARVMs were left to settle at room temperature for 2 hours 

prior to use in experiments.  

2.2.2.1 Culturing of ARVM  

Culture plates (6-well) were coated with laminin by placing 1.5 ml of 15 μg/ml 

laminin (Sigma-Aldrich) solution in each well for 2 hours at 37oC under sterile 

conditions and then rinsed once with modified M199 medium supplemented with 

10% (v/v) heat-inactivated FBS, 100 I.U./ml penicillin, 100 μg/ml streptomycin, 2 

mM creatine, 2 mM carnitine and 5 mM taurine (obtained from Sigma-Aldrich), 

prior to use (Snabaitis et al., 2005). This is referred to as M199 supplemented 

medium.  

Freshly isolated ARVM (section 2.2.2) were allowed to settle for 2 hours at room 

temperature and form a loose pellet by sedimentation due to gravity. The ARVM 

were briefly centrifuged at 50 g, and the storage solution was removed. ARVMs 

were resuspended in M199 supplemented medium, and following cell counting 

(section 2.2.3), ARVMs were seeded at 200,000 cells per well into 6-well laminin 

coated cell culture plates (see above). ARVMs were allowed to adhere for 2 hours at 

37oC, in 5% CO2, 95% air (Figure 2.2). The culture medium was then replaced with 

fresh M199 supplemented medium, prior to any treatment. The cultures were 

maintained for 24 to 48 hours at 37oC, in 5% CO2, 95% air.  
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Figure 2.2 Image of adult rat ventricular myocytes (ARVMs) under the microscope, showing 
both healthy (rod-shaped) and dead (round) myocytes. Scale bar, 150 μm. 

 Determination of H9c2 cardiomyocyte number 2.2.3

The cell quantification assay was carried out using a modification of the protocol 

suggested in the Sigma-Aldrich manual from “Cook Book” Volume 12, 2010 and the 

method described by Strober, (2015). 50 µl of a single-cell suspension was gently 

mixed with 50 µl of sterile-filtered 0.4% (w/v) trypan blue solution (Sigma-Aldrich) 

(dilution factor of 2). The mixture was allowed to sit at room temperature for one 

minute, and then 10 µl of it was added to two counting chambers of a 

haemocytometer-like FastRead-102 disposable counting slide from Immune Systems 

Ltd (Paignton, UK). Viable cells were counted within 3-5 minutes from at least two 

4 x 4 grids of each chamber, as viewed under the microscope with the help of a 

hand-held mechanical counter. The count was repeated twice. Viable cells excluded 

trypan blue, while dead cells stained blue due to trypan blue uptake.  
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The final cell density was given by the following formula: 

cells/ml =
total counts x 104 x sample dilution factor

number of complete 4 x 4 grids counted
 

2.3 Knockdown of protein expression by small interfering RNA 

 siRNA transfection of H9c2 cardiomyocytes  2.3.1

H9c2 cardiomyocytes were cultured as described previously (section 2.2.1) in 6-well 

or 96-well plates with a subcultivation ratio of 1:10 and were maintained in DMEM, 

medium supplemented with 10% FBS, 100 IU/ml penicillin and 100 μg/ml 

streptomycin, in 5% CO2 at 37°C, until they reached 30% confluency. All 

transfections were performed using DharmaFECT#1 Transfection Reagent (GE 

Healthcare, Dharmacon Inc., USA). ON-TARGET plus™ Non-Targeting Control 

Pool (GE Healthcare, Dharmacon Inc.), composed of four different non-targeting 

siRNAs and designed to not target any known genes in the rat cell was used as a 

negative control (Baum et al., 2010). TOX™ Transfection Control (GE Healthcare, 

Dharmacon Inc.) was used as a positive control to evaluate transfection efficiency. 

Cells, successfully transfected, underwent apoptosis and cell death in 24 to 48 hours.  

Other siRNAs used in this study were the ON-TARGET plus™ Rat alpha4 (also 

known as IGBP1) siRNA SMARTpool against the rat alpha4 mRNA, the ON-

TARGET plus™ Rat Ppp2ca siRNA SMARTpool and ON-TARGET plus™ Rat 

Ppp2cb siRNA SMARTpool against the rat PP2A alpha (PP2ACα) and beta 

(PP2ACβ) catalytic subunit mRNAs respectively, the ON-TARGET plus™ Rat 

PPP4C siRNA SMARTpool specific for the rat PP4 catalytic subunit mRNA and the 

ON-TARGET plus™ Rat PPP6C siRNA SMARTpool against rat PP6 catalytic 

subunit mRNA (GE Healthcare, Dharmacon Inc.) presented in Table 2.1. The 

transfection mix was prepared using a ratio of 1 μl of DharmaFECT#1 transfection 
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reagent (Dharmacon) per 50 pmoles of siRNA in a DNase/ RNase-free 

microcentrifuge tube and was allowed to incubate on ice for 20 minutes to form 

siRNA:DharmaFECT#1 complexes. The transfection mix was then added to an 

appropriate volume of antibiotic-free DMEM with 10% FBS for a final siRNA 

concentration of 50 nM. The culture medium was then replaced by the transfection 

medium. Cells were incubated at 37°C in 5% CO2 for 1 to 4 days. For longer 

incubation (e.g. 8 days), the transfection medium was replaced every 4 days. The 

cells were then trypsinised and collected for total RNA purification (section 2.4.1) 

or lysed for immunoblotting analysis (section 2.5.1).  

 Recognition of siRNA off-target effects towards non-target mRNAs 2.3.2

Even a single base mismatch between the sequences of the siRNA antisense strand 

and the mRNA target at the open reading frame can abolish gene expression 

silencing (Elbashir et al., 2001a; Elbashir et al., 2001c; Holen et al., 2002; 

Amarzguioui et al., 2003). Nevertheless, partial sequence complementation of 8 

nucleotides, between the siRNA seed region sequence (position 1-8 nt) and 3’-

untranslated regions (3’-UTRs) of non-target mRNAs can introduce siRNA off-

target effects (Jackson et al., 2003; Birmingham et al., 2006; Jackson et al., 2006; 

review by Jackson and Linsley, 2010; Ui-Tei, 2013). Therefore, to identify siRNA-

mediated off-target effects towards a specific non-target substrate, the sequence 

complementation was investigated between the siRNA and the non-target mRNA 

(open reading frame and 3’-UTR region). Rejection of a candidate siRNA due to 

unwanted off-target effects was based on mismatches of ≤4 nucleotides cut-off 

between the siRNA and a non-target mRNA corresponding open reading frame 

sequence and/or complementation of 8 nucleotides between the siRNA seed region 

and a non-target mRNA 3’-UTR (Elbashir et al., 2001c; Holen et al., 2002; 

Amarzguioui et al., 2003; Jackson et al., 2003; Birmingham et al., 2006; Jackson et 
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al., 2006; review by Jackson and Linsley, 2010; Ui-Tei, 2013). cDNA sequences 

were obtained from GenBank®4 (Benson et al., 2000), genetic sequence database, 

and was converted to mRNA, using BioEdit v7.1.3 software (Hall, 1999). The open 

reading frame region was selected by BioEdit v7.1.3 software. Multiple mRNA 

sequence alignment was performed by EMBOSS Needle5 alignment tool (Rice et al., 

2000). 

2.4 Determination of gene expression by quantitative real-time 

polymerase chain reaction 

Quantitative real-time PCR, also known as quantitative PCR (qPCR) is a powerful 

technique for the investigation of gene expression (Wong and Medrano, 2005). The 

RNA preparation, evaluation and reverse transcription into cDNA, followed by the 

detection and quantification of amplification products in real time by qPCR, are 

described below in sections 2.4.1-2.4.5. 

 Purification of total RNA from mammalian cells 2.4.1

Total RNA was isolated from H9c2 cells, neonatal rat ventricular myocytes 

(NRVMs) or ARVMs and purified using the RNeasy Plus Mini kit (Qiagen, UK) 

according to the manufacturer’s instructions. To promote an RNase-free 

environment, all equipment and working surfaces were decontaminated with 

RNaseZap (Qiagen) before use. Only RNase-free water and plasticware were used 

for this protocol. 

In brief, following cell counting (section 2.2.3), H9c2 cardiomyocytes (~1.2•106 

                                                   
4
Free accessed via the National Centre for Biotechnology Information (NCBI) website; 

http://www.ncbi.nlm.nih.gov/GenBank®/. 
5
Free accessed via the European Bioinformatics (EMBL-EBI) website; 

http://www.ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.html. 

http://www.ncbi.nlm.nih.gov/genbank/
http://www.ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.html
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cells, unless otherwise was stated), NRVMs (~2•106 cells) or ARVMs (~1•107 cells), 

were centrifuged at 50 g for 3 minutes at room temperature. The supernatant was 

removed, and the cell pellet was immediately resuspended in 300 μl of RNAprotect 

cell reagent (Qiagen) by vortexing, providing immediate stabilisation of the RNA in 

the cells. The suspension was transferred to a 1.5 ml centrifuge tube and either 

stored at -20oC (long-term) or processed immediately for total RNA purification in 

the following way. The suspension was centrifuged at 5,000 g for 5 minutes at room 

temperature. The supernatant was removed, and the cell pellet was dissolved in an 

appropriate volume of RLT Plus buffer (Qiagen) containing 1% (v/v) β-

mercaptoethanol (National Diagnostics, USA). The lysate was passed through a 

QIAshredder spin column (Qiagen) for complete homogenisation. The homogenised 

lysate was transferred to a genomic DNA eliminator spin column and centrifuged at 

8,000 g for 1 minute at room temperature. An equal volume of ethanol 70% (v/v) 

was added to the flow-through and mixed by pipetting. Up to 700 µl of the sample 

was transferred to an RNeasy spin column (Qiagen) placed in a 2-ml collection tube 

and centrifuged at 8,000 g for 15 seconds at room temperature. The flow-through 

was discarded, and 700 µl of the RW1 buffer (Qiagen) were added to the RNeasy 

spin column. The column was centrifuged at 8,000 g for 15 seconds at room 

temperature, and the flow-through was discarded, 500 µl of the RPE buffer (Qiagen) 

was added to the RNeasy spin column and centrifuged at 8,000 g for 15 seconds at 

room temperature. The flow-through was discarded, and the last step was repeated 

except that the column was centrifuged for 2 minutes. The flow-through was then 

discarded, and the RNeasy spin column was placed in a new 2-ml collection tube 

and centrifuged at 8,000 g for 1 minute at room temperature. The RNeasy spin 

column was then placed in a new 1.5-ml collection tube, and 30-50 µl of RNase-free 

water was added directly to the spin column membrane. The column was centrifuged 

at 8,000 g for 1 minute at room temperature to elute the RNA. RNA concentration, 
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purity and quality were estimated as it is described in section 2.4.2. Aliquots of 

RNA were flash-frozen in liquid nitrogen and stored at -80ºC until required later. All 

RNA aliquots were subjected to only one freeze-thaw cycle. 

 Quality assessment of total RNA 2.4.2

2.4.2.1 Total RNA quantification and quality control by NanoVue Plus 

The concentration and purity of RNA solutions were determined using the 

ultraviolet/visible spectrophotometer NanoVue Plus (GE Healtcare, USA). The 

operation was performed according to the manufacturer’s instructions. RNase-free 

water was used for background correction, and total RNA concentration was 

quantified at 260 nm. The purity of the RNA sample was determined by the 260/280 

nm and 260/230 absorbance (abs) ratios, revealing any possible contamination of the 

RNA solution with peptides or residual buffers, respectively. Pure RNA preparations 

are expected to have both ratios ≥2.0. RNA samples with an absorbance ratio at 

OD260/280 ≥2.0 and OD260/230 >1.8 were used for further analysis. 

2.4.2.2 Quantification of RNA integrity using 2100 Bioanalyzer  

The integrity of RNA was evaluated using a 2100 Bioanalyzer (Agilent 

Technologies, UK) and an Agilent RNA 6000 Nano Kit. The software and algorithm 

classify total RNA by calculating an RNA integrity number (RIN) from 1 to 10, with 

1 corresponding to the most degraded RNA profile and 10 to the most int act 

(Schroeder et al., 2006). The preparation of all samples was completed according to 

the Agilent RNA 6000 Nano Kit Guide (Manual Part Number G2938-90034, Edition 

08/2006) in the following way. Each RNA chip contains an interconnected set of 

microchannels, used for separation of nucleic acid fragments based on their size as 

they are driven through it electrophoretically. All reagents were equilibrated at room 
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temperature for 30 minutes before use. The electrodes of the 2100 Bioanalyzer were 

decontaminated by washing with RNase ZAP (Qiagen) for 1 minute followed by a 

wash with RNase-free water for 10 seconds. A volume of 550 µl of the Agilent Nano 

gel matrix was passed through the spin filter by centrifugation at 1,500 g for 10 

minutes at room temperature. Aliquots of 65 μl of the filtered gel matrix were 

transferred into microcentrifuge tubes and were stored at 4°C for up to 4 weeks. 

Prior to use, 1 μl of the provided dye solution was added to the filtered 65 μl gel 

aliquot and mixed by vortexing followed by a centrifugat ion step at 13,000 g for 10 

minutes at room temperature and the gel-dye mix was used within one day. An RNA 

chip was placed on the chip priming station, and 9 μl of the gel-dye mix was 

pipetted into the well, marked “ ”. The plunger was positioned at the 1-ml and the 

chip priming station was closed. The syringe plunger was pressed down until it was 

held by the clip, was then released after 30 seconds and 5 seconds later the plunger 

was pulled back to the 1 ml position. The priming station was opened, and 9 μl of 

the gel-dye mix was pipetted in each of the wells, marked “ ”. A volume of 5μl of 

the Nano marker was added into the 12 sample wells and to the ladder well, marked 

“ ”. The RNA samples and the ladder were heat-denatured at 70°C for 2 minutes to 

minimise secondary structures. From each RNA sample, 1μl containing 25-500 ng 

RNA was added in each of the 12 sample wells and 1μl of the ladder into the ladder 

well. The chip was placed in an appropriate vortexer ( IKA - Model MS3; Staufen, 

Germany) and was vortexed for 1 minute at 2,400 rpm. The chip was inserted in the 

Agilent 2100 Bioanalyzer within 5 minutes and analysed. The analysis was 

performed via Agilent’s 2100 expert software selecting the “Eukaryotic Total RNA 

Nano” assay. The RNA integrity number (RIN) was estimated for each sample. Only 

RNA samples with RIN index close to 9 or above 7 were selected for qPCR analysis, 

when extracted from H9c2 cardiomyocytes or neonatal (NRVMs) and adult 

(ARVMs) rat ventricular myocytes respectively, unless otherwise was stated (Fleige 
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and Pfaffl, 2006; Schroeder et al., 2006). 

2.4.2.3 RNA quality evaluation by agarose gel electrophoresis 

Inspection of the 28S and 18S ribosomal RNA bands (Rio et al., 2010) was 

performed by agarose gel electrophoresis to evaluate the integrity and overall quality 

of a total RNA preparation before using it for other applications. Electrophoresis 

was performed in a horizontal electrophoresis apparatus (Bio-Rad Laboratories, 

USA). Since ribonucleotides contain a phosphate group, overall, the RNA molecules 

are negatively charged and can migrate in an electric field towards the positively 

charged anode.  

The protocol used here is a modification from the publication by Rio et al., 2010 and 

only RNase-free water was used (Millipore water purification system Elix®; Merck 

Millipore, USA). Agarose gels were prepared and contained 1% (w/v) agarose 

(Fisher Scientific) dissolved in 100 ml 1X Tris-borate-EDTA (TBE) buffer (89 mM 

Tris-base, 89 mM boric acid, 2 mM EDTA, pH 8). The solution was heated in a 

microwave oven until the agarose melted and the solution was clear. The agarose gel 

was then complemented with 1 µl of 10,000X SYBR® Safe DNA Gel Stain solution 

(Invitrogen, USA) mixed carefully and poured into the gel tray. Appropriate size 

well combs were inserted, and the agarose gel was left to polymerise for 30 minutes. 

Appropriate volume of each sample containing 100 ng RNA was transferred to an 

RNase-free 0.5-ml microtube. RNase- free water was added up to a 10 µl final 

volume and the RNA sample was mixed with 2 µl of 6X loading buffer (0.25% (w/v) 

bromophenol blue, 40% (w/v) sucrose). Each prepared sample and a 1kb Plus DNA 

ladder (Thermo Fisher Scientific, Life Technologies Corporation)  was loaded into 

each well and electrophoresis was run at 80 V for 1 hour. After electrophoresis, the 

gels were visualised by the Molecular Imager GelDoc XR+ Imaging System using 
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ultraviolet exposure combined with the XcitaBlue™ Conversion Screen and the 

Image Lab 4.0.1 software (Bio-Rad Laboratories).  

 Two-step reverse transcriptase polymerase chain reaction (RT-PCR) 2.4.3

All equipment and working surfaces were decontaminated with DNaseZAP and 

RNaseZAP (Ambion Inc., USA) prior to use. Only RNase/DNase-free water and 

plasticware were used for this protocol. RNA was reverse transcribed into cDNA 

using oligo-dT primers via a two-step reverse transcription (RT) process using the 

NanoScript 2 Reverse Transcription kit, (Primerdesign Ltd, UK), according to the 

manufacturer’s instructions. Oligo-dT primers bind to the polyA tail of messenger 

RNA (mRNA), targeting the RT reaction preferentially to the 3’end of the mRNA 

fraction and reducing non-specific priming on the ribosomal fraction of total RNA. 

The first step is the ‘annealing’ step in which the RT primers are annealed to the 

denatured RNA template. This step reduces secondary structures in the RNA 

template that may impede long cDNA synthesis. Appropriate volume of each RNA 

template containing 0.5 to 1 µg RNA, 1 μl of Oligo-dT primers mix and appropriate 

volume of RNase/DNase-free water up to final volume 10 μl were added into an 

RNase-free 0.5 ml microtube. Each sample was heated to 65°C for 5 minutes and 

then immediately transferred to an ice water bath and allowed to cool for 5 minutes. 

In the second ‘extension’ step, the mRNA is reverse transcripted into first strand 

cDNA by the nanoScript 2 enzyme, starting at the primer binding sites whilst the 

original RNA template in the RNA/cDNA hybrid is degraded. For this step, 10 µl of 

a mix containing 2 µl of nanoScript 2 10X buffer, 1 µl dNTP mix, 2 µl DTT 100 

mM, 4 µl RNase/ DNase-free water and 1 µl of nanoScript 2 enzyme were added to 

each of the samples from the previous step on ice. The samples were mixed briefly 

by vortex followed by a brief pulse centrifugation and incubated at 55 oC for 20 

minutes. Each reaction was then heat-inactivated at 75oC for 15 minutes. A no-
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reverse transcriptase (no-RT) control was included for every RNA template. The 

synthesised cDNA and no-RT samples were diluted to 5ng/μl with RNase/DNase-

free water (Fisher Scientific) and were further analysed by qPCR or stored at -20oC 

until use. 

 SYBR Green quantitative polymerase chain reaction 2.4.4

qPCR was performed using the Precision™ 2X Master Mix with SYBRgreen 

fluorescent dye (Primerdesign Ltd, UK) and the Stratagene Mx3005P qPCR system 

(Agilent Technologies), according to the manufacturer’s instructions. In qPCR, a 

thermostable DNA polymerase amplifies a fragment of the cDNA template in cycles 

(Wong and Medrano, 2005). After every cycle, the number of the copies is doubled, 

leading to an exponential amplification of targets. SYBR Green is a commonly used 

double-strand DNA dye, which fluoresces when binding to the amplified DNA. The 

amount of the fluorescence emitted during amplification is directly proportional to 

the amount of amplified DNA and is monitored during the whole PCR process 

(usually 30-50 cycles).  

All equipment and working surfaces were decontaminated with DNaseZAP and  

RNaseZAP (Ambion Inc.) prior to use. Only RNase/DNase-free water and 

plasticware were used. Verified quantitative PCR primers pairs specific to rat genes 

PP2ACα, PP2ACβ, PP4C, PP6C, GAPDH (Glyceraldehyde-3-phosphate 

dehydrogenase) and ACTB (β-actin) were obtained from Primerdesign Ltd (Table 

2.2). Each qPCR reaction contained 5 μl diluted cDNA (25 ng in total), 10 μl 

Precision™ 2X qPCR Master Mix (Primerdesign Ltd), 1 μl of 6 μM primer mix and 

4 μl RNase/DNase-free water (20 μl reaction). A no-RT control and a no-template 

control were included as negative controls for each gene to test for DNA 

contamination (such as genomic DNA or PCR product from a previous run) .  
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qPCR reactions for all the genes of interest were performed in biological triplicates, 

and technical duplicates in the same bright white real-time PCR 96-well plates 

(Primerdesign Ltd) sealed with optical adhesive seals. The qPCR run conditions 

were as follows: one cycle of 10 minutes at 95°C for enzyme activation, followed by 

40 cycles of 15 seconds at 95°C for denaturation and 1 minute at 60°C for data 

collection. 

Table 2.2 Primers for qPCR 

Gene 
(species) 

Primers Tm 
(oC) 

Accession No 

PP2ACα 
(Rat) 

Forward 

5’-TTACCGAGAGCGTATCACCATA-3’ 
57 

NM_017039 
Reverse 

5’-TTTCCGTATTTCCTTAAACACTCATC-3’ 
57.3 

PP2ACβ 
(Rat) 

Forward 

5’-TCGTGACTGGTTAAGGGAAAGG-3’ 
58.5 

NM_017040 
Reverse 

5’-AAACTCCAACTCTATAATCCATGCC-3’ 
58 

PP4C 
(Rat) 

Forward 

5’-TGACATCCACGGACAATTCTATG-3’ 
57.3 

NM_134359 
Reverse 

5’-CAGCAGGAGGAGGAAGGTTT-3’ 
57.3 

PP6C 
(Rat) 

Forward 

5’-GGCT TGTTCTTCCTAAAATGGC-3’ 
56.7 

NM_133589 
Reverse 

5’-TTCCAAGAGCAGATCACAAA CATA-3’ 
57.4 

GAPDH 

(Rat) 
Commercially sensitive information NM_017008 

ACTB 

(Rat) 
Commercially sensitive information NM_ 031144 
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 Relative quantification in qPCR 2.4.5

The cycle in which fluorescence can be detected whilst exceeding the baseline 

fluorescence is termed quantitation cycle (Cq) according to the MIQE guidelines  

(Bustin et al., 2009). The mean Cq standard deviation (SD) was less than 0.2 Cq 

(usually SD less than 0.35 Cq is accepted) between technical replicates  (D'Haene et 

al., 2010). Unknown samples with at least 5 Cq values below (32-fold difference) 

the respective no-RT and no-template controls were further analysed (Zornhagen et 

al., 2015). Multiple reference genes were used in this study to limit normalisation 

variations (Vandesompele et al., 2002; Bustin et al., 2009). Relative quantification 

was performed using two approaches, the comparative Cq method and the qbase + 

software approach, described in sections 2.4.5.2 and 2.4.5.3, respectively. 

2.4.5.1 Validation of reference genes 

Two reference genes were chosen from literature search, glyceraldehyde-3-

phosphate dehydrogenase and β-actin, for normalisation of genes of interest in rat 

cardiomyocytes (Villeneuve et al., 2009; Tan et al., 2012; Ellison et al., 2013; Zheng 

et al., 2013; Pooja et al., 2015). Validation of the reference genes was performed by 

measuring the standard deviation (SD) of the average Cq values, coefficient of 

variation (CV) and Pearson coefficient of correlation (r) using the BestKeeper© v1.0 

software, an excel based tool that scores the reference genes based on a repeated 

pairwise correlation analysis (Pfaffl et al., 2004). More stable genes should have an 

r value that equals to or is close to 1 and SD less than 1.  

2.4.5.2 Relative quantification by Cq comparative method 

The comparative Cq method, also known as ∆∆Cq method, was used to compare 

gene expression normalised to a single validated gene (Livak and Schmittgen, 2001; 
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Schmittgen and Livak, 2008). Firstly, the mean Cq value of the technical replicates 

for each gene was calculated for each sample. Then, the difference between the 

averaged Cq values for each gene of interest (GOI) and the reference genes (either 

GAPDH or ACTB) was calculated for each sample by the following equation:  

∆Cq (GOI)  = mean Cq (GOI) – mean Cq (references) 

One of the genes of interest or the targeted gene from the control sample was chosen 

as the calibrator gene (CAL) and the difference in the ΔCq values between the other 

genes of interest (GOI) or targeted gene of treated samples (GTS), and the calibrator 

was calculated using the formula:  

∆∆Cq (GOI or GTS)  =  ∆Cq(GOI or GTS) – ∆Cq(CAL) 

The fold-change between the genes of interest or targeted gene of treated samples vs 

the calibrator gene was calculated by applying ∆∆Cq to the following equation: 

Fold change = 2−∆∆Cq 

Fold change of the calibrator gene or sample was equal to 1. The other normalised 

relative quantity values (fold changes) were then averaged between all biological 

replicates and presented in a graph with the standard error (SEM) of the mean. Fold 

change equal to 1.0 indicated no difference in the mRNA expression of a gene of 

interest relative to the mRNA expression of the calibrator gene. Fold change less 

than 1.0 could be converted to fold decrease in the mRNA expression by the 

following formula (Schmittgen and Livak, 2008): 

Fold decrease =  −1 Fold change⁄  

which could then be interpreted using the absolute value.  
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2.4.5.3 Relative quantification by modified qbase+ software approach 

When investigating potential differences in the transcription level of a gene due to 

treatment compared to the control or between different cell types, it is generally 

recommended to use more than one validated references for more  reliable 

normalisation (Vandesompele et al., 2002). In order to use two reference genes for 

normalisation in qPCR relative quantification, a qbase+ workflow approach 

(Hellemans et al., 2007) was preferred. 

As mentioned previously, the mean Cq value of the technical replicates for each 

gene was calculated for each sample. Then, the relative quantity (RQ) of each gene 

of interest (GOI) in the unknown sample (unk) in relation to the control sample was 

calculated based on the following formula (Pfaffl, 2001): 

RQ(GOI)𝑢𝑛𝑘 = E(GOI)𝑢𝑛𝑘
Cq(GOI)𝑐𝑜𝑛𝑡𝑟𝑜𝑙−Cq(GOI)𝑢𝑛𝑘𝑛𝑜𝑤𝑛 

where E corresponds to the qPCR efficiency. In this study, the amplification of all 

genes has been normalised to 100% by PrimerDesign (UK) therefore, E equals 2.  

Next, the normalisation factor (NF) based on the geometric mean of n number 

reference genes RQ is calculated for each unknown and control sample:  

NF𝑢𝑛𝑘 = √RQ𝑢𝑛𝑘(REF1,𝑢𝑛𝑘) ∙ RQ(REF2,𝑢𝑛𝑘) ∙ … ∙ RQ(REF𝑛,𝑢𝑛𝑘)
𝑛

 

where REF1,unk corresponds to reference gene 1, REF2,unk corresponds to reference 

gene 2 and REFn,unk corresponds to reference gene n in the unknown sample. 

Then, the normalised relative quantities (NRQ) of each gene of interest (GOI) in the 

unknown or control sample is calculated, based on the ratio of the RQ value of an 
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unknown sample versus a control expressed in comparison to the corresponding NF 

by the following formula (Hellemans et al., 2007): 

NRQ(GOI)𝑢𝑛𝑘 = RG𝑢𝑛𝑘 NF𝑢𝑛𝑘⁄  

The NRQ (GOI) represents the fold change of the GOI in the unknown in relation to 

the control sample. The method mentioned above can be applied when using a single 

reference for normalisation by the following equitation (Pfaffl, 2001): 

NRQ (GOI)𝑢𝑛𝑘 =
E(GOI)𝑢𝑛𝑘

Cq(GOI)𝑐𝑜𝑛𝑡𝑟𝑜𝑙−Cq(GOI)𝑢𝑛𝑘𝑛𝑜𝑤𝑛

E(REF)𝑢𝑛𝑘
Cq(REF)𝑐𝑜𝑛𝑡𝑟𝑜𝑙−Cq(REF)𝑢𝑛𝑘𝑛𝑜𝑤𝑛

 

The NRQ (GOI) of the control sample was equal to 1. The other NRQ (GOI) values 

for each unknown sample were then averaged between all biological replicates and 

presented in a graph with the standard error (SEM) of the mean.  Fold changes less 

than 1.0 could be converted to fold decrease in the mRNA expression as described in 

section 2.4.5.2. 

2.5 Protein expression analysis by western blotting 

(immunoblotting) 

 Protein sample preparation 2.5.1

Cells in culture plates or flasks were washed with ice-cold PBS and then lysed with 

an appropriate volume of modified 1X Laemmli sample buffer (Laemmli, 1970) 

containing 10% (v/v) glycerol, 43.75 mM Tris-base, pH 6.8, 2% (w/v) SDS, 0.03% 

(w/v) bromophenol blue and 3 % (v/v) β-mercaptoethanol. Cells were further lysed 

with a scraper and samples were collected into centrifuge tubes. Cells in suspension 

were lysed by the addition of an appropriate volume (2:1) of modified 3X Laemmli 

sample buffer (Laemmli, 1970) containing 30% (v/v) Glycerol, 131.25 mM Tris -
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HCl, pH 6.8, 6% (w/v) SDS, 0.09% (w/v) bromophenol blue and 9 % (v/v) β-

mercaptoethanol. Samples were boiled for 5 minutes at 95oC and then stored at -

20°C until required later. 

 SDS-polyacrylamide gel electrophoresis (PAGE) 2.5.2

Prior to use, the samples were briefly vortexed after thawing, followed by a quick 

spin down. An equal volume of protein samples was separated by SDS-PAGE using 

polyacrylamide gels. To be able to determine the size of the proteins, 3 µl of 

Precision Plus Protein™ dual colour standards (Bio-Rad, USA) were run alongside 

to the samples. Depending on the molecular weight of the protein  of interest, 6% to 

15% percent resolving gels (375 mM Tris-HCl, pH 8.7, 0.1% (w/v) SDS, 6%-12% 

(w/v) acrylamide, 0.1% (v/v) TEMED, 0.1% (w/v) APS) and 4% stacking gels (500 

mM Tris-HCl, pH 6.8, 4% (w/v) acrylamide, 0.1% (w/v) SDS, 0.1% (v/v) TEMED, 

0.1% (w/v) APS) were used. Protein gels were resolved in running buffer (25 mM 

Tris, 190 mM glycine, 0.1% (w/v) SDS) at 180V until the blue dye front ran off the 

bottom of the resolving gel.  

 Determination of protein expression by western blotting 2.5.3

Following the SDS-PAGE of proteins, each gel was transferred to either 0.20 or 0.45 

µm pore size Hybond-P PVDF (GE Healthcare, UK), 0.45 µm pore size Hybond 

ECL nitrocellulose (GE Healthcare, UK) or 0.45 µm pore size EMD Millipore 

Immobilon-FL PVDF (Merck Millipore) membrane, using the ECL Semi-dry Blotter 

TE 77 (GE Healthcare). A stack was assembled in the following order: three sheets 

of Whatman paper (6.0 × 8.5 cm) were placed on the anode, one PVDF or 

nitrocellulose membrane (6.0 × 8.5 cm), a protein gel (6.0 × 8.5 cm) and three more 

sheets of Whatman paper (6.0 × 8.5 cm). Each layer of the transfer stack was soaked 

in transfer buffer (48 mM Tris-HCl, pH 8.3, 0.037% (w/v) SDS, 39 mM Glycine, 
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20% (v/v) Methanol), while the PVDF membrane was firstly prewetted with 

methanol for 10 seconds and then soaked in transfer buffer. Proteins were 

transferred to PVDF or nitrocellulose membranes at 0.8 mA per cm 2 of the gel 

surface for 2 hours. After the end of the transfer, the membranes were incubated 

with either 5% (w/v) Marvel skimmed milk powder or 3% (w/v) BSA in TBS-T 

buffer (TBS buffer (20 mM Tris-HCl, 130 mM NaCl, pH 7.6) containing 0.1% (v/v) 

Tween-20) for 2 hours with constant agitation on an orbital shaker at room 

temperature. Each membrane was then incubated with 10 ml primary antibody 

(diluted in 1 % (w/v) dried milk in TBS-T) overnight at 4°C with constant agitation. 

The membranes were then washed five times every 20 minutes with TBS-T buffer. 

Blots were then incubated for 1 hour with an appropriate horseradish peroxidase 

(HRP)-linked secondary antibody (1:1000 diluted in milk 1% (w/v) in TBS-T, 10ml) 

or with IRDye® 680RD-conjugated secondary antibodies (1:15,000 diluted in milk 1 

% (w/v) in TBS-T, 10ml) when being prepared for enhanced chemiluminescence 

(ECL) analysis or LI-COR Odyssey® CLx Imaging System (LI-COR Biosciences, 

USA) respectively. Membranes were then washed four times every 15 minutes with 

TBS-T. A list of the antibodies and working dilutions used in this study is presented 

in table 2.3. 

2.5.3.1 Quantitative western blotting using the enhanced chemiluminescence (ECL) 

detection system 

Proteins were visualised using the ECL western blotting detection reagents and 

analysis system (GE Healthcare) according to the manufacturer’s instructions. Blots 

were incubated with the chemiluminescence reagent (GE Healthcare) for 1 min, 

placed in a cassette and then, exposed to a piece of Amersham Hyperfilm ECL (18 × 

24 cm) (GE Healthcare) in a dark room. The development of the films was 

performed by a FUJI Medical film processor RG II (Fujifilm, Japan). The blots were  
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Table 2.3 List of antibodies and working dilutions. 

Antibody 
Dilution 

factor 
Supplier, Cat No# 

Sheep polyclonal anti-PP2AC 1:1,000 
Custom made6 (Kloeker et al., 

2003) 

Sheep polyclonal anti-PP4C 1:1,000 
Custom made6 (Kloeker et al., 

2003) 

Sheep polyclonal anti-PP6C 1:1,000 
Custom made6 (Kloeker et al., 

2003) 

Mouse monoclonal anti-alpha4 1:1,000 Cell Signaling Technology, #5699 

Rabbit polyclonal anti-alpha4 1:1,000 
Bethyl Laboratories, #A300-

417A-1 

Goat polyclonal anti-Actin (I-19) 1:2,000 
Santa Cruz Biotechnology Inc, 

#sc-1616 

Mouse monoclonal anti-Ubiquitin 
(P4D1) 

1:500 
Santa Cruz Biotechnology, Inc., 

#sc- 8017 

Rabbit polyclonal anti-phospho-
CaV1.2 (Ser1928) 

1:1,000 
LifeSpan BioSciencies, #LS-

C145147C 

Rabbit polyclonal anti-phospho-PLM 
(Ser63) 

1:5,000 
Custom made7 (Fuller et al., 

2009) 

Rabbit polyclonal anti-phospho-PLM 
(Ser68) 

1:15,000 
Custom made7 (Fuller et al., 

2009) 

Rabbit polyclonal anti-ANKRD28 1:1,500 Bethyl laboratories, #A300-974A 

Rabbit polyclonal anti-ANKRD44 1:1,000 LSBio, #LS-C178736 

Rabbit polyclonal anti-ANKRD52 1:1,000 LSBio, #LS-C15372 

Goat polyclonal anti-SAP1 (V-14) 1:1,000 
Santa Cruz Biotechnology, #sc-

109864 

Mouse monoclonal anti-SAP2 (H-3) 1:500 
Santa Cruz Biotechnology, #sc-

376678 

Rabbit polyclonal anti-SAP3 1:1,000 ProteintechTM, #16944-1-AP 

                                                   
6
Kindly donated dy Dr B. E. Wadzinski, School of Medicine, University of Vanderbilt (USA). 

7
Kindly donated by Prof M. J. Shattock, Cardiovascular Division, King's College London, The Rayne 

Institute, St. Thomas’ Hospital, London, United Kingdom. 
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Antibody 
Dilution 

factor 
Supplier, Cat No# 

Rabbit polyclonal anti-H2AX 1:1,000 Cell Signaling Technology, #2595 

Rabbit polyclonal anti-phospho-
Histone H2AX (Ser139) 

1:1,000 Cell Signaling Technology, #2577 

HRP-conjugated sheep anti-mouse 
secondary 

1:1,000 GE Healthcare, #NA931 

HRP-conjugated horse anti-mouse 
secondary 

1: 1,000 Cell Signaling Technology, #7076 

HRP-conjugated donkey anti-goat 
secondary 

1:2,000 
Santa Cruz Biotechnology Inc, 

#sc-2020 

HRP-conjugated donkey anti-rabbit 
secondary 

1:1,000 GE Healthcare, #NA934V 

HRP-conjugated goat anti-rabbit 
secondary 

1:1,000 Cell Signaling Technology, #7074S 

HRP-conjugated donkey anti-sheep 
secondary 

1:1,000 
Santa Cruz Biotechnology, Inc., 

#sc-2916 

Alexa Fluor® 647 conjugated donkey 
anti-sheep secondary 

1:1,000 Millipore, #AP184SA6 

IRDye® 680RD donkey anti-Goat 
secondary 

1:15,000 LI-COR Biosciences, #926-68074 

IRDye® 680RD donkey anti-rabbit 
secondary 

1:15,000 LI-COR Biosciences, #926-68073 

 

scanned by Model GS-800 Calibrated Imaging Densitometer (Bio-Rad 

Technologies), and bands on the film were quantified using Quantity One 1-D v4.6.2 

analysis software (Bio-Rad Technologies).  

2.5.3.2 Quantitative fluorescent western blotting 

Membranes were incubated with IRDye® 680RD-conjugated secondary antibodies 

(1:15,000 diluted in 1 % (w/v) milk in TBS-T, 10ml). Signal intensities of the 

fluorophore channel 700 nm were determined using a LI-COR Odyssey® CLx 
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Imaging System (resolution: 169 µm, scan quality: medium-lowest) and analysed 

with the Image Studio™ v5.x software (LI-COR Biosciences, USA). 

 Total protein staining with Coomassie Blue R-250 2.5.4

After western blotting analysis, PVDF and nitrocellulose membranes were immersed 

in coomassie blue (2.4 mM Coomassie Blue R-250, 10% (v/v) acetic acid, 50% (v/v) 

methanol) for 30 min with agitation to stain the membrane for total protein and 

confirm the efficiency of protein transfer from the gel to the membrane. The 

coomassie blue stained membranes were destained with 50% (v/v) methanol, 10% 

(v/v) acetic acid solution, which was changed regularly until the proteins bands were 

visible. 

2.6 Measuring cell viability with MTT assay 

The MTT assay, first developed by Mosmann in 1983 (Mosmann, 1983), was used to 

determine the number of viable and metabolically active cells. It is based on the 

enzymatic reduction of a water-soluble yellow tetrazolium salt, 3-(4, 5-

dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT), which forms a 

water-insoluble purple formazan crystal in the mitochondria of metabolically active 

cells and must then be dissolved for calorimetric measurement. The absorbance 

value is directly proportional to cell number. The protocol was modified and is 

described below. 

Cells were cultured in 96-well flat-bottomed culture plates (100 µl per well) to the 

required confluency and were allowed to adhere at least 24 hours prior to any 

treatment. The cells were treated as per experimental design and incubation times. 

At the end of the experiment, the medium was removed and replaced with 100 µl of 

MTT reagent (Merck Millipore) 0.5 mg/ml solution made in pre-warmed DMEM 
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without phenol red. The plate was then kept in the dark and incubated at 37°C, 5% 

CO2, 95% air for 4 hours. After incubation, the MTT solution was carefully 

removed, and 100 µl of DMSO was added to each well (samples and blanks) to lyse 

the cells, using a multichannel pipette. The plate was covered in foil and was shaken 

gently for 15 minutes on an orbital plate shaker at room temperature.  The 

absorbance of each well was measured at 540 nm by the Infinite M200 PRO plate 

reader from TECAN (UK) and analysed using the Magellan™ v7 data analysis 

software (Magellan, Taiwan). The raw 540 nm absorbance readings were corrected 

by subtracting the mean absorbance of the blank wells (wells without cells). The 

relative cell viability was calculated as [Abs]sample/[Abs]control×100%. 

2.7 Statistical analysis 

Each experiment was repeated at least three times (n≥3), and statistical analysis was 

performed using GraphPad Prism v6.07 software (GraphPad Software, Inc., USA). 

Data were presented as mean values ± standard error of the mean (SEM). For 

comparison of data between 2 groups, an appropriately tailed unpaired Student's t-

test was used. To compare more than two groups, one-way ANOVA followed by 

either a Dunnett’s or Tukey’s post-hoc multiple comparisons tests was used. 

Differences were considered statistically significant at the 95% confidence level, 

where p<0.05.  
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Chapter 3  

Expression of the Type 2A Protein Phosphatases in 

Cardiomyocytes 

3.1 Introduction 

 Transcriptional regulation of PP2ACα, PP2ACβ, PP4C and PP6C subunits 3.1.1

3.1.1.1 Regulation of PP2ACα and PP2ACβ transcription 

The PP2A catalytic subunit exists in two forms, PP2ACα and PP2ACβ, which are 

encoded by two different genes. The PPP2ACα gene is localised to human 

chromosome 5q23-q31 (Jones et al., 1993), whilst the PPP2ACβ gene is mapped to 

human chromosome 8p21-p12 (Imbert et al., 1996). Approximately 100-150 bp 

upstream the major transcription start sites of PP2ACα (position at 205 nucleotides 

upstream the translation codon, ATG, in human) and PP2ACβ (positions at 409 and 

423 nucleotides upstream the translation codon, ATG, in human) have been reported 

to be sufficient for full transcriptional promoter activity (Khew-Goodall et al., 

1991). PP2ACα is commonly predominant in nature at the mRNA level (Khew-

Goodall and Hemmings, 1988; Khew-Goodall et al., 1991; Sunahori et al., 2009). 

This was at least partly explained by the distinct content of transcriptional factor 

binding sites in PP2ACα and PP2ACβ promoter region, which may affect the level 

of transcription (Khew-Goodall and Hemmings, 1988; Khew-Goodall et al., 1991; 

Sunahori et al., 2009). Both PP2ACα and PP2ACβ promoters are lacking the TATA 
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box sequence and contain several transcription factor Sp1 (specificity protein 1) 

binding sites which differ in number and location (Khew-Goodall et al., 1991; 

Sunahori et al., 2009). Nevertheless, the PP2ACα promoter region contains a cAMP 

response element (CRE) motif (26 bp upstream of the transcription start site) that is 

absent in the PP2ACβ promoter (Khew-Goodall et al., 1991; Sunahori et al., 2009). 

Binding of the CRE binding protein (CREB) or Sp1 protein to the CRE or Sp1 sites, 

respectively, enhances the promoter activity (Khew-Goodall et al., 1991; Sunahori et 

al., 2009). Moreover, PP2ACα transcription appears to be regulated epigenetically, 

through the methylation of a CpG site within the CRE motif in its promoter region, 

which can suppress the promoter activity by affecting CREB binding (Sunahori et 

al., 2011).  

3.1.1.2 Regulation of PP4C transcription 

Similar to PP2AC, the PP4 catalytic subunit amino acid sequence is highly 

conserved across eukaryotic species (Brewis and Cohen, 1992; Brautigan, 2013). 

The PPP4C gene has been mapped to human chromosome 16p11-p12 (Bastians et 

al., 1997a). Two major transcription start sites have been identified (positions at 53 

and 84 nucleotides upstream the translation codon, ATG, in human) (Huang et al., 

1997). The 5’-flanking sequence, 500 bp upstream the translation start site, is 

lacking the TATA box, but contain other transcription factor binding sites including 

several AP1, AP2 (activator proteins 1 and 2), and gamma-IRE (IFN-gamma 

response element) sites upstream of the second transcription site and a Sp1 binding 

site between the two major transcription start sites (Huang et al., 1997). 

Nevertheless, the regulation of PP4C transcription in eukaryotic cells is yet to be 

investigated.  
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3.1.1.3 Regulation of PP6C transcription 

The PP6 catalytic subunit (PP6C) is also found to be conserved across eukaryotic 

species (Brautigan, 2013). The human PPP6C gene has been localised to 

chromosome Xq22.3 (Bastians et al., 1997b). The regulation of PP6C transcription 

remains unclear, however, it has been shown previously that PP6C transcription was 

enhanced in high-density epithelial cells, accompanied by the expression of elevated 

protein levels of PP6C (Ohama et al., 2013). Thus, a correlation between PP6C 

expression and cell density-dependent feedback signalling was proposed (Ohama et 

al., 2013). 

 Post-translational regulation of type 2A protein phosphatase catalytic subunits 3.1.2

by the ubiquitin-proteasome-mediated system 

The ubiquitin-proteasome system, described in figure 1.10, is (i) a primary pathway 

for degradation of damaged and miss-folded proteins in mammalian cells and (ii) a 

critical cellular protein post-translational regulatory mechanism, therefore, it plays a 

critical role in many cellular processes such as the cell cycle, cell division, apoptosis 

and cell signalling (Fuchs et al., 1998; El-Khodor et al., 2001; Terret et al., 2003; 

Siu et al., 2011). In the cardiovascular system, dysregulation of ubiquitin-

proteasome system activity has been related to several diseases including myocardial 

ischemia, certain cardiomyopathies and heart failure (Bulteau et al., 2001; Herrmann 

et al., 2003; Powell et al., 2005; Depre et al., 2006; Predmore et al., 2010). All type 

2A protein phosphatase catalytic subunits are ubiquitously expressed, and their 

expression can be subjected to post-translational regulation by the ubiquitin-

proteasome system (Trockenbacher et al., 2001; McConnell et al., 2010; Udeshi et 

al., 2013; Xu et al., 2014). 
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3.2 Specific objectives 

Very little is known regarding the expression and regulation of PP4 and PP6 in healthy 

mammalian myocardium. Therefore, the experiments performed in this study aim to: 

1. detect the mRNA and protein expression of PP2ACα, PP2ACβ, PP4C and 

PP6C in H9c2 cardiomyocytes, neonatal rat ventricular myocytes (NRVMs) 

and adult rat ventricular myocytes (ARVMs).  

2. investigate whether the expression levels of type 2A protein phosphatase 

catalytic subunits are dependent on 26S proteasome activity in ARVMs. 
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3.3 Methods 

 Neonatal rat ventricular myocyte isolation and cell culture 3.3.1

3.3.1.1 Isolation of neonatal rat ventricular myocytes (NRVMs) 

NRVMs were isolated from three litters of between eight to twelve 1-2 day old 

Sprague Dawley neonatal rat pups by Dr Asvi Francois8 at the BSU within Waterloo 

campus of King’s College London, using a collagenase/ pancreatin-based enzymatic 

digestion technique (Punn et al., 2000) and pooled together. All dissection 

equipment, glassware and plasticware were either pre-sterilised or sterilised by 

autoclaving (15 min, 121oC, 1.2 atm). Solutions were either pre-sterilised or 

sterilised by autoclaving (15 min, 121oC, 1.2 atm) or filtration through 0.2-μm 

sterile syringe filters (Corning Inc., USA). During the procedure, surgical equipment 

not being used was kept in 70% ethanol. 

Neonates were separated from the mother in a different laboratory room and were 

euthanised by cervical dislocation. Following euthanasia, the neonates were rinsed 

briefly in 70% (v/v) ethanol to sterilise the tissue. The chest of the animals was 

opened carefully using small blunt ended scissors. The heart was removed using 

blunt ended scissors, and the attached lungs were separated from the heart with 

sharp-ended scissors. The hearts were then transferred into a 90-mm sterile petri 

dish containing ice-cold ADS buffer (0.68% NaCl (w/v), 0.476% HEPES (w/v), 

0.012% NaH2PO4 (w/v), 0.1% glucose (w/v), 0.04% KCl (w/v), 0.01% MgSO4 (w/v), 

pH 7.35) and were dissected into 1 mm pieces using small  surgical scissors. This 

procedure was repeated for all the hearts.  

In a laminar air-flow hood, the petri dish containing the hearts in ADS buffer was 

                                                   
8
Cardiovascular Division, King's College London, The Rayne Institute, St. Thomas’ Hospital, London, 

United Kingdom. 
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placed on ice. Curved sharp ended scissors were used to slice the hearts into very 

fine pieces. The heart-ADS buffer solution was then transferred into a 50-ml falcon 

centrifuge tube and allowed to settle at room temperature and form a loose pellet by 

sedimentation due to gravity. The supernatant was carefully aspirated off and 7 ml 

of enzyme solution (ADS buffer supplied with 0.5 mg/ml collagenase (Worthington 

Biochemical Corporation, USA) and 0.6 mg/ml Gibco™ pancreatin (Thermo Fisher 

Scientific, Life Technologies Corporation) was added to the heart pieces. The 

mixture was placed in a water bath at 37oC for 7 min, swirling the tube from time to 

time. The heart pieces were then allowed to settle and form a loose pellet by 

sedimentation due to gravity. The supernatant was then discarded, and 7 ml of the 

enzyme solution was added. The mixture was placed in the water bath for 7-min 

incubation at 37oC step, and the heart pieces were then left to sediment by gravity. 

The supernatant was aspirated off, and the cardiomyocytes were then isolated from 

the heart fragments by eight cycles of enzymatic digestion as described below. 

The settled heart pieces were mixed with 7 ml of the enzyme solution by pipetting. 

The tube was incubated at 37oC for 15 min and was swirled from time to time. After 

the heart pieces settled by sedimentation due to gravity, the supernatant conta ining 

the isolated cardiomyocytes was transferred to a 15-ml falcon centrifuge tube and 

mixed with 2 ml sterile-filtered FBS by pipetting to stop the collagenase-pancreatin 

digestion. The mixture was then centrifuged at 150 g for 6 min at room temperature. 

The supernatant was discarded, and the pelleted cells were resuspended in 6 ml of 

pre-plating medium (referred to as medium I) containing 2:1 (v/v) plating 

medium:Gibco™ Foetal Calf Serum (Thermo Fisher Scientific, Life Technologies 

Corporation). The plating medium (referred to as medium II) contained 4:1 (v/v) 

Gibco™ DMEM: Gibco™ M199 medium, supplemented with 0.5% (v/v) Gibco™ 

Horse Serum, 5% (v/v) Gibco™ Foetal Calf Serum (Thermo Fisher Scientific, Life 
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Technologies Corporation), 100 IU/ml penicillin and 100 μg/ml streptomycin 

(Sigma-Aldrich). The cell suspension was then transferred to a 50-ml falcon 

centrifuge tube which was placed in a standard incubator (37ºC, 5% CO 2), leaving 

the lid half open to allow CO2 calibration. This digestion process was followed by 

another seven digestion cycles of the settled heart pieces. All diges ts were pooled 

into the same 50-ml falcon centrifuge tube which was centrifuged at 150 g for 6 min 

at room temperature, and the supernatant was gently aspirated off. The cell pel let 

was then resuspended in 50 ml of equal volumes of medium I and medium II. 12.5 

ml of the cell suspension were transferred into four uncoated 90-mm petri dishes, 

which were placed in an incubator at 37ºC, 5% CO2 for 60-90 min, to allow non-

myocyte cells to adhere. Following the 60-90 min incubation, the medium, 

containing mostly cardiomyocytes (>95%), was transferred into a new 50-ml falcon 

centrifuge tube and cell number was counted using the trypan blue exclusion test as 

described in Chapter 2 (section 2.2.3). 

3.3.1.2 Cell culture of NRVMs and inhibition of fibroblast growth 

Culture 6-well plates (Thermo Fisher Scientific, Nalge Nunc International) were pre-

coated with gelatin by placing 2 ml of 1% (w/v) gelatin (Sigma-Aldrich) solution 

into each well for 2 hours at 37oC under sterile conditions and then washed with pre-

warmed sterile PBS, prior to use. NRVMs were plated at a density of 2×10 6 cells per 

well on gelatin-coated 6-well culture plates and maintained in plating medium for 24 

hours. The medium was then replaced with serum-free maintenance medium 

containing 4:1 (v/v) DMEM:M199, supplemented with 100 IU/ml penicillin and 100 

μg/ ml streptomycin for 48 hours prior to experimentation. Fibroblast growth was 

inhibited by the addition of 20 μM cytosine arabinoside (AraC), a DNA replication 

inhibitor, in the maintenance medium for 48 hours (Mesquita et al., 2014). Plates 

were incubated at 37°C in a humidified incubator (5% CO2 and 95% air). 
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 Inhibition of 26S proteasome activity in ARVMs 3.3.2

Freshly isolated ARVMs were cultured as described in Chapter 2 (section 2.2.2). 

Compound MG132 (TOCRIS, USA), a potent cell-permeable inhibitor (IC50 = 100 

nM) of the 26S proteasome (Lee and Goldberg, 1996; Tsubuki et al., 1996), was 

used in ARVMs to reduce the 26S proteasome-mediated degradation of the 

ubiquitin-conjugated cellular protein. Cultured ARVMs were treated with 1 µM of 

MG132 (dissolved in sterile-filtered DMSO; final concentration of 0.1% (v/v) 

DMSO in the cell culture) for 0, 2, 4, 8 and 24 hours at 37oC, 5% CO2. Samples 

were prepared for immunoblotting analysis as described in Chapter 2 (section 2.5.1). 

 Quantification of transcript levels of PP2ACα, PP2ACβ, PP4C and PP6C by 3.3.3

qPCR analysis 

Total RNA was isolated from H9c2 cardiomyocytes (~1.2×106 cells), NRVMs 

(~2×106 cells) and ARVMs (~1×107 cells), using an RNeasy Plus Mini kit (Qiagen) 

(section 2.4.1). The quality and quantity of total RNA samples and cDNA 

preparation were performed as described in Chapter 2 (section 2.4). Relative mRNA 

levels of all genes were measured by qPCR analysis using the comparative Cq 

method (Livak and Schmittgen, 2001; Schmittgen and Livak, 2008). Two candidate 

reference genes, β-actin (ACTB) and glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH), were validated by the BestKeeper© v1.0 software (Pfaffl et al., 2004) 

and used for normalisation. Data were presented in a graph as fold change (2 -ΔΔCq) of 

the mRNA expression of type 2A protein phosphatase catalytic subunits relative to 

PP2ACα (calibrator gene) mRNA expression. 
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 Comparison of PP2ACα, PP2ACβ, PP4C and PP6C mRNA expression by 3.3.4

qPCR analysis in NRVM with and without cytosine arabinoside (AraC)  

Total RNA isolation, validation and cDNA preparation were performed as described 

in Chapter 2 (section 2.4). Fold change in the mRNA expression of either PP2ACα, 

PP2ACβ, PP4C or PP6C in NRVMs treated with 20 µM AraC, relative to the mRNA 

expression in the untreated NRVMs, was calculated based on the qbase+ software 

approach (Hellemans et al., 2007) and presented in a graph. Two candidate reference 

genes, ACTB and GAPDH, were validated by the BestKeeper© v1.0 software (Pfaffl 

et al., 2004) and used in combination for more accurate normalisation 

(Vandesompele et al., 2002; Bustin et al., 2009). Selection of differentially 

expressed genes, relevant to biological response, was based on fold difference in the 

relative mRNA expression (≥2-fold down- or upregulation) with a P-value (p<0.05) 

cut-off (Guo et al., 2006; Huang et al., 2015; Qin et al., 2015; Song et al., 2015; Sun 

et al., 2016). 

 Western blotting analysis 3.3.5

Protein sample preparation, SDS-PAGE and immunoblotting analysis were 

performed as described in Chapter 2 (section 2.5) to detect the expression of total 

PP2AC (both PP2ACα, PP2ACβ), PP4C, PP6C and ubiquitin in H9c2 

cardiomyocytes, NRVMs and ARVMs. Details about the antibodies and working 

dilutions used in this chapter are presented in table 2.3. 
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3.4 Results 

 Transcript expression profile of type 2A protein phosphatases in H9c2 3.4.1

cardiomyocytes, NRVMs and ARVMs 

The transcript expression profile of the type 2A protein phosphatase catalytic 

subunits was examined in rat embryonic heart-derived H9c2 cell line, neonatal and 

adult cardiomyocytes. The first step in this process was to validate the quality of 

RNA isolated from H9c2 cardiomyocytes, NRVMs and ARVMs, followed by an 

evaluation of the candidate reference genes and finally mRNA quantification using 

qPCR analysis as described below. 

3.4.1.1 Validation of RNA quality for qPCR analysis 

Total RNA samples, showing an absorbance ratio of A260/A280 ≥2.0 and 

A260/A230 >1.8, were considered to be of high purity and were further tested for 

RNA integrity. The RNA integrity of total RNA samples isolated from H9c2 

cardiomyocytes or ARVM was initially evaluated by electrophoresis in agarose gels. 

As shown in figure 3.1, all ribosomal RNA bands had discernible lower edges, 

indicating good RNA quality. The RNA integrity was then determined using a 2100 

Bioanalyzer (Agilent Technologies). The RNA integrity number (RIN) values scored 

9.5-10.0, 7.3-8.8 or 7.4-8.7, when total RNA was isolated from H9c2 

cardiomyocytes, NRVMs or ARVMs, respectively. As expected, RNA integrity was 

better preserved (RIN >9.0) in total RNA samples isolates from a cell line compared 

to isolations from primary cells (Fleige and Pfaffl, 2006; Schroeder et al., 2006). As 

it can be seen in figure 3.2, clear 18S and 28S ribosomal peaks were present in all 

the samples, even though additional peaks were present at samples with RIN scores 

between 7 to 9. These data suggested isolation of good-quality RNA which could be 

used in qPCR analysis (Fleige and Pfaffl, 2006; Schroeder et al., 2006). 
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Figure 3.1 Electrophoresis of total RNA isolated from H9c2 cardiomyocytes (lanes 1-2) or 
ARVMs (lanes 3-4). 100-200 ng of total RNA was run on 1% (w/v) agarose gel. A 1kb Plus DNA 

ladder was run alongside the samples (lane L). Data are representative of three individual RNA 

isolations. 
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Figure 3.2 Electropherograms and calculated RIN values of total RNA obtained by the RNeasy 
protect cell mini kit (Qiagen) from (A) H9c2 cardiomyocytes, (B) NRVMs or (C) ARVMs. Total 
RNA was analysed using an Agilent RNA 6000 Nano Assay and 2100 Bioanalyzer (Agilent 
Technologies). The two peaks represent the 28S and 18S ribosomal RNAs. Data are 
representative of three individual RNA isolations. 
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software (Pfaffl et al., 2004) for each reference gene across the three biological 

replicates in each cell type (H9c2 cardiomyocytes, NRVMs and ARVMs), which are 

shown in table 3.1. The reference genes, ACTB and GAPDH, had an SD less than 1, 

showed very strong correlation (0.96≤ r ≤1) and had a low coefficient variation 

(CV≤3.2%). According to these data, both reference genes met the criteria 

determined by Pfaffl et al. (2004), showing high stability across the biological 

replicates and were considered suitable for use in the subsequent qPCR analysis.  

Table 3.1 Expression stability of the reference genes (ACTB and GAPDH) in H9c2 
cardiomyocytes, NRVMs and ARVMs, was determined by calculating the coefficient variation 

(CV), standard deviation (SD) and Pearson coefficient of correlation (r), of each candidate 
reference gene Cq values (n=3), using the BestKeeper© v1.0 software (Pfaffl et al., 2004). 

Cell type Reference gene CV (%) SD r 

H9c2 
cardiomyocytes 

ACTB 0.99 0.17 1.00 

GAPDH 2.31 0.42 1.00 

NRVMs 

ACTB 3.02 0.59 1.00 

GAPDH 2.09 0.40 1.00 

ARVMs 

ACTB 3.32 0.69 0.98 

GAPDH 2.29 0.41 0.96 

 

3.4.1.3 mRNA expression levels of PP2ACα, PP2ACβ, PP4C and PP6C in H9c2 

cardiomyocytes, NRVMs and ARVMs  

Prior to qPCR data analysis, the Cq values of PP2ACα, PP2ACβ, PP4C, PP6C, 

GAPDH or ACTB genes in the unknown samples were compared with the ones in 

the no-RT or no-template control reactions, to estimate the percentage of genomic 

DNA contamination. In all unknown samples, difference in the Cq values of each 

gene between the no-RT or no-template control reactions and the unknown samples 
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was equal to or higher than 5 Cq, showing that 3% or less of the amplification in the 

unknown samples was attributable to unwanted signals (e.g. genomic DNA 

template), therefore, it was considered not significant. 

The mRNA expression of PP2ACβ, PP4C and PP6C relative to the expression of 

PP2ACα mRNA was determined in H9c2 cardiomyocytes, NRVMs and ARVMs 

(Figure 3.3). In H9c2 cardiomyocytes, PP2ACβ mRNA expression was significantly 

(p<0.05) higher (1.22-fold), while PP4C and PP6C mRNA expression was 

significantly (p<0.05) less (2.05-fold and 2.94-fold, respectively) compared to the 

PP2ACα mRNA expression levels (Figure 3.3A), when data was normalised to either 

ACTB or GAPDH reference genes. In NRVMs, the mRNA expression of PP2ACβ 

was significantly (p<0.05) higher (3.26-fold change) compared to the PP2ACα 

mRNA expression levels (Figure 3.3B). On the other hand, PP4C and PP6C mRNA 

expression levels were less expressed (2.91-fold and 5.40-fold, respectively), 

relative to the mRNA expression levels of PP2ACα, however, these results were not 

statistically significant (Figure 3.3B). The same results were confirmed when data 

were normalised to either ACTB or GAPDH reference genes. In ARVMs, mRNA 

levels of PP2ACβ, PP4C and PP6C were significantly less expressed (2.72-fold, 

15.32-fold and 5.57-fold, respectively), compared to the PP2ACα mRNA expression 

levels (Figure 3.3C) upon data normalisation with either ACTB or GAPDH reference 

genes. These data showed that all genes, encoding the type 2A protein phosphatase 

catalytic subunits, were transcribed in H9c2 cardiomyocytes, NRVMs and ARVMs. 

In addition, relative mRNA expression levels of PP2ACα, PP2ACβ, PP4C and PP6C, 

normalised with either ACTB or GAPDH, were identical, therefore, for simplicity, 

only data normalised with ACTB were shown and discussed. Interestingly, as it can 

be seen in figures 3.3A and 3.3C, the relative mRNA expression profile of PP2ACα, 
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Figure 3.3 Fold change of the mRNA expression levels of the catalytic subunits of type 2A 
protein phosphatases, relative to PP2ACα mRNA expression and normalised with ACTB (or 
GAPDH) (PrimerDesign) in (A) H9c2 cardiomyocytes, (B) NRVMs and (C) ARVMs was validated 

by qPCR analysis and calculated by the comparative Cq method. Values are plotted as 

mean ± SEM of three biological replicates (RNA isolations), run in duplicate reactions. 

Statistical comparison was made by one-way ANOVA followed by Tukey’s post-hoc multiple 

comparisons tests; *p<0.05. 
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PP2ACβ, PP4C and PP6C appears to differ between H9c2 cardiomyocytes 

(PP2ACβ>PP2ACα>PP4C>PP6C) and ARVMs (PP2ACα>PP2ACβ>PP6C>PP4C). 

On the other hand, the relative mRNA expression profile of type 2A protein 

phosphatase catalytic subunits in NRVMs (PP2ACβ>PP2ACα≃PP4C≃PP6C) was 

similar to the H9c2 cardiomyocytes (Figures 3.3A and 3.3B). 

 Effects of cytosine arabinoside (AraC) treatment in the mRNA expression 3.4.2

levels of PP2ACα, PP2ACβ, PP4C and PP6C in NRVMs 

To determine whether the transcript expression of type 2A protein phosphatase 

catalytic subunits in NRVMs may be affected by fibroblast contamination in the 

culture, the mRNA levels of PP2ACα, PP2ACβ, PP4C and PP6C were determined 

and compared by qPCR in untreated NRVMs and NRVMs treated with 20 µM 

cytosine arabinoside (AraC) to inhibit fibroblast growth (Novoyatleva et al., 2010; 

Mesquita et al., 2014; Sun et al., 2014).  

3.4.2.1 Validation of RNA quality for qPCR analysis 

Total RNA samples with an absorbance ratio A260/A280 ≥2.0 and A260/A230 >1.8, 

were considered to be of high purity and were tested for RNA integrity by a 2100 

Bioanalyzer (Agilent Technologies). The RNA integrity number (RIN) values scored 

between 7.4 to 8.7. As it can be seen in figure 3.4, all the samples showed clear 18S 

and 28S ribosomal peaks, even though additional peaks were present. These data 

suggested isolation of RNA with good quality that could be used for qPCR analysis.  
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Figure 3.4 Electropherograms and calculated RIN values of total RNA obtained by the RNeasy 
protect cell mini kit (Qiagen) from (A) untreated NRVMs and (B) treated with 20 μM cytosine 
arabinoside (AraC) for 48 hours. Total RNA was analysed using an Agilent RNA 6000 Nano 

Assay and 2100 Bioanalyzer (Agilent Technologies). The two peaks represent the 28S and 18S 

ribosomal RNAs. Data are representative of three individual RNA isolations. 

3.4.2.2 Validation of ACTB and GAPDH reference genes 

Two reference genes, ACTB and GAPDH, were validated across all the biological 

replicates and experimental conditions by the BestKeeper© v1.0 software (Pfaffl et 

al., 2004) to decide whether they were appropriate for further use. Table 3.2 shows 

that both ACTB and GAPDH had SD of less than 1 and showed low coefficient 

variation (CV≤3.45%) and significantly (p<0.001) strong correlation (r≅1). 

Therefore, both reference genes were considered stable and suitable for use in qPCR 

analysis (Pfaffl et al., 2004). In addition, an unpaired Student's t-test among the Cq 

values of each reference gene in NRVMs with and without AraC treatment showed 

no significant differences.  
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Table 3.2 Expression stability of the reference genes (ACTB and GAPDH) in untreated NRVMs 
and NRVMs treated with cytosine arabinoside (AraC) was determined by calculating the 
coefficient of variation (CV), standard deviation (SD) and coefficient of correlation (r), of 

each candidate reference gene Cq values (n=6), using BestKeeper© v1.0 software. 

Cell type Reference gene CV (%) SD r 

NRVMs 

ACTB 3.02 0.59 1.00 

GAPDH 2.09 0.40 1.00 

NRVMs 

(AraC) 

ACTB 2.72 0.53 1.00 

GAPDH 3.45 0.66 1.00 

 

3.4.2.3 Comparison of mRNA expression levels of PP2ACα, PP2ACβ, PP4C and PP6C in 

NRVMs with and without cytosine arabinoside (AraC) 

First, the Cq values of PP2ACα, PP2ACβ, PP4C, PP6C, GAPDH or ACTB genes in 

the unknown samples were compared with the ones in the no-RT or no-template 

control reactions, to evaluate the percentage of genomic DNA contamination. In 

both untreated NRVM and NRVM treated with 20 µM AraC, the Cq values of each 

gene in the unknown samples differed from the no-RT or no-template control 

reactions at least 5 Cq values, suggesting that 3% or less of the amplification in the 

unknown samples was attributable to the genomic DNA template and was considered 

not significant. 

The mRNA expression levels of type 2A protein phosphatase catalytic subunits were 

determined in NRVMs treated with AraC relative to the ones in the untreated 

NRVMs. Figure 3.5 shows that the mRNA expression levels of PP2ACα (1.19-fold 

change), PP2ACβ (1.23-fold change), PP4C (1.30-fold change) and PP6C (1.01-fold 

change) in NRVMs treated with AraC were not significantly altered compared to the 

mRNA expression levels in the untreated NRVMs. These data suggest that: i) the 
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AraC treatment does not significantly affect the mRNA expression of the type 2A 

protein phosphatase catalytic subunits in NRVMs and ii) fibroblast contamination 

can be considered minimal in the untreated NRVMs.  

 

Figure 3.5 Fold change of the mRNA expression levels of (A) PP2ACα, (B) PP2ACβ, (C) PP4C 
and (D) PP6C in NRVMs treated with 20 µM cytosine arabinoside (AraC) for 48 hours, relative 

to the expression levels in the untreated NRVMs and normalised with multiple reference genes 

(ACTB and GAPDH), was calculated using the the qbase+ software approach. Data represent 

mean values ± SEM of three individual biological replicates. Statistical comparison was made 

by a two-tailed unpaired Student's t-test. No significant changes were observed between the 

untreated NRVM and treated with AraC. 
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investigated in rat embryonic heart-derived H9c2 cardiomyocytes and ARVMs. 

Figure 3.6A shows that total PP2AC was not significantly different between H9c2 

cardiomyocytes and ARVMs. Surprisingly, PP4C protein expression was not 

detected in ARVM lysates, whilst it was expressed in H9c2 cardiomyocytes (Figure 

3.6B). Furthermore, PP6C expression was significantly (p<0.05) higher (3.4-fold) in 

ARVM compared to the H9c2 cardiomyocytes.  

 

Figure 3.6 Protein expression of the type 2A protein phosphatase catalytic subunits, in H9c2 
cardiomyocytes and ARVMs, was analysed by SDS-PAGE (using 12% polyacrylamide gels) and 

immunoblotting using catalytic subunit-specific antibodies to PP2AC, PP4C and PP6C. Protein 

levels of (A) total PP2AC, (B) PP24C and (C) PP6C were quantified by densitometry and 

normalised to actin. All data represent mean values ± SEM of three individual experiments (cell 

lysates). Statistical comparison was made by a two-tailed unpaired Student's t-test; *p<0.05. 

(D) Representative immunoblots (IB) of total PP2AC, PP4C and PP6C protein expression. 
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and PP6C protein expression was not significantly altered in NRVMs treated with 

AraC when compared to the untreated NRVMs.  

 

Figure 3.7 Protein expression of the type 2A protein phosphatase catalytic subunits, in 
untreated NRVMs and NRVMs treated with 20 µM cytosine arabinoside (AraC) for 48 hours, 

was determined by immunoblotting analysis, using subunit-specific antibodies to PP2AC, PP4C 

and PP6C. Prior to immunoblotting, proteins from each sample were resolved by SDS-PAGE (on 

12% polyacrylamide gels). Levels of (A) total PP2AC, (B) PP4C and (C) PP6C protein expression 

were quantified by densitometry or LI-COR Odyssey® CLx Imaging System and normalised to 

actin. All data represent mean values ± SEM of three individual experiments (cell lysates). 

Statistical comparison was made by a two-tailed unpaired Student's t-test. No significant 

changes were observed between the untreated NRVM and treated with AraC. (D) 

Representative immunoblots (IB) of total PP2AC, PP4C and PP6C protein expression. 
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protein level in H9c2 cardiomyocytes, NRVMs and ARVMs whilst, PP4C expression 

was detected only in H9c2 cardiomyocytes and NRVMs, indicating a differential 

protein expression of PP4C during cardiomyocyte development. Furthermore, the 

protein expression levels of type 2A protein phosphatase catalytic subunits were not 

significantly altered in NRVMs with and without AraC treatment. 

 Effect of proteasome-mediated degradation in type 2A protein phosphatase 3.4.4

catalytic subunits expression in ARVMs 

As shown in figure 3.6B, PP4C protein expression was not detected in ARVMs, 

whereas transcription of PP4C mRNA was detected (Figure 3.3C). A possible 

explanation for these results could be that the 26S proteasome mediates degradation 

of PP4 in ARVM. Therefore, the compound MG132 was used to inhibit proteasome 

activity in ARVMs. Figure 3.8A clearly shows that levels of protein ubiquitination 

were elevated after 4-24 hours exposure of ARVMs to 1 µM MG132. As it can be 

seen in figures 3.8C and 3.8E, the protein expression of total PP2AC and PP6C was 

not significantly (p=0.47 and p=0.64, respectively) altered, following MG132 -

mediated proteasome inhibition for 2-24 hours, compared to the untreated cells. 

Interestingly, in figure 3.8B, western blotting revealed an apparent increase in PP4C 

protein levels in samples where proteasome activity was inhibited for two or more 

hours, compared to the untreated ARVMs. Even though the data in figure 3.8D were 

not statistically significant (p=0.22) due to experimental variability/ difficulty in 

quantification, these results indicate that the protein expression levels of PP4C may 

be regulated by the 26S proteasome-mediated degradation mechanism, which could 

explain the absence of PP4C in the adult cardiomyocytes.  
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Figure 3.8 The expression of ubiquitin-conjugated cellular proteins and total PP2AC, PP4C and 
PP6C in cultured ARVMs, exposed to MG132 (1 μM) for 0, 2, 4, 8 and 24 hours, was analysed 

by SDS-PAGE (on 12% polyacrylamide gels) and immunoblotting, using an anti-ubiquitin 

antibody and subunit-specific antibodies to ubiquitin PP2AC, PP4C and PP6C. (A-B) 

Representative immunoblots (IB) of (A) ubiquitin-conjugated cellular proteins and (B) total 

PP2AC, PP4C and PP6C. Protein expression levels of (C) total PP2AC, (D) PP4C and (E) PP6C 

were quantified by densitometry or LI-COR Odyssey® CLx Imaging System and normalised to 

actin. All data represent mean values ± SEM of three individual experiments. Statistical analysis 

was performed with one-way Anova. No significant differences were observed (vs 0h). 
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3.5 Discussion 

 Expression of the type 2A protein phosphatase catalytic subunits in 3.5.1

cardiomyocytes 

Out of the three members of the type 2A protein phosphatase family (PP2A, PP4 and 

PP6), the protein expression and regulation of PP2A catalytic subunits (PP2ACα and 

PP2ACβ) in cardiomyocytes has been studied the most (Khew-Goodall and 

Hemmings, 1988; DeGrande et al., 2013; Longman et al., 2014) and has been shown 

to be associated with cardiac dysfunction and heart failure (Gergs et al., 2004; 

DeGrande et al., 2013; Hoehn et al., 2015; Li et al., 2016). Nonetheless, very little is 

known regarding the expression of PP4 and PP6 catalytic subunits (PP4C and PP6C 

respectively) in cardiac tissue.  

H9c2 cardiomyocytes, NRVMs and ARVMs are widely used in cardiovascular 

research to explore signalling pathways associated with cardiac hypertrophy, 

calcium homeostasis and heart failure and to investigate potential cardioprotection 

targets (Simpson et al., 1982; Wang and Proud, 2002; Patten and Hall-Porter, 2009; 

Oyama et al., 2011; Wijnker et al., 2011; Shi et al., 2012; Pavlovic et al., 2013). An 

original finding of this study is that all type 2A protein phosphatase catalytic subunit 

transcripts were present in rat embryonic heart-derived H9c2 cardiomyocytes, as 

well as in neonatal and adult rat ventricular myocytes. Comparison of the mRNA 

relative expression profile of PP2ACα, PP2ACβ, PP4C and PP6C between the three 

cell types revealed great similarity between H9c2 cardiomyocytes 

(PP2ACβ>PP2ACα>PP4C>PP6C) and NRVMs (PP2ACβ>PP2ACα≃PP4C≃PP6C), 

while the relative transcript profile in ARVMs (PP2ACα>PP2ACβ>PP6C>PP4C) 

differed from the other two cell types (section 3.4.1.3). Furthermore, it was shown 

that total PP2AC and PP6C protein expression was detected in H9c2 
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cardiomyocytes, neonatal and adult rat ventricular myocytes (section 3.4.3). The 

latter results are in line with those observed in previous studies, reporting the 

expression of either PP2AC or PP6C subunits in the adul t heart tissue (Khew-

Goodall et al., 1991; Bastians and Ponstingl, 1996; Kloeker et al., 2003; Stefansson 

and Brautigan, 2006). In an earlier study, Brewis et al., (1993), reported the mRNA 

expression of PP4C in the rodent heart but did not investigate the protein expression 

levels (Brewis et al., 1993). Even though the PP4C transcript was present in H9c2 

cardiomyocytes, NRVMs and ARVMs, at the protein level it was only detected in 

H9c2 cardiomyocytes and NRVMs. Interestingly, PP4C protein expression was not 

detected in ARVMs. The latter result is in agreement with Kloeker and co-workers’ 

(2003) findings, showing that PP4C was either absent or of a very low abundance in 

rat adult cardiac tissue. Taken together, these results suggest that there may be an 

association between the type 2A protein phosphatase catalytic subunit expression 

and the heart developmental stage.  

Myocardial overexpression of PP2ACα in transgenic mice has been shown to lead to 

severely impaired cardiac function, eccentric cardiac hypertrophy and dilated 

cardiomyopathy (Gergs et al., 2004; Hoehn et al., 2015). On the other hand, Dong et 

al. (2015) showed that conditional loss of PP2ACα in the postnatal mouse heart, at 

postnatal day 6.5, resulted in postnatal eccentric hypertrophy at postnatal day 11 but 

no cardiomyocyte disarray was observed. In the same study, Dong and co-workers 

(2015) claimed that conditional loss of PP2ACα in the adult mouse heart did not 

cause any visible phenotype (Dong et al., 2015). Another recent study by Li and co-

workers, (2016), demonstrated that deletion of PP2ACα expression in the heart of 

adult mice led to cardiomyocyte hypertrophy after (10 days) or heart failure after (60 

days), using a tamoxifen-inducible, myocardial cell-specific PP2ACα knockout 

mouse model (Li et al., 2016). Collectively, these studies outline a critical role for 
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PP2ACα in cardiac function and health, which is not yet fully understood, however, 

it appears to be strictly balanced. In addition, the last two studies indicate that 

PP2ACβ cannot compensate for the long-term absence of PP2ACα, suggesting that 

these catalytic subunits may have distinguished roles in cardiac function, despite 

having 97% amino acid sequence identity (Arino et al., 1988). Nonetheless, the role 

of PP2ACβ in cardiac function has remained unclear. In this chapter, the data 

suggested no significant differences in the total PP2AC protein expression between 

H9c2 cardiomyocytes and ARVMs, however, a significant difference in the relative 

mRNA expression between PP2ACα and PP2ACβ in each cell type was observed. In 

H9c2 cardiomyocytes, PP2ACβ mRNA expression was significantly (p<0.05) 1.22 -

fold higher and in ARVM significantly (p<0.05) 2.72-fold less compared to the 

PP2ACα mRNA expression levels. Furthermore, in NRVM, PP2ACβ mRNA was 

expressed significantly (p<0.05) 3.26-fold higher when compared to PP2ACα mRNA 

expression levels. Considering that total PP2AC protein has been shown to be under 

a strict autoregulatory mechanism at the level of translation (Baharians and 

Schonthal, 1998), it is tempting to suggest that although the total PP2AC protein 

expression was at a similar level in both H9c2 cardiomyocytes and ARVMs, the 

contribution of each catalytic subunit in the cell function of each of the above cell 

types and consequently NRVMs, may differ according to the differential stage of the 

cardiomyocytes (terminally differentiated or not). Nevertheless, without a specific 

antibody distinguishing between the two subunits, it is very hard to provide further 

evidence at the protein level. 

As described in Chapter 1 (section 1.5.4.3), PP2AC subunits have been shown to be 

targeted for polyubiquitination and proteasome degradation (Trockenbacher et al., 

2001; McConnell et al., 2010; Watkins et al., 2012; Udeshi et al., 2013; Xu et al., 

2014). In addition, Xu et al. (2014), reported that both Lys48 and Lys63 ubiquitin 
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chains were formed in total PP2AC, suggesting that PP2AC polyubiquitination is not 

only linked with 26S proteasome-mediated degradation but may be involved in 

facilitating protein-protein interaction (Xu et al., 2014). Therefore, in this study, 

H9c2 cardiomyocytes were treated with MG132 to enhance the expression of 

polyubiquitinated PP2AC subunits. As figure 3.8C showed, the protein expression 

levels of the unmodified total PP2AC were not significantly altered. This result is 

not surprising as part of the total PP2AC content in the lysate would be expected to 

be subjected to polyubiquitination, however, no polyubiquitinated PP2AC was 

detected on the immunoblot. A possible explanation for this result could be that the 

signal may be below the limits of detection since polyubiquitinated proteins would 

be spread across the immunoblot due to different degrees of ubiquitination.  

Even though the expression of PP6C in normal cardiac tissue was first ident ified by 

Bastians and Postingl, in 1996 (Bastians and Ponstingl, 1996), its regulation and 

involvement in cardiac function still remain unknown. A recent proteomic study 

revealed that PP6C has ubiquitination sites (Lys8, Lys132, Lys188, Lys21 9, and 

Lys231) (Udeshi et al., 2013), but there is no other report available, demonstrating 

the type of ubiquitination PP6C may undergo in native conditions. A study was 

conducted, presented in this chapter, to determine if PP6C undergoes proteasome -

mediated degradation in ARVMs. Like PP2AC protein expression, the protein 

expression levels of the unmodified PP6C were not significantly changed even 

though the 26S proteasome was inhibited and no additional bands were identified on 

the immunoblot as ubiquitinated forms of PP6C. 

The data in this chapter showed that PP4C protein levels were detected in H9c2 

cardiomyocytes and NRVMs but not in ARVMs, even though the transcript was 

expressed, suggesting that PP4C expression may be developmentally regulated in 

cardiomyocytes. Furthermore, since a proteomic study of Udeshi et al. (2013), 
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showed that PP4C has ubiquitination sites (Lys26, Lys63, and Lys183) (Udeshi et 

al., 2013), the results in this chapter raised the possibility of PP4C to be post -

translationally regulated in the ARVMs by a 26S proteasome-mediated degradation 

mechanism. To date, no other study has investigated the type of ubiquitin 

modifications in PP4C, except the one of Udeshi et al. (2013), in which PP4C 

endogenous ubiquitination sites were identified. Interestingly, in the present study, 

PP4C protein expression levels were detected when proteasome activity was 

inhibited by MG132 (2-24 hours). However, it was not possible to discern additional 

higher molecular weight protein bands on the immunoblot as ubiquitinated PP4C 

forms at this stage.  

In early postnatal life, the growth of cardiomyocytes switches from hyperplastic to 

hypertrophic, however, this process is not yet well understood (Porrello et al., 2008; 

Bergmann et al., 2015). The data in this chapter suggested that PP4C expression may 

be developmentally adapted and regulated by a proteasome-mediated degradation 

system in the heart. Such a mechanism could explain why PP4C protein was 

expressed in the rat embryonic heart-derived H9c2 cell line and neonatal rat 

ventricular myocytes but was absent or at very low abundance in the adult rat 

ventricular myocytes, without proteasome inhibition treatment, whereas the PP4C 

transcript was present. The regulation of PP4C at the mRNA level has been proposed 

by Hu et al., (2001) to be developmentally dependent in the mouse. In their study, 

quantity and tissue-expression-preference for global PP4C mRNA were altered 

during embryonic development or between different adult tissues (Hu et al., 2001). 

 Effects of cytosine arabinoside (AraC) treatment on the expression of type 2A 3.5.2

protein phosphatase catalytic subunits in NRVMs 

Even if fibroblast contamination in NRVM culturing is expected to be less than 5% 
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(Punn et al., 2000), in many studies cytosine arabinoside (AraC) has been used to 

inhibit fibroblast growth in the culture (Tanaka et al., 1994; Novoyatleva et al., 

2010; Mesquita et al., 2014; Sun et al., 2014). Therefore, the expression of type 2A 

protein phosphatases was examined in NRVMs treated with AraC, to exclude 

potential expression of these genes attributed to fibroblast contamination. The data 

in figures 3.5 and 3.7 show that type 2A protein phosphatase catalytic subunits were 

not significantly different at the mRNA and protein expression level in NRVMs with 

or without AraC, therefore, their expression in NRVMs was not affected by any 

fibroblast content or AraC treatment in the culture.  
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3.6 Summary 

In summary, in this chapter, the relative mRNA expression profile of all type 2A 

family protein phosphatase catalytic subunits was shown to be similar in rat 

embryonic heart-derived H9c2 cell line and NRVMs and differed in ARVMs. The 

protein expression of all type 2A protein phosphatase catalytic subunits was detected 

in all cell types (H9c2 cardiomyocytes, NRVMs and ARVMs) except for PP4C in 

ARVMs, which was either absent or the signal was below the limits of detection.  

However, PP4C was detected in ARVM only when the proteasome was inhibited. 

PP2ACβ mRNA was abundant in H9c2 cardiomyocytes and NRVM whilst, PP2ACα 

mRNA was most abundant in ARVM. Furthermore, total PP2AC protein expression 

was similar in H9c2 cardiomyocytes and ARVM, however, PP6C protein content 

was greater in ARVM. In addition, it was shown that the expression of PP2ACα, 

PP2ACβ, PP4C and PP6C was not significantly altered in NRVM with and without 

fibroblast growth inhibition. Finally, since all type 2A protein phosphatase catalytic 

subunits were expressed in H9c2 cardiomyocytes, it was demonstrated that these 

cells could be further used as an appropriate model to investigate and distinguish the 

specificity of PP2ACα, PP2ACβ, PP4C and PP6C towards cardiac protein substrates 

associated with cardiac calcium homeostasis, DNA repair and hypertrophy. 
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Chapter 4  

Characterisation of siRNA-Mediated Silencing of Type 

2A Protein Phosphatase Catalytic Subunits and Alpha4 

Regulatory Protein 

4.1 Introduction 

RNA interference (RNAi) defines the phenomenon of using small double-stranded 

(ds) RNA oligomers to inhibit gene expression. It was firstly described in 1998 by 

Fire and co-workers (Fire et al., 1998) in the nematode worm C. elegans and was 

later found in a wide range of organisms including plants (Waterhouse et al., 1998; 

Hamilton and Baulcombe, 1999) and mammals (Wianny and Zernicka-Goetz, 2000). 

Since then, RNAi has frequently been used as a tool for post-transcriptional gene 

silencing in basic science, allowing extensive characterisation of gene function in 

various organisms (Elbashir et al., 2001b; Zender et al., 2003; Bart et al., 2006; 

Zhou et al., 2006; Khatri and Rajam, 2007; Qin and Cheng, 2010; Troegeler et al., 

2014).  

 siRNA-mediated RNAi mechanism  4.1.1

The presence of dsRNA in cells triggers the RNA interference (RNAi) machinery, a 

process that has been described extensively in the literature  (Fire et al., 1998; 

Hamilton and Baulcombe, 1999; Hammond et al., 2000; Zamore et al., 2000; 

Bernstein et al., 2001; Rana, 2007). Figure 4.1 shows a simplified schematic 
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Figure 4.1 Simplified schematic representation of the RNAi mechanism (inspired by Rana, 

2007). Long double-stranded RNA (dsRNA) is introduced into the cell and is cleaved into a 

small interfering RNA (siRNA) by Dicer. Alternatively, chemically synthesised siRNA can be 

introduced directly into the cell. The double stranded siRNA is then incorporated into the RNA-

induced silencing complex (RISC) and is unwound, resulting in the cleavage of the sense strand 

of RNA by an argonaute protein (AGO) and released from RISC. The sense strand is further 

degraded by cellular nucleases, while the antisense strand guides the siRNA:RISC (siRISC) 

complex towards a target complementary mRNA, inducing mRNA degradation and resulting in 

suppression of protein expression. The mRNA is further degraded by cellular nucleases 

whereas, the siRISC complex can carry out multiple cleavage events. 
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overview, representing the RNAi process. Artificial siRNAs are commonly used in 

mammalian systems for gene expression silencing since long dsRNA (>30 bp) can 

activate the immune response during RNAi experiments (Nanduri et al., 1998; 

Elbashir et al., 2001b). 

 Overcoming the challenges of in vitro siRNA transfection 4.1.2

4.1.2.1 Off-target effects of siRNA transfection 

Transfection of cells with siRNA can induce off-target effects that are sequence-

specific and non-specific either by activation of an antiviral response, by binding to 

non-target mRNA or by saturating the RNAi machinery and can result in induction 

of cell toxicity or non-target gene silencing leading to inconsistent phenotypes 

(Jackson et al., 2003; Hornung et al., 2005; Judge et al., 2005; Lin et al., 2005; 

Birmingham et al., 2006; Jackson et al., 2006b; Robbins et al., 2008). The majority 

of the off-target effects can be avoided by chemical modifications in the siRNA 

synthesis. Furthermore, selection of appropriate controls is critical for accurate 

validation of off-target effects (Robbins et al., 2008). 

In the studies presented in this dissertation, ON-TARGET plus™ SMARTpool 

siRNAs (GE Healthcare, Dharmacon) consisting of 19-20 bases were used, 

containing a chemical dual-strand modification pattern (patent pending), which 

enhances the assembly of the siRNA antisense strand with the RNA-induced 

silencing complex complex and reduces the off-targets effects for both strands up to 

90% compared to unmodified siRNA (Birmingham et al., 2006; Jackson et al., 

2006a; Birmingham et al., 2007; Anderson et al., 2008; Chen et al., 2008b). Both 

sense and antisense strands of the siRNA contain UU 3’overhangs, crucial for 

double siRNA stability thus enhancing siRNA-mediated gene silencing (Bolcato-

Bellemin et al., 2007; Schmitz and Chu, 2011). The 5'end of the antisense strand of 
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siRNA is modified with a phosphate, which contributes to  stabilising the siRNA 

binding to RNA-induced silencing complex, improving nuclease resistance of 

siRNAs and allowing their entry into the RNAi pathway (Nykanen et al., 2001; 

Ameres et al., 2007). Each ON-TARGET plus™ SMARTpool siRNA is a mixture of 

four individual SMARTselection™ algorithm-designed siRNAs (Birmingham et al., 

2007) targeting one gene (SMARTpool) from which three are guaranteed to silence 

the gene expression at the mRNA level by at least 75% under optimised transfection 

and detection conditions.  

4.1.2.2 In vitro cationic lipid-mediated siRNA delivery: mechanism and challenges 

One of the most common methods for systemic in vitro siRNA delivery into cells is 

the transfection of siRNA complexed with cationic lipids (Malone et al., 1989; 

Felgner et al., 1994; Spagnou et al., 2004; Leal et al., 2010). Cationic lipids, 

consisting mainly of a positively charged head group, one or two hydrophobic chains 

and a linker bond in-between (reviewed in Mahato et al., 1997), entrap the 

negatively charged siRNAs creating lipoplexes (Zelphati and Szoka, 1996; Leal et 

al., 2010). The majority of cellular uptake of siRNA using cationic lipid compounds 

is processed via the endocytosis pathway, by binding of the positively charged 

lipoplexes to the negatively charged cell surface. The siRNA content is then 

deposited into endosomes, followed typically by lysosome relocation and 

degradation or endocytic recycling (Zelphati and Szoka, 1996; Lu et al., 2009). It 

was proposed that cationic lipids can promote endosomal escape, whereby the 

siRNA is released to the cytosol and is able to associate with the RNAi mechanism 

contributing to the transfection efficiency (Zelphati and Szoka, 1996; Lu et al., 

2009). Indeed, in a recent study, Gujrati et al., (2014), showed evidence of the 

siRNA endosomal escape and release to the cytosol by confocal microscopy, using 

multifunctional cationic lipids. Nonetheless, Lu et al., (2009), suggested that even 
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though the majority of the siRNA lipoplexes enters the cell through endocytosis, the 

functional siRNA delivery is mainly mediated by direct fusion of a small fraction of 

the siRNA lipoplexes with the negatively charged cell membrane (Figure 4.2). In the 

same vein, Gilleron et al., (2013), estimated only 1-2% siRNA escape from 

endosomes in transfected Hela cells using lipid nanoparticles for siRNA delivery, 

whilst Ming et al., (2011) and Lazebnik et al., (2016) provided evidence supporting 

the concept of direct fusion of the lipoplexes with the cell membrane and release of 

functional siRNA into the cytosol. 

Cationic lipid-mediated siRNA delivery may induce toxicity in cells. The chemical 

composition (Bottega and Epand, 1992; Felgner et al., 1994; Aberle et al., 1998; Gao 

and Hui, 2001; Basha et al., 2011) and concentration (Lappalainen et al., 1994) of 

the cationic lipid siRNA-carrier are influential factors of siRNA transfection 

performance and cytotoxicity. Studies have reported cationic lipid structures and 

formulations exhibiting good delivery of siRNA whilst exhibiting low toxic effects 

(Lu et al., 2009; Li et al., 2011; Sheng et al., 2014). This emphasises the importance 

of careful cationic lipid design and experimental cytotoxicity evaluation. Herein, a 

commercially available cationic lipid-based transfection reagent called 

DharmaFECT#1 (GE Healthcare, Dharmacon) was used, guaranteeing high siRNA 

transfection in H9c2 cardiomyocytes and low cellular toxicity under optimised 

conditions (Lu et al., 2009).  
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Figure 4.2 Schematic diagram of cationic lipid-mediated siRNA cellular uptake (redrawn from 

Lu et al., 2009). Although most of the siRNA lipoplexes cellular uptake is via endocytosis, the 

functional delivery of a fraction of the siRNA into the cell appears to be mediated by direct 

fusion between siRNA lipoplexes and the plasma membrane. 

Fusion

siRNA

lipoplex

Endocytosis

Lysosome

Cell

mRNA

degradation

RNAi 

pathway

siRNA

Endosomal 

escape Nucleus



Chapter 4 
  

 

97 

 

4.2 Specific objectives 

In several studies, non-selective inhibitors towards the type 2A protein phosphatase 

catalytic subunits (PP2AC, PP4C and PP6C) have been used to investigate their role in 

cardiomyocytes and non-myocytes (discussed in section 4.5.1), leading to confusion about 

the specific targeting and potential therapeutic value of each member of this family. 

Therefore, siRNA-mediated knockdown technique was used to investigate the roles of 

individual type 2A protein phosphatase catalytic subunits (PP2ACα, PP2ACβ, PP4C, PP6C) 

in cardiac calcium handling and DNA repair (as shown in chapters 5 and 6) and the 

regulation of their expression by alpha4 (described in Chapter 4) in cardiomyocytes. Thus, 

the experiments presented in this study aim to:  

1. increase the effectiveness of a successful, non-toxic transfection of rat 

PP2ACα-, PP2ACβ-, PP4C-, PP6C- and alpha4-siRNAs in H9c2 

cardiomyocytes. 

2. evaluate the specificity of the rat PP2ACα-, PP2ACβ -, PP4C- and PP6C- 

siRNAs towards the targeted genes and investigate the off-target and on-

target effects of efficient PP2ACα, PP2ACβ, PP4C or PP6C mRNA and/ or 

protein expression knockdown towards the expression of the other catalytic 

subunits. 

3. investigate the effects of alpha4 gene silencing on type 2A protein 

phosphatase catalytic subunit expression in H9c2 cardiomyocytes. 
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4.3 Methods 

 cDNA and protein sequence alignment 4.3.1

cDNA sequence of the rat PP2ACα, PP2ACβ, PP4C and PP6C genes was obtained 

from GenBank®9 (Benson et al., 2000), the National Institutes of Health genetic 

sequence database. The open reading frame region was selected by BioEdit v7.1.3 

software (Hall, 1999). The alignment between two open reading frame region 

sequences was performed by EMBOSS Needle10 alignment tool (Rice et al., 2000). 

Protein amino acid sequence of rat PP2ACα, PP2ACβ, PP4C and PP6C was obtained 

by UniProtKB11 (Magrane and UniProt Consortium, 2011). Multiple amino acid 

sequence alignment was performed by Clustal Omega 12 (Sievers et al., 2011). 

 Cell culture and IncuCyte® cell count proliferation assay 4.3.2

H9c2 cardiomyocytes were subcultured in 96 or 6-well plates as described in 

Chapter 2 (section 2.2). For the cell proliferation assay, cell culture confluency was 

monitored using an IncuCyte® ZOOM live-cell analysis system (Essen 

BioScience®, USA) according to the manufacturer’s instructions. In brief, H9c2 

cardiomyocytes were seeded in 96-well culture plates (100 μl per well) at 

appropriate experimental confluence density. The plates were placed in the IncuCyte 

inside a standard incubator (37ºC, 5% CO2) and the instrument was typically 

programmed to take four pictures per well at two-hour intervals. The IncuCyte® 

microscope permits the automatic acquisition of multiple phase-contrast images. 

Images were analysed by the IncuCyte® ZOOM software v2015A to provide a 

                                                   
9
 Free accessed via the National Centre for Biotechnology Information (NCBI) website; 

http://www.ncbi.nlm.nih.gov/GenBank®/. 
10

Free accessed via the European Bioinformatics (EMBL-EBI) website; 

http://www.ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.html. 
11

Free accessed via the Universal Protein Resource (UniProt) website; 

http://www.uniprot.org/help/uniprotkb. 
12

Free accessed via the European Bioinformatics (EMBL-EBI) website; 

http://www.ebi.ac.uk/Tools/msa/clustalo/. 

http://www.ebi.ac.uk/Tools/psa/emboss_needle/nucleotide.html
http://www.uniprot.org/help/uniprotkb
http://www.ebi.ac.uk/Tools/msa/clustalo/
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representative statistical measure of confluence over longer periods of time, and the 

proliferation rate was calculated and presented in graphical form. 

 Optimisation of siRNA transfection in H9c2 cardiomyocytes 4.3.3

Efficient transfection of siRNA is crucial for effective gene silencing. To optimise 

the siRNA delivery conditions with minimal cell toxicity effects , cell confluency 

and transfection reagent concentrations were evaluated using appropriate controls 

and assigning a threshold of 80% cell viability.  

General toxicity due to the transfection reagent DharmaFECT#1 (GE Healthcare, 

Dharmacon) in a specific cell density was tested. Cells were seeded in 96-well 

culture plates (100 μl per well) at 500, 1500 and 5000 cell density and were left to 

settle for 24 hours. The corresponding confluency was then estimated by an 

IncuCyte® ZOOM live-cell analysis system (approximately 15%, 30% and 50% 

respectively) and the medium was then replaced with transfection medium 

containing 0%, 0.1%, 0.2% or 0.4% (v/v) DharmaFECT#1 reagent only. For 

effective post-transcriptional silencing, cells were grown for 1-2 days (24-48 hours) 

for mRNA analysis and 2-4 days (48-96 hours) for protein analysis, whilst avoiding 

the overgrowth of cells. Cell proliferation was monitored by the IncuCyte® system 

for 4 days (section 4.3.2). Cell viability was measured by an MTT (3-(4, 5-

dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide) assay as described 

previously (section 2.6) after 4 days of exposure to different concentrations of 

DharmaFECT#1.  

Cytocompatible conditions of cell density and transfection reagent concentration, 

resulting in more than 80% cell viability without over confluency, were chosen to 

test the efficiency of siRNA delivery further. Cells were seeded in 96-well culture 
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plates (100 μl per well) at a subcultivation ratio of 1:10 and were left to settle for at 

least 24 hours. Once 30% confluency was reached, the medium was replaced by 

transfection medium containing 1% DharmaFECT#1 and 50 nM TOX Transfection 

Control siRNA (TOX-siRNA) or ON-TARGET plus™ Non-Targeting Control Pool 

(non-targeting control siRNA) (GE Healthcare, Dharmacon) which were used as a 

positive or a negative control, respectively. Successful cellular transfection of T OX 

Transfection Control siRNA promotes cell apoptosis within 24 to 48 hours (1 -2 

days), providing a simple method of measuring transfection efficiency. In contrast, 

ON-TARGET plus™ Non-Targeting Control Pool siRNA is designed for limited off-

target effects against any known genes in human, mouse, or rat cells (Baum et al., 

2010). For co-transfection experiments, cell viability was validated under the 

conditions of 0.2% (v/v) DharmaFECT#1 and 100 nM ON-TARGET plus™ Non-

Targeting Control Pool siRNA. Cell viability was measured by MTT assay (section 

2.6), at 1 and 4 days post-transfection. 

 Gene expression silencing of type 2A protein phosphatase catalytic subunits 4.3.4

and alpha4 protein 

The expression of PP2AC, PP4C, PP6C and alpha4 protein in H9c2 cardiomyocytes 

was suppressed by introducing rat catalytic subunit-specific siRNA:DharmaFECT#1 

complexes into the cells as described in Chapter 2 (section 2.3.1). ON-TARGET 

plus™ rat PP2ACα (PP2ACα-siRNA), PP2ACβ (PP2ACβ-siRNA), PP4C (PP4C-

siRNA), PP6C (siPP6-siRNA) and alpha4 (Alpha4-siRNA) siRNA SMARTpool (GE 

Healthcare, Dharmacon) was used to knockdown the PP2ACα, PP2ACβ, PP4C, 

PP6C and alpha4 expression respectively, with a ratio of 50 nM target -specific ON-

TARGET plus™ SMARTpool siRNA: 0.1% (v/v) DharmaFECT#1 per well . ON-

TARGET plus™ Non-Targeting Control Pool siRNA (non-targeting control siRNA) 

was used as a negative control with a ratio of 50 nM non-targeting siRNA:0.1% 
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(v/v) DharmaFECT#1 per well. Total PP2AC (both PP2ACα and PP2ACβ), PP4C, 

PP6C and alpha4 protein knockdown was detected by western blotting analysis and 

compared to the levels of the non-targeting control. Only PP2ACα and PP2ACβ 

mRNA knockdown were determined by qPCR analysis. A threshold of greater than 

80% gene expression silencing was assigned for successful, non-toxic siRNA 

transfection. 

 Co-transfection of both PP2ACα and PP2ACβ siRNAs 4.3.5

To silence the expression of both PP2ACα and PP2ACβ simultaneously in H9c2 

cardiomyocytes, both rat catalytic subunit-specific siRNAs, ON-TARGET plus™ rat 

PP2ACα (PP2ACα-siRNA) and PP2ACβ (PP2ACβ-siRNA) siRNA SMARTpool, 

were co-transfected into cells. Cells were seeded in 6-well plates at a subcultivation 

ratio of 1:10 and were left to settle for at least 24 hours. Once 30% confluency was 

reached, the medium was replaced by transfection medium (section 2.3.1). For 

transfection medium preparation, each siRNA:DharmaFECT#1 transfection mix was 

made separately, as described previously in Chapter 2 (section 2.3.1) and then added 

to an appropriate volume of antibiotic-free DMEM with 10% FBS, thereby achieving 

total siRNA concentration of 100 nM and 0.2% (v/v) DharmaFECT#1. ON-TARGET 

plus™ Non-Targeting Control Pool siRNA (non-targeting control siRNA): 

DharmaFECT#1 transfection mix was prepared in the same way and used as a 

negative control. Cells were incubated at 37°C in 5% CO2 for 1-4 days and lysed for 

immunoblotting analysis as described in Chapter 2 (section 2.5). A threshold of 

greater than 80% gene silencing was assigned for successful , non-toxic siRNA 

transfection. 

 Verification of PP2ACα and PP2ACβ mRNA knockdown by qPCR analysis 4.3.6

After transfection of H9c2 cardiomyocytes with either ON-TARGET plus™ Non-
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Targeting Control Pool siRNA (non-targeting control siRNA), used as a negative 

control, ON-TARGET plus™ rat PP2ACα (PP2ACα-siRNA) or PP2ACβ (PP2ACβ-

siRNA) siRNA SMARTpool for 2 or 4 days (section 2.3.1), samples were collected 

and total RNA was extracted from ~1x105 or 1.5-2x105 cells respectively (section 

2.4.1). Quality and quantity of total RNA were determined by NanoVue and RNA 

integrity was validated by a 2100 Bioanalyzer (Agilent Technologies) (section 

2.4.2). The mRNA level of all genes was measured by qPCR analysis as described in 

Chapter 2 (section 2.4.5). Two candidate reference genes, ACTB and GAPDH, were 

validated by the BestKeeper© v1.0 software (section 2.4.5.1) and used in 

combination for more accurate normalisation. Fold change in the expression of 

PP2ACα or PP2ACβ in H9c2 cells transfected with either PP2ACα-siRNA or 

PP2ACβ-siRNA, relative to the cells transfected with non-targeting control siRNA, 

was calculated based on the qbase+ software approach (section 2.4.5.3). Rank and 

selection of differentially expressed genes relevant to biological response was based 

on fold-change (FC) (FC≤0.5 or ≥2.0) with a P-value cut-off (p<0.05) (Guo et al., 

2006; Huang et al., 2015; Qin et al., 2015; Song et al., 2015; Sun et al., 2016).  

 Verification of siRNA-mediated protein knockdown by western blotting 4.3.7

analysis 

Protein sample preparation, SDS-PAGE and western blotting analysis were 

performed as described in Chapter 2 (section 2.5) to detect the expression of alpha4, 

PP2AC (both PP2ACα and PP2ACβ), PP4C and PP6C in H9c2 cardiomyocytes. 

Details about the antibodies and working dilutions used in this chapter are presented 

in table 2.3. 
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4.4 Results 

 cDNA and protein alignment of PP2ACα, PP2ACβ, PP4C and PP6C 4.4.1

Effective siRNA-mediated degradation of the targeted mRNA results in the 

knockdown of protein expression corresponding to a particular gene. Therefore, it is 

important to analyse the target gene protein levels. Human PP2ACα and PP2ACβ 

share 97% amino acid identity (Arino et al., 1988), while all the type 2A protein 

phosphatase catalytic subunits share 60-65% amino acid homology (Kloeker et al., 

2003). Similarly, homology of the amino acid sequences of rat PP2ACα and 

PP2ACβ, obtained from UniProtKB database, was 97.4% identical whilst, all type 

2A protein phosphatase catalytic subunits share 49.4% identity in their amino acid 

sequence (Figure 4.3). These results indicate that the individual detection of rat 

PP2ACα and PP2ACβ by western blotting is extremely difficult however, detection 

of total PP2AC (both PP2ACα and PP2ACβ), PP4C and PP6C protein expression can 

be performed using catalytic subunit-specific antibodies as described by Kloeker and 

co-workers (Kloeker et al., 2003).  

Table 4.1 shows that pair sequence alignment by EMBOSS Needle online tool 

between PP2ACα (NM_017039.2), PP2ACβ (NM_017040.1), PP4C (NM_134359.1) 

and PP6C (NM_133589.2) open reading frame of their cDNA sequences (obtained 

from GenBank®) revealed 59.2-64.7% nucleotide homology, with the exception of 

81.6% nucleotide homology between PP2ACα and PP2ACβ pair alignment. This 

result highlights the importance of careful choice of the siRNA sequence  used to 

silence the expression of PP2ACα, PP2ACβ, PP4C and PP6C to ensure specific 

interaction with the target mRNA. 
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Figure 4.3 Multiple amino acid sequence alignment of PP2ACα (UniProtKB ID: P63331), 
PP2ACβ (UniProtKB ID: P62716), PP4C (UniProtKB ID: Q5BJ92) and PP6C (UniProtKB ID: 
Q64620) was performed by Clustal Omega multiple alignment tool. Amino acid residues 

indicated by an asterisk (*) are fully conserved. 

Table 4.1 Open reading frame region sequence pair alignment by EMBOSS Needle online tool 
(Rice et al., 2000) of PP2ACα (GenBank® ID: NM_017039.2), PP2ACβ (GenBank® ID: 

NM_017040.1), PP4C (GenBank® ID: NM_134359.1) and PP6C (GenBank® ID: NM_133589.2). 

Pairs % Identity % Gaps 

PP2ACα - PP2ACβ 81.6 0.2 

PP2ACα – PP4C 64.7 12 

PP2ACα – PP6C 60.6 17.9 

PP2ACβ – PP4C 61.8 14.2 

PP2ACβ – PP6C 59.2 19.9 

PP4C – PP6C 61.9 15.2 

 

 Confirmation of the sequence specificity of siRNAs molecules 4.4.2

PP2ACα (GenBank® ID: NM_017039.2), PP2ACβ (GenBank® ID: NM_017040.1), 
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PP4C (GenBank® ID: NM_134359.1) and PP6C (GenBank® ID: NM_133589.2) 

cDNA sequences were obtained from GenBank®. Each alignment showed >10 nt 

mismatches. Furthermore, alignment of each catalytic subunit-specific siRNA seed 

region (positions 1-8 nt) with the 3’-UTR of the non-target catalytic subunits, did 

not show 8 nt complementation. These data indicate that there is no efficient 

complementation between each catalytic subunit-siRNAs and the non-target catalytic 

subunit mRNA (open reading frame or 3’-UTR) to induce any sequence-dependent 

off-target effect. 

 The effects of siRNA delivery in H9c2 cardiomyocytes on viability and cell 4.4.3

proliferation rate 

4.4.3.1 DharmaFECT#1 concentration dependent screen 

An initial objective of the project was to evaluate the silencing efficiency of the 

siRNA on protein expression of the targeted genes for up to 4 days post -transfection. 

Thus, the toxicity effects of the transfection reagent, DharmaFECT#1, in cell 

viability and proliferation rate in H9c2 cardiomyocytes was investigated, after 4 

days of treatment. From figure 4.4A, it can be seen that cells seeded at 15% 

confluence density and treated with 0.2% or 0.4% (v/v) DharmaFECT#1 for 4 days, 

showed less than 80% viability (63.6 ± 1.8% or 42.6 ± 1.9 respectively). Cell 

viability was above 80% (87.4 ± 1.4%) only when cells were treated with 0.1% (v/v) 

DharmaFECT#1 for 4 days, while cell confluency reached ~60-70%. Figure 4.4B 

presents that cells seeded at 30% confluence and treated with 0.1% or  0.2% (v/v) 

DharmaFECT#1 for 4 days showed higher than 80% cells viability (87.9 ± 1.8% or 

85.4 ± 3.6% respectively) and only when treated with 0.4% (v/v) DharmaFECT#1, 

they showed less than 80% viability (67.5 ± 7.6%). In addition, these cells reached 

approximately 80-90% confluency when treated with 0.1% or 0.2% DharmaFECT#1 
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Figure 4.4 Cell viability in H9c2 cardiomyocytes seeded at (A) 15% (n=6), (B), 30% (n=6) and 
(C) 50% (n=5) confluence density and treated with 0.1%, 0.2% or 0.4% or non-treated (NT) 
(v/v) DharmaFECT#1 for 4 days was measured by an MTT assay. A threshold is shown at 80% 

cell viability. Statistical comparison was made by one-way ANOVA followed by Dunnett’s post-

hoc multiple comparisons tests; *p<0.05 vs non-treated (NT). (D) Cell proliferation rate in non-

treated (NT) cells and cells treated with 0.1% or 0.2% (v/v) DharmaFECT #1 was monitored for 

4 days (n=5), analysed using an IncuCyte® ZOOM live-cell analysis system and compared by 

two-way ANOVA. No significant change was observed at each time point, vs non-treated (NT). 

All data represent mean values ± SEM. 

and proliferation rate curves, based on cell confluency, showed no significant 

difference between non-treated cells and cells treated with 0.1% (v/v) 

DharmaFECT#1 for 4 days based on two-way ANOVA analysis (Figure 4.4 D). 

Cells seeded at 50% confluence density, showed less than 80% viability (77.1 ± 
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2.5%) when treated with 0.4% (v/v) DharmaFECT#1 for 4 days (Figure 4.4C) 

however, they were excluded since cells overgrew and reached higher than 90% 

confluency after 2-3 days of treatment with either 0.1% or 0.2% (v/v) 

DharmaFECT#1. Taken together, these results suggest that the concentration of 

DharmaFECT#1 at 0.4% (v/v) was toxic for H9c2 cardiomyocytes and therefore 

determine that the appropriate non-toxic DharmaFECT#1 working concentration 

should be between 0.1% and 0.2% (v/v). Furthermore, 30% cell confluency and 

treatment with 0.1% (v/v) DharmaFECT#1, with the option to increase up to 0.2% 

(v/v) if required, was chosen as the most cytocompatible condition to further 

investigate the efficiency of siRNA transfection (section 4.3.3).  

4.4.3.2 siRNA transfection efficiency in H9c2 cardiomyocytes 

As mentioned earlier in Chapter 4 (section 4.3.3), significant siRNA-mediated 

mRNA knockdown can be detected after 1-2 days post-transfection and protein 

knockdown after 2-4 days post-transfection. Therefore, the experimental duration of 

siRNA transfection on H9c2 cardiomyocyte, to investigate the effects of type 2A 

protein phosphatase catalytic subunit knockdown in biological pathways, was 

initially determined at 1-4 days. To examine the toxic effects of siRNA delivery in 

H9c2 cardiomyocytes cell viability, cells were seeded at 30% confluence density and 

treated with either rat ON- TARGETplus Non-Targeting Control Pool (non-targeting 

control siRNA) or TOX Transfection Control siRNA (TOX-siRNA):DharmaFECT#1 

mix at a ratio of 50 nM rat TOX-siRNA or non-targeting control siRNA:0.1% (v/v) 

DharmaFECT#1. Figures 4.5A and 4.5B clearly show that cell viability was higher 

than 80% when cells were incubated with non-targeting control siRNA combined 

with 0.1% (v/v) DharmaFECT#1 for 1 (87.8 ± 3.5%) or 4 days (89.9 ± 3.6%). 

Furthermore, transfection efficiency in H9c2 cardiomyocytes was confirmed by 

transfecting cells with 50 nM rat TOX-siRNA resulted in a significant (p<0.05) 
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~60% reduction of cell viability at 4 days post-transfection (Figure 4.5 B). These 

data suggest that the siRNA delivery system using 0.1% (v/v) DharmaFECT#1 and 

siRNA at a final concentration of 50 nM can be considered as the baseline 

concentration for post-transcriptional silencing of the type 2A protein phosphatase 

catalytic subunits and alpha4 protein.  

 

Figure 4.5 Cell viability of untreated (NT) H9c2 cardiomyocytes or transfected with either 50 
nM rat non-targeting control siRNA (siC) or TOX-siRNA (siTOX) for (A) 1 day or (B) 4 days was 

measured by an MTT assay. A threshold is shown at 80% cell viability. Data represent mean 

values ± SEM of six individual experiments run in triplicates. Statistical comparison was made 

by one-way ANOVA followed by Dunnett’s post-hoc multiple comparisons tests; *p<0.05 vs 

non-treated (NT). 

An additional efficiency/toxicity test was performed using 0.2% (v/v) DharmaFECT 

to deliver 100 nM non-targeting control siRNA or TOX-siRNA for co-transfection 

experiments validation. As it can be seen in Figures 4.6A and 4.6B, cell viability 

was higher than 80% when cells were treated with 100 nM rat non-targeting siRNA 

at 1 day and 4 days post-transfection (94.9 ± 8.6% or 87.9 ± 6.2% respectively). 

Transfection efficiency was confirmed by transfecting cells with 100 nM rat TOX-

siRNA resulting in a significant (p<0.05) 67.5% reduction of cell viability after 4 

days post-transfection (Figure 4.6 B) thereby, establishing the appropriate reagent 

concentrations for siRNA co-transfection experiments. 
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Figure 4.6 Cell viability of untreated (NT) H9c2 cardiomyocytes or transfected with either 100 
nM rat non-targeting control siRNA (siC) or TOX-siRNA (siTOX) for (A) 1 day or (B) 4 days post-
transfection, was measured by an MTT assay. A threshold is shown at 80% cell viability. Data 

represent mean values ± SEM of four individual experiments run in triplicates. Statistical 

comparison was made by one-way ANOVA followed by Dunnett’s post-hoc multiple 

comparisons tests; *p<0.05 vs NT.  

 Evaluation of the non-targeting siRNA (siC) off-target effects towards the type 4.4.4

2A protein phosphatase catalytic subunits and alpha4 protein expression 

To investigate off-target effects of the non-targeting control siRNA towards the 

protein expression levels of the type 2A protein phosphatase catalytic subunits and 

alpha4 protein in H9c2 cardiomyocytes, cells were transfected with non-targeting 

control siRNA for 4 days (maximum experimental duration of transfection). Figure 

4.7 shows that protein levels of total PP2AC, PP4C, PP6C and alpha4 protein in 

samples transfected with 50 nM rat non-targeting control siRNA for 4 days were not 

significantly altered, compared to those in the non-treated cells. This data suggests 

that the non-targeting control siRNA has no off-target effects towards total PP2AC, 

PP4C, PP6C and alpha4 gene expression. 
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Figure 4.7 H9c2 cardiomyocytes were transfected with 50 nM non-targeting control siRNA 
(siC) or were non-treated (NT) for 4 days to detect any non-targeting siRNA effects of rat non-
targeting control siRNA towards the total PP2AC, PP4C, PP6C and alpha4 expression. (A) Total 

PP2AC, (B) PP4C, (C) PP6C and (D) alpha4 protein expression level were determined by 

immunoblotting using subunit-specific antibodies to PP2AC, PP4C and PP6C and a rabbit 

polyclonal anti-alpha4 antibody. Protein levels were quantified by densitometry or LI-COR 

Odyssey® CLx Imaging System and were normalised to actin in each sample. All data represent 

mean values ± SEM of three individual experiments. Statistical comparison was made by a two-

tailed unpaired Student's t-test. No significant differences were observed vs NT. IB: 

immunoblot.  
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 Determination of siRNA-mediated gene silencing of PP2ACα and PP2ACβ  4.4.5

As shown in figure 4.3, alignment of rat PP2ACα and PP2ACβ amino acid sequence 

revealed 97.4% homology. Nonetheless, alignment of the open reading frame region 

of rat PP2ACα and PP2ACβ cDNA sequences, showed 82% nucleotide identity 

(Table 4.1) therefore, using qPCR analysis it is possible to detect the mRNA levels 

separately of PP2ACα and PP2ACβ. Efficient siRNA-mediated gene expression 

silencing at the mRNA level is expected to be detected at 1-2 days post-transfection. 

Therefore, the mRNA levels of PP2ACα and PP2ACβ were analysed by qPCR in 

H9c2 cardiomyocytes transfected with either 50 nM rat PP2ACα-, PP2ACβ-siRNAs 

or non-targeting control siRNA, for 2 and 4 days as described below, in section 

4.4.5.3. 

4.4.5.1 Validation of RNA quality for qPCR analysis 

Only RNA samples with an absorbance ratio at OD260/280 ≥2.0 and OD260/230 

>1.8 were used for qPCR analysis. Total RNA samples had RIN between 7.4 and 8.5 

or between to 8.8-10 when isolated from cells transfected for 2 and 4 days, with 

either 50 nM PP2ACα-siRNA, PP2ACβ-siRNA or non-targeting control siRNA 

(Figure 4.8). In all the samples, including the ones with RIN scores between 7.4 to 

8.5, clear 18S and 28S ribosomal peaks were present. These data suggest isolation of 

reasonable RNA quality (Schroeder et al., 2006) that can be accepted in downstream 

applications such as RT-PCR, with the highest quality RNA extracted after 4 days 

post-transfection, probably due to the larger amount of starting material (larger 

number of cells). 
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Figure 4.8 Representative electropherograms and calculated RIN values of total RNA obtained 
by the RNeasy protect cell mini kit (Qiagen) from H9c2 cardiomyocytes transfected with 50 nM 
rat (A) non-targeting control siRNA (siC), (B) PP2ACα-siRNA (siPP2ACα) or (C) PP2ACβ-siRNA 
(siPP2ACβ) for 2 days (2d) or transfected with 50 nM rat (D) non-targeting control siRNA (siC), 
(E) PP2ACα-siRNA (siPP2ACα) or (F) PP2ACβ-siRNA (siPP2ACβ) for 4 days (4d). Total RNA was 

analysed using an Agilent RNA 6000 Nano Assay and 2100 Bioanalyzer (Agilent Technologies). 

The two peaks represent the 28S and 18S ribosomal RNAs. Data are representative of 3 

individual experiments. 

4.4.5.2 Validation of ACTB and GAPDH reference genes 

Two candidate reference genes, ACTB and GAPDH, were validated for data 

normalisation. Table 4.2, shows the SD of the average Cq values and Pearson 

coefficient of correlation (r) estimated by the BestKeeper© v1.0 software (Pfaffl, 
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software criteria, both ACTB and GAPDH had SD less than 1 and showed 

significantly (p<0.05) high correlation (r ≥0.76 or r ≥0.77 after 2 or 4 days of 

siRNA transfection respectively). In addition, statistical comparison by one -way 

ANOVA showed no- significant change in the Cq values of each reference among 

cells transfected with, rat PP2ACα-siRNA, PP2ACβ-siRNA or non-targeting control 

siRNA for 2 or 4 days. According to these data, both reference genes were 

considered suitable for use in the subsequent qPCR analysis.  

Table 4.2 Expression stability of the reference genes (ACTB and GAPDH) at 2 and 4 days post-
transfection is determined by calculating the coefficient of variation (CV) and standard 

deviation (SD) and coefficient of correlation (r), in the Cq values (n=9) for each candidate 
reference gene using BestKeeper© v1.0 software (Pfaffl, 2001). 

Day Reference gene CV(%) SD r 

D2 

ACTB 5.21 0.99 0.91 

GAPDH 3.05 0.54 0.76 

D4 

ACTB 2.63 0.44 0.77 

GAPDH 4.41 0.86 0.94 

 

4.4.5.3 siRNA-mediated mRNA knockdown of PP2ACα and PP2ACβ  

Cq values of PP2ACα, PP2ACβ, GAPDH and ACTB genes in the unknown samples, 

obtained from qPCR reactions, differ at least 5 Cq from the respective values in the 

no-RT and no-template control reactions, indicating that less 3% or less of the 

amplification in the unknown samples may be attributed to the genomic DNA 

template and was considered not significant. Cq values of the genes of interest in the 

unknown samples were normalised to both ACTB and GAPDH reference genes and 

analysed as described earlier in earlier in Chapter 4 (section 4.3.6). The mRNA 

levels of either PP2ACα or PP2ACβ were determined in cells transfected with 
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PP2ACα-siRNA or PP2ACβ-siRNA relative to the control (cells transfected with 

non-targeting control siRNA) as shown in table 4.3. Figure 4.9A and 4.9B clearly 

show that PP2ACα (43.48-fold decrease) and PP2ACβ (24.39-fold decrease) were 

successfully silenced in cells transfected with rat PP2ACα-siRNA or PP2ACβ-

siRNA respectively for 2 days since the mRNA expression was reduced more than 

10-fold compared to the siC expression levels. Interestingly, when cells were 

transfected with rat PP2ACα-siRNA for 2 days, mRNA levels of PP2ACβ (Figure 

4.9B) were decreased (1.58-fold decrease) when compared to the siC expression 

levels. On the other hand, when cells were transfected with rat PP2ACβ-siRNA, 

mRNA levels of PP2ACα (Figure 4.9A) were decreased (1.56-fold decreases) 

compared to the control samples. The knockdown of PP2ACα and PP2ACβ mRNA 

expression at 4 days post-transfection was tested. Figure 4.10 suggests that mRNA 

knockdown of PP2ACα (71.43-fold decrease) and PP2ACβ (22.73-fold reduction) 

was sustained (more than a 10-fold reduced expression) in cells transfected with rat 

PP2ACα-siRNA or PP2ACβ-siRNA respectively for 4 days compared to the siC. 

Similar to data presented in figure 4.9, when cells were transfected with rat 

PP2ACα-siRNA for 4 days, mRNA levels of PP2ACβ (Figure 4.10B) were decreased 

(1.41-fold reduction) whilst, when cells were transfected with PP2ACβ-siRNA, 

mRNA levels of PP2ACα (Figure 4.10A) were decreased (1.68-fold reduction) when 

compared to the siC expression levels. Together these results provide evidence of 

efficient PP2ACα or PP2ACβ mRNA knockdown using rat PP2ACα- or PP2ACβ-

siRNAs respectively (higher than a 10-fold reduced expression) in H9c2 

cardiomyocytes compared to siC. 
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Table 4.3 mRNA expression of PP2ACα and PP2ACβ in cells transfected with PP2ACα-siRNA 
(siPP2ACα) or PP2ACβ-siRNA (siPP2ACβ) relative to the control respective mRNA expression 

values in cells transfected with non-targeting control siRNA (siC). Data with averaged fold 
change (𝑭𝑪̅̅ ̅̅ ) <1, were converted to fold decrease (section 2.4.5). 

 Gene Form of data siC siPP2ACα siPP2ACβ 

D2 

PP2ACα 

𝑭𝑪̅̅ ̅̅ ± 𝑺𝑬𝑴 1.000±0.000 0.023±0.008 0.630±0.075 

|−𝟏
𝑭𝑪̅̅ ̅̅⁄ | 1 43.48 1.58 

PP2ACβ 

𝑭𝑪̅̅ ̅̅ ± 𝑺𝑬𝑴 1.000±0.000 0.639±0.018 0.041±0.017 

|−𝟏
𝑭𝑪̅̅ ̅̅⁄ | 1 1.57 24.39 

D4 

PP2ACα 

𝑭𝑪̅̅ ̅̅ ± 𝑺𝑬𝑴 1.000±0.000 0.014±0.004 0.708±0.036 

|−𝟏
𝑭𝑪̅̅ ̅̅⁄ | 1 71.43 1.41 

PP2ACβ 

𝑭𝑪̅̅ ̅̅ ± 𝑺𝑬𝑴 1.000±0.000 0.597±0.044 0.044±0.016 

|−𝟏
𝑭𝑪̅̅ ̅̅⁄ | 1 1.68 22.73 

 

 

Figure 4.9 Fold change of the mRNA expression of (A) PP2ACα or (B) PP2ACβ, in H9c2 
cardiomyocytes transfected with 50 nM rat non-targeting control siRNA (siC), rat PP2ACα-
siRNA (siPP2ACα) or PP2ACβ-siRNA (siPP2ACβ) for 2 days, relative to the expression levels in 
the control samples (siC), was calculated according to qbase+ software approach. Relative 

quantities were normalised to both ACTB and GAPDH reference genes. Data represent mean 

values ± SEM of 3 individual experiments. Statistical comparison was made by one-way ANOVA 

followed by Tukey’s post-hoc multiple comparisons tests; *p<0.05. 
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Figure 4.10 Fold change of the mRNA expression of (A) PP2ACα or (B) PP2ACβ, in H9c2 
cardiomyocytes transfected with 50 nM rat non-targeting control siRNA (siC), rat PP2ACα-
siRNA (siPP2ACα) or PP2ACβ-siRNA (siPP2ACβ) for 4 days, relative to the expression levels in 
the control samples (siC), was calculated according to qbase+ software approach. Relative 

quantities were normalised to both ACTB and GAPDH reference genes. Data represent mean 

values ± SEM of 3 individual experiments. Statistical comparison was made by one-way ANOVA 

followed by Tukey’s post-hoc multiple comparisons tests; *p<0.05. 

 siRNA-mediated protein knockdown of PP2ACα/β, PP2ACα, PP2ACβ, PP4C 4.4.6

and PP6C 

Knockdown efficiency of the rat PP2ACα-, PP2ACβ -, PP4C- and PP6C-siRNAs 

was determined by measuring the protein levels of the targeted protein by western 

blotting analysis. Figure 4.11 shows that the mRNA knockdown of either PP2ACα 

(71.43-fold decrease) or PP2ACβ (22.73-fold decrease), analysed previously (section 

4.4.5.2), in cells transfected with rat PP2ACα-siRNA (Figure 4.11A) or PP2ACβ-

siRNA (Figure 4.11B) for 4 days respectively, resulted in a significant (p<0.05) 

reduction of total PP2AC protein levels (48.3 ± 2.7% or 46.7 ± 4.2% respectively) 

when compared to the expression levels in cells transfected with non-targeting 

control siRNA. Therefore, co-transfection of H9c2 cardiomyocytes with both rat 

PP2ACα- and PP2ACβ-siRNAs for up to 4 days should cause a larger reduction of 

the total PP2AC protein expression levels since both PP2ACα and PP2ACβ mRNAs 

are targeted simultaneously. Indeed, as shown in figure 4.12, co-transfection of the 
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cells with both rat PP2ACα- and PP2ACβ-siRNAs for 4 days resulted in a significant 

(p<0.05) 84% knockdown of total PP2AC protein expression (16.09 ± 8.67%), when 

compared to the expression levels in cells transfected with non-targeting control 

siRNA. Comparing the results in figures 4.11 and 4.12, it can be seen that the 

detected 51-53% reduction of total PP2AC protein expression, when cells are 

transfected with either rat PP2ACα- or PP2ACβ-siRNAs, is due to siRNA-mediated 

PP2ACα or PP2ACβ expression inhibition respectively. Figures 4.13 and 4.14 show 

significantly (p<0.05) reduced PP4C (4.03 ± 1.17%) PP6C (8.97 ± 2.92%) protein 

expression levels in H9c2 cardiomyocytes transfected with rat PP4C- or PP6C-

siRNA respectively for 4 days when compared to the expression levels in cells 

transfected with non-targeting control siRNA. These data, along with the data 

presented in figures 4.9 and 4.10, demonstrate the first report of efficient siRNA- 

mediated post-transcriptional silencing of PP2ACα/β, PP2ACα, PP2ACβ, PP4C and 

PP6C in H9c2 cardiomyocytes. In addition, the data described in this section 

confirmed the specificity of the custom made anti-PP2CA, anti-PP4C and anti-PP6C 

catalytic subunit-specific antibodies used to detect protein expression of total 

PP2AC, PP4C and PP6C by western blotting in this study.  

 Evaluation of the off-target and on-target effects in the expression of 4.4.7

PP2ACα/β, PP2ACα, PP2ACβ, PP4C and PP6C 

As described earlier in Chapter 4 (section 4.4.1) pair sequence alignment between 

PP2ACα, PP2ACβ, PP4C and PP6C open reading frame of their cDNA sequences, 

revealed 59-65% nucleotide homology and consisted of 12-20% gaps, with the 

exception of PP2ACα-PP2ACβ pair alignment showing 81.6% nucleotide homology. 

This result raised important questions regarding the potential off -target effects of 

each catalytic subunit-specific siRNA towards the other non-target catalytic 

subunits. To analyse the potential off-target effects of each catalytic subunit-specific  
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Figure 4.11 Protein expression of total PP2AC in H9c2 cardiomyocytes, transfected with 50 
nM rat (A) PP2ACα-, (B) PP2ACβ-siRNAs (si) or non-targeting control siRNA (siC) for 1-4 days 

was determined by immunoblotting using a subunit-specific anti-PP2AC antibody. Protein 

levels were quantified by densitometry or LI-COR Odyssey® CLx Imaging System and were 

normalised to actin in each sample. All data represent mean values ± SEM of four individual 

experiments. Statistical comparison was made by one-way ANOVA followed by Tukey’s post-

hoc multiple comparisons tests; *p<0.05. IB: Immunoblot. 

siC

PP2ACβ-siRNA

P
P

2
A

C
 e

x
p
re

s
s
io

n
 

(%
 o

f 
c
o
n
tr

o
l)

siC si siC si siC si siC si

IB: PP2AC

IB: Actin

37 -

25 -

50 -

37 -

kDa

1 day 2 days 3 days 4 days

siC

PP2ACα-siRNA

P
P

2
A

C
 e

xp
re

s
s
io

n
 

(%
 o

f 
c
o
n
tr

o
l)

siC si siC si siC si siC si

IB: PP2AC

IB: Actin

37 -

25 -

50 -

37 -

kDa

1 day 2 days 3 days 4 days

A

B

0

20

40

60

80

100

120

0

100

120

20

40

60

80

* *

*

* **



Chapter 4 
  

 

119 

 

 

Figure 4.12 Protein expression of total PP2AC in H9c2 cardiomyocytes, co-transfected with 50 
nM rat PP2ACα- and PP2ACβ-siRNAs (si) or 100 nM non-targeting control siRNA (siC) for 1-4 
days was determined by immunoblotting using a subunit-specific anti-PP2AC antibody. Protein 

levels were quantified by densitometry or LI-COR Odyssey® CLx Imaging System and were 

normalised to actin in each sample. All data represent mean values ± SEM of three individual 

experiments. Statistical comparison was made by one-way ANOVA followed by Tukey’s post-

hoc multiple comparisons tests; *p<0.05. IB: Immunoblot. 

 

Figure 4.13 Protein expression of PP4C in H9c2 cardiomyocytes, transfected with 50 nM rat 
PP4C-siRNA (si) or non-targeting control siRNA (siC) for 1-4 days was determined by 

immunoblotting using a subunit-specific anti-PP4C antibody. Protein levels were quantified by 

densitometry or LI-COR Odyssey® CLx Imaging System and were normalised to actin in each 

sample. All data represent mean values ± SEM of five individual experiments. Statistical 

comparison was made by one-way ANOVA followed by Tukey’s post-hoc multiple comparisons 

tests; *p<0.05. IB: Immunoblot. 
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Figure 4.14 Protein expression of PP6C in H9c2 cardiomyocytes, transfected with 50 nM rat 
PP6C-siRNA (si) or non-targeting control siRNA (siC) for 1-4 days was determined by 

immunoblotting using a subunit-specific anti-PP6C antibody. Protein levels were quantified by 

densitometry or LI-COR Odyssey® CLx Imaging System and were normalised to actin in each 

sample. All data represent mean values ± SEM of five individual experiments. Statistical 

comparison was made by one-way ANOVA followed by Tukey’s post-hoc multiple comparisons 

tests; *p<0.05. IB: Immunoblot. 
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PP4C protein expression levels, when compared to those in cells transfected with 

non-targeting control siRNA (Figure 4.18). 

Table 4.4 Evaluation of PP2ACα-, PP2ACβ -, PP4C- and PP6C-siRNA specificity by 
immunoblotting analysis. 

siRNA used for 
transfection 

mRNA 
target 

Substrates for IB 
analysis 

Figure 

PP2ACα-siRNA PP2ACα 

PP4C 4.15A 

PP6C 4.15B 

PP2ACβ-siRNA PP2ACβ 

PP4C 4.16A 

PP6C 4.16B 

PP4C-siRNA PP4C 

PP2AC 4.17A 

PP6C 4.17B 

PP6C-siRNA PP6C 

PP2AC 4.18A 

PP4C 4.18B 

 

 

Figure 4.15 Protein expression of (A) PP4C and (B) PP6C in H9c2 cardiomyocytes, transfected 
with 50 nM rat PP2ACα-siRNA (si) or non-targeting control siRNA (siC) for 1-4 days. Protein 

expression of PP4C and PP6C was determined by immunoblotting using subunit-specific 

antibodies to PP4C and PP6C. Protein levels were quantified by densitometry or LI-COR 

Odyssey® CLx Imaging System and were normalised to actin in each sample. All data represent 

mean values ± SEM of four individual experiments. Statistical comparison was made by one-

way ANOVA. No significant differences were observed vs siC. IB: Immunoblot. 
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Figure 4.16 Protein expression of (A) PP4C (n=3) and (B) PP6C (n=4) in H9c2 cardiomyocytes, 
transfected with 50 nM rat PP2ACβ-siRNA (si) or non-targeting control siRNA (siC) for 1- 4 days 

was determined by immunoblotting using subunit-specific antibodies to PP4C and PP6C. 

Protein levels were quantified by densitometry or LI-COR Odyssey® CLx Imaging System and 

were normalised to actin in each sample. All data represent mean values ± SEM. Statistical 

comparison was made by one-way ANOVA. No significant differences were observed vs siC. IB: 

Immunoblot. 

 

Figure 4.17 Protein expression of (A) total PP2AC and (B) PP6C in H9c2 cardiomyocytes, 
transfected with 50 nM rat PP4C-siRNA (si) or non-targeting control siRNA (siC) for 1-4 days 

was determined by immunoblotting using subunit-specific antibodies to PP2AC and PP6C. 

Protein levels were quantified by densitometry or LI-COR Odyssey® CLx Imaging System and 

were normalised to actin in each sample. All data represent mean values ± SEM of four 

individual experiments. Statistical comparison was made by one-way ANOVA. No significant 

differences were observed vs siC. IB: Immunoblot. 
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Figure 4.18 Protein expression of (A) total PP2AC and (B) PP4C in H9c2 cardiomyocytes, 
transfected with 50 nM rat PP6C-siRNA (si) or non-targeting control siRNA (siC) for 1-4 days 

was determined by immunoblotting using subunit-specific antibodies to PP2AC and PP4C. 

Protein levels were quantified by densitometry or LI-COR Odyssey® CLx Imaging System and 

were normalised to actin in each sample. All data represent mean values ± SEM relative of four 

individual experiments. Statistical comparison was made by one-way ANOVA. No significant 

differences were observed vs siC. IB: Immunoblot. 

 Effects of alpha4 knockdown in the expression of PP2AC, PP4C and PP6C 4.4.8

It has been reported previously that alpha4 protein is an essential  regulator of 

PP2AC, PP4C and PP6C expression and activity and that deletion of alpha4 in male 

mouse embryonic fibroblasts results in the loss of PP2AC, PP4C and PP6C from the 

cells (Kong et al., 2009). To investigate whether alpha4 is similarly regulating the 

expression of PP2AC, PP4C and PP6C in H9c2 cardiomyocytes, the protein 

expression of alpha4 was inhibited by transfecting the cells with 50 nM rat alpha4 -

siRNA for 1-4 days. Figure 4.19 clearly shows that alpha4 protein was significantly 

(p<0.05) reduced (5.85 ± 1.90%) at 4 days post-transfection. This data demonstrates 

for the first time the efficient siRNA-mediated alpha4 protein knockdown in H9c2 

cardiomyocytes. Consequently, lysates of H9c2 cardiomyocytes, transfected with rat 
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(p<0.05) knockdown of alpha4 protein (>94%) at 4 days post-transfection, resulted 

in significant (p<0.05) loss of total PP2AC (16.45 ± 4.93%), PP4C (16.69 ± 3.21%) 

and PP6C (26.36 ± 6.89%) protein expression in cells. From these results, it is 

apparent that there is a tight correlation between alpha4 and type 2A protein 

phosphatase catalytic subunits (total PP2AC, PP4C and PP6C) protein expression. 

Furthermore, these data suggest that alpha4 is involved in the regulation of type 2A 

protein phosphatase expression in cardiomyocytes.  

 

Figure 4.19 Protein expression of alpha4 in H9c2 cardiomyocytes, transfected with 50 nM rat 
alpha4-siRNA (si) or non-targeting control siRNA (siC) for 1-4 days was determined by 

immunoblotting using a rabbit polyclonal anti-alpha4 antibody. Protein levels were quantified 

by densitometry or LI-COR Odyssey® CLx Imaging System and were normalised to actin in each 

sample. All data represent mean values ± SEM of four individual experiments. Statistical 

comparison was made by one-way ANOVA followed by Tukey’s post-hoc multiple comparisons 

tests; *p<0.05. IB: Immunoblot. 
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Figure 4.20  Protein expression of total PP2AC in H9c2 cardiomyocytes, transfected with 50 
nM rat alpha4-siRNA (si) or non-targeting control siRNA (siC) for 1-4 days was determined by 

immunoblotting using a subunit-specific anti-PP2AC antibody. Protein levels were quantified 

by densitometry or LI-COR Odyssey® CLx Imaging System and were normalised to actin in each 

sample. All data represent mean values ± SEM of four individual experiments. Statistical 

comparison was made by one-way ANOVA followed by Tukey’s post-hoc multiple comparisons 

tests; *p<0.05. IB: Immunoblot. 

 

Figure 4.21 Protein expression of PP4C in H9c2 cardiomyocytes, transfected with 50 nM rat 
alpha4-siRNA (si) or non-targeting control siRNA (siC) for 1-4 days was determined by 

immunoblotting using a subunit-specific anti-PP4C antibody. Protein levels were quantified by 

densitometry or LI-COR Odyssey® CLx Imaging System and were normalised to actin in each 

sample. All data represent mean values ± SEM of three individual experiments. Statistical 

comparison was made by one-way ANOVA followed by Tukey’s post-hoc multiple comparisons 

tests; *p<0.05. IB: Immunoblot. 
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Figure 4.22 Protein expression of PP6C in H9c2 cardiomyocytes, transfected with 50 nM rat 
alpha4-siRNA (si) or non-targeting control siRNA (siC) for 1-4 days was determined by 

immunoblotting using a subunit-specific anti-PP6C antibody. Protein levels were quantified by 

densitometry or LI-COR Odyssey® CLx Imaging System and were normalised to actin in each 

sample. All data represent mean values ± SEM of four individual experiments. Statistical 

comparison was made by one-way ANOVA followed by Tukey’s post-hoc multiple comparisons 

tests; *p<0.05 vs siC. IB: Immunoblot. 
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4.5 Discussion 

 Establishing siRNA-mediated knockdown of type 2A protein phosphatase 4.5.1

catalytic subunits 

In this chapter, an efficient siRNA-mediated post-transcriptional silencing of 

PP2ACα, PP2ACβ, PP4C, PP6C and alpha4 protein in H9c2 cardiomyocytes was 

demonstrated for the first time. Specifically, the siRNA delivery system was 

optimised in H9c2 cardiomyocytes and higher than 90% PP2ACα and PP2ACβ 

mRNA knockdown or PP4C, PP6C and alpha4 protein knockdown was reported, 

using rat -specific siRNAs to target PP2ACα, PP2ACβ, PP4C, PP6C and alpha4 

protein. 

To address the function of protein phosphatases in biological pathways in 

mammalian cells, various studies have been carried using cell-permeable chemical 

inhibitors (review by McConnell and Wadzinski 2009). The use of these compounds 

shows great advantages compared to other technologies such as RNAi (Figure 4.23), 

since the effect on the targets is usually assessed rapidly and the phenotype changes 

can be considered more direct, however, lack of specificity can be one of the main 

limitations. Table 4.5 presents some commonly used inhibitors of the protein 

phosphatase type 2A family used in the literature. Okadaic acid, a well-known 

inhibitor of PP2A/PP1, has been reported to inhibit not only the activity of PP2A but 

the activity of all three members of the type 2A protein phosphatases family (PP2A, 

PP4 and PP6) at similar levels of concentration, thus been recognised as a non-

specific PP2A inhibitor (Brewis et al., 1993; Hastie and Cohen, 1998; Prickett and 

Brautigan, 2006). Despite this fact, it has been used in many inhibitor studies of 

PP2A activity, without distinguishing between PP2A, PP4 or PP6 (Gao et al., 1997; 

Baharians and Schonthal, 1998; Nowak et al., 2003; Chowdhury et al., 2005; Yang 
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et al., 2005; Hall et al., 2006; Zong et al., 2006; McConnell et al., 2007; De 

Arcangelis et al., 2008; Shi et al., 2012; Ma et al., 2016; Plácido et al., 2016). Even 

so, okadaic acid can be used for studies to delineate the function of more general 

groups of phosphatases. Another widely used PP2A inhibitor, fostriecin, has been 

revealed to inhibit both PP2A and PP4 catalytic subunits with similar potency 

(Hastie and Cohen, 1998; Buck et al., 2003). The effects of fostriecin on PP6 are 

currently unknown. It becomes apparent that the use of traditional pharmacological 

approach of protein inhibition of type 2A protein phosphatases complicates the 

determination of a role for each phosphatase separately. Nevertheless, the effects of 

these compounds on other toxin-sensitive members of the PPP family should not be 

ignored (i.e. PP5 activity is affected at concentrations >1-5 nM okadaic acid) (Dean 

et al., 2001; Swingle et al., 2007). Therefore, the siRNA-mediated PP2ACα, 

PP2ACβ, PP4C and PP6C protein expression knockdown in H9c2 cardiomyocytes, 

described in this chapter, is more appropriately selective. Efficient siRNA-mediated 

mRNA knockdown of PP2ACα, PP2ACβ or degradation of total PP2AC, PP4C and 

PP6C protein has been achieved before in other mammalian cell types  (Nakada et 

al., 2008b; Zhong et al., 2011; Sunahori et al., 2013). 

Table 4.5 Common inhibitors of type 2A protein phosphatase used in the literature. 

Compound 

IC50 (nM) 
References 

PP2A PP4 PP6  

Okadaic acid 0.1-10.0 0.1-0.2 0.1-2.0 
(Brewis et al., 1993; Hastie and Cohen, 

1998; Prickett and Brautigan, 2006) 

Fostriecin 0.2-4.0 0.2-4.0 ND* (Hastie and Cohen, 1998; Buck et al., 
2003) 

Calyculin A 1.0 0.2 1.0 
(Hastie and Cohen, 1998; Prickett and 

Brautigan, 2006) 

 *ND: Not determined 
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Investigation of the potential off-target effects of the rat catalytic subunit-specific 

siRNAs (PP2ACα-, PP2ACβ -, PP4C- and PP6C-siRNAs) and on-target effects due 

to target protein degradation showed no significant alteration in the protein 

expression of the non-target catalytic subunits. Interestingly, when cells were 

transfected with rat PP2ACα-siRNA for 2 or 4 days (Figures 4.9B and 4.10B), the 

PP2ACβ gene transcript (mRNA) was decreased (1.58-fold or 1.41-fold decrease, 

respectively) and when cells were transfected with rat PP2ACβ-siRNA for 2 or 4 

days (Figures 4.9A and 4.10A), the PP2ACα transcript was also decreased (1.57-fold 

or 1.68-fold change decrease, respectively), whilst the target mRNA in both 

transfections was decreased more than 22-fold. One of the main challenges in qPCR 

analysis is the determination of fold change levels indicating down- or up-regulation 

of a transcript influenced by treatment, such as siRNA-mediated post-transcriptional 

silencing of gene expression. In many recent studies of transcriptional profiling 

analysis, fold change ranking is established, whereby significant (p<0.05) 2-fold 

alterations suggest significant down- or up-regulation of the transcript respectively 

whilst, less than 2-fold increased or decreased mRNA expression indicate “normal” 

mRNA expression (Gao and Hui, 2001; Huang et al., 2015; Qin et al., 2015; Song et 

al., 2015; Sun et al., 2016). Thus, taken together, i) the 2-fold cut-off (p<0.05) 

described earlier, ii) the absence of efficient complementarity between each catalytic 

subunit-siRNA and the non-target catalytic subunit mRNAs, as described in section 

4.4.2 and iii) the low concentration (12.5 nM) of each individual siRNA from the rat 

PP2ACα- and PP2ACβ-siRNA pools used in this study, the probability of an siRNA 

off-target effect, would be expected to be very low. Furthermore, previous studies 

have defined a 2-fold or more of non-target mRNA down-regulation to be considered 

a biologically relevant siRNA off-target effect whilst, less than 2-fold reduction in 

non-target mRNA expression in siRNA-transfection experiments, has been explained 

as experimental noise or considered biologically non-significant (Scacheri et al., 
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2004; Birmingham et al., 2006; Schwarz et al., 2006; Aleman et al., 2007; Caffrey et 

al., 2011). Thus, the effects observed in the PP2ACα and PP2ACβ mRNAs when 

cells are transfected with rat PP2ACβ-siRNA or PP2ACα-siRNA, respectively, are 

considered biologically non-significant as a response to treatment. 

Efficient siRNA-mediated post-transcriptional silencing resulted in progressive 

degradation of the target protein expression of all the type 2A protein catalytic 

subunits. From the data in figures 4.11-4.18 (sections 4.4.6 and 4.4.7), it becomes 

apparent that the biggest reduction of each catalytic subunit protein expression 

without a significant impact on the expression of the other catalytic subunit non-

target proteins, was observed 4 days after siRNA-transfection with rat PP2ACα-, 

PP2ACβ-, PP4C- or PP6C-siRNA. 

A noticeable but insignificant increase in the total PP2AC protein expression pattern 

was detected at 2 days post-transfection with rat PP2ACβ-siRNA compared to 1 day, 

3 and 4 days post-transfection (Figure 4.11B), despite a significant (p<0.05) 24.39-

fold decrease of the PP2ACβ mRNA expression. This result could be explained by 

the autoregulatory mechanism of PP2ACα and PP2ACβ at the level of translation, 

balancing the total PP2AC protein expression in cells, firstly described by Baharians 

and Schönthal (1998). In support of this study, Pandey et al., (2013), showed that 

total PP2AC was expressed at a constant level in human prostate cancer tissues, 

independently of hormone status, supporting the mechanism of PP2ACα and 

PP2ACβ autoregulation.  

 Effects of alpha4 protein knockdown on type 2A protein phosphatase 4.5.2

expression  

Strong evidence of the regulatory role of alpha4 protein towards the PP2AC, PP4C 
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and PP6C protein expression in H9c2 cardiomyocytes was found when alpha4 

protein expression was significantly (p<0.05) reduced (>94%) at 4 days post-

transfection. This led to a significant (p<0.05) knockdown of total PP2AC (>83%), 

PP4C (>84%) and PP6C (>73%) protein expression in cells. In accordance with the 

present results, previous reports have demonstrated that alpha4 protein deletion 

similarly resulted in the progressive loss of the type 2A protein phosphatase 

catalytic subunits in non-myocytes (Kong et al., 2009; LeNoue-Newton et al., 2016). 

The “protective role” of the alpha4 protein has been examined in relation to PP2AC 

in previous studies, proposing that three main domains of alpha4 (ubiquitin-

interacting motif, E3 ligase- and PP2AC- binding domains) are required for alpha4 

to inhibit PP2AC ubiquitination by the E3 ubiquitin ligase thus, “protecting” PP2AC 

from proteasome-mediated degradation (McConnell et al., 2010; LeNoue-Newton et 

al., 2011; Watkins et al., 2012). In addition, a crystal structure study by Jiang et al., 

in 2013, showed that the alpha4 protein interacts directly with the PP2AC and it was 

proposed that this binding may “protect” against PP2AC proteasome-mediated 

degradation by blocking access to a lysine residue in PP2AC that is targeted for 

polyubiquitination. 



Chapter 4 
  

 

132 

 

4.6 Summary 

In summary, in this chapter, rat catalytic subunit specific-siRNAs were used to 

efficiently knockdown the expression of PP2ACα, PP2ACβ, PP4C, PP6C and alpha4 

individually, in H9c2 cardiomyocytes. The concentration of the transfection 

reagents, cell confluency prior to transfection and experimental duration were 

optimised to achieve efficient knockdown of PP2ACα (>90%) and PP2ACβ (>90%) 

mRNA, or total PP2AC (>83%), PP4C (>95%), PP6C (>91%) and alpha4 (>94%) 

protein expression, without significant cytotoxicity (>80% cell viability of the 

control samples). The possibility of off-target effects was estimated low, based on 

the search for complementarity between the open reading frame or 3′ UTR sequence 

of the off-target mRNAs and full length or the seed region sequence of each siRNA, 

respectively. In the case of the type 2A protein phosphatase catalytic subunit siRNA-

mediated protein knockdown, the protein expression of the non-target proteins for 

each siRNA assay showed non-significant siRNA off-target effects. In addition, 

siRNA-driven alpha4 protein knockdown (>94%) in H9c2 cardiomyocytes resulted 

in progressive loss of total PP2AC (>83%), PP4C (>84%) and PP6C (>73%) protein 

expression, suggesting that alpha4 plays a central role towards the expression 

stability of the type 2A protein phosphatase catalytic subunits in cardiomyocytes.  

The siRNA-mediated post-transcriptional silencing model of PP2ACα, PP2ACβ, 

PP4C, PP6C and alpha4 is further used in this study, to investigate the involvement 

of type 2A protein phosphatases and/ or alpha4 protein in biological pathways 

associated with Ca2+ homeostasis regulation, hypertrophy and DNA repair in H9c2 

cardiomyocytes. 
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Chapter 5  

Role of Type 2A Protein Phosphatase Catalytic 

Subunits in the Phosphorylation of Proteins Involved 

in the Regulation of Cardiomyocyte Ca
2+

 Homeostasis 

5.1 Introduction 

As outlined in Chapter 1 (section 1.3), electrical excitation of the cardiomyocytes 

activates cardiac contraction via a process called excitation-contraction coupling. 

Calcium (Ca2+) and sodium (Na+) homeostasis within the cardiomyocytes is critical 

for the cardiac excitation-contraction coupling process and is influenced by the 

phosphorylation status of many regulatory proteins (Figure 5.1). These proteins 

include the ryanodine receptors (RyRs), the phospholamban, the L-type calcium 

channel, CaV1.2, the Na+ channels NaV1.5, the phospholemman and the myofilament 

proteins troponin I and myosin binding protein C (Gao et al., 1997; Marx et al., 

2000a; MacLennan and Kranias, 2003; Xiao et al., 2005; Hulme et al., 2006a; 

Pavlović et al., 2007; Stelzer et al., 2007; Shi et al., 2012; Kooij et al., 2013). PP2A, 

that has been shown to be associated with many of the above cardiac cellular 

proteins, thereby playing a critical role in cardiac physiology (MacDougall et al., 

1991; Marx et al., 2000b; Schulze et al., 2003; Ai and Pogwizd, 2005; Hall et al., 

2006a; Jideama et al., 2006b; Deshmukh et al., 2007; Shi et al., 2012) , however, PP4 

and PP6 roles in cardiac calcium handling are yet unknown. Impaired PP2A 

expression and activity and dysregulation of the phosphorylation mechanism for 
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these regulatory proteins has been associated with cardiac dysfunction and 

cardiovascular diseases, atrial fibrillation and heart failure (Pieske et al., 1999; Marx 

et al., 2000a; Christ et al., 2004; Gergs et al., 2004; Sadayappan et al., 2005; El-

Armouche et al., 2006b; Wijnker et al., 2011; Hamdani et al., 2013; Boguslavskyi et 

al., 2014; Li et al., 2016). Hence, the focus of this chapter is to investigate the 

activity of type 2A protein phosphatase catalytic subunits towards specific 

phosphorylation sites on L-type calcium channel (CaV1.2) and phospholemman. 

 

Figure 5.1 Simplified schematic representation of sodium and calcium transport during 
cardiac excitation-contraction coupling, including involved functional proteins which are 
regulated by phosphorylation (adapted from Bers, 2002). NCX1: Na+/Ca2+-exchanger; ATPC: 

Ca2+-ATPase; NKA: Na+/K+-ATPase; PLB: phospholamban; PLM: phospholemman; SR: 

sarcoplasmic reticulum; SERCA: SR Ca2+-ATPase; RyR; ryanodine receptors. NHE: Na+/K+- 

exchanger; NaV1.5: Na+ channel; P: phosphorylation site; AP: action potential; Em: membrane 

potential; [Ca]i: Ca2+ intracellular concentration; Red arrows: Ca2+ entry into the cytosol; 

Green arrows: Ca2+ removal from the cytosol; purple arrows: Na+ influx; black arrows: Na+ 

efflux; Orange arrow: K+ influx; Grey arrow: H+ efflux. 
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 CaV1.2-Ser1928 phosphorylation in cardiomyocytes 5.1.1

Ca2+ entry into cardiomyocytes is mainly attributable to the L-type calcium channel CaV1.2 

activity during excitation-contraction coupling (Bers, 2001). L-type calcium channel 

consists of four subunits: the α1, α2, β and δ subunits (review by Harvey and Johannes, 

2013). In response to the β-adrenergic receptors and cAMP/PKA signalling pathway 

activation, CaV1.2 is phosphorylated by the PKA at the α1 C-terminal domain (α1c) and is 

further activated leading to an increase in intracellular Ca2+ resulting in forceful heart 

contraction (Bers, 2001). In the α1 C-terminal domain, CaV1.2-Ser1928, a highly conserved 

residue across mammalian species, has been suggested as an important target residue for 

PKA-mediated phosphorylation (Gao et al., 1997; Hulme et al., 2006a; Shi et al., 2012). 

Towards dephosphorylation of CaV1.2-Ser1928, most reports, using okadaic acid, have 

pointed PP2A as the major phosphatase for CaV1.2-Ser1928 that downregulates its activity 

(Gao et al., 1997; Hall et al., 2006; Hulme et al., 2006a; Xu et al., 2010; Shi et al., 2012), 

potentially via the recruitment of a PP2AB’ (all isoforms) or PP2AB”-PR59 regulatory 

subunit (Hall et al., 2006). Impaired CaV1.2 function has been associated with various 

cardiovascular diseases including hypertension, arrhythmia and heart failure (Schröder et 

al., 1998; Splawski et al., 2004; Hong et al., 2012). 

 Regulation and function of phospholemman in cardiomyocytes 5.1.2

Phospholemman (PLM), also known as FXYD1 (FXYD-domain containing ion 

transport regulator 1) (Sweadner and Rael, 2000), is a major sarcolemmal substrate 

for PKA and PKC in the heart that regulates the activity of the Na+/K+-ATPase 

(NKA) (Pavlovic et al., 2013). The NKA is important in Na+ efflux from the 

cardiomyocyte and sodium homeostasis which in turn affects various ion exchange 

and transport processes, including Ca2+ flux via the Na+/Ca2+-exchanger (NCX1) 

(Pieske et al., 1999; Despa et al., 2002; Pieske et al., 2002; Baartscheer et al., 2003; 

Wang et al., 2011; Pavlovic et al., 2013). The mode of the NCX1 activity is 
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determined by the membrane potential and the intracellular Na+ and Ca2+ 

concentrations (Kang and Hilgemann, 2004)). Thus, phospholemman appears to play 

an indirect but essential role in the calcium homeostasis and regulation of cardiac 

contractility.  

Phospholemman has three established phosphorylation sites, serine 63 (Ser63), 

serine 68 (Ser68) and serine/ threonine-69 (Ser/Thr69) residues which alter its 

function. Unphosphorylated PLM inhibits NKA activity, however, following 

phosphorylation at Ser68 by protein kinase A (PKA) and/ or at Ser63, Ser68 or 

Thr/Ser69 by PKC, activity of the NKA in cardiomyocytes is elevated (Han et al., 

2006; Pavlovic et al., 2007; Fuller et al., 2009; Madhani et al., 2010). 

Dephosphorylation of these residues is linked with the activities of protein 

phosphatases 1 and 2A (Bossuyt et al., 2005; Fuller et al., 2013; Wypijewski et al., 

2013).  

Studies in heart failure, have shown alteration of the phosphorylation status of PLM, 

mainly hypophosphorylation, that has been associated with increased phosphatase 

activity (Bossuyt et al., 2005; El-Armouche et al., 2011; Boguslavskyi et al., 2014). 

Thus, the regulation of phospholemman Ser63 and Ser68 phosphorylation was 

further investigated in this chapter, after protein knockdown of the type 2A protein 

phosphatase catalytic subunits (PP2ACα, PP2ACβ, PP4C and PP6C) by introducing 

small interfering RNA into H9c2 cardiomyocytes.  
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5.2 Specific objectives 

The studies described in this chapter aim to provide new insights into the role of individual 

type 2A protein phosphatases in cardiac calcium handling by investigating: 

1. the involvement of type 2A protein phosphatases in the regulation of Ca V1.2 

phosphorylation in H9c2 cardiomyocytes. 

2. the effects of PP2ACα, PP2ACβ, PP4C or PP6C protein knockdown on the 

phosphorylation status of PLM-Ser63 and PLM-Ser68. 
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5.3 Methods 

 Western blotting analysis 5.3.1

Phosphorylation of PLM-Ser63 and PLM-Ser68 was detected by western blotting 

analysis as described in Chapter 2 (section 2.5) using custom-made antibodies. A 

rabbit polyclonal phospho-CaV1.2 antibody (p-CaV1.2-Ser1928) was used for the 

detection of CaV1.2-Ser1928 phosphorylation. Even though the p-CaV1.2-Ser1928 

antibody was specific for human species, alignment of the Ca V1.2 amino acid 

sequence between the human (Uniprot ID: Q13936) and the rat (Uniprot ID: P22002) 

analogues showed 100% homology 10 amino acid upstream and downstream serine 

1928 within the antibody epitope. In addition, levels of actin and total levels of PLM 

expression (also known as FXYD1) were detected to ensure equal protein loading 

and/ or data normalisation. Details about the antibodies and working dilutions used 

in this chapter are presented in table 2.3.   
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5.4 Results 

 Effects of PP2ACα, PP2ACβ, PP4C or PP6C protein knockdown on the 5.4.1

phosphorylation of CaV1.2-Ser1928  

To evaluate the role of type 2A protein phosphatase catalytic subunits in regulating 

the phosphorylation of the CaV1.2-Ser1928, H9c2 cardiomyocytes were transfected 

with rat catalytic subunit-specific siRNAs as described in Chapter 2 (section 2.3.1) 

and lysates showing knockdown of mRNA or protein siRNA-mediated expression 

above 80% after 4 days post-transfection, were chosen as described in Chapter 4 

(sections 4.4.5-4.4.6) and were further tested by immunoblotting analysis.  

Transfection of cardiomyocytes with PP2ACα-siRNA, which resulted in significant 

(p<0.05) mRNA knockdown (71.4-fold decrease) and reduced total PP2AC protein 

expression (51.7%), led to a significant (p<0.05) increase (155.1 ± 20.9%) in the 

phosphorylation level of CaV1.2-Ser1928 (Figure 5.2A). Cells transfected with 

PP2ACβ-siRNA, which resulted in reduced PP2ACβ mRNA expression (22.7-fold 

decrease) and total PP2AC protein expression (53.3% less) did not cause significant 

alteration in the phosphorylation level of CaV1.2-Ser1928 compared to the 

phosphorylation levels in cells transfected with non-targeting control siRNA (Figure 

5.2B). Likewise, cardiomyocytes transfected with PP4C- or PP6C-siRNA, that led to 

a significant knockdown of PP4C (>95%) and PP6C (>91%) protein expression did 

not alter the basal phosphorylation level of CaV1.2-Ser1928 (Figures 5.1C and 5.1D) 

significantly. These data suggest that PP2ACα may regulate the phosphorylation of 

CaV1.2-Ser1928 in cardiomyocytes directly.  
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Figure 5.2 Phosphorylation level of CaV1.2-Ser1928 in H9c2 cardiomyocytes, transfected with 
rat PP2ACα- (siPP2ACα) (A), PP2ACβ- (siPP2ACβ) (B), PP4C- (siPP4C) (C), PP6C- (siPP6C) (D) 
siRNAs or non-targeting control siRNA (siC) for 4 days, was detected by immunoblotting 

analysis using a rabbit polyclonal anti-phospho-CaV1.2-Ser1928 antibody. Protein levels were 

quantified by LI-COR Odyssey® CLx Imaging System and were normalised to actin in each 

sample. All data represent mean values ± SEM of five individual experiments. Statistical 

comparison was made by a two-tailed unpaired Student's t-test; *p<0.05 vs siC. IB: 

immunoblot. 
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 Effects of PP2ACα, PP2ACβ, PP4C or PP6C protein knockdown on the 5.4.2

phosphorylation of PLM-Ser63 and PLM-Ser68  

To investigate the role of type 2A protein phosphatase catalytic subunits in 

regulating the phosphorylation of PLM-Ser63 and/or PLM-Ser68, H9c2 

cardiomyocytes were transfected with rat catalytic subunit-specific siRNAs as 

(section 2.3.1) and lysates showing mRNA or protein siRNA-mediated expression 

knockdown above 80% 4 days post-transfection, were chosen as described in 

Chapter 4 (sections 4.4.5-4.4.6) and were further tested by immunoblotting analysis.  

Transfection of cardiomyocytes with PP2ACα-siRNA, which resulted in significant 

(p<0.05) mRNA knockdown (71.4-fold decrease) and reduction of total PP2AC 

protein expression (51.7%), led to in a significant (p<0.05) increase (331.7 ± 79.0%) 

of the phosphorylation level of PLM-Ser63 (Figure 5.3A). In the same cellular 

lysates, significantly (p<0.05) elevated phosphorylation level of PLM-Ser68 (471.0 

± 145.2%) was also detected compared to the control (Figure 5.3B). As it can be 

seen in figures 5.4A and 5.4B, cells transfected with PP2ACβ-siRNA, which 

resulted in reduced PP2ACβ mRNA expression (22.73-fold decrease) and total 

PP2AC protein expression (53.3%), led to a significant (p<0.05) increase in the 

phosphorylation level of both PLM-Ser63 and PLM-Ser68 (386.4 ± 76.3% and 408.4 

± 119.2%, respectively). Furthermore, a significant (p<0.05) PP4C protein 

knockdown (>95%) resulted in significantly (p<0.05) elevated phosphorylation 

levels of PLM-Ser63 (1082.0 ± 303.5%) and PLM-Ser68 (1101.0 ± 225.9%) (Figures 

5.5A and 5.5B). On the other hand, siRNA-mediated protein knockdown of PP6C 

(>91%) did not cause any significant alteration in the phosphorylation status of 

PLM-Ser63 or PLM-Ser68 (Figures 5.6A and 5.6B). These data suggest that 

PP2ACα, PP2ACβ and PP4C are involved in the regulation of PLM-Ser63 and PLM-

Ser68 phosphorylation. 
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Figure 5.3 Phosphorylation level of PLM-Ser63 (A) or PLM-Ser68 (B) and total expression level 
of PLM in H9c2 cardiomyocytes, transfected with rat PP2ACα-siRNA (siPP2ACα) or non-
targeting control siRNA (siC) for 4 days, was detected by immunoblotting analysis using specific 

rabbit polyclonal anti-phospho-PLM-Ser63, anti-phospho-PLM-Ser68 and rabbit monoclonal 

anti-PLM antibodies. Protein levels were quantified by densitometry and were normalised to 

total PLM in each sample. All data represent mean values ± SEM of six individual experiments. 

Statistical comparison was made by a two-tailed unpaired Student's t-test; *p<0.05 vs siC. IB: 

immunoblot. 

 

Figure 5.4 Phosphorylation level of PLM-Ser63 (A) or PLM-Ser68 (B) and total expression level 
of PLM in H9c2 cardiomyocytes, transfected with rat PP2ACβ-siRNA (siPP2ACβ) or non-
targeting control siRNA (siC) for 4 days, was detected by immunoblotting analysis using specific 

rabbit polyclonal anti-phospho-PLM-Ser63, anti-phospho-PLM-Ser68 and rabbit monoclonal 

anti-PLM antibodies. Protein levels were quantified by densitometry and were normalised to 

total PLM in each sample. All data represent mean values ± SEM of six individual experiments. 

Statistical comparison was made by a two-tailed unpaired Student's t-test; *p<0.05 vs siC. IB: 

immunoblot. 

A B

P
h
o
s
p
h
o
ry

la
tio

n
 

(%
 o

f 
c
o
n
tr

o
l)
 

siC siPP2ACα

0

200

400

600

800

1000

1200

1400

*

IB: p-PLM-Ser63

IB: PLM

20-

15-

20-

15-

kDa

IB: Actin
50-

37-

IB: p-PLM-Ser63

IB: PLM

20-

15-

20-

15-

kDa

IB: Actin
50-

37-

siC siPP2ACα

0

200

400

600

800

1000

1200

1400

*

IB: p-PLM-Ser68

IB: PLM

20-

15-

20-

15-

kDa

IB: Actin
50-

37-

P
h
o
s
p
h
o
ry

la
ti
o
n
 

(%
 o

f 
c
o
n
tr

o
l)
 

A B

siC siPP2ACβ

0

200

400

600

800

1000

1200

1400

*

20-

15-

20-

15-

kDa

50-

37-

IB: p-PLM-Ser63

IB: PLM

20-

15-

20-

15-

kDa

IB: Actin
50-

37-

kDa

20-

15-

20-

15-

50-

37-

IB: p-PLM-Ser68

IB: PLM

20-

15-

20-

15-

kDa

IB: Actin
50-

37-

siC siPP2ACβ

0

200

400

600

800

1000

1200

*

1400

P
h
o
s
p
h
o
ry

la
tio

n
 

(%
 o

f 
c
o
n
tr

o
l)
 

P
h
o
s
p
h
o
ry

la
tio

n
 

(%
 o

f 
c
o
n
tr

o
l)
 



Chapter 5 
  

 

143 

 

 

Figure 5.5 Phosphorylation level of PLM-Ser63 (A) or PLM-Ser68 (B) and total expression level 
of PLM in H9c2 cardiomyocytes, transfected with rat PP4C-siRNA (siPP4C) or non-targeting 
control siRNA (siC) for 4 days, was detected by immunoblotting analysis using specific rabbit 

polyclonal anti-phospho-PLM-Ser63, anti-phospho-PLM-Ser68 and rabbit monoclonal anti-PLM 

antibodies. Protein levels were quantified by densitometry and were normalised to total PLM 

in each sample. All data represent mean values ± SEM of six individual experiments. Statistical 

comparison was made by a two-tailed unpaired Student's t-test; *p<0.05 vs siC. IB: 

immunoblot. 

 

Figure 5.6 Phosphorylation level of PLM-Ser63 (A) or PLM-Ser68 (B) and total expression level 
of PLM in H9c2 cardiomyocytes, transfected with rat PP6C-siRNA (siPP6C) or non-targeting 
control siRNA (siC) for 4 days, was detected by immunoblotting analysis using specific rabbit 

polyclonal anti-phospho-PLM-Ser63, anti-phospho-PLM-Ser68 and rabbit monoclonal anti-PLM 

antibodies. Protein levels were quantified by densitometry and were normalised to total PLM 

in each sample. All data represent mean values ± SEM of six individual experiments. Statistical 

comparison was made by a two-tailed unpaired Student's t-test; *p<0.05 vs siC. IB: 

immunoblot. 
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5.5 Discussion 

 Regulation of CaV1.2-Ser1928 dephosphorylation by the type 2A protein 5.5.1

phosphatase catalytic subunits 

H9c2 cardiomyocytes have been shown to express L-type calcium current (ICaL) with 

cardiac characteristics and the L-type calcium channel α1C subunit (Sipido and 

Marban, 1991; Mejla-Alvarez et al., 1994; Menard et al., 1999; Wang et al., 1999; 

Shi et al., 2012). In addition, it has been shown that the RyR2, NCX1, Na+/K+-

ATPase are also expressed in H9c2 cardiomyocytes (Pacher et al., 2002; Maeda et 

al., 2005; Rahamimoff et al., 2007; Yan et al., 2016; You et al., 2016). All the above 

studies in combination with the demonstration of type 2A protein phosphatase 

catalytic subunits expression in Chapter 3 (sections 3.4.1 and 3.4.3) suggest that the 

rat embryonic heart-derived H9c2 cell line can be an appropriate experimental model 

to investigate the type 2A protein phosphatase catalytic subunit-mediated regulation 

of functional proteins involved in calcium regulation in cardiomyocytes.  

In cardiac myocytes, activation of β1-adrenergic receptors by catecholamines causes 

stimulation of the L-type Ca2+ channel current through a cAMP/ PKA-dependent 

pathway (Chapter 1, section 1.3.3). In cardiac myocytes, PKA-mediated 

phosphorylation occurs on the C-terminal residue Ser1928 in the α1c subunit (Gao et 

al., 1997; Davare et al., 2001; Hulme et al., 2006a). In addition, CaV1.2-Ser1928 has 

been shown to be a common site for phosphorylation-mediated activation by PKC 

(Yang et al., 2005) and protein kinase G (PKG) (Yang et al., 2007). Even though 

there are many published studies, highlighting the importance of Ca V1.2-Ser1928 in 

cAMP/ PKA pathway (Gao et al., 1997; Hal et al., 2006; Hulme et al., 2006; review 

by Weber et al., 2015), two studies by Ganesan et al. (2006) and Lemke et al. (2008) 

indicated that Ser1928 may not be involved in the regulation of Ca V1.2 upon β1-
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adrenergic receptor stimulus. However, a recent study of Shi et al. (2012) proposed 

an important role of CaV1.2-Ser1928 phosphorylation in the regulation of basal L-

type Ca2+ current. In that study, it was suggested that PP2A (via the PP2ACα) 

dephosphorylates CaV1.2-Ser1928 (Shi et al., 2012), using a PP2ACα knock-out 

mouse model and by treating H9c2 cardiomyocytes with okadaic acid. Interestingly, 

a recent study by Patriarchi et al., (2016), in neurons, suggested that PP2AC-

mediated dephosphorylation of CaV1.2-Ser1928 specifically displaces the β2-

adrenergic receptors from CaV1.2, which prevented further CaV1.2 phosphorylation 

(Patriarchi et al., 2016). PP2AC has been shown to co-localise with β2-adrenergic 

receptor and CaV1.2 in both neurons and cardiomyocytes (Davare et al., 2001; 

Balijepalli et al., 2006) or with CaV1.2 close to the Z-line (Shi et al., 2012). 

Since in some of the studies, mentioned above, okadaic acid or other non-specific 

inhibitors were used to implicate the role of PP2AC in the dephosphorylation of 

CaV1.2-Ser1928 (Gao et al., 1997; Yang et al., 2005; Hall et al., 2006; Shi et al., 

2012), however, okadaic acid is known to inhibit all three type 2A protein 

phosphatase catalytic subunits as discussed in Chapter 4 (section 4.5.1). In this 

chapter, each type 2A protein phosphatase catalytic subunit expression was knocked 

down, using rat catalytic subunit-specific siRNA in H9c2 cardiomyocytes. The data 

presented in this Chapter showed that knockdown of PP2ACα resulted in a 55% 

increase in basal CaV1.2-Ser1928 phosphorylation in H9c2 cardiomyocytes. These 

data are in line with a previous study (Hulme et al., 2006a), showing that PKA 

activation by stimulating β1-adrenergic receptor with isoprenaline resulted in a 65% 

increase in CaV1.2-Ser1928 phosphorylation and a 3.3 ± 0.2-fold increase in the 

calcium current. In addition, Shi et al. (2012), showed that treatment of H9c2 

cardiomyocytes with okadaic acid or deletion of PP2ACα in the mouse myocardium 

resulted in 80% or 100% increase of CaV1.2-Ser1928 phosphorylation, respectively 
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and significantly increased basal L-type calcium current in the latter (Shi et al., 

2012). The biological function of CaV1.2-Ser1928 phosphorylation requires further 

investigation.  

 Regulation of PLM-Ser63 and PLM-Ser68 dephosphorylation by the type 2A 5.5.2

protein phosphatase catalytic subunits 

PLM is shown to co-localise with NKA (Bossuyt et al., 2005; Silverman et al., 2005) 

and is found that when unphosphorylated it inhibits NKA activity  (Han et al., 2006; 

Despa et al., 2008; Fuller et al., 2009). PLM is also found to co-localise with NCX1 

and has been shown to inhibit NCX1 when phosphorylated at PLM-Ser68 (Zhang et 

al., 2003; Wang et al., 2011). Although the latter has only been shown by one 

research group, additional functions of PLM cannot be ruled out. In regard to PLM-

mediated regulation of NKA activity, it has been shown that phosphorylation at 

PLM-Ser63, PLM-Ser68 and/or PLM-Ser/Thr69 results in activation of the NKA and 

extrusion of Na+ from the cytosol. 

In this chapter, data showed a significant increase in PLM-Ser63 (3.3-fold) and 

PLM-Ser68 (4.7-fold) when PP2ACα, PP2ACβ or PP4C protein expression was 

silenced in H9c2 cardiomyocytes. Han et al. (2006), previously reported that 

activation of the cAMP/ PKA pathway by stimulating β1-adrenergic receptors in 

mouse ventricular myocytes resulted in a significant 2-fold increase in the PKA-

mediated PLM-Ser68 phosphorylation (Han et al., 2006). In the same study, 

stimulation of PKC by phorbol-12,13-dibutyrate caused a significant 2-fold and 4-

fold increase in PLM-Ser63 and PLM-Ser68 phosphorylation respectively and a 

significant increase in NKA-mediated Na+ extrusion (Han et al., 2006). The data in 

this chapter suggest that silencing the expression of PP2ACα, PP2ACβ or PP4C 

could have a similar biological effect in the activity of NKA in cardiomyocytes.  
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It has been shown that PP1 regulates PLM-Ser68 phosphorylation, however, its 

activity is dependent on the phosphorylation status of the protein phosphatase 

inhibitor-1, which when phosphorylated at Thr35 by PKA, it then inhibits PP1 

function (Han et al., 2006; El-Armouche et al., 2011). It has been proposed that 

PP2A dephosphorylates protein phosphatase inhibitor-1 at Thr35, therefore 

indirectly affecting the phosphorylation of PLM-Ser68 (El-Armouche et al., 2006a). 

Furthermore, PP2A has been suggested to dephosphorylate PLM-Ser63 (El-

Armouche et al., 2006a). A recent study by Wypijewski et al., (2013), provides more 

evidence that PP2AC may act indirectly in the regulation of PLM-Ser68 

dephosphorylation and directly dephosphorylate PLM-Ser63. In the current study, 

PP2ACα and PP2ACβ were shown to dephosphorylate PLM-Ser63. The activity of 

PP4C towards PLM dephosphorylation was investigated for the first time in this 

study. Interestingly data indicated that PP4C dephosphorylates both PLM-Ser63 and 

PLM-Ser68.  

Activation of the sympathetic nervous system in response to stressor pathological 

conditions results in an increased cardiac performance via the activation of the 

sympathetic nervous system. The adrenergic receptors are stimulated, raising 

intracellular cAMP and activating PKA (Bers, 2001). This stimulus causes an 

increase in intracellular Ca2+ and consequently positive chronotropy. PKA, in turn, 

phosphorylates PLM-Ser68 (Han et al., 2006; Despa et al., 2008), thus increasing the 

activity of Na+/K+-ATPase and the extrusion of Na+ from cardiomyocytes. The 

release of Na+ from the cell favours the efflux of Ca2+ via the forward mode of 

NCX1, which leads to negative lusitropy and chronotropy, therefore protecting the 

cells from the Ca2+ overload effects. Regulation of this mechanism appears to be 

critical for the physiology of cardiomyocytes and the effective protection of the 

heart from triggered arrhythmias short term or pathological cardiac hypertrophy 
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development long term, following the chronic stimulus (Despa et al., 2008; Fuller et 

al., 2009).  

Furthermore, increased intracellular Na+ [Na+]i and consequently increased cytosolic 

Ca2+ [Ca2+]i concentration has been observed in many models of heart failure, 

indicating that dysregulation of sodium homeostasis may be involved in disease 

progression (Jelicks and Siri, 1995; Pieske et al., 2002; Baartscheer et al., 2003; El-

Armouche et al., 2011). A possible explanation for the observed elevated [Na+]i 

could be a downregulation of NKA expression or activity shown in some but not all 

heart failure models and/ or increased Na+ influx by an enhanced Na+/H+ exchange 

or Na+ channel activity (Shamraj et al., 1993; Bundgaard and Kjeldsen, 1996; 

Schwinger et al., 1999; Despa et al., 2002; Baartscheer et al., 2003; Maltsev et al., 

2007; Nakamura et al., 2008). Nevertheless, impaired phosphorylation status of PLM 

has been implicated in heart failure. Bossuyt et al., (2005) showed that PLM-Ser68 

was hyperphosphorylated in a rabbit heart failure model they used and concluded 

that the increase in the phosphorylation status is a critical mechanism for the offset 

of [Na+]i increase due to downregulated NKA expression in their model  (Bossuyt et 

al., 2005). In contrast, El-Armouche et al., (2011) reported a reduced (approximately 

50%) phosphorylation of PLM-Ser68 in human heart failure compared to non-failing 

controls, therefore suggesting an increased inhibition of NKA activity which could 

explain the observed increase of [Na+]i and [Ca2+]i in heart failure and this impaired 

Na+ regulation was indicated to be involved in maladaptive cardiac hypertrophy and 

arrhythmia (El-Armouche et al., 2011). In support of the latter study, Boguslavskyi 

et al., (2014) showed hypophosphorylation of PLM-Ser63 and PLM-Ser68 in 

pressure overload cardiac hypertrophy, developed in mice following aortic 

constriction (Boguslavskyi et al., 2014). In the same study, it was shown that 

hypertrophic response due to pressure overload was more severe in knock-in mice 
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for PLM-Ser63, -Ser68 and -Ser69, accompanied with a significantly higher [Na+]i, 

compared to the wild type phenotype (Boguslavskyi et al., 2014). The two latter 

studies provided evidence supporting the protective role of unphosphorylated PLM 

against [Na+]i overload and consequently elevated [Ca2+]i suggesting regulation of 

PLM activity as a potential therapeutic target for heart failure.  The results in this 

chapter provided further insight into the regulatory mechanism of PLM-Ser63 and 

PLM-Ser68 phosphorylation by the type 2A protein phosphatase catalytic subunits. 
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5.6 Summary 

In summary, in this chapter, CaV1.2-Ser1928 dephosphorylation was shown to be 

regulated by the activity of PP2ACα in cardiomyocytes  but not PP2ACα, PP2ACβ or 

PP4C. Furthermore, PP2ACα, PP2ACβ and PP4C, but not PP6C, were shown to 

induce dephosphorylation of both PLM-Ser63 and PLM-Ser68. However, the 

contribution of PP1 to dephosphorylation of PLM-Ser68 due to dephosphorylation of 

protein phosphatase Inhibitor-1 at Thr35 by PP2AC cannot be ruled out. 
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Chapter 6  

Role of the Type 2A Protein Phosphatases in Cardiac 

Hypertrophy 

6.1 Introduction 

 Pressure overload-induced cardiac hypertrophy 6.1.1

Overall, cardiac hypertrophy can be defined as an increase in cardiac mass, in 

response to pressure or volume overload, to maintain a heart’s pumping capacity 

(Grossman et al., 1975; Matsuo et al., 1998; Segers et al., 2000;  reviewed by 

Heineke and Molkentin, 2006). Different (patho)physiological stimuli can induce 

different forms of (patho)physiological cardiac hypertrophy (Grossman et al., 1975; 

Matsuo et al., 1998; Pluim et al., 2000; Segers et al., 2000; Eghbali et al., 2005), as 

outlined in Chapter 1 (section 1.2). A pathological condition that can cause pressure 

overload, such as hypertension or aortic stenosis, produces systolic wall stress and 

induces concentric hypertrophy. Thereby, chronic pressure overload can cause 

thickening of the left ventricle wall to normalise the systolic wall stress, resulting in 

pathological hypertrophy (Grossman et al., 1975; Segers et al., 2000; Hein et al., 

2003). Sustained stimulus and consequently prolongation of the pathological 

hypertrophic state is related to cardiomyocyte remodelling, fibrotic replacement, 

impaired cardiac function and progression to cardiovascular disease and heart 

failure, which is associated with high death rate (Levy et al., 1996; Hein et al., 2003; 

Gradman and Alfayoumi, 2006; Izumiya et al., 2006; Ying et al., 2009; Chatterjee et 
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al., 2014; Ponikowski et al., 2014; Bhatnagar et al., 2015; Gerber et al., 2015). 

Therefore, understanding the molecular mechanisms involved in the development of 

pathological cardiac hypertrophy is of great importance to identify new therapeutic 

targets for the prevention of heart failure.  

Pathological cardiac hypertrophy is dependent on the activation of signalling 

pathways (Chapter 1, section 1.2.5), changes in gene transcription (maladaptive 

and/or adaptive genes) and an increased rate of protein synthesis (Gupta et al., 1996; 

Molkentin et a., 1998; Wang et al., 1998; Choukroun et al., 1999; Behr et al., 2001; 

Nicol et al., 2001; Minamino et al., 2002; Braz et al., 2003; Raman and Cobb, 2003; 

Harris et al., 2004; Wilkins et al., 2004; Sopontammarak et al., 2005; reviewed by 

Heineke and Molkentin, 2006; Liu et al., 2009; Lorenze et al., 2009; Ruppert et al., 

2013). In many of these signalling pathways, serine/threonine-specific kinases are 

activated, such PKC, CaMKII and members of the MAPK kinases (such as ERK1/2), 

which in turn can phosphorylate many cardiac proteins, including PLM, RyR2, 

SERCA2a, phospholamban and cAMP-response element binding protein (CREB), 

that are involved in cardiac function and development of cardiac hypertrophy 

(MacDougall et al., 1991; Naraynan and Xu, 1997; Molkentin et al., 1998; Nicol et 

al., 2001; Zhang et al., 2002; Braz et al., 2004; Harris et al., 2004; Han et al., 2006; 

Li et al., 2006; El-Armouche et al., 2006a; Huke and Bers, 2008a; Backs et al., 

2009; Lorenz et al., 2009; El-Armouche et al., 2011; Ruppert et al., 2013; Mutlak 

and Kehat, 2015). Dephosphorylation of these cardiac proteins depends on the 

activity of serine/threonine protein phosphatases, including the type 2A protein 

phosphatases (MacDougall et al., 1991; Zhang et al., 2002; Li et al., 2006; Olsen et 

al., 2006; El-Armouche et al., 2006a; Huke and Bers, 2008a; El-Armouche et al., 

2011). Even though the involvement of PP2AC in pathological cardiac hypertrophy 

has been previously investigated (Gergs et al., 2004; Ling et al., 2012; Hoehn et al., 
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2015; Li et al., 2016), its role and regulation is not yet well understood, whilst the 

role of PP4C and PP6C remains unknown. In this chapter, the expression of type 2A 

protein phosphatase catalytic subunits, their association with the alpha4 r egulatory 

protein and the expression of PP6 regulatory subunits was investigated in normal 

and pressure overload-induced hypertrophied murine left ventricular (LV) tissue.  

 Oxidative stress and heart disease 6.1.2

Reactive oxygen species (ROS) is a phrase used to describe a number of free 

radicals (species with unpaired electron) such as superoxide (O2
−•) and hydroxyl 

radical (OH•) and molecules derived from molecular oxygen that are generated 

through a sequential reduction of oxygen, such as hydrogen peroxide (H 2O2) (Haber 

and Weiss, 1934; Cohen et al., 1974; Liochev and Fridovich, 1994; Kehrer, 2000; 

Thomas et al., 2009). These ROS can be generated endogenously during 

mitochondrial oxidative phosphorylation or by ROS-generating enzymes such as 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity (McMurray 

et al., 1993; Liu et al., 2004; Laskowski et al., 2006; Takimoto and Kass, 2007; 

Dröse et al., 2009). Low levels of ROS are thought to play a role in normal cardiac 

signalling, growth adaptations and even cardioprotection (Zhang et al., 2002; 

Saotome et al., 2009; Prosser et al., 2011). However, in the presence of high levels 

of ROS which cannot be countered by the antioxidant capabilities of the cell 

(McCord and Fridovich, 1969; Matsushima et al., 2006), oxidative stress occurs 

(McMurray et al., 1993; review by Seddon et al., 2006; Dröse et al., 2009). 

Oxidative stress in cardiomyocytes can mediate DNA damage (Suematsu et al., 

2003; Ye et al., 2016), reduction–oxidation (redox) signalling by affecting redox-

sensitive target proteins, including activation of CAMKII, PKA, PKC and PKG 

(Gopalakrishna and Anderson, 1989; Kehrer, 2000; Brennan et al., 2006; Burgoyne 

et al., 2007; Zhu et al., 2007; Erickson et al., 2008), can induce cell arrest or 
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apoptosis (Kehrer, 2000; Zhu et al., 2007; Watkins et al., 2011) and has been 

associated with the development of pressure overload-induced pathological LV 

hypertrophy and progression of heart failure (McMurray et al., 1993; Siwik et al., 

1999; MacCarthy et al., 2001; Li et al., 2002; Byrne et al., 2003; Maack et al., 2003; 

Takimoto et al., 2005; Grieve et al., 2006; Xu et al., 2008) (Figure 6.1). 

 

Figure 6.1  Simplified schematic diagram of the main pathophysiological effects of oxidative 
stress in the heart (adapted from Seddon et al. 2006; Takimoto and Kass, 2007). Higher levels 

of reactive oxygen species (ROS) play a role in pathophysiologic remodelling, apoptosis, and 

development of pathological cardiac hypertrophy and contractile dysfunction. 

 DNA double-strand break in pathological cardiac hypertrophy 6.1.3

As mentioned earlier, oxidative stress is a key contributor to pressure overload -

induced pathological cardiac hypertrophy and heart failure (MacCarthy et al., 2001; 

Li et al., 2002; Byrne et al., 2003; Maack et al., 2003; Maytin et al., 2004; Takimoto 

et al., 2005; Grieve et al., 2006; Xu et al., 2008) and has been shown to enhance 

ROS
Antioxidants

Oxidative damage (e.g.DNA DSB)
Redox signalling (e.g. PKC or CAMKII activation)

ROS source (e.g. mitochondrial 
electron transport, NADPH oxidases)

Hypertrophy
Fibrosis

Remodelling
Contractile dysfunction

Apoptosis 



Chapter 6 
  

 

155 

 

double-strand DNA (dsDNA) break in cardiomyocytes (Ye et al., 2016). Overall, 

accumulation of dsDNA breaks in cells contributes to genomic instability and can 

lead to mutagenesis and/or cell death (Huang et al., 2005; Mirzayans et al., 2006; 

Jackson and Bartek, 2009; Liu et al., 2016). In mammalian cells, foci of 

phosphorylated H2AX at Ser139 residue are rapidly formed at dsDNA break sites 

(Rogakou et al., 1998; Rogakou et al., 1999; Andegeko et al., 2001; Bassing et al., 

2002; Fernandez-Capetillo et al., 2002; Meador et al., 2008). H2AX is an H2A 

histone variant (West and Bonner, 1980), which is highly conserved across 

eukaryotic species (Pehrson and Fuji, 1998; review by Redon et al., 2002) and when 

phosphorylated is also known as γH2AX (Rogakou et al., 1998).  Formation of 

γH2AX foci is essential for the DNA-damage response and accumulation of repair 

factors, such as p53 binding protein 1 (p53BP1) and breast cancer protein 1, at the 

break site (Paull et al., 2000; Bassing et al., 2002; Fernandez-Capetillo et al., 2002; 

Meador et al., 2008). Therefore, γH2AX has been considered to be a sensitive and 

selective biomarker for monitoring dsDNA break formation (review by Bonner et 

al., 2008). Phosphorylation at Ser139 is mediated by either DNA-PK (DNA-

dependent protein kinase), ATM (ataxia-telangiectasia mutated) or ATR (ATM- and 

Rad3-Related) kinases (Andegeko et al., 2001; Falck et al., 2005) which is 

dephosphorylated during or after the DNA repair process (Rogakou et al., 1999; 

Chowdhury et al., 2005). In cardiomyocytes, γH2AX appears to be mainly ATM-

dependent (Ye et al., 2016).  

Furthermore, all type 2A protein phosphatases have been shown to dephosphorylate γH2AX 

in non-myocyte cells (Chowdhury et al., 2005; Chowdhury et al., 2008; Nakada et al., 

2008a; Douglas et al., 2010; Zhong et al., 2011). In this chapter, the role of PP6 catalytic 

subunit and alpha4 protein in regulating γH2AX was investigated, through the siRNA-

mediated knockdown of their protein expression in H9c2 cardiomyocytes. 

http://www.sciencedirect.com/science/article/pii/S0041008X14001859#bb0025
http://www.sciencedirect.com/science/article/pii/S0041008X14001859#bb0025
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6.2 Specific objectives 

Currently, there is a lack of knowledge about the expression, regulation and role of 

type 2A protein phosphatase catalytic subunits and alpha4 signalling axis in 

pathological hypertrophy and DNA repair in cardiomyocytes. Thus, the studies 

described in this chapter aim to:  

1. investigate the protein expression of type 2A protein phosphatase catalytic 

subunits, PP6C regulatory proteins (SAP1-3 (sit4 associated proteins) domain 

subunits and ANKRD28, 44 or 52 ankyrin repeat domain subunits) and 

alpha4 in SHAM- and TAC-operated mice; 

2. investigate the association of alpha4 regulatory protein and type 2A protein 

phosphatase catalytic subunits in LV tissue of SHAM- and TAC-operated 

mice; 

3. determine changes in the phosphorylation of γ-H2AX in between SHAM- and 

TAC-operated mice; 

4. investigate the effects of PP6 catalytic subunit or alpha4 protein knockdown 

on the formation of the γH2AX foci in H9c2 cardiomyocytes in response to 

oxidative stress. 
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6.3 Methods 

 Murine myocardial hypertrophy model 6.3.1

Myocardial hypertrophy was induced by pressure overload via transaortic 

constriction (TAC) of the abdominal aorta in 6-week old male C57BL/6J mice (20–

22 g) (Boguslavskyi et al., 2014). The aortic banding surgery and heart excision 

were carried out by Dr Andrii Boguslavskyi13 at the BSU within the Waterloo 

campus of King’s College London, under aseptic conditions.  The operating field was 

disinfected with 75% isopropyl alcohol, and all surgical equipment was sterilised 

using a hot bead steriliser before surgery. 

6.3.1.1 Transaortic constriction (TAC) of the abdominal aorta in the mouse 

Male C57BL/6J mice (20–22 g), 6-week old, were anaesthetised with an 

isoflurane/O2 mixture (2/98%) and were placed in a supine position on top of a 37°C 

heated pad to maintain their body temperature. Adequacy of anaesthesia was 

controlled by the inspection of the respiration rate and loss of pedal reflex. After the 

fur was shaved from the neckline to mid chest level, the chest was opened by a 

midsternal incision, and a chest retractor was applied to facilitate the view. The 

thymus and fat tissue were gently pulled away, and a 6-0 silk suture was placed 

around the abdominal aorta and tightened against a 28-guage blunt needle to assure 

reproducibility of the transaortic constriction (Figures 6.2-1 and 6.2-2). The needle 

was subsequently removed, and the stenotic aorta was created (Figure 6.2-3). 

Muscles and skin were closed layer by layer with 6-0 silk sutures. SHAM-operated 

mice underwent an identical procedure except for the transaortic banding. For post-

operative analgesia, mice were injected intraperitoneally with buprenorphine 

                                                   
13

Cardiovascular Division, King's College London, The Rayne Institute, St. Thomas’ Hospital, London, 

United Kingdom. 



Chapter 6 
  

 

158 

 

(Vetergesic 0.3 mg/mL solution) at a dose of 20 µg/kg. After 4 weeks post-surgery, 

the mice were terminally anaesthetised by an intraperitoneal injection of 

pentobarbital (Pentoject 200 mg/mL solution) at a dose of 300 mg/kg and heparin 

(150 U). Once the mice were unconscious, the chest cavity was opened by cutting 

around the rib cage and through the diaphragm. The heart was rapidly explant ed for 

measuring hypertrophic response and sample preparation for immunoblotting 

analysis.  

 

Figure 6.2 Transaortic abdominal aorta constriction model in the adult mouse (images 

obtained from Dr A. Boguslavskyi14). The abdominal aorta of the transaortic constriction (TAC)-

operated mice was identified and banded by a 6-0 silk suture (panel 1). A 28-gauge blunt 

needle was placed parallel to the abdominal aorta (panel 2) to standardise the diameter of the 

loop and then removed (panel 3) once the suture was tied. 

6.3.1.2 Assessment of hypertrophy 

Following the heart excision from SHAM- and TAC-operated mice, hearts were 

                                                   
14

Cardiovascular Division, King's College London, The Rayne Institute, St. Thomas’ Hospital, London, 

United Kingdom. 
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rapidly flushed with ice-cold PBS to remove any residual blood. Extraneous tissue 

was removed, and the whole heart weight was measured. Then the left ventricle was 

separated from the heart and its weight was recorded. The hypertrophic response in 

each animal was measured and expressed as a ratio of left ventricular weight or 

whole heart weight versus (vs) body weight or tibia length (Fulton et al., 1952; Yin 

et al., 1982; Hangartner et al., 1985; Kitzman et al., 1988). 

6.3.1.3 Homogenisation and sample preparation of murine LV tissue 

After the LV free wall was dissected away and weight measured, approximately 20 -

30mg of the left ventricles’ mass was stored in RNAlater RNA Stabilisation Reagent 

(QIAGEN) and stored at -20oC until required. The remainder of the left ventricle 

was immediately placed into liquid nitrogen for short-term storage. LV tissue was 

then soaked in ice-cold homogenisation buffer (100 mg tissue/ml of buffer) (20 mM 

MOPS, 140 mM NaCl, 5 mM KCl, 1 mM EDTA, 1% (v/v) phosphatase inhibitor 

cocktail #3 (Sigma), 0.1% (v/v) protease inhibitor cocktail set 3 (Calbiochem), pH 

7.4) and was homogenised on ice. LV tissue soaked in buffer was initially cut into 

smaller pieces and was further disrupted by a hand-held homogeniser while on ice. 

From each homogenate, 200 µl were prepared for immunoblotting analysis as 

described in Chapter 2 (section 2.5) and the remainder of the homogenate was stored 

at -80oC until required. 

 Immunoprecipitation of alpha4 from cardiomyocytes 6.3.2

Immunoprecipitation (IP) of alpha4 from H9c2 or ARVM lysates and mouse left 

ventricle homogenates, was performed using a using a protocol adapted from the 

publication by Snabaitis et al., (2008). On the day of the experiment, H9c2 

cardiomyocytes at 80% confluency or plated freshly-isolated ARVMs (on 6-well 

culture plates), were washed with ice-cold PBS and lysed with 300 µl of 1X cell 
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lysis buffer (20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA-Na2, 1 mM 

EGTA, 1% (v/v) Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM β-

glycerophosphate, 1 mM Na3VO4, 1 µg/ml leupeptin; Cell Signaling Technology) 

supplemented with 1 tablet/10 ml mini-Complete™ protease inhibitor cocktail 

(freshly added) (Roche Diagnostics, Switzerland)). The plates were directly placed 

onto a layer of liquid nitrogen in a polystyrene ice bucket to flash-freeze the cell 

layer. After 5 min, the plates were removed from liquid nitrogen and left at room 

temperature to thaw whilst scraping the surface of each well simultaneously, to 

enhance cell lysis. Immediately after thawing, the lysates were transferred to safe -

lock 1.5-ml centrifuge tubes (Eppendorf, Germany) on ice and then centrifuged at 

14,000 g for 30 min at 4oC (Micro-star 17R centrifuge from VWR International, 

USA). Alternatively, aliquots of 30 µl from mouse left ventricle homogenates, 

prepared as described earlier in Chapter 6 (section 6.3.1.3), were mixed well by 

pipetting with 270 µl ice-cold modified 1X cell lysis buffer and centrifuged at 

14,000 g for 30 min at 4oC. The supernatant from either H9c2 cardiomyocytes, 

ARVMs or mouse left ventricle lysate samples was carefully removed, and the 

pelleted triton-insoluble debris was discarded. Protein content in the supernatant was 

analysed using the BCA assay (section 6.3.3) and was then adjusted to 500 µg/ml. A 

sample of the supernatant was kept as a “pre-immunoprecipitation (pre-IP)” control 

(input) and prepared for immunoblotting analysis as described in section 2.5.1. The 

remaining lysate (750 µl) was equally divided into three centr ifuge tubes, to which 2 

µl (1 µg/µl) of rabbit IgG (Sigma-Aldrich), 2 µl PBS or 2 µl (1 µg/µl) of rabbit 

polyclonal anti-alpha4 antibody (Bethyl Laboratories, USA) were added individually 

and incubated overnight at 4ºC with gentle rocking on a tube rotator  (Stuart; Bibby 

Scientific Ltd, UK). The samples containing Rabbit IgG (corresponding to the host 

species of the anti-alpha4 primary antibody; Cell Signaling Technology) or PBS 

were used as negative controls to detect any non-specific protein binding in the 
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sample to the IgG molecule or protein A magnetic beads within the IP respectively. 

Each tube was then incubated with 50 µl of protein A magnetic bead slurry (New 

England Biolabs, UK) for 2 hours at 4ºC with gentle rocking on a tube rotator. The 

tubes, containing the beads, were then placed into a 6-tube magnetic separation rack 

(New England Biolabs) and left for 30 seconds on ice until the solution was clear. 

The supernatant was carefully removed, from which a sample (equal proportion to 

the pre-IP sample) was kept as a “post-immunoprecipitation (post-IP)” control and 

was prepared for immunoblotting analysis as described in Chapter 2 ( section 2.5.1). 

The magnetised pellet containing the immunocomplexes was gently washed three 

times with 500 µl ice-cold modified 1X cell lysis buffer and finally resuspended in 

50 µl of 3X modified Laemmli sample buffer. Samples were then heated at 95°C for 

5 min, followed by a brief pulse centrifugation and then analysed by immunoblotting 

(section 2.5) or stored at -80oC until required.  

 Quantification of total protein concentration by bicinchoninic acid (BCA) 6.3.3

assay 

Protein quantification of cellular lysates was performed using the Pierce™ BCA 

Protein Assay Kit (Thermo Scientific) as per manufacturer’s instructions. A range of  

protein standards (0, 0.125, 0.250, 0.5, 0.75, 1, 1.5 and 2 mg/ml Bovine serum 

albumin (BSA)) were made from a stock solution of BSA (2 mg/ml in 0.9% (v/v) 

saline and 0.05% (w/v) sodium azide). An aliquot of 10 µl from each protein 

standard, cell lysate sample or lysis buffer (blank control for lysate samples) was 

added in triplicate to a 96-well flat-bottom microplate. In each well, 200 µl of BCA 

solution (50:1 Reagent A:B) was added, and the plate was thoroughly mixed by 

shaking on an orbital plate shaker at 50 g for 30 seconds and incubated for 30 min at 

37ºC. The plate was then cooled to room temperature for 15 min, and the absorbance 

was measured at 562 nm by the Infinite M200 PRO plate reader (TECAN) and 
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analysed using the Magellan™ data analysis software (Magellan). The concentration 

of the BSA standards was plotted against averaged blank (0 mg/ml BSA)-corrected 

absorbance responses and a standard curve was plotted using MS Excel (MS Office 

2010). The concentration of the unknown samples was interpola ted from the BSA 

standard curve using their averaged blank (lysis buffer)-corrected absorbance 

responses. 

 Measuring cell viability by MTT assay 6.3.4

Cell viability of H9c2 cardiomyocytes, under different experimental conditions, was 

measured using a 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide 

(MTT) assay, as described in Chapter 2 (section 2.7). A threshold of statistically 

significant (p<0.05) more than 20% difference in cell viability (<20% or >120%) 

was assigned to indicate a biologically significant effect (Fan et al., 2009; 

Lodererova et al., 2009; Cuddington et al., 2015). 

 Hydrogen peroxide-induced oxidative stress in H9c2 cardiomyocytes 6.3.5

Hydrogen peroxide induces oxidative stress in cardiomyocytes (Chen et al., 2002; 

Oyama et al., 2009; Mojarrab et al., 2013). Cultured H9c2 cardiomyocytes were 

transfected with rat non-targeting siRNA and either alpha4- or PP6C-siRNA, for 4 or 

8 days, respectively (section 2.3.1). When transfection lasted longer than 4 days, the 

transfection medium was replaced every 4 days. At day 3 (or day 7), the transfection 

medium was replaced with complete medium containing 300 µM H2O2 (condition 

optimised in our laboratory) or PBS as vehicle control. After 24 hours of incubation 

in the dark, samples were prepared for immunoblotting analysis as described in 

Chapter 2 (section 2.5). Hydrogen peroxide solutions were kept in the dark at 4oC, 

before use. The treatment medium containing 300μM H2O2 was freshly made. 
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 Western blotting analysis 6.3.6

Total expression of SAP1, SAP2, SAP3, ANKRD28, ANKRD44, ANKRD52, 

PP2AC, PP4C, PP6C, H2AX and phosphorylation status of H2AX-Ser139 (γ-H2AX) 

was detected by immunoblotting analysis as described in Chapter 2 (section 2.5). In 

addition, total levels of actin were detected to ensure equal protein loading and/ or 

for data normalisation. Details about the antibodies and working dilutions used in 

this chapter are presented in table 2.3.  
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6.4 Results 

 Measurement of pressure overload-induced cardiac hypertrophy 6.4.1

After 28 days of TAC-mediated pressure overload in mice, the heart mass was significantly 

(p<0.05) increased 60.1 ± 13.8% or 58.6 ± 9.8% when expressed as whole heart weight 

(HW) relative to body weight (BW) or tibia length (TL) respectively, compared to the 

SHAM-operated mice (Figures 6.3A and 6.3B, respectively).   

 

Figure 6.3 Pressure overload-induced cardiac hypertrophy in SHAM- and TAC-operated mice 

was measured as (A) whole HW to BW ratio, (B) HW to TL ratio, (C) LVW to BW ratio and (D) 

LVW to TL ratio. Bars represent mean values ± SEM, and two-tailed unpaired Student's t-test 

was used to compare data in SHAM- (n = 4) and TAC-operated mice (n = 6); *p<0.05. 
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Furthermore, the LV mass in TAC-operated mice showed a significant (p<0.05) 62.0 

± 13.8% or 60.4 ± 9.7 increase when expressed as left ventricular weight (LVW) 

relative to BW or TL, respectively (Figures 6.3C and 6.3D, respectively) compared 

to the SHAM-operated mice. These data suggest the development of pressure 

overload-induced cardiac hypertrophy in the TAC-operated mice compared to the 

SHAM-operated mice. 

 Protein expression of type 2A protein phosphatase catalytic subunits and 6.4.2

alpha4 in LV hypertrophy 

The expression levels of the type 2A protein phosphatase catalytic subunits were 

measured in the LV tissue of SHAM- and TAC-operated mice. Total PP2AC protein 

expression was significantly (p<0.05) elevated (1.7-fold) in TAC-operated mice 

compared to the SHAM-operated mice (Figure 6.4A). Interestingly, protein 

expression of PP4C was undetectable in the adult mouse myocardium (Figure 6.4B). 

Furthermore, PP6C protein expression was not significantly altered in left ventricles 

between SHAM- and TAC-operated mice (Figure 6.4C). 

In addition, the protein expression of the alpha4, a regulatory protein of all type 2A protein 

phosphatase catalytic subunits, was investigated in hypertrophied and non-hypertrophied 

LV tissue. From the data in Chapter 4 (Figures 4.20-4.22), it is apparent that the 

maintenance of type 2A protein phosphatases in cardiomyocytes requires the expression of 

alpha4 protein. Figure 6.5 shows that alpha4 protein expression was significantly (p<0.05) 

increased (1.8-fold) in the LV tissue of TAC-operated mice when compared to the SHAM-

operated mice. 
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Figure 6.4 Protein expression of the type 2A protein phosphatase catalytic subunits, in the LV 
tissue of SHAM (n=4)- and TAC (n=6)-operated mice, 28 days post-surgery, was determined by 

immunoblotting analysis, using subunit-specific antibodies to PP2AC, PP4C and PP6C. An H9c2 

lysate (H) run along the mouse LV tissue samples as a positive control. Prior to 

immunoblotting, proteins from each sample were resolved by SDS-PAGE (on 12% 

polyacrylamide gels). Levels of (A) total PP2AC, (B) PP4C and (C) PP6C protein expression were 

quantified by densitometry and normalised to actin. All data represent mean values ± SEM. 

Statistical comparison was made by a two-tailed unpaired Student's t-test; *p<0.05. (D) 

Representative immunoblots (IB) of total PP2AC, PP4C and PP6C protein expression. For 

clarity, the PP6C single immunoblot was spliced (white line) to have consistent order among all 

immunoblots. 
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Figure 6.5 Protein expression of the alpha4, in the LV tissue of SHAM (n=4)- and TAC (n=6)-
operated mice, 28 days after surgery, was determined by immunoblotting analysis, using a 

rabbit polyclonal anti-alpha4 antibody. Prior to immunoblotting, proteins from each sample 

were resolved by SDS-PAGE (on 12% polyacrylamide gels). (A) Levels of alpha4 protein 

expression were quantified by densitometry and normalised to actin. All data represent mean 

values ± SEM. Statistical comparison was made by a two-tailed unpaired Student's t-test; 

*p<0.05. (B) Representative immunoblots (IB) of total alpha4 protein expression. 

 Expression of PP6C regulatory subunits in LV hypertrophy 6.4.3

Even though PP6C expression appeared to be unchanged in the murine hypertrophied LV 

tissue compared to the non-hypertrophied LV tissue, as shown in figure 6.4C, PP6C activity 

and specificity has been proposed to be regulated by its association with a Sit4-associated 

domain protein (SAP1, SAP2 or SAP3) and an ankyrin repeat domain regulatory protein 

(ANKRD28, ANKRD44, and ANKRD52) (Stefansson et al., 2008; Guergnon et al., 2009). 

Therefore, the expression levels of PP6C regulatory subunits, SAP1-3, ANKRD28, 
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SAP2 was significantly (p<0.05) reduced (2.8-fold) in TAC-operated mice (Figure 6.6B) 

when compared to the SHAM-operated mice. Furthermore, SAP3 protein expression level 
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compared to the SHAM-operated mice (Figures 6.7A and 6.7B). Expression of the 

ANKRD52 protein in LV tissue lysate was unchanged between the SHAM- and TAC-

operated mice (Figure 6.7C). The data in figures 6.6 and 6.7 clearly show that all the 

regulatory subunits of PP6C are expressed in mouse myocardium and their LV 

 

Figure 6.6 Protein expression of the PP6C sit4-associated protein domain subunits (SAP1-3), 
in the LV tissue of SHAM (n=4)- and TAC (n=6)-operated mice, 28 days post-surgery, was 

analysed by SDS-PAGE (on 9% polyacrylamide gels) and immunoblotting with antibodies 

specific to SAP1-3. Levels of (A) SAP1, (B) SAP2 and (C) SAP3 protein expression were 

quantified by densitometry and normalised to actin. Protein expression levels of actin were 

quantified by a LI-COR Odyssey® CLx Imaging System. All data represent mean values ± SEM. 

Statistical comparison was made by a two-tailed unpaired Student's t-test; *p<0.05. (D) 

Representative immunoblots (IB) of SAP1-3 protein expression. 
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expression appears to be differentially regulated in the healthy and hypertrophied 

mouse LV tissue. 

 

Figure 6.7 Protein expression of the PP6C regulatory ankyrin repeat domain subunits 
(ANKRD28/44/52), in the LV tissue obtained from SHAM (n=4)- and TAC (n=6)-operated mice, 
28 days after surgery, was analysed by SDS-PAGE (on 9% polyacrylamide gels) and 

immunoblotting with antibodies specific to ANKRD28, ANKRD44 or ANKRD52. Levels of (A) 

ANKRD28, (B) ANKRD44 and (C) ANKRD52 protein expression were quantified by densitometry 

and normalised to actin. Protein expression levels of actin were quantified by a LI-COR 

Odyssey® CLx Imaging System. All data represent mean values ± SEM. Statistical comparison 

was made by a two-tailed unpaired Student's t-test; *p<0.05. (D) Representative immunoblots 

(IB) of ANKRD28/44/52 protein expression. 
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 Association of alpha4 with type 2A protein phosphatase catalytic subunit 6.4.4

complexes in normal and hypertrophic myocardium 

Alpha4 is a common regulatory protein for all type 2A protein phosphatase catalytic 

subunits and has been shown to be essential for their stability and PP2A holoenzyme 

biogenesis (Chen et al., 1998; Nanahoshi et al., 1999; Kong et al., 2009; Jiang et al., 2013b; 

LeNoue-Newton et al., 2016). Therefore, the association of alpha4 with the type 2A protein 

phosphatase catalytic subunits (PP2AC, PP4C and PP6C) was investigated in murine 

normal and hypertrophic LV tissue. To optimise the immunoprecipitation protocol 

conditions, alpha4 protein complexes were initially co-immunoprecipitated from H9c2 and 

ARVM lysates. Figure 6.8 shows that alpha4 interacts with all type 2A protein phosphatases 

in H9c2 cardiomyocytes. As shown in figure 6.9, alpha4 was co- 

 

Figure 6.8 Immunoprecipitation of alpha4 in H9c2 cardiomyocyte lysates was performed 

using a polyclonal anti-alpha4 antibody in combination with protein A magnetic beads (Cell 

Signaling Technology). Equal proportions of pre-immunoprecipitation sample (pre-IP: lanes 1-

3), immunoprecipitates (rabbit IgG, PBS and rabbit anti-alpha4: lanes 4-6) and post-

immunoprecipitation sample (post-IP: lanes 7-9) were probed for the presence of alpha4, total 

PP2AC, PP4C and PP6C or actin protein by immunoblotting, using a mouse monoclonal anti-

alpha4, a sheep polyclonal anti-PP2AC, anti-PP4C or anti-PP6C or a goat polyclonal anti-actin 

antibody, respectively. Prior to immunoblotting, proteins from each sample were resolved by 

SDS-PAGE (on 12% polyacrylamide gels). IB: Immunoblot. 
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immunoprecipitated in complex with PP2AC and PP6C in ARVMs, however, alpha4:PP4C 

protein complexes were not observed by immunoblotting analysis. Next, the association of 

alpha4 regulatory protein with PP2AC and PP6C in LV tissue from SHAM- and TAC-

operated mice was investigated through co-immunoprecipitation of alpha4 protein 

complexes, using a polyclonal anti-alpha4 antibody. As it can be seen in figure 6.10A, 

alpha4 immunoprecipitation from LV tissue lysates resulted in ≥95% pull down of total 

cellular alpha4 protein. Moreover, alpha4 content was significantly (p<0.05) higher (282.0 

± 67.4%) in immunocomplexes from hypertrophied LV tissue compared to the non-

hypertrophied tissue (Figure 6.10B). Actin protein content in the input (pre-IP) from 

SHAM- and TAC-operated mice LV tissue lysates confirmed equal protein loading between 

the samples for Co-IP of alpha4 immunocomplexes with type2A protein phosphatase 

 

Figure 6.9 Immunoprecipitation of alpha4 in ARVM lysates was performed using a polyclonal 

anti-alpha4 antibody in combination with protein A magnetic beads (Cell Signaling 

Technology). Equal proportions of pre-immunoprecipitation sample (pre-IP: lane 1), post-

immunoprecipitation sample (post-IP: lane 2) and immunoprecipitates (rabbit IgG, PBS and 

rabbit anti-alpha4: lanes 3-5) were probed for the presence of alpha4, total PP2AC, PP4C and 

PP6C or actin protein by immunoblotting, using a mouse monoclonal anti-alpha4, a sheep 

polyclonal anti-PP2AC, anti-PP4C or anti-PP6C or a goat polyclonal anti-actin antibody, 

respectively. Prior to immunoblotting, proteins from each sample were resolved by SDS-PAGE 

(on 12% polyacrylamide gels). IB: Immunoblot. 
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Figure 6.10 Immunoprecipitation of alpha4 in LV tissue lysates obtained from SHAM (n=4)- 
and TAC (n=4)-operated mice was performed using a polyclonal anti-alpha4 antibody in 

combination with protein A magnetic beads (Cell Signaling Technology). Equal proportions of 

(A) pre-immunoprecipitation (pre-IP: lane 1), post-immunoprecipitation sample (post-IP: lane 

2) and (B) immunoprecipitates (rabbit IgG, PBS and rabbit anti-alpha4: lanes 3-5) were probed 

for the presence of alpha4 protein by immunoblotting, using a mouse monoclonal anti-alpha4 

antibody. Alpha4 protein expression was quantified by densitometry. Actin in the input (pre-IP) 

from SHAM- and TAC-operated mice LV tissue lysates was used to indicate differences in 

protein loading between the samples. Prior to immunoblotting, proteins from each sample 

were resolved by SDS-PAGE (on 12% polyacrylamide gels). For clarity, the alpha4 single 

immunoblots were spliced (white line) to rearrange the order of the samples. All data 

represent mean values ± SEM. Statistical comparison was made by a two-tailed unpaired 

Student's t-test; *p<0.05. IB: Immunoblot. 

catalytic subunits. PP2AC or PP6C protein present in the alpha4 immunocomplexes was 

quantified and normalised to the corresponding amount of alpha4 protein content in the 

immunoprecipitates. Figure 6.11A shows that alpha4 immunoprecipitation from normal 

murine LV tissue lysates significantly (p<0.05) removed 39% of cellular total PP2AC 

protein content. Comparison of the total PP2AC protein content in the immunocomplexes 

showed no difference between the SHAM- and TAC-operated mice (Figure 6.11B). When 

alpha4 was immunoprecipitated from healthy murine LV tissue, PP6C protein content was 

significantly (p<0.05) reduced to 52.0 ± 11.4% in the post-IP lysate, when compared to the 

pre-IP lysate (Figure 6.12A).  
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Figure 6.11 The association of PP2AC with alpha4 was investigated during LV hypertrophy. (A) 

Total PP2AC protein content was determined in equal proportions of normal murine LV tissue 

lysates (n=4) before (pre-IP) and after (post-IP) alpha4 immunoprecipitation, by 

immunoblotting analysis, using a sheep polyclonal anti-PP2AC antibody. Actin was used to 

indicate differences in protein loading between the samples. Graph shows the protein levels of 

total PP2AC in the post-IP sample relevant to the pre-IP sample. (B) Equal proportions of 

immunoprecipitates (rabbit IgG, PBS and rabbit anti-alpha4), from SHAM (n=4)- and TAC (n=4)-

operated mice LV tissue lysates, were probed for the presence of total PP2AC protein by 

immunoblotting, using a sheep polyclonal anti-PP2AC antibody. Total PP2AC protein content in 

the rabbit anti-alpha4 immunoprecipitates was quantified by densitometry and normalised to 

the corresponding alpha4 content in the immunoprecipitates. All data represent mean values ± 

SEM. Statistical comparison was made by a two-tailed unpaired Student's t-test; *p<0.05. Prior 

to immunoblotting, proteins from each sample were resolved by SDS-PAGE (on 12% 

polyacrylamide gels). IB: Immunoblot. 

Interestingly, a significant (p<0.05) reduction of PP6C protein content to 30.4 ± 

7.6% was observed in alpha4 immunoprecipitates from LV tissue lysates of TAC-

operated mice compared to the SHAM-operated mice (Figure 6.12B). This data 

indicates that even though, a significant (p<0.05) proportion (48%) of PP6C 

appeared to associate with alpha4 in the normal murine LV tissue lysates , this 

association was significantly (p<0.05) reduced in hypertrophied LV tissue. Taken 

together, these novel data suggest that alpha4 differentially associates with PP2AC 

and PP6C in the normal and hypertrophied LV tissue.  
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Figure 6.12 The association of PP6C with alpha4 was investigated during LV hypertrophy. (A) 

PP6C protein content was determined in equal proportions of normal murine LV tissue lysates 

(n=4) before (pre-IP) and after (post-IP) alpha4 immunoprecipitation, by immunoblotting 

analysis, using a sheep polyclonal anti-PP6C antibody. Actin was used to indicate differences in 

protein loading between the samples. Graph shows the protein levels of PP6C in the post-IP 

sample relevant to the pre-IP sample. (B) Equal proportions of immunoprecipitates (rabbit IgG, 

PBS and rabbit anti-alpha4), from SHAM (n=4)- and TAC (n=4)-operated mice LV tissue lysates, 

were probed for the presence of PP6C protein by immunoblotting, using a sheep polyclonal 

anti-PP6C antibody. PP6C protein content in the rabbit anti-alpha4 immunoprecipitates was 

quantified by densitometry and normalised to the corresponding alpha4 content in the 

immunoprecipitates. All data represent mean values ± SEM. Statistical comparison was made 

by a two-tailed unpaired Student's t-test; *p<0.05. Prior to immunoblotting, proteins from 

each sample were resolved by SDS-PAGE (on 12% polyacrylamide gels). The spliced image 

(white line) was from a single immunoblot to rearrange the order of the samples. IB: 

Immunoblot. 
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4, 6 or 8, compared to the control. However, only PP6C-siRNA at 8 days post- 

transfection led to a significant (p<0.05) reduction of cell viabil ity (92.3 ± 0.2%) in 

H9c2 cardiomyocytes (Figure 6.13B). Although this result was statistically 

significant, since cell viability was above 80%, it was considered not biologically 

significant (section 6.3.4). 

 

Figure 6.13 Effects of siRNA-mediated PP6C protein expression knockdown on cell viability. 

(A) Protein expression of PP6C (n=3) in H9c2 cardiomyocytes, transfected with 50 nM rat PP6C-

siRNA (si) or non-targeting control siRNA (siC) for 4,6 or 8 days was analysed by 

immunoblotting using a subunit-specific anti-PP6C antibody. Protein levels were quantified by 

densitometry and were normalised to actin in each sample. Protein expression levels of actin 

were quantified by a LI-COR Odyssey® CLx Imaging System. Before the immunoblotting 

analysis, proteins from each sample were resolved by SDS-PAGE (on 12% polyacrylamide gels). 

(B) Cell viability (n=5) in H9c2 cardiomyocytes incubated with 50 nM rat PP6C-siRNA (si) or 

non-targeting control siRNA (siC) for 4,6 or 8 days post-transfection, was measured by an MTT 

assay. A threshold is shown at 80% cell viability. All data represent mean values ± SEM of four 

individual experiments run in triplicates. Statistical comparison was made by one-way ANOVA 

followed by Tukey’s post-hoc multiple comparisons tests; *p<0.05 vs siC. IB: Immunoblot. 
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was investigated. According to the data in figure 6.13B, only H9c2 cardiomyocytes, 

transfected with rat PP6C-siRNA for 8 days, showed a statistically significant reduction in 

cell viability, even though, it was not considered biologically significant. Therefore, H9c2 

cardiomyocytes were transfected with rat PP6C-siRNA or non-targeting control for 8 days 

and were either treated with H2O2 or PBS (vehicle control), 24 hours before harvesting of 

the samples. As shown in figure 6.14, PP6C protein expression was successfully knocked 

down (>93%) at 8 days post- transfection in H9c2 cardiomyocytes. Interestingly, treatment 

with H2O2 caused a significant (p<0.05) reduction of PP6C expression to 68.2 ± 10.5% in 

H9c2 cardiomyocytes. The off-target effects of PP6C-siRNA towards the expression of 

PP2AC and PP4C were examined at 8 days post-transfection. Figures 6.15A and 6.15B 

 

Figure 6.14 Protein expression of PP6C in H9c2 cardiomyocytes, transfected with 50 nM rat 
PP6C-siRNA (si) or non-targeting control siRNA (siC) for 8 days and treated with 300 µM H2O2 
or PBS (vehicle control), was analysed by SDS-PAGE (12% polyacrylamide gels) and 

immunoblotting using a sheep polyclonal anti-PP6C antibody. Protein levels were quantified by 

densitometry and were normalised to actin in each sample. Protein expression levels of actin 

were quantified by a LI-COR Odyssey® CLx Imaging System. All data represent mean values ± 

SEM of five individual experiments. Statistical comparison was made by one-way ANOVA 

followed by Dunnett’s post-hoc multiple comparisons tests; *p<0.05 vs siC without H2O2 

(control). IB: Immunoblot. 

E
x
p
re

s
s
io

n
 (

%
 o

f 
c
o
n
tr

o
l)

- + - +

0

20

40

60

80

100

*

* *

H2O2

(300 μM)

IB:PP6C
37-

25-

IB:Actin
50-

37-

kDa

siC si



Chapter 6 
  

 

177 

 

show that the protein expression of total PP2AC and PP4C was not significantly 

altered in cells were transfected with rat PP6C-siRNA for 8 days, compared to the 

cells transfected with the non-targeting control siRNA. In addition, H2O2 treatment 

appeared to have a non-significant effect on the expression of total PP2AC and 

PP4C compared to the control samples. These data demonstrate an efficient siRNA-

mediated post-transcriptional silencing of PP6C in H9c2 cardiomyocytes, 8 days 

post-transfection and the specificity of the rat PP6C-siRNA towards PP6C. 

Furthermore, PP6C protein expression appeared to be hydrogen peroxide-sensitive, 

compared to total PP2AC or PP4C. 

 

Figure 6.15 Protein expression of (A) total PP2AC (n=5) and (B) PP4C (n=4) in H9c2 
cardiomyocytes, transfected with 50 nM rat PP6C-siRNA (si) or non-targeting control siRNA 
(siC) for 8 days and treated with 300 µM H2O2 or PBS (vehicle control), was analysed by SDS-

PAGE (12% polyacrylamide gels) and immunoblotting using a sheep polyclonal anti-PP2AC and 

anti-PP4C antibodies. Protein levels were quantified by densitometry and were normalised to 

actin in each sample. Protein expression levels of actin were quantified by a LI-COR Odyssey® 

CLx Imaging System. All data represent mean values ± SEM. Statistical comparison was made 

by one-way ANOVA. No significant changes were observed (vs siC without H2O2). IB: 

Immunoblot. 

Lysates were further tested by immunoblotting analysis for the expression of γH2AX, total 
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IB:PP2AC
37-

25-
IB:Actin

50-

37-

H2O2

E
x
p

re
s
s
io

n
 (

%
 o

f 
c
o

n
tr

o
l)

- + - +

0

50

100

150

200

IB:PP4C
37-

25-
IB:Actin

50-

37-

H2O2

E
x
p

re
s
s
io

n
 (

%
 o

f 
c
o

n
tr

o
l)

- + - +

0

50

100

150

200

A B
kDa kDa

siC si siC si



Chapter 6 
  

 

178 

 

 

Figure 6.16 Protein expression of (A) γH2AX, (B) H2AX and (C) γH2AX/H2AX ratio in H9c2 
cardiomyocytes, transfected with 50 nM rat PP6C-siRNA (si) or non-targeting control siRNA 
(siC) for 8 days and treated with 300 µM H2O2 or PBS (vehicle control), was analysed by SDS-

PAGE (15% polyacrylamide gels) and immunoblotting using specific anti-γH2AX and anti-H2AX 

antibodies. Protein levels were quantified by densitometry and were normalised to actin in (A) 

and (B). Protein expression levels of actin were quantified by a LI-COR Odyssey® CLx Imaging 

System. All data represent mean values ± SEM of five individual experiments. Statistical 

comparison was made by one-way ANOVA followed by Dunnett’s post-hoc multiple 

comparisons tests; *p<0.05 vs siC without H2O2 (control). (D) Representative immunoblots (IB) 

of γH2AX and H2AX protein expression. 

cardiomyocytes with 300 µM H2O2 for 24 hours, significantly (p<0.05) elevated the 

phosphorylation level of γH2AX when cells were transfected with either non-

targeting control siRNA (388 ±42.7 %) or rat PP6C-siRNA (312.6 ± 103.4%), 

compared to the non-targeting vehicle control sample. When the same samples were 

tested for the protein expression levels of total H2AX, non-significant change was 

detected (Figure 6.16B). Nevertheless, in figure 6.16C it is shown that the ratio 
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γH2AX/ H2AX was significantly (p<0.05) increased (535.7 ± 106.3%) in H9c2 cells 

transfected with non-targeting control siRNA and treated with 300 µM H2O2, 

compared to the cells treated with PBS. Even though γH2AX/ H2AX ratio was 

increased in cells transfected with rat PP6C-siRNA under oxidative stress (328.1 ± 

123.4%), the change was not statistically significant (p=0.156), compared to the 

vehicle control samples. Taken together, these data suggest that oxidative stress 

induces the formation of γH2AX foci in H9c2 cardiomyocytes. Nevertheless, PP6C 

appears not to be involved in regulating H2AX phosphorylation, in response to H 2O2 

treatment, in cardiomyocytes. 

 Effects of alpha4 protein knockdown on γH2AX in response to oxidative stress 6.4.7

Phosphorylation of H2AX can be affected by all type 2A protein phosphatase 

catalytic subunits (Chowdhury et al., 2005; Chowdhury et al., 2008; Nakada et al., 

2008a; Douglas et al., 2010; Zhong et al., 2011). Furthermore, the protein expression 

levels of total PP2AC, PP4C and PP6C is severely reduced (>70%) when alpha4 

protein is depleted (>94%) in cardiomyocytes, as shown in Chapter 4 (Figures 4.19 -

4.22). Therefore, the role of alpha4 in H2AX phosphorylation was investigated in 

H9c2 cardiomyocytes, under normal and oxidative stress condition. Cells were 

transfected with either non-targeting control siRNA or rat alpha4-siRNA for 4 days 

and were either treated with H2O2 or PBS (vehicle control), 24 hours before 

harvesting of the samples. H2O2 treatment induced basal formation of γH2AX foci 

(196.4 ± 15.7%) in H9c2 cardiomyocytes, transfected with non-targeting control 

siRNA (Figure 6.18A). Surprisingly, when expression of alpha4 protein was 

significantly (p<0.05) knocked down (>98%) (Figure 6.17), the basal formation of 

γH2AX foci in cells was significantly (p<0.05) abolished (18.4 ± 5.6%) (Figure 

6.18A) compared to the non-targeting control samples. This effect was consistent 

even in response to H2O2 treatment (28.7 ± 20.9%) (Figure 6.18A). Interestingly, the 
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expression of total H2AX protein was significantly (p<0.05) reduced (>73%) when 

the alpha4 protein expression was knocked down (>98%) either combined or not 

with H2O2 treatment (Figure 6.18B). The ratio of γH2AX/H2AX was then 

calculated. As shown in figure 6.18C, γH2AX/H2AX ratio was significantly 

increased in response to H2O2 treatment (278.9 ± 47.9%) compared to the vehicle 

control. However, γH2AX/ H2AX ratio was not significantly changed when alpha4 

protein expression was knocked down in H9c2 cardiomyocytes with or without H2O2 

treatment when compared to vehicle control (Figure 6.18C). These data suggest that 

loss of alpha4 in H9c2 cardiomyocytes efficiently reduces γH2AX foci formation 

and cellular total H2AX protein content. 

 

Figure 6.17 Protein expression of alpha4 in H9c2 cardiomyocytes, transfected with 50 nM rat 
alpha4-siRNA (si) or non-targeting control siRNA (siC) for 4 days and treated with 300 µM 
H2O2 or PBS (vehicle control), was analysed by SDS-PAGE (12% polyacrylamide gels) and 

immunoblotting using a rabbit monoclonal anti-alpha4 antibody. Protein levels were 

quantified by densitometry and were normalised to actin in each sample. Protein expression 

levels of actin were quantified by a LI-COR Odyssey® CLx Imaging System. All data represent 

mean values ± SEM of three individual experiments. Statistical comparison was made by one-

way ANOVA followed by Dunnett’s post-hoc multiple comparisons tests; *p<0.05 vs siC 

without H2O2 (control). IB: Immunoblot. 
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Figure 6.18 Protein expression of (A) γH2AX, (B) H2AX and (C) γH2AX/H2AX ratio in H9c2 
cardiomyocytes, transfected with 50 nM rat alpha4-siRNA (si) or non-targeting control siRNA 
(siC) for 4 days and treated with 300 µM H2O2 or PBS (vehicle control), was analysed by SDS-

PAGE (15% polyacrylamide gels) and immunoblotting using specific anti-γH2AX and anti-H2AX 

antibodies. Protein levels were quantified by densitometry and were normalised to actin in (A) 

and (B). Protein expression levels of actin were quantified by a LI-COR Odyssey® CLx Imaging 

System. All data represent mean values ± SEM of three individual experiments. Statistical 

comparison was made by one-way ANOVA followed by Dunnett’s post-hoc multiple 

comparisons tests; *p<0.05 vs siC without H2O2 (control). (D) Representative immunoblots (IB) 

of γH2AX and H2AX protein expression. 

 Investigation of sequence complementation-dependent alpha4-siRNA-mediated 6.4.8

off-target effects against H2AX expression 

Since alpha4 protein knockdown in H9c2 cardiomyocytes resulted in a significant 
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in Chapter 2 (section 2.3.2). Alignment between the rat H2AX mRNA (GenBank® 

ID: NM_001109291.1) open reading frame and each rat alpha4-siRNA sequence 

showed >10 nt mismatches. Furthermore, alignment of each siRNA seed region 

(positions 1-8 nt) with the 3’-UTR of H2AX did not show 8 nt complementation. 

These data indicate that there is no efficient complementation between t he rat 

alpha4-siRNAs and the H2AX mRNA (open reading frame or 3’-UTR) to induce any 

sequence-dependent off-target effect. 

 Phosphorylation status of H2AX in pressure overload-induced LV hypertrophy 6.4.9

The formation of γH2AX foci was investigated in pressure overload-induced murine 

hypertrophied LV tissue lysates and compared to the SHAM control tissue. Figures 

6.19A and 6.19B, show that γH2AX and H2AX protein levels, respectively, 

remained unchanged between the hypertrophied and non-hypertrophied LV tissue 

lysates. Furthermore, the γH2AX/ H2AX ratio was not significantly altered in LV 

tissue obtained from TAC-operated mice, when compared to the SHAM-operated 

mice (Figure 6.19C). These data indicate that the amount of γH2AX foci formation 

was similar in murine normal and hypertrophied LV tissue. 
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Figure 6.19 Protein expression of (A) γH2AX, (B) H2AX and (C) γH2AX/ H2AX enrichment in 
the LV tissue of SHAM (n=4)- and TAC (n=6)-operated mice, 28 days after surgery, was 

determined by immunoblotting analysis, using specific anti-γH2AX and anti-H2AX antibodies. 

Prior to immunoblotting, proteins from each sample were resolved by SDS-PAGE (on 15% 

polyacrylamide gels). Protein levels were quantified by densitometry and were normalised to 

actin in (A) and (B). Protein expression levels of actin were quantified by a LI-COR Odyssey® 

CLx Imaging System. All data represent mean values ± SEM. Statistical comparison was made 

by a two-tailed unpaired Student's t-test. No significant changes were observed between the 

SHAM and TAC. (D) Representative immunoblots (IB) of γH2AX and H2AX protein expression.  
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6.5 Discussion 

 Pressure overload-induced LV hypertrophy in mice 6.5.1

Aortic binding initiates a rapid increase in cardiac afterload and consequently a 

hypertrophic response in the left ventricle. In vivo animal models of partial 

abdominal aortic constriction-induced cardiac hypertrophy have been used 

extensively in previous studies to investigate pressure overload-induced pathological 

cardiac hypertrophy (Cutilletta et al., 1975; Balakumar and Singh, 2006; Seymour et 

al., 2015; Singh et al., 2015). The data in the current study showed that transaortic 

constriction (TAC) of the abdominal aorta of mice for 28 days resulted in a 

significant (p<0.05) 60-62% increase of LV mass compared to the SHAM-operated 

mice. These data are in agreement with previous reports where the abdominal aorta 

was bound or show a more severe phenotype. Balakumar and Singh (2006) and 

Singh et al. (2015) demonstrated an approximate 56% increase in LV mass, in TAC-

operated rats 4 weeks post-surgery, whilst Seymour et al. (2015) showed only 17% 

significant increase in LV mass in TAC-operated mice 4 weeks post-surgery. 

 Expression of PP2AC, PP4C, PP6C and their association with alpha4 6.5.2

regulatory protein in LV hypertrophy 

In the present study, the development of LV hypertrophy in response to pressure 

overload, in the TAC-operated mice, was sufficient to significantly (p<0.05) elevate 

PP2AC (1.7-fold) and alpha4 (1.8-fold) protein expression in murine LV 

hypertrophied tissue. Furthermore, PP2AC showed significant interaction with 

alpha4 protein (Figure 6.10A) in LV tissue. In addition, the novel data in figures 

6.10B and 6.11B suggest an increase in PP2AC:alpha4 complex formation in LV 

hypertrophied tissue.  
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Previous studies have demonstrated the elevation of PP2AC expression or activity in 

the diseased myocardium (Gergs et al., 2004; DeGrande et al., 2013). Gergs et al., 

(2004), showed that overexpression of PP2AC (2.1-fold) in the myocardium was 

associated with LV hypertrophy (22% mass increase). However, no change in the 

expression of the type 2A protein phosphatase regulatory protein alpha4 was 

observed. Furthermore, DeGrande et al. (2013) reported a significant 2-fold PP2AC 

protein increase in human heart failure cardiac tissue. 

A critical role of the alpha4 protein is the protection of the type 2A protein 

phosphatase catalytic subunits from proteasome-mediated degradation (Kong et al., 

2009; McConnell et al., 2010; LeNoue-Newton et al., 2011; Watkins et al., 2012; 

Jiang et al., 2013b; LeNoue-Newton et al., 2016). Thus, it becomes apparent that the 

association of alpha4 with PP2AC, PP4C and PP6C is of great importance for 

normal cellular function. The data in Gergs and co-workers’ study, (2004), indicate 

that PP2AC overexpression per se was not sufficient to alter alpha4 protein 

expression levels. However, in a recent study, LeNoue-Newton et al. (2016) showed 

that protein knockdown of alpha4 led to a reduction of PP2AC protein expression, 

which was recovered when alpha4 protein expression was rescued in HEK293T 

cells. In addition, the data in Chapter 4 (figures 4.19-4.22) demonstrated that alpha4 

protein knockdown significantly reduced the protein expression levels of the type 

2A protein phosphatase catalytic subunits in H9c2 cardiomyocytes.  

Taken together the above studies and the findings in this thesis, offer an explanatory 

theory for the augmentation of PP2AC protein levels in the diseased LV tissue, 

which may be facilitated through a pressure overload-induced increase in alpha4 

protein expression, which in turn may protect PP2AC from proteasome-mediated 

degradation through an increased PP2AC:alpha4 complex formation.  
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In the present study, the protein expression of PP4C was not detectable in the adult 

mouse LV tissue, suggesting that PP4C was either absent or of a very low 

abundance. This result agrees with the data shown in Chapter 3 (Figure 3.6) where 

PP4C was undetectable at the protein level in the ARVMs unless the 26S proteasome 

was inhibited with MG132 (Figure 3.8). The latter finding indicates that PP4C may 

be post-translationally regulated by the ubiquitin-proteasome system in the adult 

myocardium. In addition, alpha4 protein knockdown (>94%) in Chapter 4 (Figure 

4.19) resulted in significant reduction of PP4C expression (>84%) (Figure  4.21), 

suggesting that alpha4 may play a protective role towards PP4C against proteasome 

activity, similarly to PP2AC. Hence, 1.8-fold upregulation of alpha4 expression in 

the hypertrophied myocardium was speculated to cause an increase in the intact 

PP4C, which was not the case. In support to this data, LeNoue-Newton et al. (2016), 

demonstrated that even though alpha4 protein expression knockdown led to  a 

reduction of PP4C protein expression in HEK293T cells, this effect was not reversed 

when alpha4 protein was re-expressed. Thus, PP4C regulation by alpha4 protein 

appears to be more complex. Since PP4C protein expression was not detectable in 

alpha4 immunoprecipitates from ARVMs (Figure 6.9) or in the LV tissue of mice, 

the association of alpha4 with PP4C in the adult murine myocardium was not 

investigated. 

PP6C expression was not significantly changed in LV hypertrophy and showed 

significant interaction with the alpha4 protein in the mouse adult myocardium. 

Interestingly, PP6C:alpha4 complex formation appeared to be significantly reduced 

in the hypertrophied LV tissue (Figure 6.12B). Besides the protective role of alpha4 

towards PP6C, the interaction of PP6C with alpha4 has been suggested to inhibit 

PP6C activity in non-myocytes (Nanahoshi et al., 1999; Jacinto et al., 2001; Prickett 

and Brautigan, 2006). Since the total expression of PP6C was not knocked down 
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(Figure 6.4C), by the observed reduction of PP6C:alpha complex (Figure 6.12) and 

“free” PP6C is thought to be unstable, it is proposed here that PP6C holoenzyme 

complex formation and consequently PP6C activity might be enhanced in cardiac 

hypertrophy. 

The present study is the first study to compare the expression of alpha4 protein in normal 

and hypertrophied LV tissue. As mentioned earlier, alpha4 protein was significantly 

(p<0.05) upregulated (1.8-fold increase) in the LV tissue obtained from the TAC-operated 

mice compared to the SHAM-operated mice. Pathological cardiac hypertrophy is 

characterised by an abnormal increase in protein synthesis and cell size, which is considered 

a “tumor-like” growth (Gupta et al., 1996; Molkentin et a., 1998; Harris et al., 2004; 

Lorenze et al., 2009). Notably, alpha4 overexpression has been detected in many types of 

cancer, and it has been suggested to be involved in increased cell migration and 

proliferation (Chen et al., 2011; Liu et al., 2014). 

 Expression of PP6 regulatory subunits in LV hypertrophy 6.5.3

PP6C has been shown to interact with multiple regulatory subunits: the SAPs 

domain regulatory proteins (SAP1-3) (Luke et al., 1996; Stefansson and Brautigan, 

2006; Zeng et al., 2010) and ankyrin repeat domain proteins (ANKRD28, 

ANKRD44, and ANKRD52) (Stefansson et al., 2008; Zeng et al., 2010). It is 

thought to assemble like the classical PP2A holoenzyme (discussed below), where 

the SAPs domain subunits act as adaptors to bridge PP6C and the ankyrin repeat 

domain subunits (Stefansson et al., 2008). SAP1 and SAP2 were significantly 

increased and decreased, respectively, whilst SAP3 remained unchanged in the LV 

tissue from TAC-operated mice compared to the SHAM-operated mice. Moreover, 

ANKRD28 and ANKRD44 were found to be significantly increased in LV 

hypertrophied tissue compared to the normal tissue, whilst ANKRD52 remained 
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unchanged. To date, there is no information in the literature regarding the expression 

and role of SAPs1-3, ANKRD28, ANKRD44, and ANKRD52 in cardiomyocytes. 

The novel data in the current study presented differential expression of the PP6 

regulatory subunits between the normal and hypertrophied murine LV tissue, even 

though, PP6C expression was unchanged, which may indicate a redundant function 

of each subunit or involvement in PP6 localisation. 

 Oxidative stress and γH2AX foci formation in cardiomyocytes 6.5.4

Previous studies have demonstrated that neurohormones, such as angiotensin II 

(Ang-II), endothelin-1 (ET-1) or norepinephrine (NE), which are released in 

response to pathological pressure overload and induce a cardiac  hypertrophic 

phenotype (Schunkert et al., 1990; Arai et al., 1995; Rapacciuolo et al., 2001; 

Yayama et al., 2004), can mediate an increase in ROS formation and oxidative stress 

(Liu et al., 2004; Laskowski et al., 2006). Furthermore, there is evidence that 

oxidative stress contributes to the progression of pathological hypertrophy and heart 

failure (McMurray et al., 1993; Siwik et al., 1999; Takimoto et al., 2005; Grieve et 

al., 2006; Xu et al., 2008; Oyama et al., 2009). In addition, oxidative stress is known 

to cause DNA damage (Suematsu et al., 2003; Ye et al., 2016), therefore, increase 

the risk of genomic instability and cell death (Huang et al., 2005; Mirzayans et al., 

2006; Jackson and Bartek, 2009; Liu et al., 2016). Hence, to investigate the role of 

type 2A protein phosphatases in dsDNA break repair process in cardiomyocytes, a 

cell culture model for oxidative stress was initially evaluated, by treating H9c2 

cardiomyocytes with H2O2, which is known to induce dsDNA breaks (Driessens et 

al., 2009; Ye et al., 2016). Indeed, as shown in figures 6.16 and 6.18, H2O2 treatment 

in H9c2 cardiomyocytes resulted in a significant increase (≥196.4 %) of γH2AX foci 

formation. This data is in line with a previous study by Ye et al., (2016), showing 

that oxidative stress is implicated in DNA double-strand break in cardiomyocytes, 
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by monitoring a significantly increased formation of γH2AX in neonatal rat 

ventricular myocytes treated with H2O2 (Ye et al., 2016).  

 Does PP6C affect γH2AX and cell viability in cardiomyocytes? 6.5.5

The phosphorylation of the nuclear histone variant H2AX at ser139 (H2AX) 

initiates the DNA double-strand break repair response in cells (Rogakou et al., 1998; 

Rogakou et al., 1999; Andegeko et al., 2001; Bassing et al., 2002; Fernandez-

Capetillo et al., 2002; Meador et al., 2008). Oxidant stress is a potent inducer of 

DNA damage and consequent formation of H2AX foci in myocytes (Figures 6.16A 

and 6.18A). In addition, persistent oxidative stress and dsDNA break may increase 

the risk of cell death (Huang et al., 2005; Mirzayans et al., 2006; Jackson and 

Bartek, 2009; Liu et al., 2009). PP6C had been implicated in regulating the 

formation of H2AX foci in non-myocytes (Douglas et al., 2010) and was found to 

be a survival protein in HeLa cells in a large-scale RNA interference (RNAi) screen, 

(MacKeigan et al., 2005). MacKeigan and co-workers (2005), demonstrated that a 

greater than 80% PP6C mRNA knockdown in HeLa cells by a PP6C-siRNA pool, for 

3 days, initiated a 4.6-fold increase in apoptosis. However, in the present study, 

H9c2 cardiomyocyte transfection with rat PP6C-siRNA for 4 and 6 days, which 

resulted in >80% PP6C protein expression knockdown, did not affect cell viability  

significantly. When H9c2 cells were transfected with rat PP6C-siRNA for 8 days, a 

statistically significant reduction (7%) was observed in cell viability, and cell 

lysates were further tested for γH2AX foci formation. However, 8 days post-

transfection with PP6C-siRNA, the basal γH2AX foci formation was unchanged 

compared to H9c2 cells transfected with non-targeting control siRNA (Figure 6.16). 

These data indicate that PP6C protein knockdown (>93%) per se, in cardiomyocytes, 

does not initiate cell death or γH2AX foci formation. Douglas and co-workers 

(2010), showed that when PP6C protein expression was knocked down (90%) by 
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siRNA transfection in HeLa cells exposed to ionising radiation, γH2AX was 

significantly increased, compared to cells transfected with a control siRNA. Thus, 

the role of PP6C in the regulation of H2AX phosphorylation status was investigated 

in cardiomyocytes under oxidative stress conditions (by exogenous H 2O2). 

Nonetheless, siRNA-driven knockdown (>93%) of PP6C protein expression in H9c2 

cardiomyocytes treated with H2O2, induced the formation of H2AX foci at similar 

levels to cells transfected with non-targeting control siRNA (Figure 6.16). This data 

suggests that either PP6C does not target H2AX in cardiomyocytes or that H2AX 

dephosphorylation by PP2AC and/ or PP4C (Chowdhury et al., 2005; Chowdhury et 

al., 2008; Nakada et al., 2008a) can compensate for the lack of PP6C and thereby 

maintain low levels of cellular H2AX.  

Notably, in the same experiments, a significant (p<0.05) reduction of basal PP6C 

protein expression was observed (Figure 6.14), when oxidative stress was induced 

(exogenous H2O2). This rather interesting result could be related to a possible 

oxidative modification of PP6C by ROS. Oxidised proteins (Stadtman, 2006; Wani 

et al., 2014) are usually degraded either by the 20S proteasome free form (Davies, 

2001; reviewed by Raynes et al., 2016) or by autophagy (Kiffin et al., 2004). 

However, this explanation can only be speculated due to lack of studies in the 

literature that investigated oxidation of PP6C. 

 Role of alpha4 in regulating γH2AX in cardiomyocytes 6.5.6

Alpha4 is a regulatory protein of all type 2A protein phosphatase catalytic subunits 

(Murata et al., 1997; Chen et al., 1998; Nanahoshi et al., 1999; Kloeker et al., 2003; 

Kong et al., 2009; Watkins et al., 2012; Jiang et al., 2013b). As shown in Chapter 4 

(Figures 4.19-4.22), knockdown of alpha4 protein expression (>94% decrease) in 

cardiomyocytes had severe consequences on the expression of total PP2AC, PP4C 
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and PP6C and led to their progressive loss (>83%, >84% and >73%, respectively) at 

4 days post-transfection with alpha4-siRNA. γH2AX has been shown to be 

dephosphorylated by all three type 2A protein phosphatases (Chowdhury et al., 

2005; Chowdhury et al., 2008; Nakada et al., 2008a; Douglas et al., 2010; Zhong et 

al., 2011). Hence, it was hypothesised that siRNA-mediated knockdown of alpha4 

protein expression and consequent significant reduction of PP2AC, PP4C and PP6C 

expression at 4 days post-transfection, would cause an increase in γH2AX under 

oxidative stress conditions (by exogenous H2O2). Surprisingly, as shown in figure 

6.18A, protein expression knockdown of alpha4 (>98%) resulted in a significant 

(p<0.05) reduction of γH2AX foci formation in the absence and presence of H2O2 

treatment in H9c2 cardiomyocytes. This result contrasted with a previous report, 

showing an increase in γH2AX in non-myocytes when alpha4 protein expression was 

silenced (Kong et al., 2009). In addition, protein levels of total H2AX expression 

were significantly reduced (>73%) when alpha4 protein expression was knocked 

down (Figure 6.18B). Thus, the reduction in the expression of total H2AX explains 

the observed decrease of γH2AX levels in alpha4 deficient H9c2 cardiomyocytes, as 

the γH2AX/H2AX ratio remained unchanged in cells transfected with either non-

targeting control siRNA or rat alpha4-siRNA, without H2O2 treatment. This novel 

data was considered an alpha4-siRNA-mediated on-target effect, since no efficient 

sequence complementation was detected between the alpha4-siRNAs and H2AX 

mRNA (section 6.4.8).  

It is notable that Kong et al. (2009) did not investigate the effects of alpha4 

knockdown on the expression of total H2AX. Chowdhury et al. (2008), showed that 

protein silencing of PP2AC or PP4C expression in HeLa cells, increased γH2AX 

foci formation when cells were treated with camptothecin, a compound that mediates 

dsDNA breaks, whilst PP4C also affected the basal level of γH2AX foci. In the same 
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study, total H2AX was unchanged (Chowdhury et al., 2008). The data in this study 

showed that knockdown of PP6C in cardiomyocytes, in the absence or presence of 

H2O2, did not affect the γH2AX or total H2AX protein expression. In support of 

these data, Zhong et al. (2011), showed no change in the protein expression of total 

H2AX when PP6C was knocked down by siRNA in MCF-7 cells, however in the 

same paper γH2AX also remained unchanged (Zhong et al., 2011). In contrast, 

Douglas et al. (2010), showed that siRNA-driven PP6C protein knockdown could 

increase γH2AX in HeLa cells after exposure to ionising radiation, but also did not 

investigate the expression of total H2AX under the same experimental conditions. 

Taken together, these findings seem to suggest that individual protein expression 

knockdown of each phosphatase per se, may not affect the expression of total 

H2AX. Hence, it is proposed, that in the current study, the degree of alpha4 

knockdown, and consequent loss of all type 2A protein phosphatase catalytic 

subunits in H9c2 cardiomyocytes, 4 days post-transfection with rat alpha4-siRNA, 

creates a severe insult to the cells followed by the loss of H2AX and their inability 

to form γH2AX foci and undergo DNA repair. Furthermore, γH2AX was not 

increased, even when alpha4-deficient cardiomyocytes were treated with H2O2, 

which supports the previous statement. Thereby, delayed repair of damaged DNA in 

cardiomyocytes would be expected to lead to genomic instability and eventually 

apoptotic cell death, as it has been demonstrated previously in non-myocytes 

(Bensaad and Vousden, 2005; Christophorou et al., 2006; Jackson and Bartek, 2009).  

A model that could explain the loss of H2AX in cardiomyocytes, in the absence of 

alpha4 and low γH2AX foci formation under oxidative stress (exogenous H2O2) 

would be the loss of total H2AX protein expression due to an increased proteasome -

mediated degradation, in settings of disease. This model, in turn, could be 

interpreted in two ways. 
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Gruosso et al. (2016) recently demonstrated that H2AX (consequently γH2AX foci 

formation) was significantly reduced in the presence of accumulated ROS under 

oxidative stress conditions, in non-myocytes with a defective antioxidant response. 

This degradation was driven by the H2AX polyubiquitination of Lys119 residue by 

the E3 ubiquitin ligase RNF168 and proteasome activity (Gruosso et al., 2016). 

Prevention of γH2AX formation, in turn, has been shown to enhance cell apoptosis 

(Taneja et al., 2004). Fernandez-Capetillo et al. (2002), showed that deletion of 

H2AX in transgenic mice resulted in enhancing the entry of damaged cells into 

mitosis, instead of cell arrest at the G2/M checkpoint (reviewed by Smith et al., 

2010) until DNA repair and replication completion. This result was confirmed later 

by Meador et al. (2008) in H2AX null mouse embryonic stem cells and fibroblasts, 

showing a lack of G2/M checkpoint, increased G1 cell arrest and apoptosis rate. 

Many other previous studies provided evidence of genomic instability when H2AX 

was deleted either in transgenic mice or mammalian non-myocyte cells (Bassing et 

al., 2002; Celeste et al., 2002). Thus, more damaged DNA was clustered, resulting in 

genomic instability and high risk of apoptotic cell death (Li et al., 2004). In support 

to the proteasome-mediated degradation of H2AX, (Zong et al., 2006). Zong et al. 

(2006), demonstrated that inhibition of PP2AC (and potentially PP4C and PP6C) by 

okadaic acid in murine heart caused an increased activity of cardiac proteasome 20S, 

which is the core unit of all proteasomes (Eytan et al., 1989; Davies, 2001; review 

by Dahlmann et al., 2016). In the present study, all type 2A protein phosphatase 

catalytic subunits were inhibited by the siRNA-driven knockdown of alpha4 in H9c2 

cardiomyocytes (Figures 4.19-4.22). In addition, initial observations by Kong et al. 

(2009), showed apoptotic cell death of non-myocytes, when alpha4 protein 

expression was knocked down. Thus, delayed DNA repair in embryonic, neonatal 

and adult (without re-entering the cell cycle) cardiomyocytes due to increased 

proteasome-mediated degradation of H2AX to oxidative stress, could potentially 



Chapter 6 
  

 

194 

 

lead to accumulation of damaged DNA and enhanced cell death.  

Alternatively, it has been shown that during the DNA repair response (DRR) 

process, proteasome activator PA200/Blm10 re-localises to nuclear foci formation at 

the DNA damaged region (Blickwedehl et al., 2008). In a recent review by Qian et 

al. (2013), authors concluded that activation of the proteasome by PA200/Blm10 at 

the DNA damaged area, results in the removal of acetylated core histones, including 

H2AX (Jiang et al., 2010) to facilitate DNA unravelling and accessibility of DNA 

repair proteins to damaged DNA. In this case, initiation of H2AX proteasome-

mediated degradation in cardiomyocytes may promote cell viability.  

Collectively these findings indicate that H2AX expression, γH2AX foci formation 

and their regulation by alpha4 protein in cardiomyocytes, may be important for cell 

viability under stress conditions (e.g. pressure overload/ oxidative stress). A 

question, raised by the current study, is whether loss of alpha4 protein in 

cardiomyocytes could be a severe enough insult to induce cell death and/ or increase 

ROS sensitivity.  

 Pressure overload-induced LV hypertrophy and DNA damage repair 6.5.7

Many studies have shown that pressure overload-mediated cardiac hypertrophy is 

associated with increased levels of ROS and oxidative stress (McMurray et al., 1993; 

Siwik et al., 1999; MacCarthy et al., 2001; Li et al., 2002; Byrne et al., 2003; Maack 

et al., 2003; Maytin et al., 2004; Takimoto et al., 2005; Grieve et al., 2006; Xu et al., 

2008). Oxidative stress, in turn, can initiate DNA double strand breaks and 

consequent DNA damage repair response in cardiomyocytes, detected by the 

formation of γH2AX foci as it was shown in the present study (Figures 6.16A and 

6.18A) and a previous report (Ye et al., 2016). Increased levels of PP2AC in the 
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hypertrophied left ventricles are expected to promote γH2AX dephosphorylation 

(Chowdhury et al., 2008; Nakada et al., 2008a). Moreover, PP6C/SAP1 association 

is known to activate DNA-PK (Mi et al., 2009; Douglas et al., 2010; Hosing et al., 

2012), which targets Ser139 residue of H2AX, hence, the elevated SAP1 protein 

levels (Figure 6.6A) in the hypertrophied LV tissue may indirectly increase γH2AX 

foci, but may also directly dephosphorylate it (Douglas et al., 2010). On the 

contrary, PP6C/SAP2 association is responsible for γH2AX dephosphorylation 

(Zhong et al., 2011). Therefore, the decreased levels of SAP2 (Figure 6.6B) in the 

hypertrophied myocardium would suggest an increase in γH2AX foci. Most of the 

above evidence in previous reports and observations in this study would argue for an 

increase in the γH2AX foci formation in LV hypertrophy. However, no significant 

alteration was observed in γH2AX or H2AX in the LV tissue from TAC-operated 

mice compared to the SHAM-operated mice (Figure 6.19).  

PP2AC and PP6C have been shown to be present in the nucleus of non-myocytes 

(Turowski et al., 1995; Mi et al., 2009). Therefore, the increased PP2AC protein 

expression and “free” intact PP6C presence observed in the cellular lysates of 

murine hypertrophied LV tissue, in the current study, could contribute to an 

increased PP2AC and PP6C activity in the nucleus of the cardiomyocytes, which 

may be responsible for keeping H2AX foci levels low, thereby delaying DNA 

repair. Moreover, further research is required to confirm the potential implication of 

alpha4 overexpression in the DNA repair process in the adult hypertrophied 

myocardium. 

Nevertheless, a positive correlation between the elevated ROS and γH2AX foci 

formation has been shown previously in heart failure compared to non-heart failure 

patients (Mondal et al., 2013). Furthermore, progression of cardiac hypertrophy to 
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heart failure is related to enhanced ROS levels (Hill and Singal, 1996; Ide et al., 

2000; Li et al., 2002; Heymes et al., 2003; Mondal et al., 2013), DNA damage 

(Olivetti et al., 1997; Bartunek et al., 2002; Wencker et al., 2003; Mondal et al., 

2013) and cell death (Olivetti et al., 1997; Chen et al., 2002; Hein et al., 2003; 

Wencker et al., 2003). Therefore, another possible explanation for the unchanged 

γH2AX between the hypertrophied and non-hypertrophied LV tissue could be the 

level of DNA damage severity compared to heart failure, at least in the mice used in 

the current study.  

Moreover, the formation of γH2AX foci is essential for the initiation of the DNA 

damage repair response and recruitment of DNA damage repair proteins (Paull et al., 

2000; Bassing et al., 2002; Fernandez-Capetillo et al., 2002; Meador et al., 2008). 

As discussed in the previous section, one possible consequence of delaying the 

repair of damaged DNA due to lack of γH2AX foci, with persistent DNA damage, 

would be the accumulation of irreparable DNA and initiation of apoptotic cell death 

(Bensaad and Vousden, 2005; Christophorou et al., 2006; Jackson and Bartek, 2009). 

Hence, the abnormal regulation of the DNA repair process observed in the 

hypertrophied myocardium might be a primary event, contributing to the progressive 

loss of cardiomyocytes and transition of hypertrophy to heart failure, but this 

requires further study. 
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6.6 Summary 

In summary, in this chapter, it was shown that pressure overload-induced LV hypertrophy 

(60-62% increase of LV mass) was associated with a significant (p<0.05) increase in 

PP2AC (1.7-fold) and alpha4 (1.8-fold) protein expression whilst, PP4C was not detectable 

in the murine myocardium. Even though PP6C expression was unaltered in the 

hypertrophied murine LV tissue, expression of PP6C regulatory subunits (i) SAP1 (2.2-

fold) and (ii) ANKRD28 (1.9-fold) and ANKRD44 (1.5-fold) proteins was significantly 

(p<0.05) increased, whereas SAP2 expression was significantly (p<0.05) reduced (2.8-fold) 

and expression of SAP3 and ANKRD52 remained unchanged, compared to the normal LV 

tissue. Co-immunoprecipitation of alpha4 regulatory protein and type 2A protein 

phosphatase catalytic subunits, from LV tissue of SHAM- and TAC-operated mice, 

revealed that the cellular association between alpha4 protein and PP2AC or PP6C subunits 

was either unchanged or significantly reduced (p<0.05) in the hypertrophied LV tissue, 

respectively. DNA damage determined by γH2AX was unaltered between the normal and 

hypertrophic tissue. However, exposure of H9c2 cardiomyocytes to 300 µM H2O2 for 24 

hours significantly elevated (p<0.05) levels of γH2AX, which was unaffected when PP6C 

protein expression was knocked down long-term (8 days) and significantly reduced along 

with the expression levels of total H2AX by the short-term knockdown (4 days) of alpha4 

protein. 
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Chapter 7  

Conclusions 

One of the aims of this study was to identify the expression of type 2A protein 

phosphatase catalytic subunits in cardiomyocytes. Using qPCR and immunoblotting 

analysis, I demonstrated that all the type 2A protein phosphatase catalytic subunits 

were expressed in H9c2 cardiomyocytes, NRVMs and ARVMs, except for PP4C 

protein expression which was not detected in ARVMs. Similar results were obtained 

from the adult murine myocardium, where PP4C protein expression was not 

detectable by immunoblotting analysis. This novel data also revealed that the gene 

transcription profile and protein expression pattern of the type 2A protein 

phosphatase catalytic subunits were similar in H9c2 cardiomyocytes and NRVMs. 

Based on the data presented in the current study and data in the existing literature, 

the rat embryonic heart-derived H9c2 cell line can be an appropriate experimental 

model to investigate the type 2A protein phosphatase catalytic subunit -mediated 

regulation of functional protein involved in calcium regulation in cardiomyocytes.  

Subsequent proteasome inhibition experiments in ARVMs revealed that PP4C 

expression might be at least partly regulated by the proteasome-mediated 

degradation mechanism, during heart development. This result seems to be of great 

importance as PP4C activity has been implicated in cell cycle re -entry in mammalian 

cells (Shaltiel et al., 2014). It is of great interest to me, to investigate whether 

overexpression of PP4C, in the adult heart of transgenic mice, promotes cell cycle 
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re-entry and cardiomyocyte regeneration, in the settings of myocardial infarction. In 

this case, enhancement of cardiac functional recovery following myocardial 

infarction, would provide strong evidence that PP4C could be a promising gene 

therapy candidate for myocardial infarction-associated LV pathological hypertrophy 

and heart failure. 

In the present study, an efficient and well-characterised loss-of-function model 

based on RNAi was established in H9c2 cardiomyocytes. Novel data, presented in 

this thesis, demonstrated the regulation of L-type voltage-dependent Ca2+ channel 

CaV1.2-Ser1928 by the PP2ACα specifically, among the type 2A protein 

phosphatase catalytic subunits, at comparable levels with the existing literature. 

However, further experiments are required involving ICaL measurement, to confirm 

the biological significance of this post-translational modification. Collectively, 

findings in this thesis consisted of the identification of PP2ACα, PP2ACβ and PP4C 

as regulators of PLM-Ser63 and PLM-Ser68 phosphorylation status. However, the 

data cannot rule out PP2AC (PP2ACα and PP2ACβ) and potential PP4C indirect 

dephosphorylation on PLM-Ser68 via protein phosphatase inhibitor-1-Thr35 

dephosphorylation and subsequent PP1 inhibition. Future studies, focused on 

defining which phosphatase(s) may regulate the dephosphorylation status of protein 

phosphatase inhibitor-1-Thr35 and the direct measurement on [Na+]i would provide 

more insights into this mechanism. Furthermore, since, PP4C was not present in the 

adult myocardium, it may play an important role in regulating the phosphorylation 

of PLM at an earlier stage of the heart development. The impaired activity of 

phosphatases and NKA function has been observed in patients with heart failure and 

has raised the importance of regulating NKA activity via potentially the therapeutic 

manipulation of PLM phosphorylation. 

In this study, pathological LV hypertrophy was developed in a mouse model in 
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response to pressure overload stimulus. Most importantly, the data presented here, 

demonstrated changes in the expression of the type 2A protein phosphatase catalytic 

subunits, alpha4 protein, PP6 regulatory subunits and altered association of PP2AC 

and PP6C with alpha4 protein in murine hypertrophied LV tissue compared to the 

normal tissue. Here, the altered expression of the PP6 regulatory subunits and the 

differential association of the PP6C with alpha4 protein, as shown by co-

immunoprecipitation experiments, strongly suggest that PP6 activity and targeting 

may be altered in cardiac health and disease. Evaluation of the subcellular 

localisation of the PP6 catalytic and regulatory subunits in H9c2 and primary adult 

cardiomyocytes, using confocal microscopy, would be important to define potential 

novel targets for PP6. 

Initial results suggest that PP6C may not target γH2AX in cardiomyocytes. Findings 

in this thesis provided strong evidence of the regulatory and protective role of 

alpha4 towards the protein expression of type 2A protein phosphatase catalytic 

subunits in cardiomyocytes. Interestingly, alpha4 short-term knockdown (4 days), 

resulted in a significant loss of H2AX (and γH2AX) that may suggest delayed DNA 

repair. A more in-depth study of the consequences of this effect, in cardiomyocyte 

viability and pathophysiology, will require prolonged knockdown and/ or 

overexpression of alpha4 protein in cardiomyocytes.  
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