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Abstract
Fine sediment storage within gravel beds is a key component of catchment sediment budgets and

affects the health of benthic and hyporheic habitats. Here, we assess the performance of two

substrate infiltration traps for the characterization of fine sediment (<2 mm) accumulation. One

design, the vertically extending sediment trap, permits both lateral and vertical exchange in the

sediment column, whereas the second type, a more traditional fixed‐area sediment trap with

impermeable side walls, permits only vertical exchange. Traps were deployed at three sites on

the River Tame, Birmingham (UK), over varying installation periods (14–401 days). Results indi-

cate that the facilitation of multiple pathways of exchange within the vertically extending sedi-

ment traps (vertical and lateral) resulted in a significantly greater amount of fine sediment being

accumulated than in adjacent fixed‐area sediment traps. This suggests that lateral transport is

an important component contributing to fine sediment accumulation. However, there are notable

and inherent problems associated with the use of different types of sediment trap and in the way

the data should be presented and interpreted. This paper discusses the practical implications of

the study findings and reflects on the complexities of undertaking accurate sediment deposition

measurements in the field.
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1 | INTRODUCTION

The transport and storage of fine sediment in riverine substrates is a

major component of catchment fine sediment budgets (Foster, 2001;

Naden et al., 2016; Phillips & Walling, 1999) and is a natural facet

of riverine functioning. However, anthropogenic modifications such

as the intensification of agriculture, urbanization, and channel

management practices (Wood, Armitage, Hill, Mathers, & Millett,

2016) have altered the quantity and composition of instream fine

material (Foster et al., 2011; Walling & Collins, 2016). Gravel‐bed

substrates have the potential to act as both a sink and source of fine

sediments and their associated contaminants, including sediment‐

associated heavy metals, pesticides, nutrients, and other potential

pollutants that can cause deleterious effects for ecosystem

functioning (Petts, Thoms, Brittan, & Atkin, 1989; Roig et al., 2014;

Von Bertrab, Krein, Stendera, Thielen, & Hering, 2013).

Excessive quantities of fine sediment stored within river networks

is an important driver of aquatic habitat degradation (Descloux, Datry,

& Marmonier, 2013; Packman & MacKay, 2003; Phillips & Walling,

1999), which poses a serious long‐term threat to in‐stream ecosystems

(Négrel et al., 2014; Prosser et al., 2001). Fine‐grained sediment affects

the entire aquatic ecosystem from reducing primary production (Jones,

Duerdoth, Collins, Naden, & Sear, 2014;Wagenhoff, Lange, Townsend,

& Matthaei, 2013) and altering macroinvertebrate diversity via

enhanced drift and direct burial (Larsen & Ormerod, 2010; Wood,

Toone, Greenwood, & Armitage, 2005), through to reducing habitat

heterogeneity and limiting oxygen exchange within interstitial pore

spaces (Huston & Fox, 2015; Owens et al., 2005). Understanding fine
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sediment deposition storage and the rates of accumulation are, there-

fore, important factors when considering land use management

approaches.

Gravel riverbeds act as a temporary compartment for the deposi-

tion of suspended fine sediment (Owens et al., 2005; Owens, Walling,

& Leeks, 1999; Walling, Owens, & Leeks, 1998), either for short‐term

storage on the surface substrates (Rosenberry & Healy, 2012;

Warburton, 1992) or longer‐term storage within the bed matrix

(Heppell, Wharton, Cotton, Bass, & Roberts, 2009; Thoms, 1994).

Sediment deposition is influenced by sediment supply and character

(Petts, 1988), bed permeability (Hoyal, Bursik, Atkinson, & Depinto,

1997), local hydraulics (Buffington & Montgomery, 1999), vertical and

lateral interstitial hydrological exchange (Boano, Revelli, & Ridolfi,

2007), and filtration of particles within the gravel matrix (Frings,

Kleinhans, & Vollmer, 2008; Packman & Brooks, 1995). High‐flow

conditions, when critical shear stresses are exceeded, or localized areas

of strong upwelling water can lead to the subsequent remobilization of

fine sediments (Datry, Lamouroux, Thivin, Descloux, & Baudoin, 2015;

Shields, 1936).

Despite significant advancements in our understanding of sediment

dynamic processes at fine resolutions (temporally and spatially) via

flume experiments (e.g., Huston&Fox, 2015; Vericat, Batalla, &Gibbins,

2008), field studies of in situ channel bed sediment dynamics remain

limited and those which incorporate varying timeframes are even rarer.

Disturbance/resuspension methodologies (Duerdoth et al., 2015;

Lambert &Walling, 1988) can be used to assess channel storage of fine

sediment at a specific time and place. This technique is useful and has

beenwidely adopted in studies of sediment dynamics but provides little

information about the depositional route or timing of the fine sediment.

Freeze coring (Evans &Wilcox, 2014; Walkotten, 1973, 1976) has also

been used to determine between‐site differences in sedimentation pro-

cesses with reference to both flow regulation (Petts, 1988) and urbani-

zation (Thoms, 1987a). However, although intensive freeze‐core

surveys can effectively detect spatial changes in fine sediment storage

within riverbeds (Petts et al., 1989), bed fabrics can be disrupted during

probe driving (Kondolf, Lisle, & Wolman, 2003) and the destructive

nature of the technique tends to limit the approach to annual surveys.

The most common method for monitoring fine sediment deposi-

tion rates over a known time interval is bed traps (Carling, 1984;

Curran, Waters, & Cannatelli, 2015; Reiser, Ramey, & Lambert,

1985). A large variety of trap designs have been employed, but the

accuracy of the calculated fluxes for the different bed trap designs

remains poorly understood (Petticrew, Krein, & Walling, 2007).

Deposition rates are likely to be strongly influenced by the trap

efficiency (Carling, 1984; Sear, 1993), the grain size of particles in

transport (Gibson, Abraham, Heath, & Schoellhamer, 2009), the

relative dominance of intragravel (lateral) versus gravity (vertical

hyporheic exchange) transport processes (Kondolf et al., 2003;

Mathers & Wood, 2016), and the flow velocity during the sampling

period (Eadie, 1997; Naden et al., 2016).

There are two main types of bed trap, the first of which are empty

pit traps consisting of lidless, solid‐walled containers set in, or upon,

the channel bed (Kondolf et al., 2003; Tipping, Woof, & Clarke,

1993). Pit traps are effective for collecting fine sediment derived from

the gravitational sedimentation of suspended sediment onto the

surface of the channel bed as well as coarser material transported as

bedload and provide useful information at event timescales. However,

the artificial conditions they represent (i.e., no trapping of within‐bed

or intragravel transport) present a challenge for investigations into fine

sediment storage and dynamics.

The second type of bed sediment trap is the substrate trap, which

comprises a container that is filled with prescreened gravel (removing

all material <2 mm; Tipping et al., 1993) and which seeks to represent

the natural substratum framework as much as possible. Many studies

have typically employed solid‐walled containers, which permit vertical

transport of fine sediment but limit the lateral intragravel transport of

fine sediment, thereby potentially leading to the underestimation of

ingress rates (Carling, 1984; Mathers & Wood, 2016; Petticrew et al.,

2007). In addition, the exclusion of lateral flushing flows may lead to

the pore spaces in the upper layers of the framework becoming clogged,

which can create a seal and prevent subsequent infiltration of sediment

into the trap gravel (Frostick, Lucas, & Reid, 1984). A number of recent

studies have incorporated semipermeable walls (e.g., Mathers &Wood,

2016), which are typically utilized in ecological studies and facilitate

simultaneous collection of sedimentological and ecological samples;

however, these designs are not fully permeable, and thus, the full extent

of intragravel and vertical exchange processes in field settings remains

limited. Traditional solid‐walled or semipermeable designs are also sub-

ject to scour events, which may expose the container above the surface

of the riverbed, potentially affecting trapping rates associated with tur-

bulent flow alterations (Lisle & Eads, 1991).

Infiltration baskets consisting of a wire mesh basket dug into the

riverbed and filled with prescreened gravels allow for the lateral infil-

tration of fine sediment (Milan & Large, 2014; Sear, 1993; Thoms,

1987b). As with the solid‐walled containers, infiltration baskets are

vulnerable to removal by scour during flood events (Sear, 1993) and

the presence of the wire mesh may affect the particle size distribution

of sediment ingress. Infiltration baskets are also likely to be susceptible

to infiltrated sediment and water being lost upon retrieval. A modified

version of this trap consists of an impermeable bag that is buried

within the gravel substrate and pulled up via cables, thereby including

all deposited sediment in the trap area (Lisle & Eads, 1991).

To explore the complex nature of fine bed sediment storage and

infiltration, we employed two sediment trap designs: one, which

permits vertical deposition only, and one with permeable sides, which

allows both vertical deposition and lateral movement. This paper (a)

describes the two trap designs; (b) compares the results of the two

sampling methods over a range of installation periods (14–401 days);

and (c) reflects on the relative importance of lateral and vertical

movement of fine sediment in gravel substratum and the complexities

of undertaking accurate measurements in the field.

2 | MATERIALS AND METHODS

2.1 | Study sites

The study took place on the River Tame in Birmingham, UK (Figure 1).

The Tame drains an area of approximately 408 km2 and is dominated

by urban land use (59.2%; National River Flow Archive, 2016).

1576 HARPER ET AL.



Sediment traps were installed at three morphologically different sites:

James Bridge (52°34′N, 02°01′W), the most upstream point; Sandwell

Valley (52°31′N, 01°57′W), in the middle reaches of the river system

~13 km downstream from James Bridge; and Tameside Drive (52°30′

N, 01°47′W), 13 km downstream of Sandwell Valley and 2.5 km

upstream of the Water Orton gauging station (41°74′N, 29°13′31″

W). Channel width ranged from 6 to 17 m, with heavy engineering of

the channel increasing upstream. Close to the catchment outlet,

mean flow is ~5.4 m3/s and Q10 (90th percentile) flow is ~9.6 m3/s

(NRFA, 2016). Discharge over the sampling period indicated a range

of flow conditions such that the samples were representative of nat-

ural flow variability (Figure 2).

2.2 | Sampler design

The study utilized two versions of bed trap design: a basket‐type bed

trap (vertically extending sediment trap [VEST]) and a more traditional

bed trap design (fixed‐area sediment trap [FAST]) of identical size and

shape (Figure S1). The VEST is similar to the infiltration bag described

by Lisle and Eads (1991), however, one modification was made to

address bag slippage problems during recovery of the samples

(Petticrew pers. comm), which can lead to problems with calculating

the volume of sampled gravels. The modified design here was made

from collapsible and impermeable ventilation tubing in place of a

bag, which was sprung with stainless steel wire (collapsed length

12 cm; maximum extendable length 30 cm; internal diameter 20 cm;

cross section area 314 cm2; maximum volume 9,425 cm3). The trap

was reinforced around the top with a stainless‐steel rim and attached

to a stainless‐steel base with two flexible woven webbing handles

fastened to the reinforcing ring. The highly flexible material allowed

the walls of the trap to collapse down within the gravel bed during

the sampling period, thus minimizing the physical effect of the trap

on the natural particle exchange processes in the riverbed, while

FIGURE 1 Location of study sites in the River Tame basin, Birmingham, UK

FIGURE 2 River discharge (m3/s) for the River Tame basin,
Birmingham, UK, during the sampling period
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maximizing sampling efficiency upon recovery. The FAST sampler

consisted of an impermeable plastic tube (length 30 cm; internal

diameter 20 cm; cross section area 314 cm2; maximum volume

9,425 cm3), sealed at the bottom with an endcap, with two flexible

woven webbing handles fastened to the rim.

The VEST and FAST traps were deployed in pairs at depths of

30 cm within the gravel substrate over a period of 401 days. Deploy-

ment methods are shown schematically in Figure 3. The number of

traps deployed and deployment time at each site is shown in Table 1.

The water column depth at each installation location was approxi-

mately 10–30 cm under low‐flow conditions, to ensure traps were

permanently inundated and to facilitate safe installation and recovery.

Traps were filled with gravels excavated from the installation pits to

provide a site‐specific and natural gravel framework with which to

assess infiltration rates. Prior to installation, gravels were wet sieved

in situ to remove fines (<2 mm), and any extremely large or artificial

clasts (e.g., large house bricks that would not fit within the diameter

of the trap) were removed. This approach standardized the framework

across the three sites as much as possible and avoided significant

variation in the available pore space between individual traps.

Traps were removed by inserting a plastic tube (collar) around the

top of the trap to a level above the height of the water column. This

prevented the flow from removing accumulated fines from the surface

and stabilized the hole thereby facilitating the reinstallation process.

All gravels and fine material were emptied into large field‐portable

sieves, incorporating 4 × 25‐L storage tanks, and sieved using river

water with fines retained in the tanks. To calibrate for the inclusion

of suspended sediment in the water column, a sample of river water

was taken just before recovery to enable the total volume of trapped

sediment to be adjusted relative to suspended sediment concentra-

tions within the river. A lack of data for a 6‐month sample at James

Bridge was caused by a loss of the FAST sediment trap due to deep

scour during a major flood. The downstream pair of traps at any given

site was most frequently sampled in order to minimize disturbance

(trampling) of upstream traps.

Only a limited number of samplers were available, and so, traps

were reused (removed, cleaned, and reinstalled). Because of the signif-

icant effort required for installation and removal of the traps, replica-

tion of all sites was not feasible and, therefore, sediment

accumulation comparisons are made using paired traps from all three

sites, and is accounted for in the statistical model design; see below.

Safety issues associated with access to an extremely flashy urban river

system (Lawler, Petts, Foster, & Harper, 2006) led to some irregularity

in deployment times. Each trap generated ~80–100 L of water for rins-

ing and cleaning, and this large volume further limited how many traps

could be changed in one sampling event because the total volume was

transported back to the laboratory for further analysis.

2.3 | Laboratory methods and data analysis

In the laboratory, sediment samples were allowed to settle for a mini-

mum of 24 hrs. The supernatant was then decanted and fines <2 mm

oven dried for a further 24 hr before dry‐sieving to obtain the following

particle size classes: 600–2,000, 125–600, 63–125, and <63 μm. Total

sediment accumulated (kg) was determined for pairs of VEST and FAST

traps installed for different residence times (range of 14–401 days;

Table 1) over a 13‐month period (n = 27). As traps from differing sites

were used in the comparison of the mass of fine sediment accumulating

FIGURE 3 Schematic diagram illustrating the design, installation, and sampling techniques for the vertically extending sediment trap (VEST) and
fixed‐area sediment trap (FAST) sediment traps. VEST traps are lowered into an excavated hole protected by a plastic tube extending above river
water level (a) with straps extending above the gravel bed (b). The hole is backfilled with cleaned gravel before removing the plastic tube to leave the
gravel open to lateral and surface sediment ingress (c). The plastic tube is carefully placed over the trap before the straps are used to lift the VEST
vertically through the gravels (d) in order to recover the sample. FAST installation (e–g) also uses the plastic tube to protect the trap during installation
and removal (e–g), but the solid walls prevent lateral movement of fine sediment into the cleaned gravels over the installation period (f)
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in VEST and FAST traps and preliminary analysis indicated that sedi-

ment accumulation (kg) varied by site (all p < .05), mixed effects models

were employed in subsequent analyses (Venables & Ripley, 2002).

Application of mixed effects models enables the incorporation of

random factors, variables that account for excess variability in the

dependent variable. The mass of sediment accumulated was tested

via a linear mixed effects (LME) model with the fixed terms of“trap type

× particle size × residence time (days)”and site specified as a random

factor. Models were fitted using the “nlme”package (Pinheiro et al.,

2013) with the restricted maximum likelihood estimation function in

R version 3.3.2 (R Development Core Team, 2013). Both marginal R2

(proportion of variance explained by the fixed factors alone) and condi-

tional R2 (proportion of variance explained by the fixed and random fac-

tors) values were extracted using the“MuMIn”package (Bartoń, 2016).
Significant categorical interactions (i.e., particle size and trap type) were

investigated further via pairwise comparisons to enable examination of

where statistical differences occurred. An LME was also employed to

assess whether the rate of sediment accumulation varied as a function

of trap residence time (days installed) with site specified as a random

factor. Accumulation rates were calculated as the mass of fine sediment

filtrating substrates via the surface of the sediment traps, standardized

to m2/day as per other studies (Collins & Walling, 2007; Frostick et al.,

1984). To assess whether the proportion of fine sediment in each grain

size varied as a function of trap type, a binomial general linear model

(GLM) was fitted using a logit error distribution via the “glm”function.

Preliminarily analysis via a generalized LME model (GLMM), with site

fitted as a random term, indicated that the random effect accounted

for little variation, and so, the simplified GLM was employed.

3 | RESULTS

Table 1 summarizes the period of trap installation, themass of sediment

accumulated per trap, and the calculated rate of sediment accumulation

in kg/m2/day for the complete paired dataset. Sediment accumulation

varied significantly as a function of trap type with VEST traps collecting

46.16% more fine sediment than the FAST traps (Figure 4). Statistical

differences in the mass of fine sediment accumulated were also evident

as a function of the independent effect of residence time and particle

size and the interaction of the two factors (Table 2). There was also sig-

nificant interaction between trap type and particle size, indicating that

the trap design influenced the total accumulation of certain particle

sizes (see below). Examination of the R2 values indicated that the model

accounted for a good proportion of the variability, with fixed factors

explaining 49.33% of variance and the random factor of site accounting

for an additional 4.7% of the total variance (total model 54%). A sum-

mary of model outputs (F, p, and R2 values) is shown in Table 2. When

only vertical surface area was considered, the rate of fine sediment

accumulation declined significantly as trap residence time increased

(F1,47 = 4.9 p = .032; Figure 6); however, R2 values indicated a poor fit

of the model predictors (marginal R2 = 8.62%, conditional R2 = 11.37%).

Pairwise comparisons of the individual particle sizes by trap type

indicated that significantly more large particles in the size fractions of

600–2,000 and 125–600 μm were collected in the VEST traps in com-

parison to the FAST traps (Figure 5; Table 3). Smaller particles (63–125

and <63 μm) demonstrated no statistically significant differences asso-

ciated with trap type (p > .5; Table 3). This is a reflection of the larger

mass of sediment collected by VESTs as no significant differences

were determined for the proportion of mass within each size fraction

as a function of trap type (p > .05; GLM), with the model accounting

for only a small amount of variability (R2 = 10.85%; Figure S2).

TABLE 1 VEST and FAST pairs: trap residence time, total sediment
collected (accumulated) over the installation period, and rates of sedi-
ment infiltration

Site

Trap
residence
time

Fine sediment
collected (kg)

Fine sediment
infiltration rate
(kg/m2/day)

VEST FAST VEST FAST

James Bridge 28 0.017 0.055 0.020 0.062
61 0.293 0.256 0.153 0.134
90 0.489 0.082 0.173 0.029
173 0.672 0.325 0.124 0.060

Sandwell Valley 27 0.205 0.339 0.242 0.399
35 0.389 0.164 0.354 0.149
36 0.460 0.465 0.407 0.411
119 0.465 0.410 0.124 0.110
124 0.474 0.379 0.122 0.097
127 0.693 0.696 0.174 0.175
230 0.677 0.403 0.094 0.056
401 0.635 0.444 0.050 0.035

Tameside Drive 14 1.385 1.053 3.150 2.393
30 0.543 0.171 0.576 0.182
31 0.389 0.416 0.399 0.428
32 0.122 0.090 0.122 0.089
37 0.527 0.365 0.453 0.314
38 1.166 0.398 0.977 0.333
43 0.109 0.085 0.080 0.063
54 1.199 1.110 0.707 0.654
57 0.611 0.245 0.341 0.137
61 0.640 0.350 0.334 0.183
66 0.454 0.470 0.219 0.227
107 0.424 0.657 0.126 0.196
117 0.683 0.359 0.186 0.098
117 0.797 0.267 0.217 0.073
233 1.369 0.816 0.187 0.111

Note. FAST = fixed‐area sediment trap; VEST = vertically extending sedi-
ment trap.

FIGURE 4 Net fine (<2 mm) sediment accumulation (kg) for all traps
installed at three sites on the River Tame
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4 | DISCUSSION

4.1 | Sediment accumulation as a function of trap
type design

Sediment accumulation per unit surface area was greatest in VESTs,

which collected 46% more fine sediment than FAST traps. The higher

accumulation of sediment in VESTs suggests that net lateral exchange

of fine sediment is an important component of fine sediment accumu-

lation that has been overlooked in many studies to date (Mathers &

Wood, 2016; Petticrew et al., 2007). This finding supports a number

of other studies that have compared various trap designs—those that

permit just vertical exchange and those that permit both lateral and

vertical exchange. Within a flume study, Carling (1984), for example,

determined that solid‐walled traps reduced the trapping efficiency of

fines by up to 31%. Sear (1993) and Mathers and Wood (2016) also

reported similar findings within field studies with reductions in trap-

ping efficiency of 20–25% and 29%, respectively.

Observations made when excavating the traps showed that the

upper layer (~5 cm) of gravel in the FASTs quickly became blocked

with fine sediment forming a seal (e.g., Herzig, Leclerc, & Goff, 1970;

Huston & Fox, 2015), and fine sediment penetrating less deeply within

the FAST traps (to a depth of ~15 cm) compared to the VESTs

(~20 cm). This suggests that lateral flushing flows were not possible

within the FASTs and this may in part cause the build‐up of sediment

(and formation of a seal/colmation) in the surface layers of the FASTs.

This prevents further sediment accumulation and possibly leads to

overestimates of any net lateral sediment accumulation in this study.

This observation highlights the importance of vertical and lateral con-

nectivity in maintaining healthy hyporheic habitats. Rivers, which are

dominated by the process of vertical fine sediment ingress, may suffer

more readily from the formation of fine sediment surface clogs.

Colmation can significantly reduce vertical hydrological exchange, lim-

iting the transfer of oxygen and nutrients, and effectively disconnects

surface substrates from subsubsurface habitats, thereby potentially

reducing stream biodiversity (Bo, Fenoglio, Malacarne, Pessino, &

Sgariboldi, 2007; Mathers, Millett, Robertson, Stubbington, & Wood,

2014; Simpson & Meixner, 2012). VEST traps collected a greater mass

of larger size fractions, which may be a function of vertical hydrological

exchange being maintained, allowing ingress of coarser fines deeper

into the substrates. However, there were no differences in the propor-

tional composition of the fine sediment matrix with both trap types

representing comparable particle size distributions.

4.2 | Complexities of sediment accumulation
measurements associated with time

Within this study, both the vertically extending (permeable) and fixed

area (impermeable) traps exhibited rapid filling in the short term

(Figure 6). This may be explained by the presence of large void spaces

between the cleaned river gravels, which providedmaximum connectiv-

ity and a high storage volume in which fine sediment could accumulate

(Xu,Wang, Pan, & Na, 2012). Hoyal et al. (1997) found that the greatest

rates of deposition were in clean gravel beds and that a reduction in

deposition occurred long before the bed was filled with sediment, due

to an infilling of the surface void space. The rapid trap filling observed

in this study is unlikely to be representative of natural sediment deposi-

tion rates in undisturbed river channels but may be an artefact of the

experimental method used; during trap installation, a significant loss of

TABLE 2 Summary of linear mixed effects model examining the mass
of fine sediment accumulated associated with trap type (VEST or
FAST), sediment size (n = 4), residence time (days installed), and the
interactions between these factors

Factor df F value p value

Trap type 1 8.46 .004

Particle size 3 64.83 <.001

Residence time 1 6.75 .010

Trap type × particle size 3 3.57 .015

Trap type × residence time 1 0.43 .512

Particle size × residence time 3 3.01 .031

Marginal R2 49.33

Conditional R2 54.04

Note. FAST = fixed‐area sediment trap; VEST = vertically extending sedi-
ment trap.

FIGURE 5 Average mass of fine sediment (+1
SE) for grains 600–2,000, 125–600, 63–125,
and <63 μm by trap design for all traps
installed on the River Tame. Black = vertically
extending sediment traps and white = fixed‐
area sediment traps
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bed framework structure, including any surface armouring, will occur.

Moreover, screening of gravel for use within sediment traps involves

removing all material <2‐mm diameter, which represents an unnatural

matrix in gravel frameworks and can create a suck or draw for fine

sediments. However, this problem is inherent with these methods as it

is necessary to start with clean gravel (i.e., zero fine sediment) in order

to quantify the mass of fine sediment, which has accumulated during

the installation period.

Traps that were removed, sieved, and refilled with clean gravel

more frequently (i.e., the traps installed for shorter time periods)

collected more fine sediment than traps, which were resident for

several months. This may be associated with renewed connectivity of

substrates associated with vertical hydrological pathways, an increase

in initial storage capacity and the removal of benthic algae

(Potamogeton spp and Cladophora spp) that may inhibit sediment

accumulation and ingress (Bo et al., 2007; Fox, Ford, Strom, Villarini,

& Meehan, 2014; Papanicolaou, Diplas, Evaggelopoulos, & Fotopoulos,

2002). Hydraulic conductivity, and associated sediment transport, is

also strongly linked to the time since the last streambed disturbance

(Boano et al., 2007; Stewardson et al., 2016) and, as such, longer trap

residence times are able to capture this natural decay in infiltration

rates that may be a function of bed turnover (or in this instance trap

removal). The results of the study, therefore, suggest that substrate

traps installed for short periods may overestimate natural long‐term

rates of sediment accumulation within gravel frameworks and caution

is needed when interpreting the data.

4.3 | Complexities of understanding the processes
captured by sediment trap designs

Finally, we consider the accuracy of the two commonly employed sedi-

ment traps in the measurement of fine sediment accumulation as a

function of the processes they quantify. Solid‐walled traps permit only

vertical exchange of fine sediment, and therefore, once fine material

has infiltrated substrates within the trap, the only direction of transport

is vertically through the top of the trap, which can occur through turbu-

lent flows (Detert & Parker, 2010; Kuhnle, Wren, & Langendoen, 2016;)

and, in particular, during large flood flows, which are capable of scour

events (Harris, Whitehouse, & Moxon, 2016). Permeable traps permit

sediment to enter—or leave—the trap by horizontal movement. As a

result, the mass of sediment accumulated in both trap designs represents

the net accumulation of fine sediment in the gravel bed as trapping

efficiencies are not known associated with egress rates varying

spatially and temporally. Therefore, when deployed simultaneously,

the mass of fine sediment collected in these two traps may enable a

comparison between the net accumulation of fine sediment by either

isolated vertical exchange or through vertical and lateral exchange.

However, estimates of sediment accumulation rates via commonly

employed methods of vertical ingress per m2/day should be

interpreted with care when using two differing types of sediment

traps, as the two traps measure different functions of fine sediment

accumulation. Consequently, presentation of sediment accumulation

rates is a useful tool to help understand the overall trend of fine

sediment accumulation over time but should be used with caution

when comparing differences associated with trap type directly, as traps

may be measuring different processes.

During trap removal, FAST traps accumulated large amounts of

fine sediment in the upper gravels, which caused fine sediment clogs;

this possibly limited further vertical ingress and potentially reduced

total fine sediment accumulation. As a result, it is pertinent to reflect

on what processes sediment traps are measuring and, indeed, how

accurate the data are. It is possible that by utilizing closed and

permeable sediment traps in combination, studies are not measuring

differences in sediment transport processes (exclusion of just vertical

exchange versus permitting horizontal infiltration and vertical exchange)

TABLE 3 Summary of pairwise comparisons of mass accumulated for
each individual substrate sizes as a function of trap type (VEST or
FAST)

Grain size t value p value

600–2,000 μm −2.36 .022

125–600 μm −2.25 .028

63–125 μm 0.19 .851

<63 μm 0.11 .914

Note. FAST = fixed‐area sediment trap; VEST = vertically extending sedi-
ment trap.

FIGURE 6 Rate of fine sediment
accumulation (kg/m2/day) as a function of trap
residence time
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but may be recording an inherent design feature of the trap itself. By

limiting flushing horizontal flow pathways, do sediment traps truly

capture the contribution of the different directions of fine sediment

infiltration in gravel beds?

5 | CONCLUSION

The results of this study indicate that the application of two differing

designs of sediment traps provides differing accumulation rates when

a range of sediment trap residence times are examined. However,

there are notable and inherent issues with the application of sediment

traps, which raise questions of how accurate the measurements are as

a function of the processes they are employed to measure and there-

fore for what purpose should sediment traps be used. First, both

sediment trap designs represent artificial substrate conditions and,

therefore, only provide information on the accumulation of fine

sediment under initially clean gravel scenarios, which are not common.

Second, the two methods measure different processes (vertical

exchange versus vertical and lateral exchange), but the extent to which

they accurately do this is debatable, with FAST traps being highly

susceptible to the formation of fine sediment seals. Sediment traps

are, however, likely to represent useful tools for comparing corre-

sponding trap designs under different flow conditions and between

sites. However, we suggest that trap studies using different designs

of sediment traps should do so with caution and should reflect on

the processes, which are being measured in the context of their results.
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