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Abstract 

Three-dimensionally organized lipid cubic self-assemblies and derived oil-in-water emulsions 

called ‘cubosomes’ are attractive for various biotechnological applications due to their ability 

to be loaded with functional molecules and associated sustained release properties. Here we 

employed both lipid-based systems for the delivery of a model drug – aspirin under comparable 

conditions. Studies were performed by varying drug to lipid ratio and the type of release 

medium, water and phosphate buffer saline (PBS). Release rates were determined using UV-

Vis spectroscopy while small angle X-ray scattering confirmed the type of self-assembled 

nanostructures in lipid systems. The release from bulk lipid cubic phase was sustained as 

compared to the dispersed cubosomes while the release in PBS was efficient than in water. 

Highly tortuous architecture, length of the diffusion pathway, type of nanostructure and 

physicochemical interaction with the release media evidently contribute to these observations. 

This work is particularly important, as it is the first report where both of the nanostructured 

lipid systems were studied together under similar conditions. The work provides important 

insights in understanding, and therefore controlling the release behaviour of lipid-based drug 

nanocarriers. 
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Introduction 

Lipids, generally composed of hydrophilic and hydrophobic molecular components (Figure 

1a), tend to self-assemble in presence of aqueous media. Self-assemblies can be as simple as 

spherical micelles and planar bilayers or they can be quite elegant like hexagonal and cubic 

phases1-2. Based on the spatial organisation, lipid cubic phases are divided into two types3, 

bicontinuous and micellar3. Most common bicontinuous cubic phases (Figure 1b), defined by 

crystallographic space groups Ia3d (no. 230), Pn3m (no. 224) and Im3m (no. 229), are formed 

by draping a continuous lipid bilayer on Gyroid (G), diamond (D) and primitive (P) type 

periodic minimal surfaces, respectively3-4. The term ‘bicontinuous’ can be interpreted in two 

possible ways, 1) continuity of two networks- first made of a continuous bilayer and second 

made of continuous waterways, and 2) presence of two continuous aqueous channels separated 

by a single lipid bilayer5. Micellar cubic phases, on the other hand, are formed by an 

arrangement of discrete micelles in a cubic lattice3. Typical example of a micellar cubic phase 

is Fd3m phase6.  

  
Figure 1: Schematic diagram depicting cubic phases, cubosomes and release set-up (not 

on scale): a) Chemical structures of a lipid molecule, a surfactant stabilizer and a drug. Blue 

and yellow colour shades code for hydrophilic and hydrophobic parts/regions, respectively. b) 
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Bicontinuous cubic phases of Im3m, Pn3m and Ia3d types with corresponding 6, 4 and 3 

aqueous channels as represented by arrows. c) Highly viscous cubic phase (Pn3m in the current 

study) is shown at the bottom of 20 ml glass bottle. d) Graphics of cubosome on the left displays 

Im3m phase as an internal self-assembly while the surfactant molecules stabilize the interface; 

dispersion of such cubosomes is shown on the right. e) Cubosome dispersion is essentially a 

form of an oil-in-water emulsion, which exhibits fluid and milky consistency. f) A beaker 

containing water/PBS with a dialysis membrane holding drug-loaded cubosomes. It represents 

a typical drug release set-up employed in the current work.   

   

Bicontinuous cubic phases are equipped with a range of structural features responsible for their 

applicability; for instance, a) enormous surface area (400 m2/g)7 b) large surface to volume 

ratio c) physicochemical ability to load hydrophilic molecules in aqueous region, hydrophobic 

molecules in lipid chain region and amphiphilic molecules in bilayers8 d) continuous 

trajectories for uninterrupted diffusion of loaded molecules5 e) viscoelastic nature for the 

stability and structural integrity of loaded molecules9 f) highly organized porous network for 

nanoscale templating10 and g) resemblance with biomembrane structures11. Thermodynamic 

equilibrium12 and robustness under given conditions, and high level of tunability are further 

aspects. However, the preparation and the handling of cubic phases are not simple protocols 

due to inherent high viscosity (complex viscosity in the range of 104-105 pa.s)13(Figure 1c). 

Two possible ways to overcome these hurdles are, to utilize mechanical tools to handle cubic 

phases14-16 or to disperse them into a fluid form17-18(Figure 1d, e). The latter means provides 

additional benefits, for instance, improved surface to volume ratio19, availability of enormous 

aqueous reservoir (up to 95-96% of the volume)20-21, rather simple preparation protocols, low 

overall viscosity and rather regular domains (monodispersed or low poly-dispersity particles)19. 

Moreover, dispersed lipid particles have great potential for engaging in targeted and tracked 

delivery applications21-29. Upon dispersion, the cubic phase is retained within the lipid particles 

hence the term ‘cubosomes’ (Figure 1e) is used to describe them17. As compared to vesicles or 

liposomes, the cubosomes exhibit higher bilayer area to particle volume ratios19, in other 

words, the cubosomes possess much larger hydrophobic volume fractions (corresponding 

values of 0.59 nm3 as compared to 0.18 nm3 for 100 nm sized particles)21. This feature is very 

important for enhanced drug carrier capacity, especially of poorly water-soluble drugs19. In 

addition, the cubosomes are much more robust and stable owing to rather high viscous 

resistance to rupture19.  
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There are several reports demonstrating the delivery applications of bulk lipid cubic phase30-39 

as well as dispersed nanoparticles like cubosomes 7, 19, 40-46 but there is hardly any record where 

both of the lipid systems are studied together under comparable conditions. In this work, we 

examined the release properties of bulk (non-dispersed) lipid cubic phase and it’s dispersed 

form i.e. cubosomes for a model drug called aspirin (Figure 1a). Aspirin is an important drug 

exhibiting analgesic, antipyretic and anti-inflammatory properties. Moreover, it was shown to 

increase the solubility of cholesterol plaques within the membrane47 and increase its fluidity. 

However, aspirin has some predominant side effects including the toxicity of the 

gastrointestinal (GI) tract and rapid conversion into less desired products48. Therefore, its 

encapsulation into optimal delivery system would be largely beneficial48. We monitored the 

release of aspirin from bulk lipid cubic phase and cubosomes, in water and PBS media (Figure 

1f), using UV-Vis spectroscopic technique.    

 

Materials and Methods 

Materials:  

A lipid, Dimodan U/J® (DU) was generously provided by Danisco, A/S (Brabrand, Denmark). 

It is a distilled glyceride comprising 96% monoglycerides (Figure 1a) and the rest are 

diglycerides and free fatty acids. Two major monoglyceride components in DU are linoleate 

(62%) and oleate (25%). Hence the hydrophobic part of DU mainly contains C18 chains (91%). 

The following chemicals/items were purchased from Sigma-Aldrich (Dorset, UK): triblock 

copolymer Pluronic® F127 (PEO99-PPO67-PEO99) (Figure 1a); used to stabilize lipid particles- 

cubosomes, aspirin (Chemical name Acetylsalicylic acid); it is a salicylate drug (Figure 1a) 

used mainly as analgesic and antipyretic agent, phosphate buffer saline (PBS) tablets, and 

dialysis membrane sacks (with an average flat width of 35 mm, MWCO 12,000 Da). All the 

chemicals were used as received without any further purification. DU was stored below 4°C 

whereas the other materials were kept at room temperature when not in use. Water used during 

the entire study was purified using Barnstead Nanopure, Thermoscientific (USA). 

Standard calibration curves of a drug in water and PBS 

50 mg of aspirin was dissolved separately in 10 ml distilled deionised water (now on referred 

as ‘water’) and 10 ml 0.01 M PBS buffer (one tablet dissolved in 200 ml of deionized water 

yields 0.01 M phosphate buffer with pH ~7.4, now on referred as ‘PBS’) in 100 ml volumetric 
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flasks. The mixtures were sonicated for 5 min (Sonics & Materials Vibra-Cell VCX750, 

Jencons, UK) to ensure the drug dissolution. Finally, the corresponding volumes were made 

up to the mark with water and PBS to make 0.5 mg/ml stock solutions. Standard solutions were 

prepared by appropriate dilutions of above stock solutions. The absorption spectra of aspirin 

solutions were determined in the ultra-violet visible (UV) range of 200-800 nm with the 

characteristic λmax at 276 nm (UV-1600PC, VWR, UK). At least 10 dilutions, in the range of 

0.1 to 100 µg/ml concentrations, were utilized to establish standard calibration curves at the 

λmax (see supporting information Figure S1). All measurements were performed in triplicates 

at room temperature (~25 °C). 

Preparation and loading of a drug in the cubic phase (bulk lipid phase) 

The bulk lipid phase was prepared by melting 2 g lipid (DU) in a 20 ml glass vial followed by 

addition of equal amount of water (by weight) yielding a known Pn3m cubic phase49 (Figure 

1c). Drug-loaded bulk phase was prepared as follows: a mixture of appropriate drug 

concentration and 1 g molten DU was stirred (using magnetic stirrer bar) for 30 min at 50 °C 

followed by an addition of 1 g water. During the release experiments, further 9 g water was 

added to 1 g cubic phase in order to maintain comparable concentrations with cubosomes 

solution. Hydrated phase was physically mixed with the spatula and allowed to stand overnight 

at room temperature.  

Preparation and loading of a drug in cubosomes (dispersed lipid particles)   

The nanostructured lipid particle dispersions i.e. cubosome solutions, were prepared according 

to the published method albeit slightly different parameters and compositions50. 500 mg of 

molten lipid (DU) was added to the 20 ml glass vial and topped with 9.5 g F127 stabilizer 

solution (already prepared by dissolving 0.5% Pluronic F127 powder in 100 g water). The 

resulting (10 g) mixture was ultra-sonicated (Sonics & Materials Vibra-Cell VCX750, Jencons, 

UK) for 5 min with a continuous pulse using 35% of the maximum power. Sample (milky fluid 

emulsion, Figure 1e) became hot due to ultra-sonication and was left to cool down to room 

temperature before further usage.  Drug-loaded samples were prepared by stirring appropriate 

weight of a drug in above cubosome solution for about 20 min at 50 °C. 

Drug lipid mixtures and a release set-up 

10 g of drug-loaded bulk cubic phase mixture (containing 1 g lipid cubic phase and 9 g water) 

and 10 g dispersed cubosomes were loaded with a range of drug concentrations to obtain final 

samples of 2 %, 4 %, 6% and 10% wt/wt drug/lipid. Above samples were carefully transferred 
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into dialysis membrane sacs (which were prepared by heating in pure water for 10 min at 80 

°C). Both ends of membrane sacs were tightly tied to avoid sample leakage. Finally the 

membrane sacs were individually immersed into 200 ml of either water or PBS in 500 ml 

beakers. 3 ml solution from aforementioned release set-up (beaker) was collected after periodic 

timescales including t=0 min, and the UV-Vis spectroscopic data was measured at λmax of 276 

nm. After measurements, the solutions were poured back into the original reservoirs to maintain 

accumulative release conditions. Studied drug concentrations were well within the sink 

conditions51.      

Entrapment efficiency (%) and drug loading (%) in cubosomes and bulk cubic phase 

1 gm of  drug (2%) loaded dispersed cubosomes were added to 1.5 ml Eppendorf tube and 

centrifuged at 13,200 rpm for 10 min (Spectrafuge 24D from Jencons Pls). The fluid phase was 

transferred into an empty Eppendorf tube and centrifuged for further 10 min. Majority of the 

cubosome particles were removed by this method; however, the emulsion retained the opacity. 

The remaining lipid was separated by using Amicon Ultra-0.5 Centrifugal Filter Unit with 

Ultracel-3 membranes (NMWL 3 KDa, Millipore, USA) with 20 min centrifugation at 13,200 

rpm. The separated aqueous phase was diluted with water and the absorbance at 276 nm was 

measured using UV-Vis spectroscopic technique. The entrapment efficiency (EE) and drug 

loading (DL) was determined using following formulae52. 

𝐸𝐸𝐸𝐸 = �1 − 𝐶𝐶𝑈𝑈
𝐶𝐶𝑇𝑇
� × 100 …………………………………………………… (1) 

𝐷𝐷𝐷𝐷 = �𝐶𝐶𝑇𝑇−𝐶𝐶𝑈𝑈
𝐶𝐶𝐿𝐿

� × 100 ……………………………………………..……… (2) 

where, 𝐶𝐶𝑈𝑈 is the concentration of non-entrapped drug (free unloaded drug), 𝐶𝐶𝑇𝑇 is the concentration of 

drug added to the cubosome dispersion and 𝐶𝐶𝐿𝐿 is the total lipid content. The EE and DL for other 

cubosome dispersions (with 4, 6, and 10% drug) were determined in the same manner as 

descried above. The excess water (aqueous phase) from drug-loaded bulk cubic phase system 

was separated simply by decanting into empty cuvettes followed by recording their absorbance 

at 276 nm. The EE and DL values for 2, 4, 6 and 10% drug-loaded bulk cubic phase samples 

were determined subsequently using above formulae (eqs. 1 and 2). 

Particle size analysis of cubosome dispersions 

The mean particle size and size distribution of cubosome dispersions were measured using 

Zetasizer Nano ZS instrument (Malvern Instruments, UK) operated at 25 °C.   
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Detecting the type of lipid nanostructure using Small angle X-ray scattering 

Small angle X-ray scattering (SAXS) was used to detect the type of lipid nanostructure of bulk 

and dispersed lipid systems (Figure 2). The SAXSpace instrument (Anton Paar, Graz, Austria) 

at University of Leeds was employed for this purpose. The details of the instrument and 

measurement are published earlier53. The instrument is based on Cu-anode operating at 40 kV 

and 50 mA. Samples were measured using capillary sample holder controlled at 25±0.1°C. 

Typical exposure times of 300 sec were sufficient to obtain patterns with well-resolved peaks 

(Figure 2).   
 

Results and Discussion 

Nanostructural characterization and drug loading capacity of bulk cubic phase and 

cubosomes 

The type of nanostructural self-assembly was determined using SAXS for drug-loaded and native lipid 

systems. The bulk DU formed Pn3m type bicontinuous cubic phase in excess water49, which was 

retained upon addition of 10% drug (Figure 2a). In case of dispersed lipid systems, the addition of 

stabilizer molecules usually cause phase transition into Im3m type bicontinuous cubic phase20, 54-55 

(Figure 2b).   

 

Figure 2: Detection of the type of lipid self-assembly using SAXS: a) Pn3m cubic phase was 

observed in pure and drug-loaded (10% drug) bulk lipid system. b) Im3m cubic phase was 

observed in pure and drug-loaded (10% drug) dispersed cubosome system. Characteristic 

Bragg’s diffractions for Pn3m (√2, √3, √4, √6) cubic phase and Im3m (√2, √4, √6) cubic phase 

are shown near corresponding peaks. Aqueous channels are indicated by arrows.   
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The ultrasonic dispersion process created discrete lipid particles with an internal nanostructure 

of cubic phase. These cubosomes exhibited sub-micron size as verified by the particle size 

analysis (for plot see supporting information Figure S2). The particle size values for native and 

drug-loaded cubosomes are listed in Table 1.  

Drug in Dispersion 

(Wt% per Wt of lipid) 

Average Particle Size 

nm 

PDI 

(Poly dispersity index) 

0 194±4 0.210 

2 184±3 0.192 

4 183±3 0.207 

6 182±2 0.205 

10 184±1 0.184 

Table 1. Particle size and polydispersity indices of native and drug-loaded cubosomes 

measured by dynamic light scattering technique Zetasizer Nano ZS.  

An entrapment efficiency of bulk lipid cubic phase in excess water and cubosomes dispersions 

was calculated using eq. 1 as shown in Table 2. Similarly, drug loading in lipid cubic phase 

and cubosome particles was calculated using eq 2 and shown in Table 2. The EE and DL values 

for bulk cubic phase were higher as compared cubosome system. The low DL values 

demonstrate that the drug is preferably located in the aqueous phase rather than lipid structures. 

Upon encapsulation in lipid systems and subsequent dehydration, the structural features of a 

drug (aspirin) are generally protected as reported in our previous work56. However, lipid 

systems employed in the current study were always in excess water condition permitting the 

drug encapsulation in both, lipid and aqueous regions (Table 2).   

Drug  

loading 

EE bulk cubic phase 

in excess water 

EE cubosome 

dispersion 

DL  

cubic phase 

DL 

cubosomes 

Wt %/Wt of 

lipid 
% % % % 

2 84.1 61.9 0.39 0.25 

4 98.7 67.6 0.91 0.54 

6 98.5 71.3 1.36 0.86 

10 96.6 71.6 2.22 1.43 

Table 2. Entrapment efficiency (EE) and Drug Loading (DL) in bulk lipid phase and dispersed 

cubosomes.  
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Drug release from bulk cubic phase 

Referring to the standard calibration curves obtained by dissolving various concentrations of a 

drug in water and PBS (supporting information Figure S1), the measured absorbance values at 

λmax of 276 nm were translated into percentage (%) release values. These values were then 

plotted against time recorded in hours for release in water (Figure 3) and in PBS (Figure 4) for 

bulk cubic phase.     

 

Figure 3: Drug release from bulk cubic phase in water: a) Percent (%) drug release 

calculated from corresponding absorbance values (at λmax of 276 nm) are shown against time 

in hours for 2, 4, 6 and 10% drug. b) Curves in a) were fitted with Korsmeyer-Peppas equation 

to obtain the release rates (%/hr), which are plotted against the drug to lipid ratio values.  

 

The curves in Figures 3 and 4 essentially followed typical drug release kinetics. Their 

logarithmic plots fitted well (with correlation coefficients- R2 values >0.96) with characteristic 

Korsmeyer-Peppas equation (eq. 3)57-58; for representative fits, see supporting information 

Figure S3.  

𝑀𝑀𝑡𝑡
𝑀𝑀∞
� = 𝐾𝐾𝑡𝑡𝑛𝑛…………………………………………………………………… (3) 

where, Mt is the amount of drug released at time ‘t’, M∞ is the total amount of drug in the 

formulation, K is a kinetic constant, n is the exponent – characteristic of the release mechanism 

and t is the release time in hours. 

The drug release in water medium became insignificant after about 30 hrs (Figure 3a) but it 

was gradual and well-detectable up to about studied 96 hrs in case of PBS release medium 
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(Figure 4a). Slopes of the fit lines, i.e. release rates in %/hr follows a linear trend except for 

10% drug sample (Figures 3b and 4b). The corresponding slopes of these lines were 

comparable: 0.05198 %Wt%hr-1 for release in water (Figure 3b) and 0.04701 %Wt%hr-1 for 

release in PBS medium (Figure 4b). Both release rates are dependent on the drug concentration 

and follow first-order kinetics.    

 

Figure 4: Drug release from bulk cubic phase in PBS: a) Percent (%) drug release calculated 

from corresponding absorbance values (at λmax of 276 nm) are shown against time in hours for 

2, 4, 6 and 10% drug. b) Curves in a) were fitted with Korsmeyer-Peppas equation to obtain 

the release rates (%/hr), which are plotted against the drug to lipid ratio values. 

 

Drug Release from dispersed cubosomes  

The release trends from cubosomes (Figure 5) virtually followed similar release patterns as 

from bulk cubic phase (Figures 3 and 4). The release in water saturated after about 30 hrs 

whereas it continued gradually in case of PBS.  
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Figure 5: Drug release from dispersed cubosomes in a) water and b) PBS: Percent (%) 

drug release calculated from corresponding absorbance values (at λmax of 276 nm) is plotted 

against time in hours for 2, 4, 6 and 10% drug/lipid for release in water a) and in PBS b). 

 

However, the release from cubosomes in water (Figure 5a) appears to be less dependent on the 

drug concentration as evident from the closely positioned release curves. Nevertheless, the 

release curves on log-log scale, both in water and in PBS, were fitted using Korsmeyer-Peppas 

equation (eq. 3)57 with typical R2 values >0.93.  

 

Sustained drug release from bulk cubic phase compared to cubosomes 

Comparing the release rates from cubic phases and cubosomes (Figure 6), it is clear that the 

release from cubosomes was faster than the release from bulk cubic phases. The release of 2% 

drug from bulk cubic phase was found to be three-folds (0.233 %/hr) sustained than the release 

from cubosomes (0.658 %/hr) when measured in water; whereas it was twice more sustained 

from bulk cubic phase (0.190 %/hr) than from cubosomes (0.402 %/hr) in PBS. The same trend 

was also observed for the release rate values of 4 % drug in water (0.283 %/hr for bulk cubic 

phase and 0.637 %/hr for cubosomes) and in PBS (0.282 %/hr for bulk cubic phase and 0.407 

%/hr for cubosomes). The releases for 6% and 10% drug from cubosomes were also faster than 

the releases from bulk cubic phases, both in water and PBS release media.  
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Figure 6: Comparison of drug release from bulk cubic phase and cubosomes: % release 

for 2% drug in a) water and b) PBS and 4% drug in c) water and d) PBS are shown with time 

in hrs.   

 

Fittingness of Korsmeyer-Peppas equation to almost all curves in both lipid systems helps to 

understand the underlying release mechanisms. Analysis of the exponent n (eq. 3) suggest that 

the release mechanism is a Fickian diffusion when n value is less than or equal to 0.45 (n≤0.45). 

The release from bulk cubic phase, both in water and in PBS followed this mechanism. 

Apparent Fickian diffusion is known to contribute in sustaining the release of small molecules 

from bulk cubic phases30-31, 35-39. This can be easily attributed to the highly tortuous porous 

morphology of cubic phases. In order to release from the bulk cubic phase, the drug molecule 

has to navigate through the lengthy aqueous network assimilated by long and continuous lipid 

bilayer architecture. On the contrary, the release from cubosomes is rapid and less sustained 

(Figure 6). This is due to smaller (< 200 nm, Table 1)53 particle size correlated to smaller length 

scales for the drug transport, and too high surface area accountable to the burst release 

kinetics59. The release from cubosomes in water displayed n value below 0.45 but for the 
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release in PBS the n value was greater than 0.45 (n=0.63) depicting anomalous or non-Fickian 

diffusion kinetics57-58.    

A few recent reports demonstrate that the release rates from lipid systems can be controlled by 

fine-tuning nanostructural type and dimensions of the self-assembled phases30-32, 60-62. For 

instance, if the nanostructure is hexagonal phase, the release can be more controlled in 

comparison to the open structured cubic nanostructures34, 63. Moreover, the release could be 

administered via stimuli responsive (pH, light or temperature induced) triggers63-65. We have 

recently demonstrated that it is possible to sustain the release from cubosomes by encapsulating 

them into hydrogel films56, 66. The release, in this case, is believed to occur in multiple steps 

involving hydration of the hydrogel film, swelling and subsequent erosion of the hydrogel, 

opening of the aqueous channels of cubosomes, burst release and finally the dissolution of the 

hydrogel matrix56.  

The nanoscale design and dimensions of the cubic self-assemblies further influence the release 

kinetics as follows. The lipid used in this work forms Pn3m type cubic phase in pure water49 

(Figure 2a). This phase exhibits four aqueous channels (meeting at tetrahedral angle) whereas 

the internal self-assembly of cubosomes is found to be Im3m phase (Figure 2b) consisting six 

aqueous channels (meeting at right angles). Moreover, the aqueous channels of Im3m phase 

are usually larger than Pn3m phase for the same lipid system, see Table 3. Largely hydrophilic 

block co-polymer stabilizers, similar to F127 used in this work, are known to alter the average 

molecular shapes of cubic phase forming lipids20, 54; most common result is the formation of 

Im3m phase in the internal cores of dispersed cubosomes55.    

Physical 

form of lipid 

system 

Concentration 

of drug Wt% 

per lipid Wt. 

Type of self-

assembled 

cubic phase 

No. of 

aqueous 

channels 

Lattice 

Parameter 

(a),   Å 

Diameter of 

aqueous 

channel (dw), Å 

Bulk cubic 

phase 
0 Pn3m 4 89.5 37.9 

Bulk cubic 

phase 
10 Pn3m 4 103.2 48.7 

Dispersed 

cubosomes 
0 Im3m 6 135.6 50.9 

Dispersed 

cubosomes 
10 Im3m 6 146.7 57.8 
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Table 3. Nanoscale dimensions of lipid cubic phases formed in bulk system and dispersed 

systems, before and after drug loading. Lattice parameters and diameters of aqueous channels 

were calculated according to the formulae listed in reference67. 

 

Encapsulation of a drug further elevates diameters of aqueous channels by about 22% in bulk 

cubic phase while 12% in cubosomes (Table 3). Thus, the number of aqueous channels and 

their sizes are greater in the cubic phase (Im3m) of cubosomes as compared to the bulk cubic 

phase (Pn3m), which theoretically contribute to rather rapid release from cubosomes.    

 

Efficient release in PBS than in water 

The drug release from all samples, in bulk cubic phases and cubosomes, in PBS was far more 

efficient (more than double in some cases) than the release in water (Figure 7, Table 4). PBS 

medium (pH ~7.4) is generally referred to be the physiological condition where drug release 

kinetics is usually different than in ambient and pure conditions.  

 

Figure 7: Drug release in PBS compared to water: a) Percent (%) drug release in water (solid 

squares) and in PBS (solid circles) for 2% drug/lipid is shown for a) bulk cubic phase and b) 

cubosome system. Note that the representative data plots for 2% drug/lipid samples are shown 

here; for remaining data plots (4%, 6% and 10% drug/lipid) see supporting information Figure 

S4.    
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Drug (Wt% / 

Wt of lipid) 
Bulk Cubic Phase 

in Water, % 

Bulk Cubic 

Phase in PBS, % 

Cubosomes in 

Water, % 

Cubosomes in 

PBS, % 

2 33.65 45.12 30.93 56.53 

4 24.62 41.11 29.47 44.39 

6 22.91 34.39 29.16 41.67 

10 20.09 31.05 18.23 38.96 

Table 4. The % release at 24 hrs from both lipid systems in water and in PBS. 

Main advantages of employing PBS for release studies include the retention of constant pH, 

prevention from denaturation and/or conformational changes, resembling the bodily conditions 

(isotonic) and nontoxicity to cells68. However, biological buffers, and also associated pH 

affects the membrane properties68-69.  It was envisaged that the buffer molecules interact with 

hydrophilic lipid head groups and intercalate within the head group region facilitating the 

reduction of membrane bending modulus and increase in number of membrane fluctuations69. 

The overall effect of these events is revealed in the form of swelling68 and/or softening of lipid 

membranes69. This could be directly linked with the continued and efficient release from lipid 

carriers in PBS medium in contrast to the low and ceased release in pure water medium (Figure 

7, Table 4).  

The release (%) measured after 24 hrs for bulk cubic phase and cubosomes in both medium, 

i.e. water and PBS always decreased with the increase in drug: lipid ratio (Table 4). This again 

confirms that the release rate depends on the drug concentration, thus following the first-order 

release kinetics.          

 

Conclusions and perspectives 

In this work we have compared the release properties of two different lipid nanocarrier 

systems. Bulk lipid cubic phase and cubosomes were studied under similar conditions 

of drug to lipid ratios and the volumes of release media. The release in both lipid systems 

followed a mechanism described by Korsmeyer-Peppas equation revealing the Fickian 

diffusion through the porous matrix57-58. However, the diffusion from cubosomes in PBS 

medium was anomalous, involving either or a combination of non-Fickian diffusion and 

erosion57-58. The latter may correspond to the interaction of PBS buffer molecules with 

lipid bilayer structures68-69 that are enclosed by small cubosome particles. This can be 
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verified from the efficient and rapid release in PBS medium compared to the almost 

ceased release in water medium (Figure 7).  

The release from bulk lipid systems was sustained with respect to the dispersed colloidal 

cubosomes due to apparent reasons. Although both lipid systems exhibit self-assembled 

cubic nanostructures with highly tortuous porous networks, the effective length scales 

experienced by drug molecules differ enormously. Cubosomes particles are small in size 

with rather high interfacial area leading to the burst release while longer length scales of 

bulk cubic phase enable prolonged drug release. Moreover, the wider and more number 

of aqueous channels of Im3m cubic phase contribute in the enhanced release from 

cubosomes. At this stage we cannot comment on the role of overall high viscosity of 

bulk cubic phases in the release kinetics and leave it for further in-depth studies. This 

study shades light on important aspect of comparing two emerging drug delivery systems 

based on the nanoscale self-assembly of lipid molecules in aqueous medium. The results 

obtained are potentially useful for predictable design and optimization of these 

nanocarrier systems. 
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