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Abstract 

The photocatalytic activity of anatase TiO2 decorated with metal clusters has been 

widely documented, but the nature of the metal-metal oxide interface and reaction 

intermediates in catalytic processes are still not well understood. This in part is due 

to the fact that use of photoelectron spectroscopy to deduce the surface chemistry 

of catalytic systems has long been hampered by the huge pressure difference 

between real-world operation and the requirement of high vacuum for electron 

detection. Here, the in situ growth of silver nanoparticles on a model metal-oxide 

catalyst support and their reactivity with a CO/H2O gas mixture has been 

investigated in detail.  Using synchrotron X-ray photoelectron spectroscopy, near-

ambient pressure X-ray photoelectron spectroscopy and scanning tunneling 

microscopy, the interaction of Ag with the anatase TiO2 surface leads to metal-

surface charge transfer and low mobility of Ag on the surface. Upon exposure to a 

1.5 mbar CO/1.5 mbar H2O gas mixture, partial oxidation of the Ag clusters is 

observed. There is also evidence suggesting that a Ag-carbonyl species is formed 

during exposure of the Ag/TiO2 surface to a CO/H2O gas mixture.  
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Introduction 

Metal clusters supported on well-ordered metal oxide surfaces are of great interest 

due to their application in a wide variety of fields, including photovoltaics, 

photocatalysis and transition metal catalysis.1–6 Carbon monoxide (CO), in particular, 

is a major air pollutant which causes serious environmental and health concerns. As 

such the catalytic oxidation of CO, to form CO2, is an important research area.7–9 

Noble metals supported on metal oxide ceramic supports have long been used for 

the catalytic conversion of CO to CO2, but the high cost of these metals remains a 

major issue. Noble metal clusters on oxide substrates are also of interest since they 

can produce high Schottky barriers which facilitate the capture of electrons.10 As a 

result, such systems have been widely investigated, both experimentally and 

theoretically5,11–19 as potential photocatalytic materials which rely on rapid 

separation of photogenerated electrons and holes. The structural, chemical and 

electronic properties at the interface between the metal clusters and the oxide 

support have all been shown to have a strong influence on catalytic and 

photocatalytic activity.1,2,6,8,17–24 

TiO2 is an extremely versatile metal oxide: it is abundant, has low manufacturing 

costs, is chemically stable and is both non- toxic and highly resistant to corrosion. 

The anatase polymorph of TiO2 is widely used in catalysis due to its high 

photocatalytic activity, with the (101) facet being the most thermodynamically 

stable.25 Often rutile and anatase TiO2 powders are mixed, as in P25,26 which 

increases the catalytic activity further due to the slight differences in the band gap 

energies of the two polymorphs. Ag is also non-toxic, catalytically active and has the 
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highest thermal and electrical conductivity of all the noble metals.27 In addition, Ag is 

not as costly as other noble metals.9 Catalyst systems based on Ag/TiO2 have been 

shown to efficiently catalyze reactions at solid-gas interfaces and in aqueous 

solutions. They have also been found to substantially enhance the photocatalytic 

capacity of TiO2 for renewable energy generation and environmental 

purification.20,28 Density Functional Theory (DFT+U) calculations of O2 and CO 

activation on the Ag/anatase TiO2 (101) surface indicated that the atomic and 

electronic structures of the metal clusters and the synergistic effect of adjacent 

reactants and oxygen defects on the semiconductor support all have an important 

role in catalytic O2 activation and CO oxidation.29 

Here we present a detailed study of the growth of Ag clusters deposited on the 

anatase TiO2(101) surface. Near-Ambient Pressure X-ray Photoelectron Spectroscopy 

(NAP-XPS) has developed rapidly over the previous 10 years. The technique allows X-

ray Photoemission Spectroscopy (XPS) measurements to be made at pressures of 

tens of mbars, and has led to the a wealth of publications relevant to catalysis, 

electrochemistry, material degradation and gas capture for example.30–35 NAP-XPS is 

therefore employed to study the in situ reaction of H2O and CO on an Ag cluster 

decorated anatase TiO2(101) surface in order to determine the mechanism of CO 

oxidation. 

 

Experimental Method 

 

UHV synchrotron photoelectron spectroscopy was carried out on the bending 

magnet soft X-ray beamline, D1011 (photon energy range 30 eV < hν < 1600 eV) at 
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MAX-lab, Sweden. The NAP-XPS system employed in this work is located at The 

University of Manchester and is equipped with a monochromated Al Kα source (hν = 

1486.6 eV) and a SPECS 150 mm Phoibos 150 NAP electron energy analyzer, fitted 

with a three-stage, differentially pumped electrostatic lens. The TiO2(101) crystal 

with Ag nanoclusters was analyzed at 10-9 mbar and under exposure to 3 mbar H2O 

and a 1.5 mbar H2O/1.5 mbar CO gas mixture in a high-pressure cell. The CO gas 

(99.9995 %, CK gases) is further purified by means of a scrubber (SAES MicroTorr). 

Water vapour is produced from doubly distilled water, which is subjected to multiple 

freeze thaw cycles to remove dissolved gases.  All photoelectron spectra are 

recorded at normal emission with the crystal at room temperature.  

 

The structure and size of the clusters deposited on the TiO2(101) surface were 

studied using an Omicron AFM-STM, in a chamber equipped with both Auger 

electron spectroscopy (AES), and LEED. Sample preparation was carried out in an 

identical way to the photoemission work. STM data were typically acquired in the 

constant current mode at sample biases of 1.5-2 V and tunnelling currents 0.1-0.5 

nA. Image processing was performed using a combination of Nanotec Electronica 

WSxMTM36 and Gwyddion.37 For both XPS and STM measurements the anatase 

TiO2(101) single crystal (5 mm x 5 mm, Pikem Ltd.) was cleaned by repeated 1 keV 

Ar+ ion bombardment and 700 °C anneal cycles until a sharp (1 x 1) LEED pattern was 

obtained and XPS/AES showed the surface to be free of contamination. 

 

For all experimental systems the Ag evaporator consisted of 5 μm diameter silver 

wire (99.99 %; BDH Chemicals Ltd) wrapped around a tungsten filament and was 
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thoroughly degassed prior to use. Ag dosing was carried out at chamber pressures 

below 10-9 mbar. Fitting of all core level spectra was carried out using CasaXPS, 

utilising a Shirley background, Gaussian:Lorentzian curves (0.7:0.3), for non-metallic 

species, and a modified Gaussian:Lorentzian curve (0.7:0.3), with an asymmetric  tail 

to higher binding energy, for metallic species.38 This 0.7:0.3, G:L lineshape is widely 

used in the fitting of photoemission peaks recorded using monochromatic X-rays and 

produces a good fit to the data. The choice of 70:30 G:L peak shape is empirical and 

based on the shape which gave the best fit to the data. 
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Results and Discussion 

Ag cluster growth on anatase(101) 

 

Figure 1: (a) Ag 3d XPS core-level spectra (hν = 1 keV) recorded from the anatase TiO2(101) single 

crystal following Ag deposition for 110 minutes (top) and the clean anatase TiO2(101) surface 

(bottom) (b) the corresponding Ti 2p spectra with (top) and without (bottom) Ag (hν = 1 keV). The 

spectra are normalized to the height of the Ti 2p3/2 Ti4+ peak at 459.2 eV. (c) Plot of relative Ti3+ 

concentration vs Ag exposure. (d) Expanded view of the Ti 2p XPS core-level spectra, highlighting the 

increase in the Ti3+ oxidation state as Ag coverage is increased. (e) Plot of the variation in full width 

half maximum of the Ag 3d5/2 peak as Ag coverage is increased. (f) Plot of the variation in binding 

energy of the Ag 3d5/2 peak vs Ag coverage.  
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Core level photoelectron spectra for Ag 3d and Ti 2p (hν = 1 keV) for the clean 

anatase TiO2(101) surface and the maximum Ag coverage are shown in Figure 1 (a) 

and (b), respectively. A full set of Ti 2p and Ag 3d spectra, as a function of Ag 

exposure, are shown in Figure S1 of the supporting information (SI). In each case, the 

Ag spectra are normalized to the peak intensity of the corresponding Ti 2p3/2 feature.  

 

The Ti 2p spectrum is composed of spin orbit split peaks at binding energies of 459.2 

eV (Ti 2p3/2) and 464.9 eV (Ti 2p1/2), consistent with Ti4+. Upon exposure to Ag a small 

shoulder appears on the lower binding energy side of the main Ti 2p3/2 peak, 

consistent with the reduction of Ti4+ to Ti3+ (457.7 eV), suggesting charge transfer 

from the Ag to the TiO2 surface. Figure 1 (c) and (d), show how the relative amount 

of Ti3+ changes as a function of Ag deposition. As the Ag coverage increases the 

proportion of Ti3+ also increases up to an exposure time of around 20 minutes. For 

deposition times of over 20 minutes the Ti3+ concentration reaches a plateau. 

Reduction of titania has been reported following deposition of various metal 

clusters, including Co, Ni, and Pt.4,10,39 Au, on the other hand has been shown to 

remove Ti3+ from the surface40. The degree of reduction of Ti is characteristic of the 

relative strength of the interaction between the metal clusters and the titania 

surface.4,10 At saturation we find a 6 % increase in the concentration of Ti3+ 

compared to the clean surface. In contrast, following deposition of silver clusters on 

the rutile TiO2 (110) surface, no reduction was reported. This suggests that the 

interfacial interaction of Ag with the anatase (101) face is stronger than with the 

rutile (110) surface of TiO2.1  
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The Ag 3d spectrum recorded from this surface is composed of spin-orbit peaks at 

binding energies of 368.7 eV (Ag 3d5/2) and 374.7 eV (Ag 3d3/2). These binding 

energies are consistent with Ag in the metallic state.24 As the surface coverage of Ag 

on TiO2 increases, a small downward shift in BE of the Ag 3d peak is observed, as 

shown in Figure 1 (f). Similar shifts have been seen with Ag and other transition 

metal clusters on various metal oxide surfaces including the rutile TiO2(110) surface 

and are indicative of an increasing cluster size. 1,41–44 Figure 1 (e) illustrates the 

decrease in Full Width Half Maximum (FWHM) as coverage is increased and is 

further evidence of an increasing cluster size.1,42,44 Initial and final state effects will 

occur to varying degrees for Ag clusters of different sizes. This then produces a 

distribution of BEs manifested as a broadening of the peak. This broadening effect 

becomes less prominent as the Ag clusters become more bulk like.1 Peak broadening 

for small cluster sizes may also be a result of the shortened lifetime of the core hole, 

due to faster relaxation times.44  

 

STM images for the as-prepared anatase TiO2(101)(1 x 1) surface and three different 

Ag exposures, are shown in Figure 2 (a) - (d). The characteristic trapezoidal island 

structures of anatase(101) are clearly observed in Figure 2 (a), separated by 

monatomic steps of height around 3 Å.  Assuming that the clusters adopt a FCC 

packing structure45 with inter-atomic Ag-Ag distance equivalent to that of bulk Ag, 

i.e. 2.9 Å,21 and are hemispherical with a radius equivalent to the apparent height, it 

is possible to extract a qualitative estimate for the number of Ag atoms per cluster at 

exposures up to one monolayer.  
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Figure 2: 100 x 100 nm2 STM images of (a) the as-prepared anatase TiO2(101)(1 x 1) surface and the 

TiO2(101)(1x1) surface after dosing Ag for (b) 1 minute (c) 5 minutes and (d) 20 minutes. (e) shows a 

50 x 50 nm2 image of surface (b) with an accompanying line profile in (f) 

 

Figure 2 (b) shows the anatase TiO2(101) surface following the deposition of Ag on 

the anatase TiO2(101) surface for 1 minute. Bright protrusions are assumed to be 

individual atoms of Ag with a height of ~ 0.2 nm and an average lateral diameter of 
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1.2 nm. At the lowest coverage there appears to be no preferential adsorption site 

for the Ag atoms, although at larger magnification as shown in Figure 2 (e), the 

formation of some larger clusters, particularly at step edges, is observed (56 % of 

clusters > 1.5 nm exist on step edges). These clusters appear to straddle the steps i.e. 

they are located partly on both the upper and lower terraces and have been 

calculated to contain up to 8 Ag atoms. A few larger clusters are also seen on the 

terraces, which we assume to nucleate at surface O-vacancies. Figure 2 (f) contains a 

line profile showing the formation of a cluster straddling a step edge (with an 

apparent height, measured from the top of the step, of 0.4 nm) and on a terrace 

(with an apparent height of 0.3 nm). 

 

Figure 2 (c) shows an image recorded following 5 minutes of Ag deposition. At this 

coverage the step edges are almost completely saturated with Ag clusters (65 % of 

all ‘large’ clusters can be seen occupying step edges) and individual Ag atoms can no 

longer be resolved. At this coverage a number of clusters are observed on the 

terraces. This coverage corresponds roughly to 1 ML Ag by comparison to deposition 

on the rutile (110) surface.46 Patches of bare substrate are still visible at this 

coverage. The clusters have an average height of 0.7 nm with an average lateral 

cluster diameter of 2.4 nm, which corresponds to approximately 3 Ag atomic layers 

and a total of 40 atoms of silver per cluster. Looking at the lateral height of the 

largest clusters we find a range of between 5 and 100 Ag atoms per cluster.  The 3D 

growth mode observed here has been attributed to the low bonding strength of Ag-

O compared to Ti-O and also the higher free surface energy of Ag compared to the 

oxide substrate.47 It has been suggested that on the rutile TiO2(110) surface, Ag 
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atoms remain highly mobile and diffuse across the surface until they reach a step 

edge.46 Figure 2 (d) shows an image following the exposure of the anatase TiO2(101) 

surface to the Ag source for 20 minutes. At this point the substrate surface is no 

longer visible, but the Ag still exists as nanoclusters. A measure of cluster diameters 

gives a mean Ag cluster diameter of 3.8 nm. For this coverage an accurate height 

above the TiO2 surface, and therefore the number of atoms per cluster, cannot be 

readily extracted due to the fact that the clusters are too closely packed to measure 

the height from the clean surface. 

 

Figure 3: Histograms detailing the average diameter of the clusters populating the surface after 

dosing Ag for (a) 1 minute (average diameter of 1.2 nm with a standard deviation of 0.5) - inset 

relative percentage of larger clusters (> 1.5 nm) that reside on terraces (T) or step edges (S) (b) 5 

minutes (average diameter of 2.4 nm with a standard deviation of 0.6) - inset relative percentage of 

larger clusters (>1.5 nm) that reside on terraces (T) or step edges (S) and (c) 20 minutes (average 

diameter of 3.8 nm with a standard deviation of 1.3). 

 

The histogram plots in Figure 3 show the spread of cluster diameters for the 

different Ag exposures. Although tip convolution effects tend to lead to an 

overestimate of cluster diameters,21,39 the measurements still allow a qualitative 

measure of the cluster growth. The histogram plots show an increase in average 
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cluster size as a function of deposition time/coverage and that the distribution of the 

diameters increases with a standard deviation of 1.3 nm at maximum coverage.  

The narrow range of cluster heights and diameters found for the 5 minute (ca 1 ML) 

deposition of Ag on anatase TiO2 is consistent with the growth of Ag on the rutile 

TiO2(110) surface,1,46 although the average cluster height and diameter on the 

anatase surface are somewhat smaller. The observed 3D growth mode is as expected 

from surface free energies of the Ag and TiO2 and is common to most transition 

metal growth modes on metal oxide surfaces.47 On the rutile surface the average 

cluster heights and diameters at the equivalent coverage are 1.4 and 7.5 nm, 

respectively. The observation of individual atoms at the lowest exposure studied 

here, and the smaller cluster sizes suggest that Ag diffusion to step edges and defect 

sites is much slower than on the rutile surface. For the rutile TiO2(110) surface an 

increase in the surface temperature, which increases the diffusion rate, leads to 

larger cluster sizes.46 This slower diffusion on the anatase surface suggests a stronger 

interaction between Ag and anatase TiO2 and is consistent with the observation of 

charge transfer from the Ag to surface Ti ions. This growth mode also accounts for 

the observed initial increase and then plateau observed in the surface Ti3+ 

concentration in photoelectron spectra. The STM data confirm that the observed 

downward shift in binding energy of the Ag 3d peaks is related to the cluster size, i.e. 

as the clusters grow, they become more metal-like until the binding energy reaches 

that of bulk metal.1,39 The smaller clusters observed on the anatase relative to rutile 

and also the charge transfer observed is likely to account for the enhanced catalytic 

activity of anatase relative to rutile TiO2, since for a similar Ag content the surface 

area/volume ratio of the clusters will be larger.  
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Reaction of Ag/TiO2 with 3 mbar H2O and 1.5 mbar H2O + 1.5 mbar CO 

 

Figure 4: (a) Ag 3d and (b) O 1s core level photoelectron spectra around the high binding edge of the 

main oxide derived O 1s peak. The full O 1s spectrum is shown in Figure S2. The spectra are recorded 

at hν = 1486.6 eV under exposure to 3 mbar H2O and co-exposure to 1.5 mbar H2O/ 1.5 mbar CO.  

 

In order to investigate the reactivity of the Ag/TiO2 surface Ag clusters were 

deposited upon a freshly prepared anatase TiO2(101) crystal for 5 minutes, 

corresponding to the intermediate coverage shown in the STM image in Figure 2 c. 

This sample was exposed to 3 mbar H2O followed by a mixed gas composition of 

pH2O=1.5 mbar and pCO = 1.5 mbar, whilst XPS spectra were recorded in situ.  

 

Exposure of the Ag/TiO2 surface to a water partial pressure (pH2O) of 3 mbar has no 

effect on Ag and Ti core level spectra. The H2O /CO mixture also has no noticeable 
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effect on the Ti 2p spectrum. Exposure to the mixed CO/H2O gas, however, leads to 

the appearance of new features in the Ag 3d spectrum as shown in Figure 4 (b). 

These occur, as spin-orbit split peaks, at binding energies of 367.6 eV and 373.7 eV, 

and 371.4 eV and 377.5 eV.  The lower binding energy peaks in the Ag spectra are 

consistent with the oxidation of some Ag48 and have been observed following CO 

oxidation on an Ag(001) surface.49 This downward shift appears anomalous, since an 

increase in oxidation state is usually associated with an increase in binding energy 

for metal cations in ionic systems. Although the downward shift in binding energy of 

oxidized silver was first reported over 40 years ago by Schön et al.50 the origin of the 

shift is still unclear. Various explanations based on the initial state energy of the 

emitting cation have been proposed, including covalency of the Ag-O bond 

combined with the effect of the Madelung potential on the BE51 or a shift in the 

Fermi energy.48 A recent density functional theory (DFT) and high resolution core 

level spectroscopy study assigns the downwards shift to a final-state effect, where 

the core-hole is screened by s-derived states of bonding character.48 The precise 

oxidation state of the Ag can not be determined from these measurements, but the 

binding energy agrees well with the formation of Agδ+.49  

The origin of the peaks at 371.4 eV and 377.5 eV is less clear. The binding energies 

are consistent with Ag plasmon loss peaks, but if this were the case then one would 

also expect to observe them on the Ag clusters before exposure to H2O/CO. The 

presence of these peaks, in conjunction with the lower binding energy peaks are also 

consistent with the presence of Ag(III) species, where they have been assigned as 

satellites. However, previous work suggests Ag(III) is not particularly stable in 

vacuum51 so this is unlikely. In addition, although the peaks appear at the same time 
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as the oxide peaks the intensity is almost equivalent to that of the main oxide peaks 

so this too suggests these are not related to Ag (III). These higher energy features 

were not observed in spectra recorded from an Ag(001) exposed to 5 mbar CO and 

subjected to “post-mortem” analysis.49 Figure 4b shows that removal of the CO/H2O 

gas in order to return to UHV conditions leads to the disappearance of both sets of 

doublets introduced by the exposure to the gas mixture. These observations suggest 

that these higher binding energy peaks are associated with the interaction of CO 

with the Ag clusters, but their origin cannot be unambiguously determined from 

these data. Further work using synchrotron radiation resonant near-ambient 

pressure photoemission, which would allow us to carry out depth profiling by tuning 

the kinetic energy and emission angle of the photoemitted electrons, may prove 

useful in determining the origin of these peaks. Detailed density functional theory 

calculations would also be useful. The loss of the “new” Ag 3d related features, 

however, indicates that the adsorption process is transient and only occurs in the 

presence of relatively high pressures of CO at room temperature. In situ IR 

measurements for CO adsorption on Ag/SiO2 catalysts have shown a similar result.52 

During exposure to 26 mbar CO, linearly adsorbed Ag-CO species were identified 

through the appearance of a new band. This band subsequently disappeared 

following evacuation of the gas cell.  

 

The O 1s spectra before and after exposure to both H2O and H2O/CO are composed 

of multiple components. An expanded view of the higher binding energy shoulder is 

shown in SI Figure S2. The O1s spectrum prior to exposure to H2O or CO is fitted with 
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4 components: Two components at binding energies of 530.5 eV and 531.4 eV, 

arising from O2- in anatase TiO2(101) and two components at 531.8 eV, and 532.7 eV, 

which are associated with the presence of surface defects and surface hydroxyls53. 

Following exposure to 3 mbar H2O and 3 mbar H2O/CO, additional peaks due to 

photoemission from gas phase H2O (535.5 eV) and gas phase CO (538.2 eV) are 

introduced. Upon exposure to 3 mbar H2O an increase in intensity is observed in 

peaks at binding energies of 531.8 eV, 532.7 eV and 533.5 eV. This observation is in 

agreement with our previous work studying the interaction of water with the 

anatase TiO2(101) surface. The peaks are assigned to the interaction of physisorbed 

OH, chemisorbed OH and physisorbed molecular water, respectively.53 For the 

H2O/CO mixture, the peak at a binding energy of 532.7 eV is seen to increase in 

intensity, and therefore is assigned to the adsorption of CO on the Ag nanoclusters. 

Leaving the sample for 24 hours in order to attain ultra-high vacuum conditions 

results in some residual oxygen species at 532.7 eV, due to chemisorbed OH.53 It is, 

however, clear that the adsorbed molecular water peak at 533.5 eV is lost and the 

peak at 532.7 eV is reduced in intensity upon the return to UHV. The reduction in 

intensity of the 532.7 eV peak is in agreement with the loss of the peaks tentatively 

associated with CO adsorption in the Ag 3d spectra.  

 

The observation of the extra features observed in the Ag 3d spectra, only at higher 

pressure serves to show the potential of NAP-XPS in bridging the pressure gap 

between ultrahigh vacuum and the pressures at which "real" catalytic reactions 

occur. Although NAP-XPS measurements are still performed at a few orders of 
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magnitude below the pressures involved in some catalytic reactions, subtle chemical 

changes that have hitherto been unattainable can now be resolved. 

Conclusions 

The nucleation and subsequent growth of Ag clusters on anatase TiO2(101) have 

been investigated using a combination of NAP-XPS and STM. Ag growth on the 

anatase TiO2(101) occurs via a 3D self-limiting growth mechanism, predominantly at 

step edges and at defects on terrace sites to form clusters. Reduction of Ti4+ to Ti3+ is 

observed for the anatase surface via charge transfer from the Ag clusters, suggesting 

a stronger interaction between the Ag nanoclusters and the anatase TiO2(101) 

surface than for the rutile TiO2(110) surface. This strong interaction leads to the 

formation of smaller clusters and the presence of individual Ag atoms at very low 

coverage. We also find a chemisorption reaction between a mixed CO/H2O vapour 

mixture which indicates oxidation of Ag species on the clusters by reaction with CO 

to form Ag-CO. This species is only observed during exposure to CO/H2O at 

pressures achievable in a NAP system. 

 

Supporting Information   

Core level photoelectron spectra for Ag 3d and Ti 2p  (Figure S1); Core level NAP-XPS 

spectra for O 1s (Figure S2); Binding energy and assignment of Ti 2p, O 1s and Ag 3d 

XPS core-level peaks. (Table S1) 
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