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The progressive aging of the world’s population makes a higher
prevalence of neurodegenerative diseases inevitable. The necessity
for an accurate, but at the same time, inexpensive and minimally
invasive, diagnostic test is urgently required, not only to confirm the
presence of the disease but also to discriminate between different
types of dementia to provide the appropriate management and
treatment. In this study, attenuated total reflection FTIR (ATR-FTIR)
spectroscopy combined with chemometric techniques were used to
analyze blood plasma samples from our cohort. Blood samples are
easily collected by conventional venepuncture, permitting repeated
measurements from the same individuals to monitor their progres-
sion throughout the years or evaluate any tested drugs. We included
549 individuals: 347 with various neurodegenerative diseases and
202 age-matched healthy individuals. Alzheimer’s disease (AD; n =
164) was identified with 70% sensitivity and specificity, which after
the incorporation of apolipoprotein e4 genotype (APOE e4) informa-
tion, increased to 86%when individuals carried one or two alleles of
e4, and to 72% sensitivity and 77% specificity when individuals did
not carry e4 alleles. Early AD cases (n = 14) were identified with 80%
sensitivity and 74% specificity. Segregation of AD from dementia
with Lewy bodies (DLB; n = 34) was achieved with 90% sensitivity
and specificity. Other neurodegenerative diseases, such as fronto-
temporal dementia (FTD; n = 30), Parkinson’s disease (PD; n = 32),
and progressive supranuclear palsy (PSP; n = 31), were included in
our cohort for diagnostic purposes. Our method allows for both
rapid and robust diagnosis of neurodegeneration and segregation
between different dementias.

Alzheimer’s disease | dementia with Lewy bodies | apolipoprotein E |
differential diagnosis | spectroscopy

Neurodegenerative diseases are characterized by a common
pathological mechanism of protein misfolding and aggre-

gation and result in a progressive loss of neuronal function in the
human brain/CNS and unavoidable death. Some of the common
symptoms among them include problems with movement (e.g.,
parkinsonism) and mental functioning (e.g., dementia). Im-
provements in health care and social support have resulted in
many elderly sufferers of neurodegenerative disease having
prolonged lives with improved quality of life. However, these
diseases remain incurable, and one of the main reasons for this is
likely to be that their etiology is multifactorial. It is, therefore,
crucial to develop new biomarkers to better comprehend the
etiology of each disease and also, for screening and diagnosis, so
that appropriate clinical intervention can begin as soon as pos-
sible. Surrogate markers of disease progression will also facilitate
the development of new treatments, and this has led to an in-
creased interest over recent years in the discovery of biomarkers
for diseases, such as Alzheimer’s disease (AD), Parkinson’s dis-
ease (PD), dementia with Lewy bodies (DLB), vascular de-
mentia, and frontotemporal dementia (FTD).

AD accounts for 60–70% of all types of dementia, with symp-
toms of memory loss; language problems; disorientation in iden-
tity, time, and place; cognitive decline; and eventually, death.
Various pathological mechanisms contribute to brain damage,
including amyloid deposition (1), neurofibrillary tangle formation
(2), oxidative stress (3), inflammation (4, 5), and lipid dysregula-
tion (6). A major genetic risk factor for AD is the e4 allele of
apolipoprotein E (APOE). APOE protein is involved in choles-
terol distribution throughout the body, including brain, and exists
in three different isoforms (E2, E3, E4) (7). Possession of one or
more APOE e4 alleles increases the risk of developing late-onset
AD, reduces age of onset, and is associated with a higher cere-
bral amyloid plaque load and promotion of neurofibrillary tangle
formation (8, 9).
Current approaches for diagnosing AD include measurement

of amyloid-β (Aβ; specifically Aβ42) and total tau (T-tau) or
phosphorylated tau (P-tau) levels in cerebrospinal fluid (CSF),
structural neuroimaging techniques (MRI or computerized to-
mography), PET imaging of brain amyloid, or inflammation and
batteries of neuropsychological tests (10). Usually, a combination
of more than one test is necessary to provide a working diagnosis,
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while a definitive diagnosis can still only be given postmortem
with histopathological examination (11). Brain scans present
disadvantages, as they are expensive and time-consuming. CSF
would be an optimal source for AD biomarkers, as it is in contact
with the brain, allowing biochemical changes in the brain to be
directly monitored. However, CSF collection is not universally
obtainable, as it is invasive (lumbar puncture) and can be un-
pleasant for patients; therefore, not all clinicians are willing to
take such samples routinely. Five hundred milliliters of CSF is
discharged into the bloodstream every day, and therefore, al-
terations in CSF content can also facilitate discovery of blood-
borne biomarkers of neurodegenerative disease (12).
Research has, therefore, focused on blood-based methods for

diagnosis of neurodegenerative diseases. A major goal is the de-
tection of AD at a very early stage, even before the patient becomes
symptomatic (10, 13). Early diagnosis is crucial, as once the patient
appears with clinical symptoms, the damage that has occurred in
the brain may already be irreversible. However, if at-risk individuals
are identified early, it may be possible to delay or even prevent
additional progression of the disease by administration of drugs that
decrease Aβ production or aggregation (preventing plaque forma-
tion) or tau protein aggregation (preventing tangle formation) (14).
The diagnostic accuracy of existing biomarkers has been previously
reported to vary from ∼70 to ∼95% (10, 13, 15, 16); however, most
of the current tests cannot be used routinely because of their high
cost and laborious sample processing.
Vibrational spectroscopy, including FTIR and Raman spec-

troscopy, has been widely used to discriminate and classify nor-
mal and pathological populations using cells, tissues, or biofluids
(17–19). Readily accessible biofluids, such as blood plasma/serum,
saliva, or urine, are considered ideal for clinical implem-
entation because of routine methods of collection as well as
their minimal sample preparation. Interrogation of these sam-
ples with spectroscopic techniques allows for the generation of a
“spectral fingerprint,” which subsequently facilitates the dis-
crimination of the different populations and identification of
potential biomarkers. In the past few years, blood-based FTIR
and Raman spectroscopy have been used for diagnosing,
screening, or monitoring the progression/regression in a variety
of diseases (20, 21). Spectroscopic techniques have many ad-
vantages over conventional molecular tests (e.g., ELISA), as they
allow the investigation of a range of different molecules simul-
taneously instead of studying isolated molecules; thus, they are
ideal for complicated, multifactorial diseases. They are also
rapid, cost-effective, and nondestructive, which renders them a
perfect candidate for translation to clinic.
In this study, attenuated total reflection FTIR (ATR-FTIR)

spectroscopy was used to interrogate blood plasma samples from
individuals with various neurodegenerative diseases. One of our
goals was to differentiate AD as well as early AD patients from
healthy control (HC) individuals and provide meaningful bio-
markers that would assist in a more conclusive clinical diagnosis.
We also took into consideration the APOE genotype and age of
our participants as confounding factors. The second major ob-
jective of this study was to determine the spectral wavenumbers
that allow segregation of AD from other dementias, such as DLB
and FTD, where differential diagnosis—especially in early stages—
can be challenging. The segregation of AD from DLB is of
particular clinical importance, since accurate diagnosis is nec-
essary for suitable medication. DLB is the second most common
form of dementia (10–15% of all dementias) and shares charac-
teristics with AD, leading to frequent misdiagnosis (22). Although
AD remains the most common neurodegenerative disorder, other
less common diseases, such as progressive supranuclear palsy
(PSP) and PD, were also included for diagnostic purposes.

Results
AD Vs. HC. We primarily focused on the discrimination of AD
patients from HCs; Fig. 1 A and B shows the preprocessed
spectra (cut, rubber band baseline corrected, vector normalized)
at the fingerprint region (1,800–900 cm−1) and high region

(3,700–2,800 cm−1), respectively. At the fingerprint region (Fig.
1A and Fig. S1A), the AD group showed slightly higher peaks at
1,650–1,630 cm−1 [P = 0.095, 95% confidence interval (95%
CI) = −0.005, 0.0004, stretching vibration (ν) of (C = O), Amide
I, proteins] and 1,540–1,530 cm−1 [P = 0.003, 95% CI =
−0.0031, −0.0007, bending vibration (δ) of (N-H), Amide II,
proteins] as well as lower peaks at 1,750–1,735 cm−1 [P = 0.006,
95% CI = 0.0006, 0.0035, ν(C = O) of lipids], 1,590–1,580 cm−1

[P = 0.254, 95% CI = −0.0008, 0.003, δ(N-H) of Amide II,
proteins], 1,470–1,430 cm−1 [P = 0.0002, 95% CI = 0.002, 0.006,
δ(CH3) and δ(CH2) of lipids and proteins], 1,220–1,160 cm−1

[P = 0.0035, 95% CI = 0.0016, 0.0084, carbohydrates, asym-
metric stretching (νas) of PO2

− of DNA/RNA], and 1,150–
1,040 cm−1 [P = 0.0002, 95% CI = 0.0057, 0.0185, carbohydrates
and symmetric stretching (νs) of PO2

− of DNA/RNA]. At the
higher region (Fig. 1B and Fig. S1B), the AD group showed
lower peaks at 2,950–2,850 cm−1 [P = 0.0004, 95% CI = 0.021,
0.017, νs(CH2) of lipids] and slightly higher peaks at 3,550–

Fig. 1. AD (n = 164) vs. HC (n = 202). (A and B) Preprocessed spectra (cut,
rubber band baseline corrected, vector normalized) at the fingerprint and high
region. (C and D) Preprocessed spectra (cut, second-order differentiated, vector
normalized) along with the wavenumbers responsible for differentiation. At
the fingerprint region: 1,744 cm−1 (lipids), 1,624 cm−1 (Amide I), 1,555 cm−1

(Amide II), 1,512 cm−1 (Amide II), 1,462 cm−1 (lipids), and 1,396 cm−1 [δ(CH3) of
proteins]. At the high region: 3,275 cm−1 (–OH stretching), 3,132 cm−1 [νs(N-H)],
3,005 cm−1 [νas (=C-H), lipids and fatty acids], 2,970 cm−1 [νas (CH3), lipids and
fatty acids], 2,924 cm−1 [νas (CH2), lipids], and 2,855 cm−1 [νs(CH2), lipids]. (E and
F) The 1D scores plot (LD1) after cross-validated PCA-LDA. (G and H) Loading
plots showing the wavenumbers responsible for discrimination. At the fin-
gerprint region: 1,747 cm−1 (lipids), 1,636 cm−1 (Amide I), 1,570 cm−1 (Amide II),
1,153 cm−1 (carbohydrate), 1,076 cm−1 [νs (PO2

−)], and 1,034 cm−1 (glycogen).
At the high region: 3,676 cm−1 (–OH stretching), 3,622 cm−1 (–OH stretching),
3,587 cm−1 (–OH stretching), 3,325 cm−1 (–NH stretching), 2,966 cm−1 (–CH
stretching of lipids), and 2,924 cm−1 (–CH stretching of lipids). *P < 0.05; **P <
0.005; ***P < 0.0005; ****P < 0.00005.
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3,450 cm−1 [P = 0.0165, 95% CI = −0.048, −0.0047, ν of (–OH)].
The aforesaid areas of interest are shown enlarged in Fig. S1 A
and B to make the differences more apparent.
The above-mentioned preprocessing method generates figures

that allow for better visualization and gives an initial impression
of the generic differences. However, spectra appeared to overlap
to a great extent. This was expected, as the majority of blood
components are common in all individuals; thus, it is difficult to
detect differences associated with AD, and even when differ-
ences are present, they must be brought to light. For this reason,
second-order differentiation was used to examine the spectra in
more detail, as it resolves overlapping peaks. Fig. 1 C and D
shows the mean spectra after second derivative analysis. For
biomarker identification, we initially implemented the “differ-
ence-between-mean” (DBM) spectra approach with a peak de-
tection algorithm (for six peaks) to extract wavenumbers that
showed the largest differences between AD and HC. The se-
lected wavenumbers for the fingerprint and high region are
shown in Fig. 1 C and D, respectively.
Multivariate approaches were also implemented for additional

examination of the spectra; Fig. 1 E–H was all generated after
cross-validated principal component analysis followed by linear
discriminant analysis (PCA-LDA). Fig. 1 E and F shows 1D scores
plots showing the differences between the two classes; the “scores”
here represent individual spectra. To investigate individuals rather
than spectra, we averaged every 10 (because 10 spectra were
collected per sample) before the statistical test. The generated
figures (Fig. S1 C andD) represent the scores plots shown in Fig. 1
E and F, but this time, each score is an individual. The difference
between AD and HC individuals was statistically significant in
both regions (P = 0.0007, 95% CI = 0.004, 0.014 at the fingerprint
region and P = 0.003, 95% CI = −0.035, −0.007 at the high re-
gion). To identify the spectral bands that mostly correlate to these
differences, we then generated the loading plots along with the top
six wavenumbers responsible for discrimination (Fig. 1 G and H).

Classification of AD and HC Before the Incorporation of APOE e4
Genotype and Age Information. Classification of AD and HC was
performed in both IR spectral regions of interest using PCA-LDA,
principal component analysis followed by quadratic discriminant
analysis (PCA-QDA) (Figs. S2 and S3), successive projection al-
gorithm followed by linear discriminant analysis (SPA-LDA),
successive projection algorithm followed by quadratic discrimi-
nant analysis (SPA-QDA) (Figs. S4 and S5), genetic algorithm
followed by linear discriminant analysis (GA-LDA), and genetic
algorithm followed by quadratic discriminant analysis (GA-QDA)
(Figs. S6 and S7). The best classification ratios were obtained after
GA-LDA for the fingerprint region (Fig. 2 A and C) and PCA-
QDA for the high region (Fig. 2 B and D). GA-LDA used
23 wavenumbers (Fig. 2A) determined from the minimum cost
function G (Fig. S6C), which identifies the optimal number of
wavenumbers to be used. Fig. 2C is the scores plot illustrating
classification by GA-LDA. Sensitivity and specificity achieved by
GA-LDA, at the fingerprint region, were both equal to 70% (Fig.
2E). The loading and scores plots after PCA-QDA technique, at
the high region, are shown in Fig. 2 B and D, respectively. In this
case, the sensitivity and specificity were 68% (Fig. 2E).

Classification of AD and HC After the Incorporation of APOE e4 Genotype
and Age Information. Similar to before, all of the available chemo-
metric techniques were applied after incorporation of APOE e4
and age information. GA-LDA provided higher accuracy than
before, achieving sensitivity of 72% and specificity of 77% in in-
dividuals with no APOE e4 alleles (Fig. 3 A and B and Fig. S8 A,
C, and E). From the comparison of AD patients and controls with
one or two APOE e4 alleles, the best sensitivity and specificity
were achieved by GA-QDA—each equal to 86% (Fig. 3 C and D
and Fig. S8 B, D, and F).
The same algorithms were applied to further investigate the

effect of age on classification; GA-LDA provided the highest
sensitivity and specificity for both comparison groups: AD vs. HC

(<65 y old) and AD vs. HC (≥65 y old), respectively. In the
comparison of the two classes of <65 y of age, sensitivity was
68%, and specificity was 65% (Fig. 3 E and F). In the ≥65-y-old
age group comparison, sensitivity and specificity were equal to
66 and 67%, respectively (Fig. 3 G and H).

Classification of Early AD and HC. Our dataset included 14 cases of
early AD; as previously shown, all of the classification algorithms
were applied to compare early AD with HC (Fig. 4C). The
chemometric technique that achieved the highest accuracy was
GA-LDA, providing 80% sensitivity and 74% specificity. The
selected wavenumbers for GA-LDA classification were 964,
1,018, 1,122, 1,126, 1,138, 1,192, 1,277, 1,342, 1,358, 1,393, 1,396,
1,612, 1,636, and 1,678 cm−1 (Fig. 4B).

Duration of AD. Patients were further classed and investigated
according to disease duration to gain information on AD pro-
gression. Three different groups were examined based on dura-
tion: the first group (0.5–1 y) has 32 AD patients, the second
group (1.5–5 y) has 111 patients, and the third group (6–18 y) has
17 patients. Relevant information was not available for four AD
patients. Six spectral wavenumbers, corresponding to important
biomolecules, showed substantial differences between the groups

Fig. 2. Classification of AD before the incorporation of APOE e4 genotype
and age information. (A and B) The best classification techniques for the
fingerprint region (GA-LDA) and high region (PCA-QDA). GA-LDA used
23 wavenumbers (900, 937, 960, 1,014, 1,072, 1,122, 1,234, 1,296, 1,308,
1,312, 1,342, 1,369, 1,396, 1,420, 1,508, 1,531, 1,535, 1,601, 1,651, 1,690,
1,705, 1,763, and 1,786 cm−1) for classification; PCA-QDA loadings plot de-
picts the most discriminant wavenumbers. (C and D) Scores plots illustrating
classification by GA-LDA and PCA-QDA at the two regions. (E) Table showing
the sensitivities and specificities achieved by all of the chemometric tech-
niques used for both spectral regions. The ones shown in bold provided the
best classification results. DF, discriminant function.

Paraskevaidi et al. PNAS Early Edition | 3 of 10

BI
O
CH

EM
IS
TR

Y
PN

A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701517114/-/DCSupplemental/pnas.201701517SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701517114/-/DCSupplemental/pnas.201701517SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701517114/-/DCSupplemental/pnas.201701517SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701517114/-/DCSupplemental/pnas.201701517SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701517114/-/DCSupplemental/pnas.201701517SI.pdf?targetid=nameddest=SF3
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701517114/-/DCSupplemental/pnas.201701517SI.pdf?targetid=nameddest=SF4
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701517114/-/DCSupplemental/pnas.201701517SI.pdf?targetid=nameddest=SF5
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701517114/-/DCSupplemental/pnas.201701517SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701517114/-/DCSupplemental/pnas.201701517SI.pdf?targetid=nameddest=SF7
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701517114/-/DCSupplemental/pnas.201701517SI.pdf?targetid=nameddest=SF6
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701517114/-/DCSupplemental/pnas.201701517SI.pdf?targetid=nameddest=SF8
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701517114/-/DCSupplemental/pnas.201701517SI.pdf?targetid=nameddest=SF8
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1701517114/-/DCSupplemental/pnas.201701517SI.pdf?targetid=nameddest=SF8


and therefore, were selected for additional exploration: 1,547 cm−1

(Amide II), 1,504 cm−1 (Amide II, phenyl rings), 1,369 cm−1

(cytosine, guanine), 1,219 cm−1 (νas of PO2
− of DNA/RNA),

1,080 cm−1 (νs of PO2
− of DNA/RNA), and 1,034 cm−1 (collagen).

With increased duration, a decreasing trend was observed
in most cases apart from the peak at 1,547 cm−1, where an
increase was noted (Fig. 5). Statistical analysis was performed
with data expressed as the mean ± SD. P values, for the groups
that were found statistically different, are depicted on the re-
spective graphs. Specifically, for the peak at 1,547 cm−1, signifi-
cant differences were found between the first (0.5–1 y) and the
third (6–18 y) group (P = 0.032, mean rank difference: −35.39).
Peak at 1,504 cm−1 showed differences between the first group
(0.5–1 y) and the third (6–18 y) group (P = 0.027, mean rank
difference: 36.31). Peak at 1,369 cm−1 differentiated between the
first (0.5–1 y) and second (1.5–5 y) groups (P = 0.03, mean rank
difference: 24.1) as well as between the first (0.5–1 y) and the
third (6–18 y) groups (P = 0.013, mean rank difference: 39.82).
Peak at 1,219 cm−1 revealed differences between the first (0.5–
1 y) and third (6–18 y) groups (P = 0.015, mean rank difference:
39.12). Peak at 1,080 cm−1 showed differences between the first
(0.5–1 y) and second (1.5–5 y) groups (P = 0.0027, mean rank
difference: 31.06) as well as between the first (0.5–1 y) and the
third (6–18 y) groups (P = 0.038, mean rank difference: 34.65).

Peak at 1,034 cm−1 showed differences between the first (0.5–1 y)
and second (1.5–5 y) groups (P = 0.003, mean rank difference:
31.1) as well as between the first (0.5–1 y) and the third (6–18 y)
groups (P = 0.015, mean rank difference: 39.06).

Lipid-to-Protein, Phosphate-to-Carbohydrate, and RNA-to-DNA Ratios
Related to Age. All individuals within the AD group were com-
pared according to their age; patients were grouped into <65-
and ≥65-y-old groups (Fig. 6A); people 65 y old and older are at
higher risk of developing AD, and therefore, this age was used as
a threshold value. Fig. 6A represents a 1D scores plot and was
generated after cross-validated PCA-LDA (P = 0.6440, 95%
CI = −0.0039, 0.0070).
To further establish potential biomarkers and account for al-

terations between the different age groups of AD patients and
HCs, we calculated the intensity ratio of six important spectral
regions. Fig. 6 B–D represents the lipid-to-protein ratio (1,450/
1,539 cm−1), phosphate-to-carbohydrate ratio (1,045/1,545 cm−1),
and RNA-to-DNA ratio (1,060/1,230 cm−1), respectively. The
two extra tables shown in Fig. 6 display the different subgroups
for each class as well as their mean age (±SD). Subgroup A
represents individuals of <65 y of age, and subgroup B represents
individuals of ≥65 y of age.
No statistically significant differences were seen for the ratios

within the HC or within AD groups. All of the different ratios,
lipid-to-protein, phosphate-to-carbohydrate, and RNA-to-DNA,
showed a decreasing trend for AD patients compared with HC.
More specifically, in the lipid-to-protein ratio, statistically signifi-
cant differences were seen after the comparison of HC (≥65 y old)
vs. AD (<65 y old; P = 0.002, mean rank difference: 60.23) and HC
(≥65 y old) vs. AD (≥65 y old; P = 0.014, mean rank difference:
42.05). Significant differences were also seen in the phosphate-to-
carbohydrate ratio after the comparison of HC (<65 y old) vs. AD
(<65 y old; P = 0.025, mean rank difference: 52.10) and HC (≥65 y
old) vs. AD (<65 y old; P = 0.02, mean rank difference: 49.66).
Lastly, the RNA-to-DNA ratio showed statistically significant dif-
ferences for HC (<65 y old) vs. AD (<65 y old; P = 0.037, mean
rank difference: 49.89) and HC (≥65 y old) vs. AD (<65 y old; P =
0.02, mean rank difference: 49.69).

Other Types of Neurodegenerative Diseases. Another objective of
this study was the identification of biomarkers that could be used
for the diagnosis of less common neurodegenerative diseases
(i.e., DLB, PD, FTD, and PSP); FTD and PSP patients were
specifically selected for additional investigation, as the high

Fig. 3. Classification of AD after the incorporation of APOE e4 genotype and
age information. (A and B) Scores plot after GA-LDA, which provided the
highest sensitivity (72%) and specificity (77%) for individuals with no APOE
e4 alleles. The different sensitivities and specificities achieved by all of the
classification methods are also shown. (C and D) Scores plot after GA-QDA,
which provided sensitivity and specificity of 86%, for individuals with one or
two APOE e4 alleles. (E and F) Scores plot after GA-LDA for the comparison of
AD with HC (<65 y); sensitivity and specificity were 68 and 65%, respectively.
(G and H) Scores plot after GA-LDA for the comparison of AD with HC (≥65 y
old); sensitivity and specificity were 66 and 67%, respectively. DF, discriminant
function.

Fig. 4. Early AD (n = 14) vs. HC (n = 202). (A and B) Scores plot, illustrating
classification by GA-LDA, and loadings plot, identifying the major discrimi-
nant variables by GA-LDA, which achieved the highest sensitivity and spec-
ificity of 80 and 74%, respectively. (C) Sensitivities and specificities achieved
by all chemometric techniques. DF, discriminant function.
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number of subjects (>30) allowed for more robust conclusions.
We also attempted to differentiate AD patients from patients
with other types of dementia, such as DLB and FTD.
Initially, all of the different neurodegenerative pathologies

were compared; the “other” group, containing less common
neurodegenerative diseases, was also included to further validate
our results and represent a pragmatic cohort. To visually account
for similarities and differences between the various classes, we
first generated the scores plots after cross-validated PCA-LDA
(Fig. 7). With the use of linear discriminant 1 (LD1), the dif-
ferentiation between the AD and HC was more prominent (Fig.
7A), while linear discriminant 2 (LD2) segregated better DLB
and PD from HC (Fig. 7B). The other group was better sepa-
rated from the HC when LD1 was used (Fig. 7A). LD1 was also
responsible for the better segregation of FTD and PSP patients
from HC (Fig. 7C). DLB and PD were not statistically different
from HC when using LD1 (for the comparison between DLB
and HC, P = 0.0521, 95% CI = −0.0353, 0.0002; for the com-
parison between PD and HC, P = 0.3315, 95% CI = −0.0282,
0.0089) (Fig. S9 A and B), whereas FTD and PSP were both
statistically different from HC, with P = 0.0041, 95% CI =
−0.0264, −0.0049 and P < 0.0001, 95% CI = −0.0439, −0.0201,
respectively (Fig. S9 C and D).
Of particular focus was the differentiation of AD and DLB.

Chemometric techniques (PCA-LDA/PCA-QDA, SPA-LDA/SPA-
QDA, and GA-LDA/GA-QDA) were applied, as previously,
toward classification of AD vs. DLB (Fig. 8). The best classifica-
tion ratios were achieved after PCA-QDA, giving sensitivity and

specificity of 90%. Statistical analysis was also conducted after
cross-validated PCA-LDA, and significant differences were found
between the two groups (P = 0.178, 95% CI = 0.0012, 0.0157) (Fig.
S10A). Finally, for the comparison of AD vs. FTD patients, sig-
nificant differentiation was achieved after cross-validated PCA-
LDA (P = 0.0040, 95% CI = 0.0041, 0.0216) (Fig. S10B).

Discussion
Using blood-based vibrational spectroscopy, we achieved results
with significant clinical relevance at multiple levels. ATR-FTIR
spectroscopy has been proven to be capable of detecting differ-
ences not only between patient and healthy groups but also,
between various neurodegenerative dementias.
Overall, our results are in line with findings of previous studies,

and most of the biomolecules that we identified, as contributors to
the discrimination between AD and HC, have been previously
described as potential biomarkers (10, 16, 23, 24). Generally, the
IR region of 1,700–1,600 cm−1 is indicative of the protein
secondary structure and could reflect protein conformational
changes. A slight increase of the intensity at the Amide I region
(1,650–1,630 cm−1; P = 0.1069, 95% CI = −0.005, 0.0005), ob-
served in our AD patients, could presumably be caused by in-
creased levels of Aβ plaques. In a recent study, using a more
complex setting with a specialized, immuno-IR sensor, it was
shown that the structural changes of Aβ peptide from α-helix to
β-sheet, seen in AD, can be detectable by a significant downshift at
the Amide I region (1,643 cm−1), and this further proves the im-
portance of this region (13). Similar results were seen in an an-
other study, which analyzed protein solutions containing soluble
and aggregated forms of tau protein (random coil and β-sheet,
respectively); in this case, a transition from a maximum peak at
1,650 cm−1 to a peak at 1,630 cm−1 was evident (25). However, in
our study, statistically significant differences were not observed at
this specific region. The increase at the Amide II region (1,540–
1,530 cm−1; P = 0.003, 95% CI = −0.0031, −0.0007) could
potentially be attributed to the overall accumulation of the above-
mentioned proteins. The decrease in lipids (1,750–1,735 to 1,470–
1,430 cm−1), comparing AD patients with HC, could be attributed
to damaged cell membranes caused by free radicals; oxidative
stress, implicated in the pathogenesis of AD, is the most likely
reason for this increase in free radicals (26). The decrease seen at
the DNA–RNA region could be explained by the loss of phos-
phoric acid and strand breaks also caused by hydroxyl radicals
(27). The differences seen at the higher region could also occur
because of disruption of phospholipid cell membranes (lower in-
tensity at 2,950–2,850 cm−1) and free radicals (higher intensity at
3,550–3,450 cm−1). Multivariate approaches were further used to
account for more detailed differences between the classes.
All of the six chemometric techniques used for classification

between AD and HC identified differences that led to classifi-
cation. The algorithms that achieved best classification were
GA-LDA at the fingerprint region and PCA-QDA at the higher
region. The sensitivity and specificity values found after the GA-
LDA model at the fingerprint region (70%) were remarkable,
considering that the spectral differences seen between AD and
HC were very subtle. However, sensitivity and specificity at the
higher region were slightly lower (68%), indicating the necessity
of using the lower biofingerprint region toward the classification
of AD samples rather than the higher region.
In a recent, large-scale study, which gathered information on

919 patients who had died and been autopsied, clinical diagnostic
methods provided sensitivity ranging from 70.9 to 87.3% and
specificity ranging from 44.3 to 70.8% (28). Having said that, an
earlier study using 228 postmortem samples from the Manchester
brain bank showed an overall agreement of 97% between clinical
and pathological diagnoses of various neurodegenerative diseases.
Clinical diagnosis of AD, specifically, was made with 97% sensi-
tivity (four patients with pathologically confirmed AD had a dif-
ferent clinical diagnosis) and 100% specificity (a clinical diagnosis
of AD was never wrong) (29). With regards to the subjects that we
used for the specific study, it should be noted that, of the

Fig. 5. Duration of AD. The first group (0.5–1 y) includes 32 AD patients, the
second group (1.5–5 y) includes 111 patients, and the third group (6–18 y) in-
cludes 17 patients. The most discriminant wavenumbers were 1,547 cm−1

(Amide II), 1,504 cm−1 (Amide II, phenyl rings), 1,369 cm−1 (cytosine, guanine),
1,219 cm−1 (νas of PO2

− of DNA/RNA), 1,080 cm−1 (νs of PO2
− of DNA/RNA), and

1,034 cm−1 (collagen). Data are expressed as mean (±SD). *P < 0.05; **P < 0.005.
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2,450 samples so far accrued, 60 brains have been recovered;
14 thereof had a clinical diagnosis of AD, which was confirmed
by pathological findings in 13 of them, whereas the other patient
actually had corticobasal degeneration (CBD). Incidentally,
there were four patients who had a clinical diagnosis of fronto-
temporal lobar degeneration—three with semantic dementia,
one with FTD—and were identified as AD based on histopa-
thology. However, none of these patient samples were available
for a subgroup analysis in our spectroscopic study.
The performance of our chemometric analyses showed excel-

lent agreement with these previous results. Although all patients
with AD fulfilled relevant diagnostic criteria, it is well-known that
there is clinical heterogeneity, with some patients showing dis-
proportionate impairment of language, memory, frontal behav-

ioral changes or orientation, and praxis. These may reflect
topographic changes in the distribution of brain pathology in the
early stages of the disease, partially in line with APOE genotype
(30), and might influence the outcomes of the spectral analysis.
Having said that, even if AD patients did show clinical uniformity
overall, they could still have different phenotypes because of
epigenetic alterations and/or environmental exposure that could
influence the result (28, 31). Therefore, a clinical diagnosis would
never reach 100% accuracy but rather, ∼80–90%. At the same
time, some of the HC participants will inevitably have preclinical
AD, since they are more or less age-matched to this group, also
leading to rates lower than 100%. Unfortunately, preclinical di-
agnosis of these diseases is problematic, because there is, as yet, no
really robust system to test for “prodromal” disease cases. Another

Fig. 6. Lipid-to-protein, phosphate-to-carbohydrate, and RNA-to-DNA ratios related to age. (A) Scores plot after cross-validated PCA-LDA showing differences
and similarities of AD patients before and after the age of 65 y old; no significant differences were found after statistical analysis (P = 0.6440, 95% CI = −0.00391,
0.0070). (B–D) Intensity ratios of important spectral regions: lipid-to-protein (1,450/1,539 cm−1), phosphate-to-carbohydrate (1,045/1,545 cm−1), and RNA-to-DNA
(1,060/1,230 cm−1), respectively. Data are expressed as mean (±SD). The two tables shown next to these graphs show the different subgroups and their mean age
(±SD). *P < 0.05; **P < 0.005.
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possible explanation for the obtained classification values in this
study could be the inclusion of all AD patients in one group
without additional classification to different stages (mild, moder-
ate, severe), as these were not fully recorded; this was also shown
to adversely affect the results in a recent study, when AD patients
of all stages were included in the same group (32). Nevertheless, in
our AD dataset, we had 14 cases of early AD, and thus, we were
able to conduct a subgroup analysis comparing them with the
healthy subjects. The achieved sensitivity and specificity were
80 and 74%, respectively, implying that this spectroscopic tech-
nique may serve as a diagnostic tool for early AD as well; however,
results should be interpreted with some caution because of the
small number of early AD cases. In general, very high sensitivities/
specificities should not be expected anyway, as the changes in the
biochemical composition of blood plasma are relatively minor,
compared with changes in CSF, for example, and do not neces-
sarily reflect all possible alterations happening in the brain during
AD progression (24).
APOE was also investigated, as it is a major risk factor for AD;

homozygous e4 individuals develop the disease 10–20 y earlier
than the others (33), while APOE e3 is considered “neutral,” and
APOE e2 is believed to serve a protective role (34). Furthermore,
one e4 allele increases the risk threefold, while two e4 alleles
increase the risk eightfold compared with the situation with no
e4 alleles. Different APOE genotypes would also cause differ-
ences in lipid composition and by extension, spectral in-
formation, and they could potentially “cloud” the issue when
looking for a diagnostic. Therefore, after the incorporation of
APOE e4 information, the achieved classification results were
noticeably higher, with sensitivity and specificity reaching 72 and
77% when the subjects had no APOE e4 alleles as well as 86 and
86% when the subjects had one or two APOE e4 alleles. After
classifying AD and HC by age, lower values were achieved,
suggesting that integration of APOE genotype is more important
toward AD diagnosis. This could further support our afore-
mentioned hypothesis, according to which differences in lipid
deposition, caused by the presence of different APOE genotypes,

could hide important spectral information; this would justify the
higher classification values after classifying by genotype but not
by age. In conclusion, these values for sensitivity/specificity, after
consideration of APOE genotype information and along with the
ease of sample collection and preparation, should ultimately
allow the implementation of this test into a clinical setting.
From our analysis on AD duration, we found evidence of al-

terations being detectable, which correlate with duration. The
increasing trend seen at 1,547 cm−1 is indicative of proteins pre-
dominantly in β-sheet conformation [Amide II, N-H bending, and
C-N stretching (17)] and could potentially be attributed to an in-
creased level of Aβ or more probably, tau proteins. One might
presume that, by the time of clinical diagnosis, Aβ levels may well
have peaked according to the amyloid cascade hypothesis, whereas
tau pathology should still increase, spreading from temporal lobes
into other neocortical regions. However, a decreasing trend is seen
at 1,504 cm−1, which is again indicative of Amide II (proteins), but
this time coming mainly from C-H bending vibrations of the
proteins’ phenyl rings (17); this may be because of damage caused
by reactive oxygen species (ROS) during oxidative stress (26), as
phenyl rings are readily damaged by ROS. These peaks could
provide information on progression and pathophysiology of AD,
and a combined ratio with other important wavenumbers may
serve as a potential biomarker. A decreasing trend is also seen at
1,369, 1,219, and 1,080 cm−1, which are assigned to cytosine/
guanine and asymmetric and symmetric vibrations of phosphate of
nucleic acids, respectively (17). We speculate that this general
decrease in nucleic acids is caused by the increased levels of ROS
that could lead to strand breaks and loss of phosphoric acid (27).
In a relatively recent study, an elevated level of a specific type of
collagen in the brain (collagen VI) was suggested to protect in-
dividuals against AD (35). The same study also pointed out that
neurons of the brain were the source of this collagen VI. There-
fore, this made us hypothesize that the progressive degradation of
nerve cells coming with disease duration could potentially un-
dermine their ability to produce collagen and that may explain the
statistically significant decrease that we observe in individuals after
1 y of AD (i.e., peak at 1,034 cm−1).
After classification of the AD group into different age groups,

the differences were not significant, suggesting that age differ-
ence alone is inadequate for discrimination when an individual
has already developed the disease. Moreover, after calculation of
different ratios of important spectral bands, potential biomarkers

Fig. 7. Other types of neurodegenerative diseases. (A and B) The 1D scores
plots after cross-validated PCA-LDA representing all of the different groups
of neurodegenerative diseases [AD (n = 164), DLB (n = 34), PD (n = 32), HC
(n = 202), other (n = 117)] using LD1 and LD2, respectively. (C and D) The 1D
scores plots after cross-validated PCA-LDA after selection of FTD (n = 30) and
PSP (n = 31) for additional analysis using LD1 and LD2, respectively.

Fig. 8. AD (n = 164) vs. DLB (n = 34). (A and B) Scores plot, illustrating
classification, and loadings plot, identifying the major discriminant wave-
numbers, after PCA-QDA. (C) Sensitivity and specificity achieved for the
segregation of AD from DLB; PCA-QDA achieved the best results, with 90%
sensitivity and 90% specificity. DF, discriminant function.
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were established, and a classification process was facilitated by
the generation of distinct patterns. Significant differences were
seen after comparison of different age groups of HC and AD,
and a combined ratio may serve as a more reliable biomarker.
In this study, we also incorporated a range of different neu-

rodegenerative diseases, apart from AD, and achieved satisfac-
tory segregation and classification results. The distinctive patterns
seen between AD, DLB, and FTD may represent different
pathological changes (36) and were mostly attributed to proteins
and lipids. Accurate separation of DLB from AD is of high im-
portance, as it would allow for appropriate medication/manage-
ment and therefore, impact on outcomes; for instance, it is
established that cholinesterase inhibitor treatment is more effec-
tive in DLB than AD patients (37). The high sensitivity and
specificity (90%) achieved for distinguishing AD from DLB are
outstanding and would provide an excellent diagnostic test toward
clinical implementation. By reduction of misdiagnosed DLB cases
and administration of appropriate drugs, many individuals would
benefit by getting the appropriate clinical management. Potential
biomarkers have also been suggested toward the diagnoses of
DLB, PD, FTD, and PSP. It should be noted that PD and DLB
did not show significant segregation from each other, which sug-
gests common characteristics; the presence of Lewy bodies (i.e.,
α-synuclein), which is a hallmark of both diseases, is the main
culprit for this similarity (38, 39).
A strength of this study is the large patient cohort, especially in

the AD and HC groups, which to our knowledge, has not been
previously repeated with similar techniques. However, some of the
other diseases [motor neuron disease (MND), vascular dementia,
etc.] are less common than AD; thus, the number of patients was
limited. Additional exploration of these diseases using larger co-
horts is required. Also, for prospective recruitment, patient char-
acteristics should be recorded in more detail along with the stage
of severity—mild (early stage), moderate (middle stage), and se-
vere (late stage)—whenever possible.
Currently, there is no single definitive medical test for di-

agnosing AD. In terms of biological markers, the most widely
studied molecules are undoubtedly Aβ and P-tau or T-tau. How-
ever, numerous studies attempting to diagnose AD using blood
have shown controversial results (40). Specifically, plasma Aβ-
42 and Aβ-40 levels have been seen to increase or decrease in AD
patients compared with controls. Plasma total Aβ and Aβ-42 levels
have shown inconsistent changes depending on whether an indi-
vidual presented with familial or sporadic AD. Increase of Aβ-
42 has been reported in women with mild cognitive impairment
(MCI) but not in men. Other studies in plasma have found no
differences at all between AD and controls; ratios of Aβ-42/
Aβ-40 have also been conflicting, as some found that an elevated ratio
predicts AD, while others found the opposite or no difference at all
(41, 42). Several reasons have been implicated for these findings,
such as the shift of Aβ levels over time and among individuals or
the different stages of AD (42); this could potentially justify the
nonsignificant increase (P = 0.1069, 95% CI = −0.005, 0.0005) that
we observed at the Amide I region (1,650–1,630 cm−1) comparing
AD patients with HCs. A recent metaanalysis of 231 studies con-
cluded that plasma Aβ-42 and Aβ-40 were not strongly associated
with AD and thus, should not be used in clinical practice (43).
Levels of tau protein in blood have also been investigated with

the hope of diagnosing AD. A recent study reported elevated
T-tau levels in AD patients compared with MCI and controls but
found significant overlap between MCI and AD as well as no
correlation between tau levels in CSF and plasma (44). Another
study reported increased level of T-tau protein in AD, which
when combined with the levels of Aβ-42, achieved improved
sensitivities and specificities (80 and 82%, respectively) in dif-
ferentiation of MCI from AD (45). The above-mentioned met-
aanalysis (43) also concluded that increased plasma level of
T-tau was the only blood biomarker that discriminated AD
from controls; however, it was pointed out that this finding would
need additional verification in larger cohorts. Overall, there is
still lack of optimal and reliable blood-based biomarkers that

would allow screening of preclinical AD in a clinical setting (46).
Most of the developed tests are for research use only, and this
emphasizes the need to move on to new analytical approaches.
The available drugs for AD can only temporarily alleviate

symptoms and do not treat the disease. The so far unsuccessful
clinical trials, focusing on the reduction of Aβ and tau levels,
suggest that there are more contributing factors/biomolecules to
be explored. Biospectroscopy investigates a range of different
biomolecules simultaneously, which could be advantageous in
multifactorial diseases, like AD. In this study, we have achieved
diagnosis of AD with an accuracy of ∼70–85% as well as
differential diagnosis of AD and DLB with 90% sensitivity
and specificity, which are outstanding considering the several
overlapping features.
At the same time, biospectroscopy is rapid, cost-effective, and

less laborious than other blood tests that require expensive anti-
bodies/assays. For instance, a typical ELISA (96-well plate) has
been calculated to cost approximately $1,000, with three kits
needed to quantify three core biomarkers of AD disease: Aβ, T-tau,
and P-tau (42, 43). Finally, this spectroscopic method could be used
to further investigate individuals in combination with other clini-
cally used neuropsychological tests and thus, help the clinician to
decide whether to proceed to more specialized and expensive tests.
In summary, we have shown excellent diagnostic performance

of our method for AD—especially after the APOE e4 in-
formation–as well as for other neurodegenerative diseases. Our
data suggest specific “fingerprint” regions capable of discrimi-
nating between pathological and healthy individuals as well as
differentiating among the different types of dementia. Early AD
cases were also segregated from HC with a high degree of sen-
sitivity and specificity. Here, we would like to emphasize that,
although we acknowledge the importance of diagnosing AD at
an early stage, we also believe that there are some hurdles to
overcome in diagnosing AD at any stage. Blood spectroscopy, as
described in this study, would provide an alternative to current
blood, CSF, or MRI tests. A prospective study, recruiting a larger
number of individuals in healthy or predementia (MCI) state,
would be required to confirm spectroscopy’s ability to perform as
a screening test. By monitoring the latter individuals’ progression
throughout the years, it would be possible to detect preclinical
AD and establish early biomarkers implying the appearance of
the disease. The ultimate aim would be to identify individuals
destined to develop AD long before the symptoms occur and
cease—or at least slow down—brain damage before it is too late.

Materials and Methods
Patients and Ethics. Blood samples were collected at Salford Royal Hospital,
with informed consent obtained before enrolment in accordance with Local
Ethical Approval (05/Q1405/24 conferred by North West 10 Research Ethics
Committee Greater Manchester North). This study included 549 individuals
with various neurodegenerative diseases as well as age-matched healthy
individuals, usually spouse controls. Patients with dementia were diagnosed
according to a battery of psychological testing (Manchester Neuropsychology
Inventory) performed at a specialist referral center (Cerebral Function Unit at
the Greater Manchester Neurosciences Centre, Salford Royal Hospital). Pa-
tients with movement disorder but without apparent cognitive impairment
were assessed in a specialist movement disorder clinic at Salford Royal
Hospital, and diagnosis of PD, PSP,multiple system atrophy (MSA), or CBDwas
ascribed by consultant neurologists with expertise in this area. Also, patients
with MND were assessed and diagnosed in Manchester MND Care Centre at
Salford Royal Hospital. At time of diagnosis, patients were not receiving any
medications, such as anticholinesterase treatments, which might affect the
outcomes. Most patients receive MRI scans, but these were used only to
support the neuropsychological outcomes.

Thepatient cohortwas subgrouped indifferent classes dependingon the type
of neurodegenerative pathology; 164 patients with AD, 34 patients with DLB,
32 patientswith PD, anda separate group namedother containing 117other less
common neurodegenerative diseases. The other group consisted of 10 patients
with CBD, 30 with FTD, 4 with MND, 5 with MSA, 20 with progressive nonfluent
aphasia (PNFA), 31 with PSP, 14 with semantic dementia, and 3 patients with
vascular dementia. The HC group was composed of 202 individuals who were
recruited with informed consent as above. The information on clinical and

8 of 10 | www.pnas.org/cgi/doi/10.1073/pnas.1701517114 Paraskevaidi et al.

www.pnas.org/cgi/doi/10.1073/pnas.1701517114


demographic data is summarized in Table S1. A power test, using power of 80%
(t test, confidence level of 95%) based on the training spectra set, indicated a
number of 309 samples to be used for the comparison of AD with HC and
135 samples to be used for the comparison of AD with DLB. However, we have
used 366 samples for AD vs. HC (power = 86%) and 198 samples for AD vs. DLB
(power = 92%), covering larger data variability.

Sample Collection and Preparation. Whole-blood samples were collected into
EDTA tubes and centrifuged at 1,130 × g at 4 °C for 10 min to separate
erythrocytes from plasma. Plasma was collected in 0.5-mL clean plastic tubes,
stored at −80 °C, and thawed at room temperature when necessary for
experiments. After frozen samples were thawed, 50 μL from each were
deposited on IR-reflective glass slides (MirrIR Low-E slides; Kevley Technol-
ogies) and left to air dry for ≈30 min before spectroscopic interrogation.

APOEGenotyping.DNAwas extracted by routinemethods fromblood samples
of patients and control subjects; APOE alleles were determined by PCR (47).
AD patients and HC individuals were classified for comparison into different
categories depending on their APOE genotype (Table S1). Because of the
established importance of APOE e4 alleles in AD, we categorized our cohort
into different groups to establish whether better classification is achieved.
Both AD and HC individuals were categorized into two groups: one with no
APOE e4 alleles and another with one or two APOE e4 alleles. AD patients
with no APOE e4 alleles (n = 71) were compared with HCs with no APOE
e4 alleles (n = 142), and similarly, patients with one or two APOE e4 alleles
(n = 88) were compared with HCs with one or two APOE e4 alleles (n = 49).

ATR-FTIR Spectroscopy. Spectrawereobtainedusing aTensor 27 FTIR spectrometer
with Helios ATR attachment (Bruker Optics Ltd) operated by OPUS 5.5 software.
The sampling area, defined by the internal reflection element, which was a di-
amond crystal, was≈250 × 250 μm. Spectral resolutionwas 8 cm−1 with two times
zero-filling, giving a data spacing of 4 cm−1 over the range 4,000–400 cm−1.
Spectra were acquired from 10 different locations of each sample to minimize
bias. The diamond crystal was cleaned with distilled water and dried every time
before moving to the next sample; a background spectrum was also taken after
the analysis of each sample to account for changes in ambient conditions.

Preprocessing of Spectra. An in-house–developed IRootLab toolbox (trevisanj.
github.io/irootlab/) was implemented within MATLAB R2012b software (Math-
Works) for both preprocessing and computational analysis of the data. Pre-
processing corrects problems associated with spectral data acquisition and
increases the robustness of subsequent multivariate analyses. Spectra were
preprocessed by two different methods and at two different regions of the mid-
IR spectrum; the first region examined was the biochemical “fingerprint region”
at 1,800–900 cm−1, and the second was a higher region at 3,700–2,800 cm−1,
which is representative of –OH levels and lipid concentration. The first pre-
processing method used rubber-band baseline correction followed by vector
normalization and was included for better visualization. However, the second
method, using Savitzky–Golay second-order differentiation (second-order poly-
nomial and nine filter coefficients) and vector normalization, was the main
approach used before additional multivariate analysis and classification. The
second derivative was preferable as a preprocessing step, as it allows over-
lapping peaks to be resolved and accounts for differences in more detail (48).

The unsophisticated approach of DBM spectra was initially implemented
to subtract the mean spectra of two different classes and account for dif-
ferences; a peak-detecting algorithm was used to identify the most prom-
inent peaks responsible for the segregation (49).

Computational Analysis and Classification. Computational analysis of all spectra
wasperformedusingMATLABwith IRootLaband PLS Toolbox 7.9.3 (Eigenvector
Research, Inc.). The multivariate analysis techniques used in this study were
composed of PCA-LDA/PCA-QDA, SPA-LDA/SPA-QDA, and GA-LDA/GA-QDA.

PCA is an unsupervised technique that reduces the spectral data space to
principal components (PCs) responsible for the majority of variance in the
original dataset. This technique looks for inherent similarities/differences and
provides a scores matrix representing the overall “identity” of each sample, a
loadings matrix representing the spectral profile in each PC, and a residual
matrix containing the unexplained data. The scores information can be used
for exploratory analysis, providing possible classification between data
classes. However, sometimes, PCA alone may not be enough, as it cannot
distinguish whether the differences come from “within-class” or “between-
class” variability (48, 50). For this reason, LDA, which is a supervised tech-
nique, is often applied after PCA to maximize the distance between the
classes and minimize the distance within a class; consequently, PCA-LDA
allows for better segregation.

For this study, the ∼230 variables (after the preprocessing) were reduced
into 10 PCs that represented >95% of the variance. After mean-centering of
the data, cross-validated PCA-LDA was performed to prevent overfitting of
the data [with k-fold (k = 10) and leave-one-out validation]. After cross-
validated PCA-LDA, information was visualized from 1D scores plots (using
LD1 or LD2), while identification of specific wavenumbers accounting for
separation was achieved from loading plots.

QDA is another supervised technique of discriminant analysis based, just
like LDA, on the Mahalanobis distance between objects of classes. The main
differences between the LDA and QDA are in the calculation of the classi-
fication score, in which QDA presents a more sophisticated approach ac-
counting for different variance structures in the classes being analyzed. The
LDA technique assumes that the classes have similar variance matrices,
whereas QDA forms a separated variance model for each class (51). LDA and
QDA classification scores are calculated as follows:

LDA: Lik = ðxi − �xkÞT
X−1

pooled

ðxi − �xkÞ− 2 loge   πk , [1]

QDA: Qik = ðxi − �xkÞT
X−1

k

ðxi − �xkÞ+ loge

���Σ
k

���− 2 loge   πk , [2]

where xi is a measurement vector for sample i, �xk is the mean measurement
vector of class k, Σpooled is the pooled covariance matrix, Σk is the variance–
covariance matrix, and πk is the prior probability of class k (52).

SPA and GA are variable selection techniques used to reduce the spectral
data space into few variables. SPA works by minimizing the variable collin-
earity (53), and GA works by simulating the data throughout an evolutionary
process (54). The original space is maintained for both algorithms, and no
transformation is made as in PCA. Therefore, the selected variables have the
same meaning of the original ones (i.e., wavenumbers), and they are re-
sponsible for the region where there are more differences between the
classes being analyzed or in other words, between the chemical changes.

For all classification models, samples were divided into training (70%),
validation (15%), and prediction (15%) sets by applying Kennard–Stone
uniform sampling selection algorithm (55). The training samples were used
in the modeling procedure, whereas the prediction set was only used in the
final classification evaluation using LDA and QDA discriminant approaches.
The optimal number of variables for SPA and GA was determined with an
average risk G of LDA/QDA misclassification. Such cost function is calculated
in the validation set as

G=
1
NV

XNV

n=1

gn, [3]

where gn is defined as

gn =
r2
�
xn,mIðnÞ

�

minIðmÞ≠IðnÞr2
�
xn,mIðmÞ

�. [4]

The numerator is the squared Mahalanobis distance between the object xn
and the sample mean mIðnÞ of its true class, and the denominator is the
squared Mahalanobis distance between the object xn and the mean of the
closest wrong class (56).

The GA calculations were performed during 80 generations with 160
chromosomes each. One-point crossover and mutation probabilities were set
to 60 and 10%, respectively. GA is a nondeterministic algorithm, which can
give different results by running the same equation/model. Therefore, the
algorithmwas repeated three times starting from random initial populations,
with the best solution resulting from the three realizations of GA used.

Sensitivity (probability that a test result will be positive when disease is
present) and specificity (probability that a test result will be negative when
disease is not present) were given by the following equations:

Sensitivityð%Þ= TP
TP+ FN

×100, [5]

Specificityð%Þ= TN
TN+ FP

× 100, [6]

where TP is defined as true positive, FN is defined as false negative, TN is
defined as true negative, and FP is defined as false positive.
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Data Sharing. All data (raw spectra and preprocessed spectra) along with
appropriate code identifiers will be uploaded onto the publicly accessible
data repository Figshare.

Statistical Analysis. Differences between two groups were assessed using a
Student’s t test (two-tailed, nonparametric, Mann–Whitney test, 95% CI) in
GraphPad Prism 6.0 (GraphPad Software). Statistical analysis was implemented
at specific peaks pointed out after DBM spectra and cross-validated PCA-LDA
as well as at scores plots as a whole. Before importing all of the information
into GraphPad for additional statistical analysis, spectra were averaged every
10 (as 10 spectra were collected per individual) to account for differences
between individuals rather than spectra. For the statistical analysis of three or
more groups, one-way ANOVA was applied (nonparametric, Kruskal–Wallis
test with a Dunn’s multiple comparison posttest). The data were expressed as

the mean ± SD. A P value of 0.05 or less was considered significant in all
statistical tests. Statistically significant differences were indicated with aster-
isks: *P < 0.05, **P < 0.005, ***P < 0.0005, or ****P < 0.00005.
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