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Abstract

The growth of black holes (BHs) in disk galaxies lacking classical bulges, which implies an absence of significant
mergers, appears to be driven by secular processes. Short bars of sub-kiloparsec radius have been hypothesized to
be an important mechanism for driving gas inflows to small scale, feeding central BHs. In order to quantify the
maximum BH mass allowed by this mechanism, we examine the robustness of short bars to the dynamical influence
of BHs. Large-scale bars are expected to be robust, long-lived structures; extremely massive BHs, which are rare,
are needed to completely destroy such bars. However, we find that short bars, which are generally embedded in large-
scale outer bars, can be destroyed quickly when BHs of mass ~ –M 0.05% 0.2%bh of the total stellar mass ( M ) are
present. In agreement with this prediction, all galaxies observed to host short bars have BHs with a mass fraction less
than M0.2% . Thus, the dissolution of short inner bars is possible, perhaps even frequent, in the universe. An
important implication of this result is that inner-bar-driven gas inflows may be terminated when BHs grow to

~ M0.1% . We predict that M0.2% is the maximum mass of BHs allowed if they are fed predominately via inner
bars. This value matches well the maximum ratio of BH-to-host-galaxy stellar mass observed in galaxies with
pseudo-bulges and most nearby active galactic nucleus host galaxies. This hypothesis provides a novel explanation
for the lower M Mbh in galaxies that have avoided significant mergers compared with galaxies with classical bulges.

Key words: black hole physics – galaxies: evolution – galaxies: kinematics and dynamics – galaxies: nuclei –
galaxies: structure

1. Introduction

It is well established that ellipticals and classical bulges
follow tight scaling relations with the masses of their black
holes (BHs; see the review by Kormendy & Ho 2013).
Classical bulges are known as remnants of galaxy mergers
(e.g., Toomre 1977); these scaling relations led to the
prevalence of models involving merger-driven coevolution of
BHs and host galaxies (e.g., Di Matteo et al. 2005; Croton et al.
2006). However, bulgeless galaxies and galaxies with pseudo-
bulges, which have a formation history free of significant
mergers, do not follow the same scaling relations as classical
bulges and ellipticals (Kormendy & Ho 2013). Many such disk
galaxies hosting supermassive BHs have been found (e.g.,
Filippenko & Ho 2003; Greene et al. 2010; Jiang et al. 2011;
Dong et al. 2012; Jiang et al. 2013; Simmons et al. 2013;
Greene et al. 2016), suggesting that significant BH growth can
be driven largely by internal secular processes. Deep observa-
tions of the galaxy morphology have showed that BH growth is
unlikely to have been driven by significant mergers, at least
since redshift z∼2 (Gabor et al. 2009; Georgakakis et al.
2009; Cisternas et al. 2011; Schawinski et al. 2011; Kocevski
et al. 2012; Fan et al. 2014).

Even though bars are considered the most important drivers of
secular evolution, how they affect the scaling relations is still not
well understood. Near-infrared surveys show that in the nearby
universe about two-thirds of disk galaxies host stellar bars (e.g.,
Eskridge et al. 2000; Menéndez-Delmestre et al. 2007). Almost

one-third of barred galaxies also host a short inner bar of general
radius 1 kpc (Erwin & Sparke 2002; Laine et al. 2002;
Erwin 2004, 2011), such systems are termed double-barred
(S2B) galaxies. At sub-kiloparsec scales, short inner bars have
been hypothesized to be an important mechanism for driving gas
inflows into the center, efficiently feeding BHs (e.g., Shlosman
et al. 1989; Hopkins & Quataert 2010). Thus, in order to
understand the secular growth of BHs, a crucial question is
under what conditions short inner bars can survive the presence
of a BH.
In triaxial systems, central massive concentrations (CMCs),

e.g., BHs, dense stellar clusters, and nuclear disks, can scatter
stars moving on elongated orbits onto more chaotic ones (e.g.,
Gerhard & Binney 1985). The dissolution of bars under the
dynamical influence of BHs has been studied via self-consistent
N-body simulations (e.g., Shen & Sellwood 2004; Athanassoula
et al. 2005). Shen & Sellwood (2004) showed that extremely
massive BHs (i.e., more than 4% of the galaxy stellar mass M )
are necessary to destroy large-scale bars. Measurements of BH
masses find a mass range 

– M106 10 , and the typical mass ratio
of BH-to-host-galaxy stellar mass is 0.1%. Thus, the BH mass
fraction required to destroy bars is rare. Therefore, whether the
dissolution of bars has ever happened in the universe has been
seriously questioned.
As suggested in Hozumi (2012), shorter bars might be more

fragile than normal bars of radius = –a 2 4 kpcBar . In this
Letter, we constrain how massive a BH can become before
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destroying inner bars by adding BHs in the S2B models of Du
et al. (2015). In Section 2, we describe the simulations we use.
The destruction of short inner bars by BHs is presented in
Section 3. A novel explanation of the observed limit in the
mass ratio of BH-to-host galaxy is presented in Section 4. We
summarize our conclusions in Section 5.

2. Model Settings

All the collisionless models we study involve isolated,
initially pure-exponential disks. The simulations are evolved
with the 3D cylindrical polar option of the GALAXY N-body
code (Sellwood 2014). The system of units is set to

= = =G M h 1R0 , where G M, 0, and hR are the gravitational
constant, mass unit, and scale length of the initial disk,
respectively. Physical quantities can be obtained by choosing
appropriate scalings. A reasonable scaling to typical spiral/S0
galaxies is = ´ M M4.0 100

10 and =h 2.5 kpcR , which

gives the unit of time = t h GM 9.3 MyrR0
3

0 . We use
grids measuring ´ ´ = ´ ´fN N N 58 64 375R z , which give
rise to a force resolution of 0.01 in the central regions. The disk
consists of four million equal-mass particles with softening
radius 0.01=25 pc. As the central dynamics are largely
dominated by the stellar component, we use the same
logarithmic rigid halo that Du et al. (2015) used to simplify
the simulations.

In this Letter, we examine the robustness of the well-studied
short inner bar of the standard S2B model in Du et al.
(2015, 2016), which has a disk mass  =M M1.5 0. The initial
Toomre-Q is set to ∼2.0 in the outer region; in the inner region,
Toomre-Q is reduced gradually toward the center reaching a
minimum value of 0.5. Thus, the inner bar forms spontaneously
from the strong bar instability of such a dynamically cool,
rotation-dominated, inner disk within a few hundred Myr. At
steady state, the semimajor axis of the inner bar is

~ ~a 0.3 0.75 kpcin . The outer bar, which extends to
~ ~a 3.0 7.5 kpcout , forms slowly in the hotter outer disk.

In this standard S2B model, the inner bar rotates about three
times faster than its outer counterpart.

We also examined the clumpy S2B model whose inner disk
fragments, forming clumps at the beginning because of using
an even colder inner disk (minimum Toomre- ~Q 0.3) than the
standard S2B. The clumps move toward the center quickly,
then coalesce into an inner bar (Figure 7 in Du et al. 2015) that
is relatively stronger, i.e., more massive and longer
( ~a 1.5in kpc).

The CMC is introduced as the potential of a rigid Plummer
sphere


F = -

+
( ) ( ) ( )r

GM t

r
, 1C

C

2
C
2

where ( )M tC and C are the mass and softening radius,
respectively, of the CMC. As C determines the compactness of
the CMC, we use  = =0.001 2.5pcC to mimic a BH. The
force from the CMC is added directly to each particle from the
analytic form, and is therefore independent of the grid
resolution.

In order to mimic the secular growth of BHs, the BH mass is
gradually increased after the bars have reached a steady state at

=t 300C . The initial CMC mass =M M0.0001%C0 grows
smoothly to the maximum mass MCm in =t 50g time units as

follows:
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where t = -( )t t tC g. The growth time tg is much longer than
the dynamical timescale of the central particles. Thus, it can be
regarded as an adiabatic growth. The simulations last 800 time
units, 7.4 Gyr in our standard scaling.
The maximum mass of the BH, Mbh, is varied in the range of

M0.01% to M0.2% . To ensure accurate integration for
rapidly moving particles, we reduce time steps by half for
adding guard shells around the BH (Shen & Sellwood 2004).
The time step is D =t 0.01 outside of the guard shells. We
introduce eight shells at r 0.12, the shortest time step reaches
Dt 28, which is sufficiently small even for the fastest moving
particles.

3. The Dissolution of Short Inner Bars

3.1. The Standard S2B Model

As shown in Figure 1, the inner bar is completely destroyed
within 100 time units by a BH of mass = ~M M0.2%bh

M108 . Figure 2 shows the evolution of the inner (Ain) and
outer (Aout) bar amplitudes. The black profiles represent the
model using a tiny BH of fixed mass M0.0001% , in which
case the bars are almost unaffected. The growth of a M0.05%
BH breaks the dynamical equilibrium of the two decoupled
bars within a short time. The relative position angle of the two
bars, fD , for all of these models is shown in the inset of
Figure 2. Although Ain decreases sharply because of the growth
of BH, the pattern speed does not change much during the inner
bar weakening, e.g., t=300–420 in the case of  =M Mbh
0.05%. As the inner bar still rotates independently of its outer
counterpart, they are still interacting strongly. The evolution of
fD shows that the weakened inner bars may be trapped by the

outer bars, i.e., coupling to alignment. The coupling process is
essentially similar to the case of the aligned S2B presented in
Du et al. (2015, Figure 11): the fast-rotating inner bar slows
down sharply before reaching a perpendicular orientation,
falling into alignment with the outer bar. The key difference
from the aligned S2B of that earlier model is that the coupling
leaves no prominent face-on peanut-shaped density contours.
The amplitude of the aligned “inner” bar decreases slowly in
the later stage, until it becomes quite round, probably indicating
continued orbital scattering. In order to verify that the evolution
found here is not an artifact of the grids and code use, we rerun
the simulations of bar dissolution (t=300–400) with the
momentum-conserving treecode gyrfalcON (Dehnen 2000,
2014).9 Adaptive time steps are used to accurately integrate
particle motions close to the BHs. Figure 2 includes the results
from these tests; in all cases, the results are consistent with
those from GALAXY.
Because many massive BHs are already present in the very

early universe, likely before disks and bars were established
(Fan et al. 2001, 2003), we also model this scenario by adding a
BH of fixed mass from the beginning of the simulations. In
order to generate the initial disk for the S2B instability, we use
the same initial conditions as the standard S2B model. Because

9 Available at the NEMO repository (Teuben 1995): http://admit.astro.umd.
edu/nemo/.
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of the chaotic nature of galactic disks (Sellwood & Debattista
2009), stochasticity can significantly affect such models (Du
et al. 2015). Therefore, we run 10 S2B simulations for each BH
mass changing only the random seed for generating the initial
particles. In the case of a pre-existing BH, within ∼1 Gyr, the
initial disk generally generates an S2B structure similar to that

in the standard S2B model. With a pre-existing BH of mass
M0.2% , we never obtain a steady S2B feature lasting more

than 1.5 Gyr. In the case of a M0.05% BH, half the
simulations maintain decoupled S2B features for more
than 4 Gyr.

3.2. Other Models

In the clumpy S2B model, the strong inner bar extends to
1.5 kpc, while the outer bar is quite weak. Thus, the
gravitational torque of the outer bar has a negligible effect on
the robustness of the inner bar. We regard this model as an
extreme case for testing the robustness of short bars under the
dynamical influence of BH growth. The inner bar in this case
can be destroyed within 2 Gyr by a BH of mass M0.3%
without coupling between the two bars. We have examined that
a single nuclear bar performs similarly to the inner bar of the
clumpy S2B model. Using a single-barred simulation
( ~ –a 3 4Bar kpc), Valluri et al. (2016) investigated the change
of the orbital families that is induced by the growth of BHs.
They showed that BHs of mass M0.2% can destroy most bar-
supporting orbits within <R 1.5 kpc, which is consistent with
our result. Therefore, M0.2% is likely to be the maximum BH
mass allowing the presence of short inner bars in galaxies free
of mergers.

4. The –M Mbh Relation

If short bars are the primary drivers of gas inflows feeding
BHs, the dissolution of short bars should halt the secular
growth of BHs. Thus, the mass of BHs may stall at ~ M0.1% .
In observations, M is generally approximated by assuming
reasonable mass-to-light (Må/L) ratios. Many short bars may
have been destroyed after they played an important role in
feeding BHs. After short bars are destroyed, continuing star
formation in spiral galaxies will result in an even lower mass
ratio of BH-to-host galaxy. Our simulations therefore constrain
the maximum M Mbh allowed by secular evolution.
In Figures 3 and 4, we show different measurements of

M Mbh from Kormendy & Ho (2013) and Reines & Volonteri
(2015), respectively. The criterion obtained from the simula-
tions is overlaid as the shaded region. In Figure 3, except for

Figure 1. Face-on surface density images of the standard S2B model harboring a BH of mass =M M0.2%bh , showing the quick dissolution of the short inner bar
within 100 time units (∼1 Gyr). The density contours in logarithmic space are overlaid in black. The long and the short straight lines mark the orientations of the outer
and the inner bars, respectively.

Figure 2. Time evolution of the inner (top) and the outer (bottom) bars of the
standard S2B model under the dynamical influence of BHs. The BHs grow to
the maximum mass Mbh (shown in the legend) from a seed of mass

M0.0001% during t=300–350. The cases of  = –M M 0.0001% 0.2%bh are
shown here. Ain and Aout are defined as the Fourier m=2 amplitudes averaged
over R 0.3 and  R1.0 3.0, respectively. The relative position angle of
the two bars, fD , as a function of time is shown in the inset. For cross-check,
the results of  = –M M 0.05% 0.2%bh recalculated using gyrfalcON are
labeled as 0.05%g, 0.1%g, and 0.2%g, respectively.
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NGC4699, all the data are taken from Kormendy & Ho (2013),
where the BH masses are measured using dynamical methods
and the stellar masses are based on the Må/L of Bell et al.
(2003). These spiral/S0 galaxies are classified into two groups
based on the morphology of their bulges. According to the
decomposition of Erwin et al. (2015), NGC4699 is a galaxy
with a composite bulge containing a primary pseudo-bulge
(mass ~ M36% ) and a small classical bulge ( ~ M11% ).
Thus, NGC4699 should also be classified as a galaxy with a
pseudo-bulge. Disk galaxies with pseudo-bulges tend to fall
below the mass ratio of BH-to-host galaxy found in galaxies
with classical bulges and elliptical galaxies (Reines &
Volonteri 2015). Such a clear separation suggests that the
BHs evolve differently. Exponential, disky pseudo-bulges are
generally expected to be generated by internal secular evolution
without significant mergers. Therefore, the growth of BHs in
galaxies with pseudo-bulges and bulgeless galaxies should be
dominated by secular processes, including inner-bar-driven gas
inflows.

Mergers are rare in the local universe. Most active galactic
nuclei (AGNs) may also be triggered by secular processes.
Thus, the BH masses in AGN host galaxies are likely to be
lower than the maximum BH mass allowed by secular
evolution. In Figure 4, we include the measurements of 256
broad-line AGNs from Reines & Volonteri (2015) and 15
reverberation-mapped AGNs from Bentz & Katz (2015). The
stellar masses in Figure 3 are systematically higher by a factor
of ∼2 than those in Figure 4, which were estimated by the
color-dependent Må/L presented by Zibetti et al. (2009). The
histogram in the right panel of Figure 4 shows the number
distribution of the mass ratio of the AGN host galaxies and the
galaxies with pseudo-bulges. Less galaxies are located at the
cyan shaded region; mass ratios larger than 0.002 are rare.

Thus, maximum BH mass suggested by our simulations is
roughly consistent with the observations. It suggests that BH
growth via secular evolution is terminated by the dissolution of
short bars.
Short inner bars are expected to be gradually destroyed once

~ –M M0.05% 0.2%bh . Five S2Bs (NGC1068, NGC3368,
NGC3393, NGC3945, and NGC4736; see Erwin 2004) are
marked by red squares in Figures 3 and 4. All of them have
lower mass ratios than the upper boundary of the cyan region.
In M81, a short inner bar may be embedded in a weak outer bar
(Gutiérrez et al. 2011), although it is generally considered to
have a significant classical bulge. NGC4699 only harbors a
single short bar. The absence of strong outer bars allows short
bars to persist for longer because of the lack of interaction
between two bars. Thus, it is not surprising that M81 and
NGC4699 are present at the cyan shaded region. However, no
S2Bs are above this range.

5. Conclusions

BH growth in disk galaxies without significant mergers is
expected to be driven by secular processes. Sub-kiloparsec-
scale short bars, generally embedded in large-scale bars, have
been hypothesized to be an important mechanism for driving
gas inflows, feeding BHs. Whether and under what conditions
short bars can survive the presence of a BH can provide a
crucial test of this scenario. By adding BHs at the center of
short-bar simulations, we have found that short bars are likely
to be destroyed by BHs with masses at least 0.05%–0.2% of the
galaxy stellar mass; mass ratios larger than M0.2% always
lead to destruction of short bars. This maximum mass ratio
coincides well with the observed upper limit on BH mass ratios
for real disk galaxies. Therefore, we provide a possible
explanation for the lower M Mbh in disk galaxies: the BH
growth via secular evolution may be terminated by the
dissolution of short inner bars.
We sketch a potential evolutionary path of the central

structures of disk galaxies as follows. In gas-rich galaxies, gas
is funneled into central regions by large-scale galactic bars,
gradually building a stellar nuclear disk. Short inner bars form
spontaneously in nuclear disks after sufficient accumulation of
dynamically cold stellar material (Du et al. 2015). Then, short
inner bars funnel gas further into the center, feeding BHs.
According to the criterion in this Letter, inner bars are
destroyed when the BH mass grows to ~ M0.1% . The
dissolution of inner bars in turn slows down, or even stops, the
growth of BHs. Thus, BH growth in disk galaxies is mediated
by the secular evolution of short bars in the absence of mergers.
However, previous observations have not found a clear

relation between inner bars and AGNs (e.g., Regan &
Mulchaey 1999; Martini et al. 2001; Erwin & Sparke 2002;
Laine et al. 2002). One possible reason is that catching BH
fueling in the act is challenging, as one AGN activity episode
typically lasts just a few million years. Another possible reason
is that AGN fueling may be dominated by some unknown
stochastic processes very local to the BH, as the radius that
inner-bar-driven gas inflows reach may still be too far away
from the BH’s accretion disk. Or the fraction of short inner bars
may be underestimated because of dust obscuration, particularly
in late-type galaxies. Furthermore, other non-axisymmetric
nuclear structures, e.g., spirals, may also drive gas inflows
feeding BHs (Hopkins et al. 2010). Thus, AGNs may not be
completely stalled after inner bars are destroyed. Therefore, it is

Figure 3. Mass ratios of BH-to-host-galaxy stellar mass summarized in
Kormendy & Ho (2013). The BH mass and stellar mass of NGC4699 are
adopted from Saglia et al. (2016) and Erwin et al. (2015), respectively. The red
and blue dots represent the galaxies with classical bulges and pseudo-bulges,
respectively. Their BH masses are all measured via stellar dynamics. The error
comes from the uncertainty in Mbh measurement. The maximum BH mass
fraction obtained from our simulations is overlaid in the cyan shaded region.
The galaxies having a short (inner) bar are marked with red squares.

4

The Astrophysical Journal Letters, 844:L15 (6pp), 2017 August 1 Du et al.



perhaps not surprising that no clear relation is reported. The
previous studies cannot rule out short bars as a potentially
important mechanism of promoting BH growth in disk galaxies.
Whether or not other drivers of gas inflows are also suppressed
by BH growth will be studied in future work.
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