1	Article type: Nutrition in clinical care
2	Does adipose tissue mass positively or negatively influence bone mass in an overweight or
3	obese population? A systematic review and meta-analysis
4	Eimear Dolan ¹ , Paul A. Swinton ² , Craig Sale ³ , Aoife Healy ⁴ , John O'Reilly ⁵
5	1: Applied Physiology & Nutrition Research Group, University of São Paulo, São Paulo, Brazil.
6	2: School of Health Sciences, Robert Gordon University, Aberdeen, UK.
7 8	3: Sport, Health and Performance Enhancement Research Centre, School of Science and Technology, Nottingham Trent University Nottingham, UK.
9 10	4: CSHER, School of Life Sciences and Education, Staffordshire University, Stoke on Trent, UK.
11 12	5: Department of Sport Science and Physical Education, Chinese University of Hong Kong, Hong Kong.
13	Running Title: Adiposity and Bone
14	Corresponding Author:
15	Dr. Eimear Dolan: Postdoctoral Research Fellow, Applied Physiology & Nutrition Research
16	Group, University of São Paulo, São Paulo, Brazil. Email: eimeardol@gmail.com
17	
18	
19	
20	
21	
22	
23	

ABSTRACT:

Context: Conflicting evidence about the relationship between adiposity and bone in overweight and obese populations exists. Objective: To quantify the correlation between adipose mass (absolute and relative) and bone mineral density (BMD) in over-weight and obese populations. Data Sources and Extraction: An electronic search of the literature was undertaken using three databases and supplemented through screening the reference lists of relevant articles. Data were extracted from 16 studies which reported a correlation between adipose mass (kg or %BM) and BMD in overweight or obese individuals. Data Synthesis: Multi-level modelling indicated opposing relationships between BMD and adiposity, with absolute adiposity positively, and relative adiposity negatively correlated with BMD. Sex and age were the primary moderators of these relationships. Strong evidence was obtained supporting a negative relationship between relative adipose mass and BMD in men (R=-0.37; 95%CI: -0.57,-0.12) and those aged <25 years (R=-0.28; 95%CI: -0.45,-0.08). **Conclusion:** In order to protect bone mass in overweight and obese populations, nutrition and exercise based interventions that focus on a controlled reduction of adipose mass with concomitant preservation of lean mass are recommended.

50 **INTRODUCTION**

51 Increasing obesity prevalence is a global health problem and worldwide statistics have recently estimated that 38% of all adults are overweight, and 13% are obese.¹ In addition to 52 the well-documented health consequences of increasing overweight and obesity levels,² 53 obesity also represents a substantial social and economic burden, due to direct (e.g., 54 55 increased healthcare costs) and indirect (e.g., higher dependence on welfare due to premature retirement and unemployment; increased sick leave) costs. ³ Another worldwide 56 57 health issue increasing in prevalence and with far-reaching social and economic consequences is osteoporosis. It is estimated that worldwide, osteoporosis causes more 58 than 8.9 million fractures annually, ⁴ and the worldwide incidence of osteoporosis related 59 hip fracture is predicted to increase by 310% in men, and 240% in women by the year 2050 60 compared to 1990 statistics. ⁵ As such, optimal management of these two chronic lifestyle 61 related and nutritionally modulated conditions is required to protect the long-term health of 62 63 the world population, and to decrease their associated social and economic burden.

64 More complete understanding of the relationships between the adipose and bone 65 compartments of body composition are essential to the development of management and 66 treatment strategies for obesity and osteoporosis. Obesity has historically been considered 67 to be protective of bone, which was thought to occur as a result of the increased loading afforded by a greater total body mass, mediated through the action of various osteo, adipo 68 and myokines. ^{6,7} Absolute body mass ^{8–10} and lean mass in particular, ¹¹ have been reported 69 70 to be the strongest independent predictors of bone mineral density (BMD), which is the 71 primary determinant in the diagnosis of osteoporosis. The relationship between adipose mass and BMD is more controversial however, with both positive and negative correlations 72 reported. ^{12,13} A number of studies have reported higher BMD in obese populations, when 73 compared to normal weight controls, ^{14,15} and a recent meta-analysis conducted on the 74 general population reported a positive correlation between adipose tissue mass and total 75 body BMD (R = 0.28; 95%CI: 0.21, 0.31), ¹¹ leading to the belief that adipose mass exerts a 76 positive influence on bone mass. Conversely, evidence exists supporting a detrimental 77 influence of excess adiposity on bone, which is thought to occur via a number of 78 mechanisms. ^{16–19} For example, an obese state is associated with increased oxidative stress, 79 ²⁰ which has consequences for bone health. Reactive oxygen species (ROS) act as signalling 80

molecules in the regulation of bone remodelling by mediating osteoclast differentiation. ^{21,22} 81 82 Elevated ROS, as occurs in a state of oxidative stress however, could cause a 83 disproportionate increase in bone resorption, increasing the rate of bone loss and contributing to the pathophysiology of a number of bone disorders. ^{23,24} Both osteoblasts 84 and adipocytes are derived from a common mesenchymal stem cell progenitor and 85 increased adipogenesis may occur at the expense of osteogenesis.¹⁶ In support of this 86 87 argument is evidence that osteoporosis is associated with an increased prevalence of fat within the bone marrow, ²⁵ although it is not clear whether this is the cause of bone loss or 88 if fat subsequently fills the medullary spaces once bone is already lost. ²⁶ Additionally. 89 obesity typically occurs, at least in part, as a result of a sedentary lifestyle, ²⁷ whereas 90 adaptation to physical activity induced loading increases bone mass and function, ^{28,29} whilst 91 92 subsequently reducing adiposity and positively influencing adipose structure and regulation. ³⁰ It appears paradoxical, therefore, to assume that the positive relationship between 93 adiposity and bone mass reported in the general population ¹¹ would also be evident in 94 overweight or obese populations. 95

96 The available evidence indicates that adipose tissue mass may exert a "dual" effect on BMD, with both high and low adipose content causing adverse skeletal effects. ³¹ Both over 97 and underweight states are associated with increased fracture incidence at various sites, ³² 98 99 suggesting that the relationship between adiposity and bone is biphasic, whereby optimal 100 adiposity exerts a beneficial adaptive effect on bone whilst higher or lower levels are detrimental. Knowledge of the effects of an underweight state on bone health is more 101 developed than the effects of an overweight/obese state.³³ Therefore, the aim of this 102 103 systematic review and meta-analysis was to quantify the correlation between absolute and 104 relative adipose tissue mass and bone mineral density in over-weight and obese 105 populations and to consider the influence of modifying covariates, including sex, age and 106 BMI category on these correlations.

107

108

110 METHODS

111 Study Eligibility:

The protocol for this study was designed in accordance with PRISMA guidelines ³⁴ and was 112 113 prospectively registered in an international register of systematic reviews (PROSPERO, 114 registration number CRD42015024313). Consideration of PICOS (Population; Intervention; 115 Comparator, Outcomes and Study Design) guided the determination of the inclusion and 116 exclusion criteria for this review (see Table 1). The *population* was restricted to those who 117 were overweight or obese. This was determined through the selection criteria of the 118 assessed articles. Where appropriate, population specific criteria for overweight or obesity were used, e.g. WHO criteria were considered to underestimate obesity prevalence in 119 Chinese adults, ³⁵ and revised criteria were proposed by the Working Group on Obesity in 120 China (WGOC) based on meta-analyses of associations between BMI and cardiovascular 121 disease risk factors and events. ^{36,37} Chinese criteria for overweight are a BMI between 23.0 122 123 and 27.9, and for obesity is > 28.0. In addition, data from paediatric populations were 124 included if the study inclusion criteria classified overweight or obesity based on validated age-specific criteria. If the stated inclusion/exclusion criteria from each study did not 125 confirm that the population were overweight or obese, data were included if the sample 126 mean BMI minus one standard deviation was ≥ 25 kg m⁻², indicating that ~ 84% of the 127 sample were overweight according to WHO criteria and assuming that the data were 128 parametrically distributed. Men and women of any age were considered for inclusion within 129 130 the review. Individuals suffering from medical conditions or taking medications that may be related to the development of secondary osteoporosis, e.g., thyroid dysfunction; 131 hypogonadism; genetic abnormalities (e.g., osteoporosis imperfecta) or physical disabilities 132 133 were excluded from the study. In addition, athletic populations were also excluded, as 134 regular training may result in a state of overweight or obesity due to high muscularity rather 135 than adiposity. No *intervention* or *comparators* were identified for this study; however, 136 only studies that reported a correlation between adipose mass and BMD were considered 137 for inclusion. *Outcome* measures included a measure of adipose mass (absolute or relative) 138 Absolute adipose mass was defined as the total amount of adipose tissue (kg), while relative adipose mass was defined as the % of adipose tissue relative to total body mass. Adipose 139 140 mass assessed using dual energy X-ray absorptiometry (DXA) was considered as the primary

141 outcome measure of interest, as DXA has been described as a criterion method for body composition assessment. ³⁸ Indirect methods of body composition assessment (e.g., skinfold 142 143 assessment) were also considered for inclusion, provided they used validated techniques. 144 Studies were also required to provide data describing BMD of the total body; total hip, femoral neck or lumbar spine assessed by DXA (g cm⁻²). Only original human studies 145 146 published in the English language between 1980 and 2016 were considered. The reference 147 lists of the identified review articles were screened for relevant original studies but these reviews were not included. Intervention studies were considered only if the pre-148 149 intervention information provided adhered to the inclusion/exclusion criteria outlined 150 above.

151 Search Strategy:

152 An electronic search of the literature was independently undertaken by two members of the 153 review team (ED and PAS) from three databases (Medline, Embase and ScienceDirect) using a 3-stage screening process, i.e., 1) Title/Abstract; 2) Full-text screen; 3) Full-text appraisal. 154 155 The key words "Bone" OR "BMD" within the title were concatenated with "Body Composition" OR "Fat" OR "Lean" OR "Muscle" OR "Fat-Free" OR "Adipose" within the title, 156 157 abstract or keywords. Results were limited as described within the inclusion/exclusion 158 criteria outlined above and in accordance with the filter options provided within each 159 database. In addition, reference lists of relevant original and review articles were screened 160 in attempts to obtain all relevant studies. The search was completed in July 2016.

161 Assessment of Methodological Quality and Data Extraction:

162 Included studies were assessed for methodological validity and data were extracted by two 163 independent reviewers (ED and PAS or JOR) using a pre-piloted template based on the 164 McMaster University critical review form for quantitative studies and adapted for specific 165 use in this review. This tool was selected based on its relevance for all quantitative studies, 166 as opposed to other widely used tools (e.g., CONSORT) that are primarily applicable to 167 randomised controlled trials and of limited relevance for this particular review, which mainly 168 used cross-sectional investigations. Data were extracted regarding study design, participant 169 characteristics (sample size, sex, ethnicity, age and BMI), selection procedures and outcome 170 measures (equipment used, total body, lumbar spine and total hip and femoral neck BMD

Nutrition Reviews

171 and adipose mass), along with data analysis and reporting procedures. The primary analysis 172 variable was the bivariate correlation coefficient between adipose mass and BMD (total 173 body, lumbar spine, total hip and femoral neck), although multi-variate coefficients were 174 considered if they controlled for non-lifestyle associated non-modifiable factors (e.g., sex). The two adipose measures included were absolute adipose mass (kg) and relative adipose 175 mass (%BM), thus allowing for a total of 8 correlation coefficients to be extracted. 176 177 Secondary analyses examined the moderating effect of three subgroups *i.e.* sex, age, and 178 BMI category (overweight and obese). Age categories were included based on a strong body 179 of evidence indicating that physiological stage of development substantially contributes to variation in BMD. ^{39,40} Three age categories were included within the multi-level model, *i.e.*, 180 181 <25; 25 – 55 and >55 years. These classifications were selected in order to represent the three main phases of the bone's lifecycle, *i.e.*, development, maintenance and decline. ⁴¹ 182 Age categories were assigned based on the mean age reported. Participants were assigned 183 to the obese group if the reported BMI minus one standard deviation was \geq 30 kg m⁻². In 184 185 addition, results were considered in relation to sex categories, as evidence indicates that sexual dimorphism may impact the results attained. ⁴² 186

187 Data Synthesis:

Correlation coefficients were converted to Fisher's z scale using the transformation $z = 0.5 \times \ln\left(\frac{1+r}{1-r}\right)$, where r is the correlation coefficient. The variance of z was approximated from $V_{\overline{z}} = \frac{1}{n-3}$, where n was the sample size used to calculate the correlation coefficient. All meta-analyses and meta-regressions were estimated using a three level mixed effects model to account for dependencies within the data as a result of 11 of the 16 included studies reporting correlation coefficients for more than one site. The basic model consisted of three regression equations, one for each level: ⁴³

195
$$z_{jk} = \beta_{jk} + \epsilon_{jk} \text{ with } \epsilon_{jk} \sim N\left(0, \sigma_{\epsilon jk}^{2}\right) \text{ (level1: sample)}$$

The equation at the first level states that ${}^{\mathbb{Z}_{jk}}$ the j -th observed transformed correlation from study k is equal to the corresponding population value β_{jk} plus a random deviation, ${}^{\mathbb{Z}_{jk}}$ that is normally distributed with mean zero and variance obtained as described above. The second level equation represents the outcome level and states that the population 200 effects for the different outcomes within a study can be decomposed into a study mean

201 $(\theta_{\bullet k})$ and random residuals v_{jk} .

$$\beta_{jk} = \theta_{0k} + v_{jk}$$
 with $v_{jk} \sim N(0, \sigma_v^2)$ (level2: outcome)

203 The third level is an extension of the common random effects model and states that mean

study effects θ_{0k} can vary around an overall mean γ_{00} with the random variation μ_{0k} :

$$\theta_{0k} = \gamma_{00} +$$

$$\theta_{\mathbf{0}k} = \gamma_{\mathbf{0}\mathbf{0}} + \mu_{\mathbf{0}k}$$
 with $\mu_{\mathbf{0}k} \sim N(\mathbf{0}, \sigma_{\mu}^{*})$ (level 3: study)

MA _2)

The between study variance in the transformed correlations, Ψ^{μ}_{μ} , reflects the covariance between measures from the same study. Once summary effects and confidence limits were obtained using Fisher's z metric, values were then converted back to correlations using the

e²² – 1 transformation $r = \frac{1}{e^{2z} + 1}$. Models were extended by incorporating fixed effects in an 209 210 attempt to further explain the variation in the transformed correlations. The fixed effects assessed included sex, age and BMI classification. All data were analysed using the rma and 211 rma.mv functions in the metafor package 44 in R (R Foundation for Statistical Computing, 212 213 Vienna Austria). Results were interpreted according to the statistical probabilities of 214 rejecting the null hypothesis and in the following categories: p > 0.1: No evidence against H_0 ; 0.05 H_0; 0.01 H_0; 0.001 215 : Strong evidence against H₀: <math> Very strong evidence against H₀.216

217

202

218 **RESULTS**

219 Search Strategy and Included Study Characteristics:

220 Sixteen studies, including 2587 participants and 75 correlation coefficients, were included in the meta-analysis. ^{45–60} A total of 6,631 articles were initially sourced through the database 221 222 search and the subsequent 3-stage screening process resulted in a total of 15 articles 223 selected for inclusion within the meta-analysis (Figure 1). A secondary screen of the 224 reference lists from relevant original and review articles (n = 32) was also conducted using 225 the same screening process and resulted in the inclusion of one additional article within the 226 review, resulting in 16 articles in total. One article was excluded at the critical appraisal 227 stage, as this study contained the same data set as previously reported within a study already included at an earlier stage. ⁶¹ Study characteristics and extracted data from all 228

included articles are reported in Tables 2 and 3. The sample included within this metaanalysis included 1,411 females and 1,176 males, and came from a range of age groups, *i.e.* < 25 years: n = 713; ^{49,50,53,54,58,60} 25 - 55 years: n = 618; ^{45,47,48,51,56,57} >55 years: n = 1256. ^{46,52,55,59}

233 Primary Analysis:

234 Results from the meta-analysis showed opposing relationships when BMD was considered in 235 relation to absolute and relative adipose mass, with absolute adipose mass positively, and 236 relative adipose mass negatively correlated with BMD (Tables 4 & 5). Very strong evidence 237 supporting the positive correlation between BMD and absolute adipose mass was obtained at all BMD sites (R = 0.22 to 0.27; p < 0.001 to p = 0.006), whereas no evidence or weak 238 239 evidence of negative relationships were obtained for BMD and relative adipose mass (R = -240 0.2 to -0.08; p = 0.058 to 0.424). Comparison between effect sizes estimated across BMD 241 sites demonstrated homogeneity for both absolute and relative adipose mass, with no evidence of differences obtained (p > 0.453 and p > 0.238 respectively). As a result, data 242 243 across BMD sites were pooled when considering the moderating effects of the subgroup 244 categories.

245 Secondary Analysis (Sex):

246 Very strong evidence of a positive correlation between absolute adipose mass and BMD was obtained in women (R = 0.37, 95%CI: 0.26, 0.47). In contrast only weak evidence of a 247 248 positive correlation between absolute adipose mass and BMD was obtained in men (R = 249 0.11, 95% CI: -0.02, 0.23). Evidence showing a difference in correlations of BMD and 250 absolute adjpose mass between men and women was strong (p < 0.001). Strong evidence 251 of a moderating effect of sex was also identified for the relationship between relative adipose mass and BMD (p = 0.0108). Relative adipose mass was negatively correlated with 252 253 BMD in men (r = -0.37; 95%CI: -0.57, -0.12), while no evidence of a relationship was 254 obtained for women (R = 0.03; 95%CI: -0.19, 0.25).

255

257 Secondary Analysis (Age):

258 Correlations between BMD and absolute adipose mass (kg) was positive for all three age categories (<25, 25 - 55, >55). Correlations did not differ between the groups (p = > 0.737), 259 260 however evidence supporting a positive relationship was restricted to the age categories 261 <25 (p = 0.010) and 25 – 55 years (p = 0.010) (Table 4). In contrast, correlations between 262 BMD and relative adipose mass were shown to be negative for age categories < 25 and > 55, 263 and positive for age category 25 – 55 years (Table 5). However strong evidence against the 264 null hypothesis was obtained for the negative relationship estimated for the youngest group 265 only (R = -0.28; 95%CI: -0.45, -0.08).

266 Secondary Analysis (BMI Class):

There was very strong evidence of a positive correlation between absolute adipose mass and BMD in both the overweight and obese subgroups (p < 0.001; Table 4). In addition, no evidence was obtained for a difference in the magnitude of the effect size for each group (p= 0.124). In contrast, evidence of a relationship between relative adipose mass and BMD was obtained for the obese group only (R = -0.20; 95%CI: -0.38, -0.01; Table 5).

272 *Combined Analyses:*

273 As sex and age exerted the primary moderating effects on the correlations reported, 274 combined analyses were conducted to identify if the effects of these variables existed 275 independently of each other. No evidence of interaction effects between the factors was 276 obtained for absolute adipose or relative adipose mass (p = 0.611 and p = 0.741277 respectively). When considering the correlation between absolute adipose mass (kg) and BMD, no evidence of a moderating effect of age was obtained after controlling for the effect 278 279 of sex (p = 0.223), whereas very strong evidence of a moderating effect of sex was obtained 280 after controlling for the effects of age (p < 0.001). Conversely, when considering the 281 correlation between relative adipose mass and BMD, some evidence of a moderating effect 282 of both age and sex remained after controlling for the influence of the other (p < 0.05).

283

285 Additional Study Information:

286 Information related to factors which may act as potential sources of bias are presented as supplementary data in Table S1. All included studies reported simple bivariate correlations 287 288 between adipose and bone mass, apart from 2 studies, one of which controlled for the linear effects of age, 47 the other which controlled for age and pubertal status. 53 A 289 290 sensitivity analysis was conducted excluding the data from these two studies and the results 291 obtained made no substantive changes to the model results or interpretation. Fourteen of 292 the 16 studies included within this review assessed adiposity using DXA derived outcome 293 measures (88%). One study assessed relative adiposity using skinfold assessment of subcutaneous adipose tissue, followed by conversion to %BM, ⁴⁷ while another estimated 294 295 adiposity from DXA software (GE encore software V.11.10), which predicted adiposity based on lumbar spine and femur DXA images. ⁵² In order to identify if the inclusion of these 296 studies, which employed different, and potentially less reliable means of assessing body 297 298 composition, had any impact on the study findings, an additional sensitivity analysis was 299 conducted following the exclusion of these 2 studies. Once again, the results obtained did 300 not make any meaningful changes to the models reported or to the interpretation of results. 301 Participation in physical activity (PA) is known to impact BMD, and may actually alter the relationship between adiposity and bone in certain populations. ⁶² The majority of studies 302 303 either excluded participants based upon regular PA participation, or confirmed that BMD was not influenced by PA level, although some did not confirm the PA status of the sample. 304 ^{48,49,51–53} Selective outcome reporting represents another source of potential bias. One study 305 only reported correlations that were statistically significant.⁴⁹ In addition, many of the 306 307 studies reported correlations between BMD and either absolute or relative adipose mass, 308 but not both (Table 3).

309

310 **DISCUSSION:**

The primary finding of this meta-analysis, was that adipose mass showed an opposing correlation with BMD, which depended on whether adiposity was expressed as an absolute or relative entity. Absolute adipose mass was positively correlated; and relative adipose mass negatively correlated with BMD. Secondary analyses indicated that various factors

315 exerted a moderating influence on these findings, with sex and age predominantly 316 impacting the reported correlations. The relationship between adipose mass and BMD has been the subject of a number of narrative reviews in recent years, ^{17–19,63} and conflicting 317 findings related to the influence of obesity on bone mass have been reported. ^{64,65} This is 318 319 the first study to employ a meta-analytic approach to the quantification of the relationship 320 between adipose tissue and bone mass in overweight and obese populations, allowing many 321 of the limitations of narrative syntheses and single studies to be overcome, and providing a 322 quantitative answer to this contentious question.

323 Evidence of a positive relationship between absolute adipose mass and BMD was obtained, 324 with this evidence being strongest for women (R = 0.37; 95%CI: 0.26, 0.47). There are a 325 number of potential mechanisms that might explain this finding. In particular, the effect of 326 increased loading caused by the influence of excess adiposity on absolute body mass, or an up-regulation of specific adipokines may exert a beneficial impact on BMD in this 327 population. ⁶ An alternative explanation might, however, relate to the effect of adipose 328 329 mass co-linearity with other variables known to exert a positive influence on bone mass (i.e., 330 lean mass and absolute body mass). Positive relationships between adipose tissue and bone 331 mass have been shown to be inverted once absolute body mass was included as a covariate in the model, ^{66–68} which has been interpreted as illustrating a negative effect of adipose 332 mass per se. This interpretation is statistically flawed however, since adipose mass is a 333 major component of absolute body mass, which is positively related to BMD. ⁶⁹ Further 334 335 research is required to identify the statistical factors and biological mechanisms underpinning the positive relationships reported between these compartments of body 336 337 composition. Our results are similar in both direction and magnitude to those previously reported for the general population however, ¹¹ and show that previously reported 338 339 correlations are not altered in overweight or obese groups.

In contrast to the positive correlation reported between absolute adipose mass and BMD, was the negative correlation reported between relative adipose mass and BMD, with the strongest evidence of this relationship obtained for men and those aged <25 years (Table 5). This shows that excess adiposity exerts a negative influence on bone, but only when accompanied by reduced lean mass and a higher relative proportion of adipose tissue. The primary mediator in the differentiation between adipose and lean mass is physical activity,

Nutrition Reviews

346 making it likely that those with a higher level of adiposity and lower lean mass will 347 experience less activity related mechanical loading, which will have negative consequences 348 for BMD. Contrasting results have previously been reported regarding the correlation between relative adiposity and BMD. ^{61,70,71} It has however been shown that relative 349 adipose mass assumes a negative relationship with BMD between 33 - 38% body fat. ⁶³ 350 Taken collectively, these results indicate a parabolic and bi-phasic relationship between 351 352 relative adiposity and BMD, with higher relative adiposity levels exerting a negative 353 influence on BMD. Subgroup analyses within the current study showed that this correlation 354 was larger and had a stronger probability of rejecting H_0 in the obese (R = -0.20, 95%CI: -355 0.38, -0.01) compared to the overweight (-0.08. 95%CI: -0.27, 0.11) groups, indicating that 356 the negative impact of relative adiposity on BMD is increased as adiposity increased from 357 overweight to obese levels. These findings support the concept of "osteosarcopenic 358 obesity", which is a deterioration of muscle and bone in the presence of, or as a result of excess adiposity. ¹⁶ The terms sarcopenia, and osteosarcopenia are associated with age 359 related declines in muscle and bone.⁷² The results of the current meta-analysis indicate that 360 361 the relationship between these three compartments may follow similar patterns at other 362 phases of the life-cycle, *i.e.*, that an increase in adipose mass in overweight or obese 363 populations exerts a negative influence on bone, but only if accompanied by a relative reduction in lean mass, which is particularly apparent in men and in those aged <25 years. 364

365 In order to consider the effect of modifying covariates on study findings, sex and age 366 categories were included within the multi-level model. The primary outcome from these 367 analyses was that sex emerged as the primary moderator of the reported correlations. In 368 particular, men were more susceptible to the negative influence of increased relative 369 adipose mass than were women (Table 5). The most likely explanation for this is the 370 influence of female sex hormones, such as estrogen; which is a key systemic regulator of bone homeostasis ⁷³ and is present in greater concentrations in women compared with 371 372 men. It is plausible that the more positive influence of adiposity on BMD in women 373 compared with men is mediated through estrogen, given that adipose tissue is a key source of aromatase, which contributes to estrogen synthesis from androgen precursors. ⁷⁴ The 374 375 finding that men are more susceptible to the negative influence of increased relative 376 adiposity is particularly relevant when considered within the context of the ever-increasing

prevalence of male osteoporosis, ⁵ and highlights the importance of considering sex-specific
prevention and treatment options for both obesity and osteoporosis.

379 No effect of age categorisation was reported when considering the correlation between absolute adipose mass and BMD, but a parabolic element was evident in the relationship 380 381 between relative adiposity and bone. Negative correlations between bone and relative 382 adiposity were reported in the groups aged < 25 and > 55 years, while weak evidence of a 383 positive correlation was reported in the bone maintenance group (25 – 55 years). These 384 findings suggest that the negative influence of increased relative adiposity is most relevant 385 when bone metabolism is in a state of flux, as evidenced by the negative relationships 386 reported in the bone growth and decline periods. Evidence supporting this negative 387 correlation was strongest in the youngest age category (R = -0.28, 95%CI: -0.45, -0.08). 388 These findings are particularly relevant given that childhood obesity is increasing at an 389 alarming rate, and has been described by the WHO as one of the most serious public health challenges of the 21st century. Interventions designed to reduce childhood obesity, while 390 391 concurrently protecting bone health, are of paramount importance.

392 A number of factors should be considered when interpreting the results of this meta-393 analysis, and their influence accounted for within the design of future studies on this topic. 394 Outcome reporting bias is particularly relevant, as a large number of high-quality studies on 395 the topic area could not be included as they did not meet the specific inclusion criteria of 396 this review. Consideration of such studies may add further insight into the complex relationship between excess adiposity and bone, and the myriad of nutritional, mechanical 397 398 and metabolic factors that may mediate this relationship. For example, the regional 399 distribution of adipose tissue has been reported to influence BMD, with visceral adiposity showing negative associations with BMD in both general and overweight populations. ⁷⁵ In 400 addition, bone type (cortical vs trabecular) may also be differentially affected, ⁷⁶ while 401 402 factors such as menopausal state and activity level are also likely to exert an influence on 403 the relationship between adipose tissue and bone mass. BMD was used as a primary 404 outcome measure within the current study, due to its clinical relevance, but BMD only 405 accounts for approximately 65% of bone strength, and other factors, including bone 406 geometry and micro-architecture would provide additional insight into bone strength or fragility. Although DXA is a widely used laboratory based measure of body composition 407

assessment, and has been described as a criterion method, ³⁸ it has limitations, including 408 inter and intra-machine and software variation. ⁷⁷ Its validity may also be reduced in obese 409 410 individuals, who are often toward the upper end of reference ranges, and may also have practical difficulty in fitting within the scan area.³⁸ Research into optimal techniques for 411 assessment of body composition is ongoing, and more advanced assessment and imaging 412 techniques, e.g., multi-component modelling, CT and MRI, ⁷⁸ may provide further insight 413 414 into the relationships between these compartments of body composition. Currently issues related to availability, radiation exposure and the practicalities of fitting large individuals 415 416 within scanning machines may preclude the wide-spread use of these technologies, 417 although they do represent an exciting area of on-going research.

418

419 Practical Implications:

420 Our results indicate that increasing adipose mass in overweight or obese populations is 421 negatively correlated with bone mass, but only when accompanied by a relative reduction in 422 lean mass. These findings highlight the importance of optimising the relative proportion 423 between adipose and lean mass, over weight loss per se, when considering obesity related 424 interventions that will also protect bone health. We therefore recommend that obesity 425 prevention and management programmes focus on a controlled adipose loss with concomitant preservation of lean muscle mass. A number of strategies have been proposed 426 427 that may facilitate this. Recently, exercise induced weight loss was reported to induce 428 similar body mass losses to caloric restriction, or a combination between exercise and caloric restriction, but to prevent attenuations in muscle mass.⁷⁹ The mechanical loading 429 provided by exercise has long been reported to be osteogenic ²⁸, and we therefore suggest 430 431 that obesity management programmes should include physical activity components, the exact attributes of which should be determined in relation to the specific requirements of 432 433 the individual. Energy deficit is required in order to allow oxidation of adipose stores; however a negative energy balance has also been reported to negatively impact bone 434 metabolism.⁸⁰ The consumption of a high-protein diet has been suggested to preserve lean 435 mass during times of energy deficiency, ⁸¹ provided it is accompanied by an adequate intake 436 437 of calcium, thereby exerting an indirect and positive impact on bone. In support of this is

evidence of a preservation of lean mass and a more positive bone metabolic profile (PINP:CTX ratio) in a group of overweight individuals who were fed a hypocaloric diet comprising high protein and high dairy, during a period of exercise and diet induced weight loss. ⁸² Dietary strategies should also emphasise nutrient dense food sources, *e.g.*, unprocessed fruits and vegetables, to ensure that micronutrient and phytochemical intakes are adequate.

444

445 SUMMARY AND CONCLUSION:

446 This meta-analysis demonstrates opposing relationships between adiposity and BMD, with 447 absolute adipose mass demonstrating a positive correlation, and relative adipose mass a 448 negative correlation with BMD. Sex and age exerted moderating influences on these 449 correlations, with men and individuals aged <25 years being more susceptible to the 450 negative influence of increasing levels of relative adipose tissue. The results of this meta-451 analysis should be considered when devising nutritional and training strategies to protect 452 bone while treating obesity and support the importance of maintaining lean mass and 453 reducing the relative proportion of adipose mass, rather than emphasising weight loss per 454 se.

455

456 Acknowledgements:

This project was supported in part by a grant from the Hong Kong-Scotland Partners in Post Doctoral Research Program. E. Dolan is financially supported by a research grant from Fundação de Amparo à Pesquisa do Estado de Sao Paulo (FAPESP grant number: 2015/11328-2). The authors would like to thank Professor Bruno Gualano (Applied Physiology & Nutrition Research Group, University of São Paulo) for his constructive advice on the manuscript.

463 **Conflict of Interest:**

464 The authors declare no conflict of interest.

465	REFE	RENCES:
466 467 468	1.	World Health Organisation. WHO. Obesity and overweight factsheet. Available at: http://www.who.int/mediacentre/factsheets/fs311/en/. Accessed on 22 nd January, 2017.
469 470	2.	Catenacci VA, Hill JO, Wyatt HR. The obesity epidemic. <i>Clin Chest Med</i> . 2009;30(3):415-444.
471 472	3.	Yach D, Stuckler D, Brownell KD. Epidemiologic and economic consequences of the global epidemics of obesity and diabetes. <i>Nat Med</i> . 2006;12(1):62-66.
473 474	4.	Johnell O, Kanis JA. An estimate of the worldwide prevalence and disability associated with osteporotic fractures. <i>Osteoporos Int</i> . 2006;17(12):1726-1733.
475 476	5.	Gulberg B, Johnell O, Kanis J. World-wide projections for hip fracture. <i>Osteoporos Int</i> . 1997;7(5):407-413.
477 478	6.	Gómez-Ambrosi J, Rodríguez A, Catalán V, Frühbeck G. The bone-adipose axis in obesity and weight loss. <i>Obes Surg</i> . 2008;18(9):1134-1143.
479 480	7.	Hamrick MW. A role for myokines in muscle-bone interactions. <i>Exerc Sport Sci Rev</i> . 2011;39(1):43-47.
481 482 483	8.	Gerdhem P, Ringsberg K, Akesson K, Obrant KJ. Influence of muscle strength, physical activity and weight on bone mass in a population based sample of 1004 elderly women. <i>Osteoporos Int</i> . 2003;14(9):768-772.
484 485 486	9.	Michaelsson K, Bergstrom R, Mallmin H, Holmberg L, Wolk A, Ljunghall S. Screening for osteopenia and osteoporosis: Selection by body composition. <i>Osteoporos Int</i> . 1996;6(2):120-126.
487 488 489	10.	Semanick L, Beck T, Cauley J, et al. Association of body composition and physical activity with proximal femur geometry in middle-aged and elderly Afro-Caribbean men: the Tobago bone health study. <i>Calcif Tissue Int</i> . 2005;77(3):160-166.
490 491	11.	Ho-Pham LT, Nguyen UDT, Nguyen T V. Association between lean mass, fat mass, and bone mineral density: A meta-analysis. <i>J Clin Endocrinol Metab</i> . 2014;99(1):30-38.

Kouda K, Fujita Y, Sato Y, et al. Fat mass is positively associated with bone mass in
relatively thin adolescents: Data from the Kitakata kids health study. *Bone*.
2014;64:298-302.

Hsu Y, Venners S, Terwedow H, et al. Relation of body composition, fat mass, and
serum lipids to osteoporotic fractures and bone mineral density in Chinese men and
women. Am J Clin Nutr. 2006;83(1):146-154.

498 14. Evans A, Paggiosi M, Eastell R, Walsh J. Bone density, microstructure and strength in
499 obese and normal weight men and women in younger and older adulthood. *J Bone*500 *Miner Res.* 2015;30(5):920-928.

15. Rocher E, El Hage R, Chappard C, Portier H, Rochefort G, Benhamou C. Bone mineral
density, hip bone geometry, and calcaneus trabecular bone texture in obese and
normal-weight children. *J Clin Densitom*. 2013;16(2):244-249.

16. Ilich JZ, Kelly OJ, Inglis JE, Panton LB, Duque G, Ormsbee MJ. Interrelationship among
muscle, fat, and bone: Connecting the dots on cellular, hormonal, and whole body
levels. Ageing Res Rev. 2014;15(1):51-60.

507 17. Holecki M, Wiecek A. Relationship between body fat mass and bone metabolism. *Pol*508 *Arch Med Wewn*. 2010;120(9):361-367.

18. Cao JJ. Effects of obesity on bone metabolism. *J Orthop Surg Res*. 2011;6(1):30.

510 19. Wong S, Chin K, Suhaimi F, Ahmad F, Ima-Nirwana S. The relationship between
511 metabolic syndrome and osteoporosis: A review. *Nutrients*. 2016;8(6):E347.

512 20. Vincent H, Taylor A. Biomarkers and potential mechanisms of obesity-induced oxidant
513 stress in humans. *Int J Obes*. 2006;30(3):400-418.

514 21. Ha H, Bok Kwak H, Woong Lee S, et al. Reactive oxygen species mediate RANK
515 signaling in osteoclasts. *Exp Cell Res*. 2004;301(2):119-127.

Lee N, Choi Y, Baik J, et al. A crucial role for reactive oxygen species in RANKL-induced
osteoclast differentiation. *Blood*. 2005;106(3):852-859.

518 23. Filaire E, Toumi H. Reactive oxygen species and exercise on bone metabolism: Friend

519		or enemy? <i>Jt Bone Spine</i> . 2012;79(4):341-346.
520	24.	Wauquier F, Leotoing L, Coxam V, Guicheux J, Wittrant Y. Oxidative stress in bone
521		remodelling and disease. Trends Mol Med. 2009;15(10):468-477.
522	25.	Yeung DKW, Griffith JF, Antonio GE, Lee FKH, Woo J, Leung PC. Osteoporosis is
523		associated with increased marrow fat content and decreased marrow fat
524		unsaturation: A proton MR spectroscopy study. J Magn Reson Imaging.
525		2005;22(2):279-285.
526	26.	Rosen C, Bouxsein M. Mechanisms of disease: is osteoporosis the obesity of bone?
527		Nat Clin Pract Rheumatol. 2006;2(1):35-43.
528	27.	Lakka T, Bouchard C. Physical activity, obesity and cardiovascular diseases. Handb Exp
529		Pharmacol. 2005;170:137-163.
530	28.	Frost H. Bone's mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol.
531		2003;275(2):1081-1101.
532	29.	Borer K. Physical activity in the prevention and amelioration of osteoporosis in
533		women: Interaction of mechanical, hormonal and dietary factors. Sport Med.
534		2005;35(9):779-830.
535	30.	Thompson D, Karpe F, Lafontan M, Frayn K. Physical activity and exercise in the
536		regulation of human adipose tissue physiology. <i>Physiol Rev</i> . 2012;92:157-191.
537	31.	Viljakainen HT, Pekkinen M, Saarnio E, Karp H, Lamberg-Allardt C, Mäkitie O. Dual
538		effect of adipose tissue on bone health during growth. <i>Bone</i> . 2011;48(2):212-217.
539	32.	Tanaka S, Kuroda T, Saito M, Shiraki M. Overweight/obesity and underweight are
540		both risk factors for osteoporotic fractures at different sites in Japanese
541		postmenopausal women. Osteoporos Int. 2013;24(1):69-76.
542	33.	De Laet C, Kanis J, Oden A, et al. Body mass index as a predictor of fracture risk: a
543		meta-analysis. Osteoporos Int. 2005;16(11):1330-1338.
544	34.	Moher D, Liberati A, Tetzlaff J, Altman DG, Grp P. Preferred reporting items for
545		ystematic reviews and meta-analyses: The PRISMA Statement (Reprinted from Annals

546		of Internal Medicine). <i>Phys Ther</i> . 2009;89(9):873-880.
547	35.	Wu Y. Overweight and obesity in China. The once lean giant has a weight problem
548		that is increasing rapidly. BMJ. 2006;333(7564):362-363.
549	36.	Zhou B. Effect of body mass index on all-cause mortality and incidence of
550		cardiovascular diseasesreport for meta-analysis of prospective studies open optimal
551		cut-off points of body mass index in Chinese adults. Biomed Environ Sci.
552		2002;15(3):245-252.
553	37.	Zhou B, Cooperative Meta-Analysis Group of the Working Group on Obesity in China.
554		Predictive values of body mass index and waist circumference for risk factors of
555		certain related diseases in Chinese adults-study on optimal cut-off points of body
556		mass index and waist circumference in Chinese adults. Biomed Environ Sci.
557		2002;15(1):83-96.
558	38.	Duren DL, Sherwood RJ, Czerwinski SA, et al. Body composition methods:
559		Comparisons and interpretation. J Diabetes Sci Technol. 2008;2(6):1139-1146.
560	39.	Saggese G, Baroncelli G, Bertelloni S. Puberty and bone development. Best Pract Res
561		<i>Clin Endocrinol Metab.</i> 2002;16(1):53-64.
562	40.	Burr D. Muscle strength, bone mass, and age-related bone loss. J Bone Miner Res.
563		1997;12(10):1547-1551.
564	41.	Rosen C. Primer on the metabolic bone diseases and disorders of mineral
565		metabolism. 8th ed. Am Soc Bone Miner Res John Wiley Sons Inc. 2013:i-xxvi.
566	42.	Callewaert F, Sinnesael M, Gielen E, Boonen S, Vanderschueren D. Skeletal sexual
567		dimorphism: Relative contribution of sex steroids, GH-IGF1, and mechanical loading. J
568		Endocrinol. 2010;207(2):127-134.
569	43.	Van den Noortgate W, Lopez-Lopez J, Marin-Martinez F, Sanchez-Meca J. Meta-
570		analysis of multiple outcomes: a multilevel approach. Behav Res methods.
571		2015;47(4):1274-1294.
572	44.	Viechtbauer W. Conducting meta-analyses in R with the metaphor package. J Stat

573		<i>Softw</i> . 2010;36(3):1-48.
574	45.	Abou Samra R, Baba NH, Torbay N, Dib L, Fuleihan GEH. High plasma leptin is not
575		associated with higher bone mineral density in insulin-resistant premenopausal obese
576		women. J Clin Endocrinol Metab. 2005;90(5):2588-2594.
577	46.	Aguirre L, Napoli N, Waters D, Qualls C, Villareal DT, Armamento-Villareal R.
578		Increasing adiposity is associated with higher adipokine levels and lower bone
579		mineral density in obese older adults. <i>J Clin Endocrinol Metab</i> . 2014;99(9):3290-3297.
580	47.	Ballard JE, Cooper CM, Bone MA, Saade G, Holiday DB. Bone health in immigrant
581		hispanic women living in texas. J Community Health. 2010;35(5):453-463.
582	48.	Boyanov M. Body fat, lean mass and bone density of the spine and forearm in
583		women. <i>Open Med</i> . 2014;9(1).
584	49.	Campos RMS, Lazaretti-Castro M, Mello MT De, et al. Influence of visceral and
	49.	
585		subcutaneous fat in bone mineral density of obese adolescents. Arq Bras Endocrinol
586		Metabol. 2012;56(1):12-18.
587	50.	Do Prado WL, De Piano A, Lazaretti-Castro M, et al. Relationship between bone
588		mineral density, leptin and insulin concentration in Brazilian obese adolescents. J
589		Bone Miner Metab. 2009;27(5):613-619.
590	51.	Gomez J, Vilarrasa N, Masdevall C, et al. Regulation of bone mineral density in
591		morbidly obese women: A cross-sectional study in two cohorts before and after
592		bypass surgery. <i>Obes Surg</i> . 2009;19(3):345-350.
593	52.	Hawamdeh ZM, Sheikh-Ali RF, AlSharif A, et al. The influence of aging on the
594		association between adiposity and bone mineral density in jordanian postmenopausal
595		women. J Clin Densitom. 2014;17(1):143-149.
596	53.	Ivuskans A, Lätt E, Mäestu J, et al. Bone mineral density in 11-13-year-old boys:
597		Relative importance of the weight status and body composition factors. Rheumatol
598		Int. 2013;33(7):1681-1687.
599	54.	Júnior IFF, Cardoso JR, Christofaro DGD, Codogno JS, de Moraes ACF, Fernandes RA.

Nutrition Reviews

600		The relationship between visceral fat thickness and bone mineral density in sedentary
601		obese children and adolescents. BMC Pediatr. 2013;13(MAY):37.
602	55.	Kang D, Liu Z, Wang Y, et al. Relationship of body composition with bone mineral
603		density in northern Chinese men by body mass index levels. J Endocrinol Invest.
604		2014;37(4):359-367.
605	56.	Liu P, Hornbuckle L, Ilich J, Kim J, Panton L. Body composition and muscular strength
606		as predictors of bone mineral density in African American women with metabolic
607		syndrome. <i>Ethn Dis</i> . 2014;24(3):356-362.
608	57.	Morberg CM, Tetens I, Black E, et al. Leptin and bone mineral density: A cross-
609		sectional study in obese and nonobese men. J Clin Endocrinol Metab.
610		2003;88(12):5795-5800.
611	58.	Mosca LN, Goldberg TBL, da Silva VN, et al. Excess body fat negatively affects bone
612		mass in adolescents. Nutrition. 2014;30(7-8):847-852.
613	59.	Moseley KF, Dobrosielski DA, Stewart KJ, De Beur SMJ, Sellmeyer DE. Lean mass and
614		fat mass predict bone mineral density in middle-aged individuals with noninsulin-
615		requiring type 2 diabetes mellitus. <i>Clin Endocrinol (Oxf)</i> . 2011;74(5):565-571.
616	60.	Remmel L, Tillmann V, Maestu J, et al. Associations between bone mineral
617		characteristics and serum levels of ghrelin and peptide YY in overweight adolescent
618		boys. <i>Horm Res Paediatr</i> . 2015;84(1):6-13.
619	61.	Kang DH, Guo LF, Guo T, et al. Association of body composition with bone mineral
620		density in northern Chinese men by different criteria for obesity. J Endocrinol Invest.
621		2015;38(3):323-331.
622	62.	Reid I, Legge M, Stapleton J, Evans M, Grey A. Regular exercise dissociates fat mass
623		and bone density in premenopausal women. J Clin Endocrinol Metab.
624		1995;80(6):1764-1768.
625	63.	Liu PY, Ilich JZ, Brummel-Smith K, Ghosh S. New insight into fat, muscle and bone
626		relationship in women: Determining the threshold at which body fat assumes

Nutrition Reviews

627		negative relationship with bone mineral density. Int J Prev Med. 2014;5(11):1452-
628		1463.
630	64	Mainson L. Mura T. Longiana F. Avianan A. Masiana Caulart D. Sultan A. Invest of
629	64.	Maimoun L, Mura T, Leprieur E, Avignon A, Mariano-Goulart D, Sultan A. Impact of
630		obesity on bone mass throughout adult life: Influence of gender and severity of
631		obesity. <i>Bone</i> . 2016;90:23-30.
632	65.	Lloyd J, Alley D, Hochberg M, et al. Changes in bone mineral density over time by
633		body mass index in the health ABC study. Osteoporos Int. 2016;27(6):2109-2116.
634	66.	Liu Y hua, Xu Y, Wen Y bin, et al. Association of weight-adjusted body fat and fat
635		distribution with bone mineral density in middle-aged Chinese adults: A cross-
636		sectional study. PLoS One. 2013;8(5).
637	67.	Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW. Relationship of obesity with
638		osteoporosis. J Clin Endocrinol Metab. 2007;92(5):1640-1646.
639	68.	Kim JH, Choi HJ, Kim MJ, Shin CS, Cho NH. Fat mass is negatively associated with bone
	08.	
640		mineral content in Koreans. Osteoporos Int. 2012;23(7):2009-2016.
641	69.	Reid I. Fat and bone. Arch Biochem Biophys. 2010;503(1):20-27.
642	70.	Ahn S, Lee S, Kim H, Kim B, Koh J. Different relationships between body compositions
643		and bone mineral density according to gender and age in Korean populations
644		(KNHANES 2008-2010). J Clin Endocrinol Metab. 2014;99(10):3811-3820.
645	71.	Arimatsu M, Kitano N, Inomoto T, Shono M, Futatsuka M. Correlation between
646		forearm bone mineral density and body composition in Japanese females aged 18 –
647		40 years. Environ Health Prev Med. 2005;10(3):144-149.
648	72.	llich JZ, Kelly OJ, Inglis JE. Osteosarcopenic Obesity Syndrome: What Is It and How Can
649		It Be Identified and Diagnosed? <i>Curr Gerontol Geriatr Res</i> . 2016;7325973.
650	73.	Manolagas S, O'Brien C, Almeida M. The role of estrogen and androgen receptors in
651		bone health and disease. Nat Rev Endocrinol. 2013;9(12):699-712.
652	74.	Nelson L, Bulun S. Estrogen production and action. J Am Acad Dermatol. 2001;45(3
653		Suppl):S116-24.

- 75. Zhang P, Peterson M, Su GL, Wang SC. Visceral adiposity is negatively associated with
 bone density and. 2015:337-343.
- Sukumar D, Schlussel Y, Riedt C, Gordon C, Stahl T, Shapses S. Obesity alters cortical
 and trabecular bone density and geometry in women. *Osteoporos Int*.
- 6582011;22(2):635-645.
- 659 77. Plank L. Dual-energy X-ray absorptiometry and body composition. *Curr Opin Clin Nutr*660 *Metab Care*. 2005;8(3):305-309.
- Ackland T, Lohman T, Sundgot-Borgen J, et al. Current status of body composition
 assessment in sport. *Sport Med*. 2012;42(3):227-249.
- Weiss E, Jordan R, Frese E, Albert S, Villareal D. Effects of weight loss on lean mass,
 strength, bone, and aerobic capacity. *Med Sci Sports Exerc*. 2017;49(1):206-217.
- 80. Ihle R, Loucks A. Dose-response relationships between energy availability and bone
 turnover in young exercising women. *J Bone Miner Res*. 2004;19(8):1231-1240.
- 81. Phillips S, Van Loon L. Dietary protein for athletes: from requirements to optimum
 adaptation. *J Sports Sci.* 2011;29(Suppl 1):S29-38.
- 82. Josse A, Atkinson S, Tarnapolsky M, Phillips S. Diets higher in dairy foods and dietary
 protein support bone health during diet- and exercise-induced weight loss in
- 671 overweight and obese premenopausal women. *J Clin Endocrinol Metab*.
- 6722012;97(1):251-260.
- 673
- 674
- 675
- 676
- 677

678

679 **Table 1:** PICOS criteria for inclusion and exclusion of studies

Parameter	Inclusion	Exclusion					
Population	Overweight or obese participants, including both sexes and all age- groups.	Populations suffering medical conditions, or taking medications related to the development of secondary osteoporosis. Physically disabled populations. Athletes.					
Intervention		aluation of any specific intervention, but ated the correlation between adiposity and					
Comparator	No comparators were identified for this study.						
Outcomes	The correlation (R) between adiposity (expressed as total mass (kg), or relative to total body mass (%BM)) and BMD of the total body, lumbar spine, total femur or femoral neck (g [.] cm ⁻²)	Results from studies which report multi- variate correlations, and did not isolate the correlation between adipose mass and BMD.					
Study Design	All study designs were considered for inclusion in this review, provided they adhered to the criteria described above. Cross-sectional designs were considered most likely to contain the required information.						

681 **Table 2:** Characteristics of Included Studies

Author	Participants	Ν	Gender	Age (Yrs)	BMI (kg [·] m ⁻²)	Adipose Mass (kg)	Adipose Mass (%BM)	Total Body BMD (g cm ⁻²)	Lumbar Spine BMD (g ⁻ cm ⁻²)	Total Hip BMD (g ⁻ cm ⁻²)	Femoral Neck BMD (g ⁻ cm ⁻²)
Abou Samra et al. (2005)* ⁴⁵	Obese premenopausal women	48	Female	30.8 ± 10.0	30 – 50.9	28 - 66.1	-	0.97 ± 0.06	1.08 ± 0.1	0.99 ± 0.14	0.88 ± 0.13
Aguirre et al. (2014)* ⁴⁶	Elderly, obese, frail	173	Male (81, female 92)	69.5 ± 4.2	36.5 ± 5	41.82 ± 9.53	42.04 ± 6.78	1.224 ± 0.17	1.138 ± 0.189	0.989 ± 0.138	0.826 ± 0.117
Ballard et al. (2010) ⁴⁷	Healthy immigrant Hispanic women	84	Female	47.9 ± 7	31.8 ± 6.1	26 ± 7.6	34.7 ± 4.3	-	L2 – 4 0.955 ± 0.11	0.998 ± 0.13	0.843 ± 0.12
Boyanov et al. (2014) ⁴⁸	Bulgarian women	180	Female	50.8 ± 9.7	32.7 ± 4.5	36.6 ± 13.0	42.3 ± 6.2	-	L1 – 4 0.954 ± 0.174	-	-
Campos et al. (2012) ⁴⁹	Postpubertal obese adolescents	45	Male	16.04 ± 1.87	36.26 ± 4.40	43.1 ± 10.8	40.31 ± 6.41	1.24 ± 0.14	1.06 ± 0.17	0.92 - 1.01	-
Do Prado et al. (2009) ⁵⁰	Obese adolescents	41	Male	17.07 ± 1.61	36.03 ± 3.75	39.36 ± 10.35	37.01 ± 7.32	1.17 ± 0.14	-	-	-
Do Prado et al. (2009) ⁵⁰	Obese adolescents	68	Female	16.7 ± 1.67	35.09 ± 4.06	40.74 ± 8.83	44.71 ± 5.14	1.14 ± 0.08	-	-	-
Gomez et al. (2009) ⁵¹	Morbidly obese women pre bariatric surgery	25	Female	48 ± 7.6	44.5 ± 3.6	50.2 ± 6.7	45.8 ± 3.6	1.18 ± 0.1	-	-	-
Hawamdeh et al. (2014) ⁵²	Postmenopaus al women	584	Female	63.96 ± 6.71	30.42 ± 4.83	36.14 ± 8.66*	-	-	L1 – 4 0.956 ± 0.161	-	0.784 ± 0.127

Ivuskans et al.	Overweight	110	Male	11.96 ±	23.1 ± 4.6	19.02 ± 9.57	33.9 ± 7.9	1.007 ±	L2 – 4	-	0.904 ±
(2013) 53	boys			0.76				0.066	0.839 ±		0.095
									0.092		
Junior et al.	Obese children	175	Male	11.1 ±	-	-	45.4 ± 5.2	1.044 ± 0.12	-	-	-
(2013) ⁵⁴	and		(83) and	2.6							
	adolescents		female								
			(92)								
Kang et al.	Overweight	225	Male	61.4 ±	25.9 ± 1.2	20.7 ± 4.2	29.8 ± 5.2	1.173 ±	L1 – 4	1.006 ±	0.934 ±
(2014) 55	Chinese men			16.2				0.092	1.115 ±	0.131	0.131
									0.168		
Kang et al.	Obese Chinese	140	Male	61.2 ±	30.1 ± 1.7	27.2 ± 4.8	34.1 ± 4.8	1.198 ±	L1 – 4	1.029 ±	0.946 ±
(2014) 55	men			14.5				0.099	1.119 ±	0.121	0.118
									0.151		
Liu et al.	African	47	Female	48.8 ±	34.7 ± 5.5	42.8 ± 13	45.6 ± 5.7	1.295 ±	L2 – 4	1.149 ±	-
(2014) 56	American			5.6				0.118	1.231 ±	0.147	
	women with								0.149		
	MetS										
Morberg et al.	Men with	234	Male	47.5 ±	35.9 ± 5.9	38.4 ± 12.2	33.13 ± 6.3	1.32 ± 0.1	-	-	-
(2003) 57	juvenile			5.1							
	obesity										
Mosca et al.	Overweight	135	Female	13.84 ±	28.3 ± 5.01	26.03 ± 7.53	36.36 ± 4.63	0.979 ± 0.1	L1 – 4	0.969 ± 0.14	-
(2014)* ⁵⁸	adolescents			2.34					0.959 ± 0.18		
Mosca et al.	Overweight	84	Male	13.82 ±	27.6 ± 4.14	23.27 ± 7.1	31.09 ± 6.43	0.946 ± 0.11	L1 – 4	0.988 ± 0.16	-
(2014)* ⁵⁸	adolescents			1.92					0.827 ± 0.15		
Moseley et al.	Middle aged	56	Female	55.6 ±	34.4 ± 5	41.9 ± 10.7	44.8 ± 5.4	1.28 ± 0.11	L1 – 4	1.12 ± 0.15	1.04 ± 0.15
(2011) 59	men and			6.2					1.29 ± 0.17		
	women with T2										
	diabetes										
Moseley et al.	Middle aged	78	Male	56.9 ±	32.6 ± 4.1	34.7 ± 8.2	33.6 ± 5.1	1.31 ± 0.12	L1 – 4	1.16 ± 0.15	1.08 ± 0.162
(2011) ⁵⁹	men and			5.9					1.32 ± 0.20		
	women with T2										
	diabetes										
Remmel et al.	Overweight	55	Male	14.0 ±	26.8 ± 4.5	25.8 ± 12.3	-	1.12 ± 0.10	1.04 ± 0.15		

(20)	15) ⁶⁰	and obese	0.8	_
		Estonian		
		schoolboys.		
682			D, or as range (maximum – minimum), * represents studies for whom the descriptive data corresponding to the extracted	
683			vailable, and subgroup statistics were subsequently combined to report representative means and standard deviations for	
684	the relev	/ant group. Bivi: Body ivi	ass, BMD: Bone Mineral Density, MetS: Metabolic Syndrome, T2: Type 2.	
685				
686				
687				
688				
689				
690				
691				
692				
693				
694				
695				
696				
697				
698				
699				

700 **Table 3:** Summary of Correlation Coefficients

Author (date)	N	Total Body BMD VS AAM	Total Body BMD VS RAM	Lumbar Spine BMD VS AAM	Lumbar Spine BMD VS RAM	Total Femur BMD VS AAM	Total Femur BMD VS RAM	Femoral Neck BMD VS AAM	Femoral Neck BMD VS RAM
Abou Samra et al. (2004) ⁴⁵	48	0.27	Х	0.17	Х	0.44	Х	0.45	Х
Aguirre et al. (2014) ⁴⁶	173	Х	-0.29	Х	-0.29	Х	-0.4	х	-0.22
Ballard et al. (2010) 47	84	Х	Х	0.32	0.17	0.58	0.43	х	Х
Boyanov et al. (2014) ⁴⁸	180	х	Х	0.425	0.325	Х	Х	х	Х
Campos et al. (2012) ⁴⁹	45	0.34	Х	Х	Х	-0.4	Х	х	Х
Do Prado et al. (2009) 50	41	-0.392	-0.531	х	Х	Х	Х	х	Х
Do Prado et al. (2009) ⁵⁰	68	0.146	-0.031	Х	Х	Х	Х	х	Х
Gomez et al. (2009) ⁵¹	25	-0.193	-0.471	Х	Х	Х	Х	х	Х
Hawamdeh et al. (2014) ⁵²	466	Х	Х	0.28	Х	Х	Х	0.32	Х
Hawamdeh et al. (2014) ⁵²	118	х	х	0.2	Х	Х	Х	0.28	Х
Ivuskans et al. (2013) ⁵³	110	0.615	х	0.455	Х	Х	Х	0.322	Х
Junior et al. (2013) ⁵⁴	175	х	0.09	Х	Х	Х	Х	х	Х
Kang et al. (2014) ⁵⁵	225	0.069	-0.098	0.058	-0.001	-0.004	-0.12	0.023	-0.122
Kang et al. (2014) ⁵⁵	140	0.115	-0.203	0.293	0.108	0.046	-0.22	-0.004	-0.305
Liu et al. (2014) ⁵⁶	47	0.343	0.12	0.252	0.127	0.24	-0.041	х	Х
Morberg et al. (2003) 57	234	0.003	Х	Х	Х	Х	Х	х	Х
Mosca et al. (2014) 58	135	0.496	0.131	0.582	-0.4	0.535	-0.438	х	Х
Mosca et al. (2014) ⁵⁸	84	-0.128	-0.58	0.084	-0.4	0.022	-0.438	х	Х
Moseley et al. (2011) 59	56	0.57	Х	0.2	Х	0.44	Х	0.41	Х
Moseley et al. (2011) 59	78	0.27	Х	0.03	Х	0.19	Х	0.11	Х
Remmel et al. (2015) 60	55	0.255	Х	-0.002	Х	Х	Х	Х	Х

701 AAM: Absolute adipose mass; RAM: Relative adipose mass

702

Table 4: Results of Meta-regressions for Absolute Adipose Mass. Parameter Estimates and Model Outputs.

	Moderat	or	Correlation Estimate	95% CI	Between outcome variance σ_V^2 (% of total variance)	Between study variance σ_{μ}^2 (% of total variance)	QE _{df}
	BMD Site	Total Body Lumbar Spine Total Femur Femoral Neck	0.26 [*] 0.23 [*] 0.27 [*] 0.22 [*]	0.13 - 0.38 0.10 - 0.35 0.12 - 0.40 0.06 - 0.36	0.009 (13.7%)	0.043 (65.2%)	241.3 ₄₂
	Age	<25 25 – 55 >55	0.25 [*] 0.26 [*] 0.21	0.06 - 0.43 0.07 - 0.44 -0.04 - 0.44	0.008 (10.8%)	0.049 (69.6%)	220.1 ₄₃
	BMI Class	Overweight Obese	0.26 [*] 0.25 [*]	0.13 - 0.38 0.11 - 0.38	0.009 (13.5%)	0.042 (65.4%)	228.1 ₄₂
	Gender	Men Women	0.11 0.37 [*]	-0.02 - 0.23 0.26 - 0.47	0.003 (5.3%)	0.033 (67.1%)	158.4 ₄₄
705		<i>P</i> < 0.05. †	. QE _{df} : Residua	I heterogeneit	y test statistic	2.	
706							
707							
708							

713 **Table 5:** Results of Meta-regressions for Relative Adipose Mass. Parameter Estimates and Model Outputs.

Moderat	or	Correlation Estimate	95% CI	Between outcome variance σ_V^2 (% of total variance)	Between study variance σ_{μ}^2 (% of total variance)	QE _{df}
	Total Body	-0.13	-0.32, 0.07			
Site	Lumbar Spine	-0.08	-0.28, 0.12	0.027	0.060	203.8 ₂₅
	Total Femur	-0.20	-0.39, 0.01	(27.2%)	(60.7%)	203.025
	Femoral Neck	-0.19	-0.44, 0.09			
	<25	-0.28 [*]	-0.45, -0.08	0.024	0.0315	
Age	25 – 55	0.12	-0.11, 0.34			140.9 ₂₆
	>55	-0.21	-0.44, 0.06	(35.9%)	(46.5%)	
BMI	Overweight	-0.08	-0.27, 0.11	0.024	0.060	200.0
Class	Obese	-0.20 [*]	-0.38, -0.01	(25.0%)	(62.5%)	209.9 ₂₇
Condor	Men	-0.37*	-0.57, -0.12	0.023	0.055	166.2
Gender	Women	0.03	-0.19, 0.25	(25.5%)	(61.3%)	166.3 ₂₂

714

* *P*< 0.05. †. QE_{df}: Residual heterogeneity test statistic

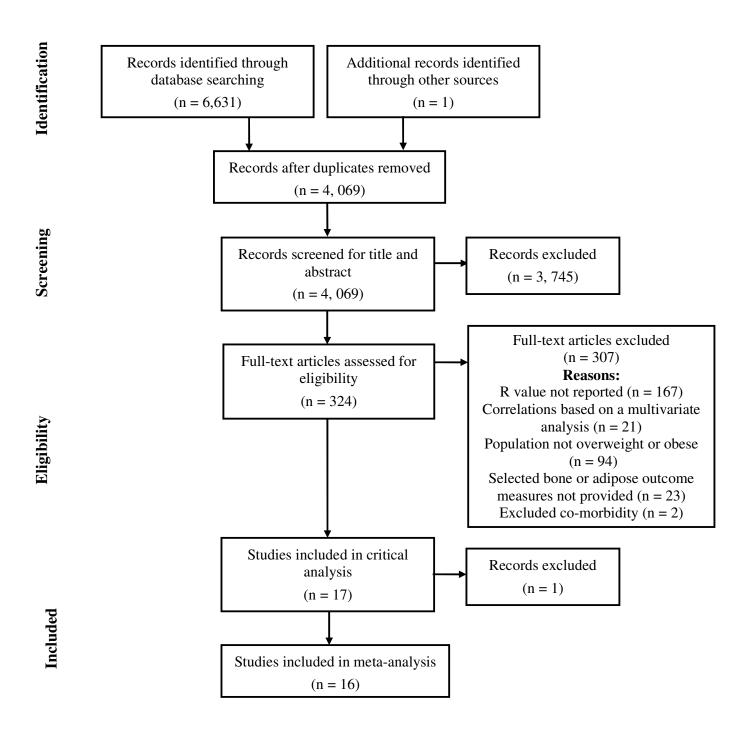


Figure One: Search strategy summary

Text S1 - Checklist of items to include when reporting a systematic review or meta-analysis

Section/topic	#	Checklist item	Reported on page #
TITLE			
Title	1	Identify the report as a systematic review, meta-analysis, or both.	1
ABSTRACT	-		
Structured summary	2	Provide a structured summary including, as applicable: background; objectives; data sources; study eligibility criteria, participants, and interventions; study appraisal and synthesis methods; results; limitations; conclusions and implications of key findings; systematic review registration number.	2
INTRODUCTION	-		
Rationale	3	Describe the rationale for the review in the context of what is already known.	3-4
Objectives	4	Provide an explicit statement of questions being addressed with reference to participants, interventions, comparisons, outcomes, and study design (PICOS).	5-6
METHODS			
Protocol and registration	5	Indicate if a review protocol exists, if and where it can be accessed (e.g., Web address), and, if available, provide registration information including registration number.	5
Eligibility criteria	6	Specify study characteristics (e.g., PICOS, length of follow-up) and report characteristics (e.g., years considered, language, publication status) used as criteria for eligibility, giving rationale.	5-6
Information sources	7	Describe all information sources (e.g., databases with dates of coverage, contact with study authors to identify additional studies) in the search and date last searched.	6
Search	8	Present full electronic search strategy for at least one database, including any limits used, such that it could be repeated.	6

Section/topic	#	Checklist item	Reported on page #
Study selection	9	State the process for selecting studies (i.e., screening, eligibility, included in systematic review, and, if applicable, included in the meta-analysis).	6
Data collection process	10	Describe method of data extraction from reports (e.g., piloted forms, independently, in duplicate) and any processes for obtaining and confirming data from investigators.	6-7
Data items	11	List and define all variables for which data were sought (e.g., PICOS, funding sources) and any assumptions and simplifications made.	7
Risk of bias in individual studies	12	Describe methods used for assessing risk of bias of individual studies (including specification of whether this was done at the study or outcome level), and how this information is to be used in any data synthesis.	6-7
Summary measures	13	State the principal summary measures (e.g., risk ratio, difference in means).	7-8
Synthesis of results	14	Describe the methods of handling data and combining results of studies, if done, including measures of consistency (e.g., I ²) for each meta-analysis.	7-8
Risk of bias across studies	15	Specify any assessment of risk of bias that may affect the cumulative evidence (e.g., publication bias, selective reporting within studies).	6-8
Additional analyses	16	Describe methods of additional analyses (e.g., sensitivity or subgroup analyses, meta-regression), if done, indicating which were pre-specified.	7-8
RESULTS	-		
Study selection	17	Give numbers of studies screened, assessed for eligibility, and included in the review, with reasons for exclusions at each stage, ideally with a flow diagram.	8
Study characteristics	18	For each study, present characteristics for which data were extracted (e.g., study size, PICOS, follow-up period) and provide the citations.	8-9
Risk of bias within studies	19	Present data on risk of bias of each study and, if available, any outcome-level assessment (see Item 12).	11
Results of individual studies	20	For all outcomes considered (benefits or harms), present, for each study: (a) simple summary data for each intervention group and (b) effect estimates and	8-10

Section/topic	#	Checklist item	Reported on page #
		confidence intervals, ideally with a forest plot.	
Synthesis of results	21	Present results of each meta-analysis done, including confidence intervals and measures of consistency.	8-10
Risk of bias across studies	22	Present results of any assessment of risk of bias across studies (see Item 15).	11
Additional analysis	23	Give results of additional analyses, if done (e.g., sensitivity or subgroup analyses, meta-regression [see Item 16]).	8-11
DISCUSSION	-		-
Summary of evidence	24	Summarize the main findings including the strength of evidence for each main outcome; consider their relevance to key groups (e.g., health care providers, users, and policy makers).	11-14
Limitations	25	Discuss limitations at study and outcome level (e.g., risk of bias), and at review level (e.g., incomplete retrieval of identified research, reporting bias).	14-15
Conclusions	26	Provide a general interpretation of the results in the context of other evidence, and implications for future research.	15-16
FUNDING			
Funding	27	Describe sources of funding for the systematic review and other support (e.g., supply of data); role of funders for the systematic review.	16

Table S1: Additional Study Information

Author (date)	Research Question	Study Design	Screening procedures ^(a)	BMD assessment	Adipose assessment	Complete results reported?	BMI range	Physical Activity Information	Covariates included.
Abou Samra et al. (2005) ⁵¹	To investigate the effect of obesity versus the leptin/insulin axis on bone metabolism in insulin resistant and sensitive women.	Cross- sectional	Yes	Hologic 4500A.	DXA	Correlations were reported for absolute adipose mass (kg) but not relative (%BM)	30 – 50.9	Exclusion criteria included participation in strenuous physical activity.	None
Aguirre et al. (2014) ⁵²	To determine the influence of body fat and circulating adipokines on BMD in elderly obese frail participants.	Cross- sectional	Yes	Hologic Delphi 4500/w	DXA	Correlations were reported for relative adipose mass (%BM), but not absolute (kg)	Not reported	Inclusion criteria included sedentary lifestyle, defined as not participating in regular exercise more than 2 times per week.	None
Ballard et al. (2010) ⁵³	To examine the effects of body composition, behavioural and health history factors on BMD in immigrant Hispanic women.	Cross- sectional	Yes	Hologic Discovery C.	Skinfold thickness of the triceps, suprailiac and thigh converted to body density and fat using the Siri, and Jackson & Pollock equations.	Correlations were reported for total femur BMD but not femoral neck.	Not reported	Assessed by PA questionnaire, descriptives not reported. BMD was not different across PA tertiles.	Correlations corrected for linear effect of age.
Boyanov et al. (2014) ⁵⁴	To test the relative contribution of adipose and lean mass to BMD variability in Bulgarian women.	Cross- sectional	Yes	Hologic QDR 4500 A.	DXA	Yes	Not reported	None reported.	None
Campos et al. (2012) ⁵⁵	To test the relationships between visceral and subcutaneous fat with bone metabolism, anti- inflammatory adipokines and gender in obese	Cross- sectional	Yes	Hologic QDR 4200	DXA	Only reported statistically significant findings.	Not reported	None reported	None

	adolescents.								
Do Prado et al. (2009) ⁵⁶	To explore the combined and independent influence of body composition, leptin, insulin, glucose and HOMA-IR to BMD and BMD in Brazilian obese adolescents.	Cross- sectional	Yes	Hologic QDR4200	DXA	Yes	Not reported	Exclusion criteria included participation in strenuous physical exercise.	None
Gomez et al. (2009) ⁵⁷	To test the relationship between bone, body composition and related proteins and hormones in two cohorts of morbid obese patients, before and after bypass surgery.	Cohort study (data reported from pre- bariatric group only)	Yes	Lunar DXA- IQ, version 4.6c	DXA	Yes	Not reported	None reported.	None
Hawamdeh et al. (2014) ^{S8}	To assess the relative association between body composition, age and BMD in Jordanian women.	Cross- sectional	Yes	GE IDXA	Estimated from lumbar spine and femur DXA images using GE enCore software version 11.10	Correlations were reported for absolute adipose mass (kg) but not relative (%BM).	17.1 – 43.3	None reported	None
lvuskans et al. (2013) ^{S9}	To compare BMD in overweight and normal weight children.	Cross- sectional	Health status of the participants not confirmed.	Lunar Corporation DPX-IQ, software version 3.6	DXA	Correlations were reported for absolute adipose mass (kg) but not relative (%BM).	Not reported	None reported.	Yes, adjusted for age and pubertal status.
Junior et al. (2013) ⁵¹⁰	To analyze the relationship between abdominal adipose tissue and BMD in obese children and adolescents.	Cross- sectional	Yes	GE Lunar DPX-NT	DXA	Correlations were reported for relative adipose mass (%BM) but not absolute (kg).	Not reported	Exclusion criteria included engagement in regular PA.	None
Kang et al. (2014) ^{S11}	To test the relationship between body composition and BMD by	Cross- sectional	Yes	GE Lunar DXA.	DXA	Yes	Not reported	Assessed by questionnaire but descriptives not	None

	BMI levels in Northern Chinese men.							reported.	
Liu et al. (2014) ⁵¹²	To test the relationships between body composition and muscular strength with BMD in African American women with metabolic syndrome.	Cross- sectional	Yes	GE iDXA.	DXA	Yes	25.1 – 45.1	Exclusion criteria included participation in exercise, diet or weight loss programs.	None
Morberg et al. (2003) ⁵¹³	To explore the relationship between leptin and BMD in healthy obese and non- obese men.	Cross- sectional	Yes	Lunar DXA- IQ.	DXA	Correlations were reported for absolute adipose mass (kg), but not relative (% BM).	23.2 – 56.4	Recorded by retrospective questionnaire and included in regression models, but descriptive not reported.	None
Mosca et al. (2014) ⁵¹⁴	To determine the effect of excess adipose tissue on bone mass in overweight and obese adolescents.	Cross- sectional	Yes	Hologic QDR 4500 Discovery A.	DXA	Yes	Not reported	Exclusion criteria included regular practice of physical activity.	None
Moseley et al. (2011) ⁵¹⁵	To investigate the effects of body composition on BMD in middle-aged men and women with uncomplicated noninsulin dependent diabetes mellitus.	Cross- sectional	Yes	GE Lunar Prodigy.	DXA	Correlations were reported for absolute adipose mass (kg), but not relative (%BM).	Not reported	Exclusion criteria included participation in regular physical activity.	None
Remmel et al. (2015) ⁵¹⁶	To investigate the association between ghrelin, PYY and bone mineral characteristics in overweight and normal- weight boys.	Cross- sectional	Yes	Lunar DPX- IQ DXA	DXA	Correlations were reported for absolute adipose mass (kg), but not relative (%BM).	Not reported	Total PA (counts/min assessed by ActiGraph GT1M) was not different between over and normal weight boys, and was not correlated with BMD in either group.	None

^a Response was yes if screening procedures were described in sufficient detail to ensure that the study population met the inclusion/exclusion criteria of the meta-analysis. ^b Answered yes if all available results from the study were reported.

REFERENCES:

- S1. Abou Samra R, Baba NH, Torbay N, Dib L, Fuleihan GEH. High plasma leptin is not associated with higher bone mineral density in insulin-resistant premenopausal obese women. J Clin Endocrinol Metab. 2005;90(5):2588-2594.
- S2. Aguirre L, Napoli N, Waters D, Qualls C, Villareal DT, Armamento-Villareal R. Increasing adiposity is associated with higher adipokine levels and lower bone mineral density in obese older adults. *J Clin Endocrinol Metab*. 2014;99(9):3290-3297.
- S3. Ballard JE, Cooper CM, Bone MA, Saade G, Holiday DB. Bone health in immigrant hispanic women living in texas. *J Community Health*. 2010;35(5):453-463.
- S4. Boyanov M. Body fat, lean mass and bone density of the spine and forearm in women. Open Med. 2014;9(1).
- S5. Campos RMS, Lazaretti-Castro M, Mello MT De, et al. Influence of visceral and subcutaneous fat in bone mineral density of obese adolescents. Arq Bras Endocrinol Metabol. 2012;56(1):12-18.
- S6. Do Prado WL, De Piano A, Lazaretti-Castro M, et al. Relationship between bone mineral density, leptin and insulin concentration in Brazilian obese adolescents. *J* Bone Miner Metab. 2009;27(5):613-619.
- 57. Gomez J, Vilarrasa N, Masdevall C, et al. Regulation of bone mineral density in morbidly obese women: A cross-sectional study in two cohorts before and after bypass surgery. *Obes Surg*. 2009;19(3):345-350.
- S8. Hawamdeh ZM, Sheikh-Ali RF, AlSharif A, et al. The influence of aging on the association between adiposity and bone mineral density in jordanian postmenopausal women. J Clin Densitom. 2014;17(1):143-149.
- S9. Ivuskans A, Lätt E, Mäestu J, et al. Bone mineral density in 11-13-year-old boys: Relative importance of the weight status and body composition factors. *Rheumatol* Int. 2013;33(7):1681-1687.
- S10. Júnior IFF, Cardoso JR, Christofaro DGD, Codogno JS, de Moraes ACF, Fernandes RA. The relationship between visceral fat thickness and bone mineral density in sedentary obese children and adolescents. *BMC Pediatr*. 2013;13:37.
- S11. Kang D, Liu Z, Wang Y, et al. Relationship of body composition with bone mineral density in northern Chinese men by body mass index levels. *J Endocrinol Invest*. 2014;37(4):359-367.
- S12. Liu P, Hornbuckle L, Ilich J, Kim J, Panton L. Body composition and muscular strength as predictors of bone mineral density in African American women with metabolic syndrome. *Ethn Dis.* 2014;24(3):356-362.
- S13. Morberg CM, Tetens I, Black E, et al. Leptin and bone mineral density: A cross-sectional study in obese and nonobese men. *J Clin Endocrinol Metab*. 2003;88(12):5795-5800.

- S14. Mosca LN, Goldberg TBL, da Silva VN, et al. Excess body fat negatively affects bone mass in adolescents. *Nutrition*. 2014;30(7-8):847-852.
- S15. Moseley KF, Dobrosielski DA, Stewart KJ, De Beur SMJ, Sellmeyer DE. Lean mass and fat mass predict bone mineral density in middle-aged individuals with noninsulin-requiring type 2 diabetes mellitus. *Clin Endocrinol (Oxf)*. 2011;74(5):565-571.
- S16. Remmel L, Tillmann V, Maestu J, et al. Associations between bone mineral characteristics and serum levels of ghrelin and peptide YY in overweight adolescent boys. Horm Res Paediatr. 2015;84(1):6-13.