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ABSTRACT  

International guidelines (IMO MSC.Circ 1533) specify that evacuation models used to certify evacuation 

performance of passenger ships must demonstrate that the calculated representative evacuation time, the sample 

95th percentile time τS, is lower than a prescribed Pass/Fail Criterion Time (PFCT). In this paper a Confidence 

Interval Convergence Test (CICT) method is presented that minimises the computational burden required to 

demonstrate that a model design has passed/failed by calculating a CI for the population 95th percentile time, τP, 

rather than simply relying on τS determined from an arbitrary sample of 500 simulations as specified in the 

current guidelines. The CICT has comparable pass/fail accuracy to using 500 simulations whilst significantly 

reducing the number of simulations required when the PFCT is far from the τP. In addition, the proposed method 

has superior accuracy to the convergent method described in the IMO guidelines. Furthermore, the methodology 

described in the guidelines fails to identify situations where there may be uncertainty in the pass/fail status due 

to proximity of τP to PFCT. The CICT identifies these situations and provides a means of resolving the 

uncertainty. The CICT can be applied to any stochastic evacuation model to determine parameter convergence. 
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Nomenclature 

CI            Confidence Interval 

CI(x%)    CI with an x% confidence level 

CICT       Confidence Interval Convergence Test 

IMO       International Maritime Organisation 

PFCT      Pass/Fail Criterion Time 

TET        Total Evacuation Time (s) 

n            sample size of simulations 

RCI          range of the CI (s) 

Tb           TET of simulation b (s) 

τ             95th Percentile TET (s) 

τP            population 95th Percentile TET (s) 

τS(=n)       sample (of size n) 95th Percentile TET (s) 

 

1 INTRODUCTION  

Many evacuation simulation models (Gwynne et al., 1999; Kuligowski et al. 2010) employ a stochastic 

approach for the representation of behaviour and movement (Gwynne et al., 2001, 2003; Ha et al., 2012; 

Korhonen et al., 2008; Meyer-König, 2005; Park et al., 2004; Pradillon, 2003; Thompson and Marchant, 1995; 

Vassalos et al., 2002) as they attempt to reflect the probabilistic nature of human behaviour (Averill, 2011).  

This is consistent with real behaviour since if any evacuation experiment is repeated using the same population 

and same starting conditions it is likely that the evacuation will progress differently and result in a different total 

evacuation time (TET).  However, two key questions that arise when using a stochastic evacuation model 

concerns how many simulations are required to obtain a given level of confidence that the predicted results 

provide a true indication of the expected outcome for the scenario and what should be considered the 

representative value of predicted parameters such as TET for a given scenario.  Given a distribution of predicted 

TETs there are a number of possible candidate values for the representative TET such as the longest TET, the 

mean TET, the median TET, or the 95th percentile TET.  To a certain extent, the predicted parameter used to 

represent the distribution of possible results is dependent on the purpose for undertaking the analysis.  If it is 

part of a risk analysis, it may be appropriate to take a reasonable worse case and so the 95th percentile TET may 

be appropriate, if the analysis is more concerned with typical performance, then the mean TET may be 

appropriate.  

While there has been some interest in these issues (Meacham et al., 2004; Ronchi et al., 2014) for building 

applications, there are currently no internationally agreed guidelines on how to address this issue for building 

applications.  However, the International Maritime Organization (IMO) in their guidelines for evacuation 

analysis (IMO, 2016) specifies that when assessing the evacuation capability of a passenger ship using an 

advanced egress model, a minimum of 500 simulations must be performed and that the representative TET is the 

95th percentile TET, τ, from those simulations.  The possible use of the 95th percentile (of a sample of 

simulations) TET has also been suggested for the building (Meacham et al., 2004) and aviation (Galea, 2006; 

Galea et al., 2010) industries.  The IMO (2016) guidelines further stipulate the minimum number (four) and 



 

 

nature of scenarios that must be investigated for each new ship design.  This includes the nature of the 

population (of agents) distribution (age, gender and number of disabled occupants) and the range and 

distribution of key parameters such as occupant response times and walking speeds.  In addition the guidelines 

stipulate that each scenario must be repeated with the key parameters varied between the given ranges for each 

repeat simulation.  Thus, in addition to the natural variation in evacuation output that can be expected due to the 

stochastic nature of behaviour (even if none of the input parameters are altered), varying the key parameters 

between each of the repeat simulations will result in even greater variation in the predicted output.  As stochastic 

evacuation models generally use pseudo-random numbers then there will be a finite number of possible different 

simulations that can be produced, but the number of unique simulations could be very large, 219937–1 (>106001) if 

a Mersenne-Twister Random Number Generator (RNG) (Matsumoto and Nishimura, 1998) or 2249 (>1074) for a 

R250 (Kirkpatrick and Stoll, 1981) RNG is used.  From a practical point of view it is generally only possible to 

take a relatively small sample (<10,000) of all possible simulations and so the population of simulations that 

these are drawn from is effectively infinite. 

Prior to the recently updated IMO guidelines, IMO (2007) specified that the 95th percentile value from a 50 

simulation trial sample, τS=50, was sufficient to represent the predicted evacuation time for the vessel design.  

When undertaking an evacuation analysis, the representative TET is compared to the relevant Pass Fail 

Criterion Time (PFCT) and the design is deemed to have passed if the τ is less than the PFCT.  However, the 

variability of τ between samples was not examined and there is no requirement for error bars to be specified for 

the representative value.  Thus, in the previous IMO guidelines, τS=50 was assumed to be a good estimation of the 

95th percentile value of the entire population of predicted TETs for the given scenario, τP. However, there is 

considerable variation in τS=50 (see Fig. 1) and using τS=50 to represent τP can lead to an increasing number of 

false positives (type I error where a poor design is deemed to have passed) and false negatives (type II error 

where a satisfactory design is deemed to have failed) as τP for the vessel design and scenarios gets closer to the 

pass fail criterion time, PFCT.  It is noted that the actual τP is generally impractical to determine as it would 

require running a very large number of simulations to ensure that all possible permutations of model input 

parameters and all the natural inherent model variability was accounted for.  It is further noted that the τP for a 

particular model cannot be assumed to exactly represent reality due to assumptions used to specify the artificial 

benchmark scenarios, the simplifications within the model and a lack of data defining the performance of the 

population in general and particularly in emergency situations.   The IMO (2016) guidelines add a 25% safety 

factor to account for these uncertainties.  



 

 

 

Fig. 1. Example variability of τS across one million experiments for 50 and 500 simulation sized samples. 

A false positive occurs when τS is less than the PFCT but τP is greater than the PFCT.  Similarly, a false negative 

occurs when τS is greater than the PFCT but τP is less than the PFCT.  In the most recent version of the 

guidelines, IMO (2016) attempted to address this problem by increasing the sample size to a minimum of 500 

simulations.  In this approach it is assumed that τS=500 is likely to be a more precise estimate of τP thereby 

reducing, but not eliminating, the probability of false positives or false negatives.  This can be seen in Fig. 1, 

where the difference between the maximum and minimum values of τS=50 for a sample involving 1 million 

simulation experiments is 540s, compared to the more precise extent of τS=500 which is 191s.      

However, while the IMO (2016) Guidelines state that the 500 simulations are considered a minimum, they 

provide no advice as to what circumstances may require additional simulations to be considered.  The inevitable 

effect of this omission is that most engineers will treat the stated minimum as effectively the required number of 

simulations.  They may be motivated to undertake more simulations in the event that the design failed.  

Furthermore, performing 500 simulations is potentially a considerable computational burden when evaluating 

the design of a large passenger ship with many thousands of passengers and so engineers are unlikely to 

voluntarily perform more simulation unless required to. This is considered a serious omission as no proof is 

required to demonstrate that the sample τS=500 provides a good representation of the population τP. 

Given that performing 500 simulations may be more than required in some cases and acknowledging the 

computational burden of undertaking the task, IMO provided the option of performing fewer than the specified 

500 simulations if it could be demonstrated that the sample 95th percentile time had converged, as stated in the 

IMO (2016) guidelines, “The minimum of 500 different simulations can be reduced when a convergence is 

determined by an appropriate method...”.  Within the guidelines a suggested convergent method that increases 



 

 

the precision that is required for τS as the PFCT gets closer to τS is presented however, the efficiency of this 

approach is not discussed.   

While the IMO Guidelines provide a means for demonstrating that fewer than 500 simulations may be required, 

it does not provide a means for demonstrating that 500 simulations may be insufficient.  Thus a motivation for 

this paper is to provide a methodology that has comparable pass/fail accuracy as using 500 simulations whilst 

minimising the computational burden required when a design clearly passes or fails the PFCT by a significant 

margin and which indicates that more than 500 simulations may be required to make a decision on the suitability 

of the design.  

Ronchi et al. (2014) have proposed convergence criteria for stochastic evacuation models based on five 

measures.  The first two measures are based on comparing the difference between the mean and standard 

deviation of TETs for j simulations against the mean and standard deviation obtained for j-1 simulations against 

a specified tolerance.  The other three measures are based on functional analysis (Peacock et al., 1999) which 

compare properties of the average overall egress curve (i.e. the number of exited agents vs time) for j 

simulations against properties of the average overall egress curve for j-1 simulations (note that the metrics 

specified in Peacock et al. (1999) are incorrectly specified and are corrected in Galea et al. (2013)).  In their 

work the representative TET is the mean value of all the TETs generated together with the standard deviation of 

the TETs and is therefore, in its current form, unsuitable for examining the convergence of τ.  Galea et al. (2012, 

2013, 2014) have also used functional analysis for validating a computed egress curve against an experimentally 

derived egress curve for a large cruise ship.  The work presented in this paper differs from these by considering 

convergence based on confidence intervals (CIs) and particularly the 95th percentile TET, τ.  Ronchi et al. (2014) 

note that their concepts of convergence are a potential limitation of their method.  They argue that this limitation 

is tempered by the simplicity of the method.  In this paper we argue that comparing the difference between 

successive statistical measures as utilised in Ronchi et al (2014), while appropriate for iterative numerical 

solvers for deterministic variables are not ideal for stochastic simulations making them less reliable than the CI 

methods proposed in this paper, which are as simple to apply as the alternative methods and give a valid 

statistical interpretation.      

Finally, it is important to note that convergence for one parameter - whether it is the mean TET, median TET, τ 

or some other population parameter - does not guarantee convergence for other predicted parameters of interest, 

such as measures of congestion or casualty numbers to the same accuracy or precision. Therefore an engineer 

needs to ensure that the required levels of convergence are achieved for all parameters that may be of interest to 



 

 

them.  For example, the mean TET is likely to converge with fewer simulations than τ for an equal level of 

precision.  The methods described in this paper only refer to single parameter convergence but this does not 

preclude its use as part of a multi-objective procedure if an engineer wishes to pursue this approach.   

2 METHODOLOGY  

Within the IMO (2016) guidelines, there is currently no stated requirement to have error bars or CI associated 

with the predicted representative evacuation time. CIs are conventionally simple to calculate when the 

population parameter is the mean of the values by using standard statistics (e.g. the Central Limit Theorem 

(Rice, 1995) but is less obviously derived for percentile style parameters.  This is the case for stochastic 

evacuation simulations where the underlying population distribution of TETs is unknown.  If a CI can be 

established then it is possible to reduce the number of simulations required to identify whether or not a 

particular design’s τP is actually greater than or less than the PFCT.    

2.1 Confidence Intervals 

In statistics, a CI (Neyman, 1937) is a type of interval estimate of a population parameter (i.e. τP).  It is an 

observed interval (i.e. it is calculated from the observations), that generally differs between samples, that 

frequently includes the value of an unobservable parameter of interest if the experiment is repeated. The 

frequency that the observed interval contains the parameter is determined by the confidence level.  If CIs are 

constructed across many separate data analyses of replicated experiments, the proportion of such intervals that 

contain the true value of the parameter will match the given confidence level.  This is illustrated for a 95% 

confidence level in Fig. 2 where the vast majority, 47 (~95%), of the sample CIs contain τP but 3 (~5%) of the 

sample CIs do not.  It is impossible to guarantee that a sample contains τP let alone a particular CI for that 

sample but a confidence level of x% equates to x% of the sample CIs containing τP.   

 

Fig. 2. 95% Confidence Intervals for τP for 50 different samples. 



 

 

When the underlying population distribution of TETs and τP is unknown, the CI can be established using either a 

Bootstrap (resampling) method (Efron and Tibishirani, 1993) or by recasting the sample into a set of Bernoulli 

trials (Papoulis, 1984) (a trial with two possible outcomes).  Both methods were tested and found to perform 

similarly but recasting into Bernoulli trials leads to a simpler method for the end-user and is presented in this 

paper.   

The parameter of interest is τP and although its actual value is generally unknown the probability of a single trial 

having a TET less than or greater than τP is known by definition.  The probabilities are 0.95 and 0.05 

respectively.  This is now a Bernoulli trial that can be treated using a binomial distribution in much the same 

way as computing the probability for a sequence of coin tosses.  This binomial distribution can then be used to 

produce a confidence interval for τP for a sample of simulation TETs. 

The probability mass function P that exactly k simulations are less than τP in n trial simulations is given by Eq.1. 
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This is plotted in Fig. 3, for a total sample size of 250 simulations. 

 

Fig. 3. Probability Mass Function for the number of TETs less than τP for 250 simulations. 

By visual inspection of Fig. 3 it can be seen that the probability that the 250 simulation TET sample has 225 

simulation TETs or fewer below τP is very small and the probability that the sample has 247 simulation TETs or 



 

 

more below τP is also very small.  For any particular sample of 250 simulations it is highly likely that there will 

be between 225 and 248 simulations less than τP.  This interval is more formally described as a CI.    

2.1.1 Constructing Confidence Intervals 

The CI is chosen so that the cross-hatched regions in Fig. 4 are equal in area to each other.  For a confidence 

level of 99% (0.99) the area outside of the interval (α) is 1% (0.01) and therefore 0.5% (0.005) either side.  The 

lower bound of the CI is calculated by finding the value of i that satisfies (Eq. 3):- 
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Fig. 4. Example confidence interval. 

Similarly the upper bound of the CI is calculated by finding the value of j that satisfies (Eq. 4):- 
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For the discrete binomial distribution it is generally not possible to find an exact match so the lower bound is 

taken as the largest value of i that gives a summation S that does not exceed α/2.  Similarly for the upper bound 

the lowest value of j that gives a summation that does not exceed α/2.  This leads to a greater confidence level 

than the stated (1 – α) (Clopper and Pearson, 1934).  The CI could have been obtained by using an 

approximation such as the Normal, Wilson (1927) or Agresti and Coull (1998) intervals but these intervals may 

be inaccurate or have a coverage that is less than the stated confidence level (Brown et al., 2001).    

2.1.2 Order Statistics 

Now the predicted TETs (shortened to T in mathematical expressions and equations) from the trials are ordered 

T1 < T2 <T3 …. < Tn-1 < Tn. For the lower confidence limit where i trials are lower than τP then the lower 

confidence limit of τP must lie between Ti and Ti+1.  The most conservative approach is to take the lower value as 

the estimate, i.e. Ti. For the upper confidence limit where j trials are lower than the τP then the upper confidence 



 

 

limit of τP must lie between Tj and Tj+1.  The most conservative approach is to take the upper value as the 

estimate, i.e. Tj+1.  Similarly, τS lies somewhere between the two consecutive values T0.95*(sample size)  and 

T0.95*(sample size)+1, where x returns the integer truncation of x. Once again, the most conservative approach is to 

take the upper value, i.e. T0.95*(sample size)+1.   

 

Table 1 gives the appropriate values to use for the estimate of the population 95th percentile, the lower and upper 

confidence limits for this value from the (ascending) ordered simulation times for a range of possible sample 

sizes.  For a sample of 50 simulations it is impossible to define an upper confidence limit for the required 

confidence levels but the lower confidence limit can be defined; in fact there is a 7% probability that none of the 

simulations will be greater than τP.  For a sample of 100 simulations it is also impossible to define an upper limit 

for a 99% or 99.9% confidence level but it can be defined for a 95% confidence interval.  For 150 or more 

simulations it is possible to define both an upper and lower limit for all the specified confidence levels.  For 

arbitrary sample sizes and CIs it is possible to calculate these values using a tool such as Microsoft EXCEL.   

Table 1 - Ordered Simulation Times to use for the estimated 95th percentile and confidence limits 

Number of 

Simulations 

Est of 

τP (=τS) 

>95% Confidence 

Limit 

>99% Confidence 

Limit 

>99.9% Confidence 

Limit 

Lower 

Limit  

Upper 

Limit  

Lower 

Limit  

Upper 

Limit  

Lower 

Limit  

Upper 

Limit  

50 T48 T43 N/A T42 N/A T40 N/A 

100 T96 T89 T100 T88 N/A T86 N/A 

150 T143 T136 T148 T134 T149 T131 T150 

200 T191 T183 T197 T180 T198 T178 T199 

250 T238 T229 T245 T227 T246 T224 T248 

300 T286 T277 T293 T274 T295 T270 T297 

350 T333 T323 T341 T320 T343 T317 T345 

400 T381 T370 T389 T367 T391 T363 T394 

450 T428 T417 T438 T414 T439 T410 T442 

500 T476 T464 T485 T461 T488 T457 T490 

1000 T951 T935 T963 T930 T967 T926 T971 

 



 

 

2.2 Significance Testing 

The procedure recently adopted by IMO (2016) is to determine whether the sample 95th percentile value of a 

500 simulation sample (τS=500) is lower (pass) or higher (fail) than the PFCT and is essentially the same 

procedure as used previously (IMO, 2007) except that in the earlier guidelines a minimum of 50 simulations was 

used.  The alternative approach suggested in this paper, the CI convergence test (CICT), is similar to performing 

two one-tailed statistical significance tests and determines whether the PFCT is significantly lower (fail) or 

significantly higher (pass) than the population 95th percentile value (τP).  The design will pass if the upper 

confidence limit TET is less than the PFCT and will fail if the lower confidence limit TET is greater than the 

PFCT.  However, if the PFCT lies between the upper and lower confidence limits then it is undetermined 

whether the design has passed or failed as the τP also lies somewhere within the Confidence Interval and it is not 

possible to determine whether the PFCT is therefore  greater than or less than the τP.  

 

To illustrate the concept of the CICT consider a hypothetical example in which there are a sequence of values 

for PFCT (PFCT-1, PFCT-2, PFCT-3 and PFCF-4) which get progressively closer to τP as depicted in Fig. 5.  A 

series of 50 CIs with a confidence level of 95%, that have been determined for the design, are also illustrated in 

Fig 5.  In this hypothetical example, all the PFCT values are greater than τP for the underlying distribution so in 

principle the design under investigation should pass irrespective of which value of PFCT is used.    

 

Fig. 5. 95% Confidence Intervals for 50 different samples plotted against τP and 4 PFCT values 

Using the CICT outlined above, the samples are categorised as: 1) Pass, 2) Fail (False Negative), and 3) 

Undetermined for each of the PFCT levels (see Table 2).   

 

 



 

 

Table 2 – Passed, Failed, Undetermined samples for different PFCT (Fig. 5) using CI 

 Pass (CI Below 

PFCT) 

Fail (False Negative) 

(CI Above PFCT) 

Undetermined (CI 

Through PFCT) 

PFCT-1 50 0 0 

PFCT-2 36 0 14 

PFCT-3 7 1 42 

PFCT-4 3 2 45 

 

It can be seen (Fig. 5 and Table 2) that all the samples will pass the PFCT-1 criterion but as the PFCT values 

gets progressively closer to τP fewer samples can be defined as a pass and more cases become undetermined and 

a small number of  samples are defined as a fail (False Negative).    

 

The proposed CICT can be further explored to determine what percentage of the samples would pass the upper 

confidence interval test. To simplify the analysis it is assumed that τS follows a normal distribution with a mean 

of τP and standard deviation (0.5×RCI(95%)/1.96) where RCI is the range of the CI (eq. 5).  It is further assumed, for 

analytical convenience, that the upper bound of the 95% CI also follows a normal distribution with a mean of (τP 

+ RCI(95%)/2) and a standard deviation of (0.5× RCI(95%)/(1.96)).  

 

CIlowerCIupperCI TTR           (5) 

 

Furthermore, to demonstrate this analysis we will make use of 10,000 simulated evacuation experiments of a 

cruise ship validation case (Galea et al., 2012, 2013, 2014), the details of which will be described later in this 

paper. From the set of 10,000 evacuation simulations, random samples of 1000 TETs were selected one million 

times.  This is intended to represent one billion genuine repeat simulated evacuation experiments.  Presented in 

Fig. 6 is the frequency distribution for the τS=1000 and the upper and lower limits of the 95% confidence interval 

for the one million samples of 1000 repeat evacuation experiments.  It can be seen, by visual inspection, that 

frequency distributions are approximately normal and so the fitted normal assumption for the distribution of τS 

and the upper 95% confidence limit is reasonable for this analysis.   



 

 

 

Fig. 6. Frequency Distribution for τS=1000 and associated 95% Confidence Intervals and their fitted normal 

distribution approximations.  

The normal fit will not necessarily be this close for all samples but the general behaviour explored in the 

following analysis should be similar. It is now possible to define the proportion of samples that would pass the 

test in terms of the ratio of (PFCT - τP) to RCI(95%) by integrating this normal distribution defined in units of 

RCI(95%) from -∞ to PFCT (see Fig. 7 and Table 3). 

Table 3. Proportion of samples that pass for a given ratio of (PFCT - τP) to RCI(95%) when comparing the PFCT to 

the upper CI (A: Upper CI limit < PFCT) and direct comparison with τS (B: τS < PFCT). 

(PFCT –τP) 

RCI(95%) 

-1/5 -1/10 0 1/10 1/5 1/3 1/2 2/3 1 3/2 

A 0.003 0.009 0.025 0.058 0.120 0.257 0.5 0.743 0.975 1.0 

B 0.217 0.348 0.5 0.652 0.783 0.904 0.975 0.996 1.0 1.0 

 

From Table 3 it can be seen that if PFCT = τP then 2.5% of all samples would be deemed to have passed; this is 

consistent with the definition of the 95% CI.  The region where PFCT < τP represents the area where false 

positives can be obtained as the upper limit of the CI for a small proportion of samples will be less than τP.  If 

PFCT < τP then the percentage of false positives tends to α/2 as (PFCT - τP)/RCI tends to zero; the percentage of 

false positives tends to zero as (PFCT - τP)/RCI tends to negative infinity.  For a confidence level of 95% the 

maximum probability of false positives is less than 2.5%; for a confidence level of 99% the maximum 

probability of false positives is less than 0.5%; and for a confidence level of 99.9% the maximum probability of 

false positives is less than 0.05%.  This compares very favourably to direct comparison of τS to the PFCT, as 



 

 

used in the former (IMO, 2007) and current guidelines (IMO, 2016), the probability of false positives would 

tend to 50% as |PFCT - τP| tends to zero.  Samples that are false positives using the CICT would also have been 

false positives using direct comparison of τS to the PFCT but represent a small subset of all the possible false 

positives that would occur due to direct comparison of τS to the PFCT.  

 

Fig. 7. Normal Distribution for upper limit of CI 

When RCI(95%) is much larger than |PFCT - τP| then only a small proportion of the samples will pass.  When 

|PFCT - τP| is equal to RCI(95%)/2 then half the samples will pass.  When |PFCT - τP| is equal to RCI(95%) then 

97.5% the samples will pass which is consistent with the 95% CI.  When |PFCT - τP| is larger than RCI(95%) then 

the vast majority of the samples will pass.  An analysis for failing a sample can be obtained by applying a 

similar analysis to the lower bound of the CI. 

 

As the PFCT gets closer to τP, for a fixed RCI, the number of undetermined samples increases and the method 

needs to be extended to deal with these (Tables 2 and 3).  From Table 3 it can be seen that more samples pass as 

RCI becomes smaller relative to |PFCT - τP|.  A feature of confidence intervals with a fixed confidence level is 

that RCI tends to narrow (converge) with increasing sample size (see Fig. 8).  For example the 95th Confidence 

Interval range for τP is the 89th and 100th percentile for a 100 simulation sample size compared to the 92.8th and 

97th percentile for a 500 simulation sample size.  More generally it can be shown that the RCI in percentiles is 

inversely proportional to √n.   



 

 

 

Fig. 8. Normalised Probability Density Functions for percentiles of TETs less than τP for 100, 200 and 500 total 

simulations in a sample. 

This enables a convergent approach based on incremental testing where the size of the sample can be 

progressively increased until the sample’s RCI is narrow enough ((RCI ∝ 1/√n) → 0 as n → ∞) that it can be 

determined to have significantly failed or significantly passed.  RCI needs to be less than |PFCT - τP| to guarantee, 

to the specified confidence level, the pass or fail can be determined although this determination is likely to be 

achieved with a larger RCI (see Table 3).  It is always possible to resolve whether a sample has passed or failed, 

provided τP ≠ PFCT, but as |PFCT - τP| tends to zero the number of simulations required to sufficiently narrow 

RCI to identify whether the case passes (or fails) tends to infinity.  Furthermore, the rate of convergence of RCI is 

slow, e.g. halving RCI requires the sample size n to be quadrupled.  This is untenable and a maximum number of 

simulations (nmax) needs to be set with an additional criterion required to identify whether the case has passed or 

failed.   

 

A series of tests were performed to obtain the average RCI(95%) for a ‘real’ case, based on the cruise ship 

evacuation model validation test case (Galea et al., 2012, 2013, 2014), for a range of sample sizes.  For each 

sample size one million experiments were performed and RCI(95%) from these samples is averaged (see Table 4).   

Table 4. Average RCI(95%) for sample sizes 100 to 500 

Sample Size 100 150 200 250 300 350 400 450 500 

Average RCI(95%) 253.4s 162.6s 150.1s 132.8s 117.3s 106.9s 99.1s 92.9s 88.2s 

 

From Table 4 it is observed that increasing the sample size reduces RCI(95%) approximately in line with 1/√n 

although the RCI(95%) is also dependent on the underlying TET distribution.  A sample size of 500 simulations has 



 

 

an average RCI(95%) of 88.2s meaning that if |PFCT - τP| is less than this then there is a significant probability that 

the size of sample required would reach the nmax limit (=500). 

2.3 Suggested Methodology to Demonstrate Accurate Convergence 

The proposed CICT methodology makes use of confidence intervals and ensures that the predicted total 

assembly time is determined accurately enough to determine whether it has passed or failed.  Unlike the 

approach suggested within the IMO guidelines, the CICT not only provides a level of confidence to attach to the 

predicted assembly time, it can potentially achieve a similar level of accuracy in the predicted assembly time as 

the method in the IMO guidelines whilst utilising fewer simulations and hence computational time.   

The CICT requires the generation of evacuation simulations in batches of 50 simulations.  Each simulation is 

performed using its own randomly generated passenger populations to ensure there is no inadvertent biasing in 

the sample that could be caused by using the same initial passenger distribution for a number of simulations.  

Given the number of simulations performed, the representative times from the sample are selected using Table 1 

and compared with the PFCT.  If the test fails, another batch of 50 simulations is performed and combined with 

the results from the earlier set of simulations and retested.  This process is continued until either the sample has 

passed or failed the test or the maximum number of simulations (nmax) has been reached.  The process proceeds 

as follows: 

1) Run a batch of 50 simulations, order the simulation times and test to see if the lower confidence bound 

e.g. T43 (of the τP estimate) is greater than the PFCT.  If it is then the design has failed. Otherwise 

continue. 

2) Run another batch of 50 simulations, order all 100 simulation times and test to see if the lower 

confidence bound e.g. T89 is greater than the PFCT.  If it is then the design has failed. If not, test if the 

upper confidence bound e.g. T100 (95% CI only) is less than PFCT.  If it is then the design has passed.  

Otherwise continue. 

3) Run another batch of 50 simulations, order all 150 simulation times and test to see if the lower 

confidence bound e.g. T136 is greater than the PFCT.  If it is then the design has failed.  If not, test if the 

upper confidence bound e.g. T148 is less than the PFCT.  If it is then the design has passed. Otherwise 

continue. 



 

 

4) Repeat (3) adding another batch of 50 simulations for a total number of simulations of 200, 250, 300, 

350, …, nmax-50, nmax until the design has passed or failed.  nmax must  be at least 500 (IMO, 2016) 

although it can be set to a higher value to give a greater level of pass/fail accuracy.  

5) If design has not passed or failed after nmax simulations then the PFCT must be “close” and within the 

CI of τP.  There are a number of ways this situation could be dealt with but it is suggested that the 

design passes if the τS≥500+ is less than the PFCT and fails otherwise.  This is consistent with the 

suggested approach recently adopted by IMO (2016) when 500+ simulations are used.   

It is recommended that the CI(95%) level is used (as this is specified within the current IMO (2016) guidelines) 

but when a case passes at this level it is also possible that it may also have passed a higher CI (i.e. 99% or 

99.9%).  In this case the result should be quoted to the highest passed CI level.  The result should be quoted for 

the estimate of the 95th percentile, the CI (see Table 1), and the number of simulations performed.  The use of a 

CI can be considered as an “error bar” on the estimate of the population 95th percentile.  For example, results 

should be quoted as follows: 

“Total Evacuation Time is 57m40s (i.e. T96), 95%CI [55m11s, 60m36s] (i.e. [T89, T100]), from 100 simulations”.    

If a case fails with 50 simulations there is no upper confidence interval and the result should be quoted as: 

 “Total Evacuation Time is 89m40s (i.e. T48), 99.9%CI [83m11s, N/A] (i.e. [T40, N/A]), from 50 simulations” 

3 COMPARITIVE DEMONSTRATION OF THE ACCURATE CI METHOD WITH THE OLD AND 

NEW IMO METHODOLOGIES 

The main consideration in using the CICT is to ensure it is as accurate as the current IMO (2016) method in 

determining whether a vessel has passed or failed the assembly time criterion whilst reducing the computational 

burden when a design clearly passes or fails the criterion by a significant margin.   

Eight different methods are compared to assess the number of true passes and true fails against the number of 

false passes and false fails based on two “known” distributions of simulation TETs with a “known” population 

95th percentile times.  The eight methods are: 

1) Using 50 simulations as specified in the old IMO (2007) guidelines. (50 in Fig. 9 and Fig. 10). 

2) Using 500 simulations as specified in the current IMO (2016) guidelines. (500 in Fig. 9 and Fig. 10) 



 

 

3) Using the convergent method (see Eq. 5) suggested in the current IMO (2016) guidelines. (MSC-C in 

Fig. 9 and Fig. 10) 

4) Using a simple convergence criterion (see Eq. 6) analogous to methods used in numerical solvers 

(Simple Conv in Fig. 9 and Fig. 10) 

5) Using the CICT with a 95% confidence interval with nmax = 500. (CI(95%) in Fig. 9 and Fig. 10) 

6) Using the CICT with a 99% confidence interval with nmax = 500. (CI(99%) in Fig. 9 and Fig. 10) 

7) Using the CICT with a 99.9% confidence interval with nmax = 500. (CI(99.9%) in Fig. 9 and Fig. 10) 

8) Using the CICT with a 95% confidence interval with nmax = 1000. (CI(95%)-1000 in Fig. 9 and Fig. 10) 

3.1 Convergent Method described in IMO (2016) MSC.1/Circ 1533 (Method 3) 

The convergent method (method 3) described in IMO (2016) is briefly outlined below: 

Convergence is achieved when the Eq. 6 is satisfied.  
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The simulations are incrementally performed in batches of 50.  In IMO (2016) the expression is used for 

calculating the convergence of the travel (and response) time e.g. excluding launch and embarkation time.  

However, the nature of the relation will equivalently identify convergence irrespective of whether travel time or 

TET is used provided the PFCT is modified appropriately. 

3.2 Simple Numerical Solver Convergence Method (Method 4(a) and 4(b))  

A typical convergence criterion for a variable  utilised by iterative numerical solvers at the ith iteration is 

described by eq. 7. 
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This convergence is attractive due to its simplicity and it is tempting to apply it to random sampling (e.g. outputs 

from stochastic evacuation models).  However, there are several key differences between numerical solvers and 

random sampling for a sampling statistic that make this inappropriate for the latter: 

 For a numerical solver, when i-1 = converged then generally i = converged but for sampling if S=i-1 = P 

then generally S=i ≠ P and convergence may not be detected. 

 For a numerical solver, when i-1 ≠ converged then generally i ≠ i-1 but for sampling when S=i-1 ≠ P it 

is quite possible that S=i ≈ S=i-1 and therefore convergence may be incorrectly and prematurely 

detected.  

 It is unclear how the tolerance of the convergence method relates to any form of error bar or CI for . 

For a numerical solver the tolerance of this criteria is generally considered to be the error bar.  

However, this will not be the case for sampling.     

If this method for convergence is applied to a sampling statistic the incorrect premature convergence issue must 

be addressed.  Two possible approaches to overcome this problem are investigated.  The first approach (method 

4a), as adopted by Ronchi et al. (2014), requires that the test must be satisfied 10 consecutive times.   It is noted 

that only this aspect of the method proposed by Ronchi et al. (2014) for convergence testing is examined here. 

In addition at least 50 simulations must be performed to satisfy current IMO guidelines.  Thus the second 

approach (method 4b) tests the difference between the sample statistics when multiples of 50 simulations have 

been determined (see eq. 8).  Thus for this approach a minimum of 100 simulations is required.    

Tolerance
iS

iSiS








50

)1(5050




, where i is the ith batch of 50 simulations                                             (8) 

The tolerance level for both method 4a and method 4b has been set to the strictest possible level (i.e. zero).  

3.3 Testing Distributions 

The first “known” distribution of TETs (called Distribution A) was generated by performing 10,000 assembly 

simulations on a cruise ship geometry consisting of 13 decks split into 7 main vertical zones (MVZ) with four 

assembly stations and a total passenger population of 1779.  This geometry forms part of a ship evacuation 

model validation data set that is publically available (Galea et al., 2012, 2013, 2014).  The passenger 



 

 

characteristics and spatial distribution are randomly re-specified for every simulation according to IMO (2016) 

guidelines.  The maritimeEXODUS (Gwynne et al, 2003) software was used to generate the simulation TETs 

however any suitable stochastic evacuation model could have been used.  The TET of each simulation was 

saved to a database of results.  The TETs for the sample of 10,000 repeat simulations varied from 45m 25s to 

63m 20s.  The sample 95th percentile time (τS=10000) which is considered to be a good estimate for the population 

95th percentile TET was found to be 57m 25s with 99.9% CI [57m 11s, 57m 36s].  A computer program was 

written to randomly sample the database to generate the “small” samples used to test the methods.  A single 

sample was equivalent to a set of simulations needed to establish whether the PFCT was met.  This database of 

TETs was also used to create the τS distributions in Fig. 1 and Fig. 6.  The approach of sampling a database of 

results was used as it took a computational effort of 14 CPU-core-days to produce the original 10,000 simulation 

sample (as each simulation took approximately 2 minutes to be computed).  Had unique simulations been used 

for testing purposes then the computational effort to generate the one million TET values used in this analysis 

would have been of the order of 15,000 CPU-core-years using current computational technology.  The Law of 

Large Numbers (Rice, 1995) would also suggest that this distribution will be a close approximation of the true 

population distribution. 

The second known distribution of TETs (called Distribution B) was a normal distribution with the τP set to 57m 

25s using a mean value of 47m 10s and standard deviation of 6m 14s.   

The PFCT for a passenger ship with more than three MVZs is 80 minutes (4800s).  The eight methods were 

tested against this criterion.  One million samples were generated for each of the methods and the number of 

passes and fails recorded (see Table 5).  Although ‘ideally’ an infinite number of samples would give the 

‘precise’ answer, one million samples were chosen as this was computationally tractable and would result in a 

reasonably precise estimate of the false positives/negatives.  For example, if the percentage of false positives 

were 10% then the CI(95%) for that value would be ± 100*1.96*((0.1*0.9/106) = ± 0.06%.  The average 

number of simulations used in each samples was also recorded.  It is noted that identical results were obtained 

using Distribution A and B. 

 

 

 

 



 

 

Table 5. Comparison of testing methods for the known population of TETs with PFCT = 80 minutes. 

Method Average 

sample size 

Passes (95th 

Sample < PFTC) 

Fails (95th 

Sample > PFTC) 

1) MSC.1/Circ 1238  50 100% 0% 

2) MSC.1/Circ 1533  500 100% 0% 

3) MSC-C 50 100% 0% 

4a) Simple Conv 56 100% 0% 

4b) Simple Conv 261 100% 0% 

5) CI (95%)  100 100% 0% 

6) CI (99%) 150 100% 0% 

7) CI (99.9%) 150 100% 0% 

8) CI (95%)-1000 100 100% 0% 

 

The design easily passes the 80 minute criterion and required the minimum sample size for the CICTs and 

method 3.  This was expected as the “known” τP was 57m 25s (3445s) with 99.9% CI [57m 11s, 57m 36s] is 

significantly less than the 80 minute criterion.  Referring to Table 4 the RCI(95%) is 253.4s for a 100 simulation 

sample and the |PFCT - τP| is 1355s.  The ratio of (PFCT - τP) to RCI(95%)  is 5.3, well beyond the maximum 

quoted ratio, 3/2, in Table 3 and indicates the pass would be easily determined by a sample of 100 simulations.  

Method 4 is independent of the PFCT so requires more simulations than the other methods in this instance and 

therefore uses far more simulations than is necessary to accurately determine whether the design has passed.  

In order to fully assess the various methods τP should be close to the PFCT.  From Table 4 it is known the 

average CI (95%) range for a 500 simulation sample is 88.2s.  The methodologies were again tested this time 

assuming PFCT times that were 150s, 75s, 37.5s and 18.75s less than the known τP and PFCT times that were 

225s, 150s, 75s, 37.5s and 18.75s greater than the known τP.  One million samples were generated for each 

methodology for each PFCT time.  Ideally it would be expected that all the samples with PFCTs less than τP 

would fail and all the samples with PFCT above τP would pass.  In general there will be an increasing number of 

false positives and false negatives as the PFCT gets closer to τP.  This testing was performed using Distribution 

A and Distribution B. 

 



 

 

3.4 Testing using the modified PFCTs and Distribution A 

The percentage of false positives/negatives for each PFCT for the eight methods applied to TET Distribution A 

is depicted in Fig. 9.  The percentage of correctly determined passes/fails for each PFCT is (100 – percentage of 

false negatives/positives). 

It can be seen from Fig. 9(a) that the 50 simulation requirement specified in IMO (2007) Guidelines is more 

susceptible to false positives or false negatives than the other methods.  Furthermore, increasing the minimum 

number of simulations from 50 to 500, as specified in the current IMO (2016) Guidelines clearly reduces the 

number of false positives.  At PFCT = τP – 37.5s the specifications in the old IMO (2007) Guidelines result in 

31±0.09% false positives compared to just 3±0.03% for the 500 simulation limit specified in the current IMO 

(2016) Guidelines.  The CI(95%) (#5) method (nmax = 500) is essentially as accurate as the full 500 simulations 

over the range of PFCTs as the plotted data points very closely match the full 500 (#2) simulation samples.  The 

CI(99%) (#6) and CI(99.9%) (#7) are even closer to the full 500 simulation results and as they lie between the 

CI(95%) (#5) results and the full 500 (#2) simulation samples are not illustrated in Fig 9(a) as they would be 

indistinguishable from those plots.  The number of false positives or false negatives caused by the CICT 

methods is very small and equivalent to the number of false positives or false negatives caused by limiting the 

sample size to a maximum of 500 simulations.  The number of false positives/negatives produced by the CICT 

is further reduced for the CI(95%) (NMAX = 1000) method.  Indeed, this method has a superior pass/fail accuracy 

compared to all the other methods illustrated. The MSC-C method and the simple convergence method perform 

significantly better than using 50 simulations but do not perform as well as 500 simulations or the CICTs at 

reducing the number of false positives/negatives.  It should be noted that the simple convergence methods even 

with the tolerance set to zero perform poorly compared the CICTs with method 4a being particularly poor.  



 

 

 

(a) 

 

(b) 

Fig. 9. Plot of false positives/negatives for a range of PFCTs using 7 different assessment methods (a) and the 

average sample size for 5 assessment methods (b) (Distribution A). 

When the PFCT is equal to τP it is expected that 50% of the samples would pass the criterion and 50% would 

fail the criterion but it cannot strictly be identified as a false positive or a false negative, the point is identified to 

aid curve plotting.      

The average sample size (number of simulations) required by each PFCT for each method for Distribution A is 

depicted in Fig. 9(b).  As the simple convergence methods (4a and 4b) are independent of proximity of PFCT to 

τP the average number of cases were found to be 56.6 and 261 respectively.  When CICTs are used, significantly 



 

 

fewer simulations than 500, on average, are required to establish whether the design has passed or failed when 

the PFCT is “far” from the τP.  The CI (95%) method requires far fewer simulations than the other CICTs but 

with no significant effect on the overall accuracy (see Fig. 9).  For example the average number of simulations 

required for a PFCT = (τP - 75s) is 193 for CI(95%), 252 for CI(99%), and 337 for CI(99.9%).  The proportion 

of false negatives is only 0.01±0.002% for CI(95%), 0.003±0.001% for CI(99%), 0.003±0.001% for CI(99.9%) 

and 0.002±0.0009% for 500 simulations.  The CI(99.9%) requires 75% more simulations than CI(95%) and 500 

simulations requires 159% more simulations than CI(95%) with a negligible increase in pass/fail accuracy (see 

Fig. 9).  There is no significant difference in pass/fail accuracy between the full 500 simulations and the 

CI(99%) and CI(99.9%) methods.  Increasing nmax to 1000 clearly decreases the number of false 

positives/negatives near the τP but significantly more simulations are required to improve this accuracy.  

However, for a PFCT of (τP - 75s) it can be seen that an average of 573 simulations are required for CI(95%)-

Nmax=1000 but the number of false positives is only 0.63±0.02% compared to 2.83±0.03% obtained with 500 

simulations and 3.0±0.03% obtained with CI(95%)-Nmax=500.    

It can be seen that the MSC-C method (Fig. 9(b)) also tends to increase the sample size required as PFCT tends 

to τP, although not to the same extent as the CICTs, but the CICTs have superior pass/fail accuracy. 

3.5 Testing using the modified PFCTs and Distribution B 

As was observed with Distribution A (see Fig. 9(a)) the 50 simulation specification required by the old IMO 

(2007) Guidelines is more susceptible to false positives or false negatives than the other methods when applied 

to Distribution B (see Fig. 10(a)).  At PFCT = (τP – 75) it can be seen that the 50 simulation specification of the 

old IMO Guidelines  leads to  28±0.09% false positives compared to 1.5±0.02% with 500 simulations (as 

specified in the current IMO (2016) Guidelines) and 0.3±0.01% with the CI(95%)-1000.  The CI(95%) (#5) 

method (nmax = 500) is essentially as accurate as the full 500 simulations over the range of PFCTs as the plotted 

data points very closely match the full 500 (#2) simulation samples.  The CI(99%) (#6) and CI(99.9%) (#7) are 

even closer to the full 500 simulation results and as they lie between the CI(95%) (#5) results and the full 500 

(#2) simulation samples are not illustrated in Fig 10(a) as they would be indistinguishable from those plots.  The 

number of false positives or false negatives caused by the CICT methods is very small and equivalent to the 

number of false positives or false negatives caused by limiting the sample size to a maximum of 500 

simulations.  The number of false positives/negatives produced by the CICT is further reduced for the CI(95%) 

(NMAX = 1000) method.  Indeed, this method has a superior pass/fail accuracy compared to all the other methods 



 

 

illustrated.  The simple convergence methods again perform poorly compared to the CICTs with method 4a 

being particularly poor.  

 

(a) 

 

(b) 

Fig. 10. Plot of false positives/negatives for a range of PFCTs using 7 different assessment methods (a) and the 

average sample size for 5 assessment methods (b) (Distribution B). 

The average sample size (number of simulations) required for each PFCT for each method for Distribution B is 

depicted in Fig. 10(b).  As the simple convergence methods (4a and 4b) are independent of proximity of PFCT 

to τP the average number of cases was found to be 56.7 and 265 respectively.  As was noted for Distribution A 

significantly fewer simulations than 500, on average, are required to establish whether design has passed or 

failed when the PFCT is “far” from τP.  The CI (95%) method requires far fewer simulations than the other 



 

 

CICTs but with no significant effect on the overall accuracy (see Fig. 10a).  For example the average number of 

simulations required for a PFCT = τP – 37.5s is 295 for CI(95%), 369 for CI(99%), and 443 for CI(99.9%).  The 

proportion of false negatives is 0.47±0.01% for CI(95%), 0.22±0.009% for CI(99%), 0.2±0.009% for CI(99.9%) 

and 0.2±0.009% for 500 simulations.  The CI(99.9%) method requires 50% more simulations than CI(95%) and 

500 simulations requires 69% more simulations than CI(95%) with a negligible increase  in pass/fail accuracy 

(see Fig. 10).  In addition the minimum number of simulations for the CI (95%) method is 100 simulations 

compared to 150 simulations for the CI(99%) and CI(99.9%) method.  A “large” number of simulations are only 

required when the PFCT is “close” to τP which is identified by the CICT methodology.  

4 DISCUSSION OF CONVERGENCE MEASURES 

From the above analysis it is clear that CICT method has a superior accuracy to the other tested measures of 

convergence for τ.  Here we explore why the CICT approach is superior to the other tested methods using one 

set of 500 simulations of the previous cruise ship example.  As this analysis relates to just one possible sample 

set, the issues identified may not relate to all potential candidate sample sets however, the identified issues are 

expected to frequently arise and hence impact the performance of the various approaches.   

 

Fig. 11. Plot of variation of τS and the CI(95%) with number of simulations in a single sample.  

In this case, the “population” distribution consists of 10,000 simulations and τP = τS=10000 = 3444s.  Furthermore, 

we will consider for demonstration purposes the PFCT is set to 3400s, so the design should fail as τP = 3444s.  

Presented in Fig. 11 is τP (dash-dot-dot line), τS (solid line) and the limits of the CI(95%) (the upper limit is 

represented by the dashed line and the lower limit is represented by the dotted line) as a function of increasing 

sample size.   



 

 

Basing a decision on only the first 50 simulations (method 1) would result in τs=50 = 3366s and would lead to a 

false positive with the difference between τP and τs=50 is 45s (3443s-3398s).  Basing the decision on the full 500 

simulations (method 2) would result in τS=500 = 3439s and would lead to a fail.  In this example, it is fortuitous 

that τS is very close to τP and as a result the correct conclusion is drawn i.e. that the vessel fails.  However, in 

reality the difference between τS and τP could be quite large increasing the chances of an incorrect decision being 

made. Using the current IMO (2016) Guidelines, there is no way of knowing how reliable the decision based on 

500 simulations may be.  This can easily be rectified by specifying the CI associated with the estimation of τS 

(using the information in Table 1).  The 95% CI for the sample of 500 simulations is [3399s, 3482s] which 

indicates there is some uncertainty that τP is greater than the PFCT, as the PFCT lies within the CI, at a 95% 

confidence level.  This suggests that another sample of 500 simulations may have suggested that the design 

could pass.  This indicates that the analysis based on 500 simulations, while in this case indicating the correct 

result (i.e. a fail) is unreliable and a greater sample size should be used to resolve the situation. 

From Fig. 11 it is noted that τS can be relatively stable over a significant number of simulations even though it is 

not very close to τP.  When applying the simple convergence method 4b, τs=150 = τs=200 = 3363s and so using this 

method the population 95th percentile time is predicted to be 3363s.  Thus the converged sample 95th percentile 

time leads to a false positive result.   Method 4a predicts convergence after 58 simulations have been performed 

with τS=58 = 3398s and again results in a false positive. It is clear that the simple convergence methods, even if 

adapted to address the statistical nature of the predicted parameter, are not reliable estimators of convergence 

when applied to τ.  While the failure of the simple convergence methods are demonstrated here for τ it is argued 

that the technique is similarly flawed for other parameters as the observations in section 3.2 would apply to all 

sampling statistics.  Simple convergence methods and the variants described in this paper are therefore 

considered to be unreliable for demonstrating convergence for stochastic evacuation models. 

Using CICT (method 5) the design is not considered to be a clear pass or fail because the PFCT lies within the 

CI (i.e. 95% CI[3399s, 3482s]) and therefore τP could be higher or lower than the PFCT.  In this case as 500 

simulations have been performed we would compare the predicted sample 95th percentile time τS, with the 

PFCT.  As found in method 2, τS=500 = 3439s and the design is deemed to fail which is consistent with τP.  

However, as the PFCT lies within the CI there is possibility that the analysis could have resulted in a pass.   

Using CICT with a larger maximum number of simulations within the sample (method 8) resolves this situation 

by reducing the size of the CI resulting in a fail determination in 550 simulations with TET of 3452.3s with 

95%CI [3409s, 3482s].  When method 3 (see eq. 6) is used, a pass is determined after 150 simulations as |3400s 



 

 

– 3362.6s| > (3374.4s – 3353.3s), leading to a false positive with the difference between τP and τmean being 81s 

(3443s-3362s).   

5 SUGGESTED USE OF THE CICT AND ITS VARIANTS 

The CICT has been designed for easy manual application by running the simulations in batches of 50.  

However, if the method is automated within an egress model it then becomes practical, although not necessary, 

to check the convergence after every single simulation to further reduce the number of simulations that are 

required.  The minimum number of simulations required to potentially determine a pass is then 72 for CI(95%), 

104 for CI(99%), and 149 for CI(99.9%).  The minimum number of simulations to potentially determine a fail is 

3 for CI(95%), 4 for CI(99%), and 4 for CI(99.9%).  However, to be compliant with the current IMO (2016) 

Guidelines, when using a convergence method a minimum of 50 simulations is required. 

The CICT method will ideally result in identifying a clear pass or fail prior to the maximum number of 

simulations being necessary.  However, in some situations, the CICT method will not return a clear pass or fail 

before the maximum number of simulations is reached because the PFCT lies within the CI.  In such 

circumstances there are several possible ways to proceed. 

1. To maintain consistency with the current IMO (2016) Guidelines, the pass/fail is determined by 

directly comparing τS=500 to the PFCT.    

2. Define a new upper limit to the number of simulations (e.g. 1000) and continue with the testing process 

until a pass/fail result is obtained.  Should the new maximum number of simulations be reached and 

the result is still uncertain there are three options: 

a. define a new upper limit and continue testing however, as the convergence is slow (1/n) 

convergence will be slow beyond a few thousand simulations,  

b. determine a pass/fail based on directly comparing τS to the PFCT (as in option 1) or  

c. declare that the design has failed as the τP is too close to the PFCT.   

3. Declare that the design has failed as the τP is too close to the PFCT.   

The CICT has been applied to determining whether τP is greater than or less than a PFCT.  However, the CICT 

can be applied to any simulation output parameter, not just the TET, for example the predicted number of 

fatalities or a measure of congestion.  Furthermore, the CICT could be easily adapted for any predicted 

population parameter (here referring to statistical measures), such as the population mean or standard deviation, 



 

 

provided that a CI can be defined, to determine whether it meets a pass/fail criterion.  However, it is noted that 

while it is possible to analytically define a CI for the population mean and 95th percentile parameters, it may not 

be possible for some parameters.  Nevertheless, where no analytical CI exists for a parameter it may be possible 

to bootstrap (Efron and Tibishirani, 1993) a computational CI.    

While the CICT method has been developed to address the requirements of the IMO Guidelines, it can be 

applied to any situation in which a simulated parameter is being compared against a pass/fill criterion.  In the 

building industry the pass/fail criterion could be the Available Safe Egress Time (ASET) determined by fire 

modelling calculations as part of a traditional Required Safe Egress Time (RSET)  < ASET calculation.  In the 

aviation industry, the pass/fail criterion could be the regulatory specified 90s for passengers to evacuate the 

aircraft (FAR, 1999).   

Although not demonstrated in this paper it could be argued that the so-called “5σ” (99.99997%) confidence 

level should be used rather than the 95% confidence level.  The CICT can be easily modified to address this 

requirement and would require a minimum of 307 simulations to potentially define a pass and a minimum of 7 

simulations to potentially define a fail.  However, using a “5σ” confidence level would not significantly improve 

the pass/fail determination accuracy but would lead to a very large increase in the number of simulations that 

would be needed to determine whether a design/scenario had passed or failed. 

Finally, while the CICT has been specifically designed to determine whether τP is greater than or less than a 

particular critical value, the methodology can be adapted to determine the value of a parameter to a given level 

of precision at a specified confidence level.  Rather than checking the upper and lower CI bounds against a 

PFCT, the RCI can be compared to an absolute or relative extent and will be “converged” when RCI is less than 

the stipulated value (see eq. 9).  However, as the convergence is slow ((RCI ∝ 1/√n) → 0 as n → ∞) it may not 

always be possible to achieve the desired tolerance and so in such circumstances it is necessary to report the 

absolute or relative tolerance achieved at some maximum number of simulations.   

Tolerance
R

iS

iS

CI 





              (9) 

7 CONCLUSIONS 

Current international guidelines, specified by the International Maritime Organization (IMO), for determining 

representative assembly times for large passenger ships using evacuation simulation models utilise a brute force 

method requiring the generation of 500 evacuation simulations.  The representative assembly time for the vessel 



 

 

design for a particular evacuation scenario is considered to be the 95th percentile assembly time generated from 

the series of 500 simulations.  This time is intended to be a good approximation to the actual 95th percentile time 

that would be generated from the population of all possible permitted random permutations of the simulation 

parameters and random behavioural permutations of the simulated agents.  This approach has two significant 

deficiencies.  The first is that  an excessive computational effort may be required to determine the representative 

time as in some cases it may be possible that the sequence of predicted representative assembly times is 

sufficiently converged to determine whether the design has passed or failed in significantly fewer than 500 

simulations.   

To address the first issue the IMO guidelines also specify an alternative approach, the so-called convergent 

method, to determine if the predicted 95th percentile assembly time has converged to the required time in fewer 

than 500 simulations.  However, as demonstrated in this paper the convergent method presented in the IMO 

guidelines has a significant propensity to produce false positive and false negative determinations.  This is 

because the method settles on a ‘converged’ representative time which is a poor approximation of the actual 

representative time.  Indeed, it was demonstrated that the brute force method, while requiring significantly more 

simulations than the IMO convergent methodology, produced significantly fewer false positive/negative results.  

The second more significant issue with the IMO Guidelines is that the sequence of predicted representative 

assembly times may require more than 500 simulations to accurately produce a good representation of the actual 

95th percentile assembly time for the entire population of cases. Thus it is possible for the brute force method to 

produce false positive or false negative results. This is because the brute force method settles on a ‘converged’ 

representative time which is a poor approximation of the actual representative time.  This is considered a very 

serious limitation of the current approach as it can lead to a predicted representative time which is either larger 

than the pass/fail criteria time (PFCT) producing a false negative result i.e. predicting a failure when in fact the 

actual time is less than the PFCT or of greater significance, producing an approximation which is smaller than 

the PFCT generating a false positive result i.e. predicting a pass when in fact the actual time is greater than the 

PFCT.   

To address the failings of both methods proposed in the IMO Guidelines the Confidence Interval Convergence 

Test (CICT) method was developed.  The CICT was demonstrated to be as accurate as the brute force method 

(producing an equivalent number of false positives/negatives) but requiring far fewer simulations, saving 

computation time and costs, thereby addressing the first issue.  Furthermore, the CICT was significantly more 

accurate than the IMO convergent method albeit requiring more simulations.  Furthermore, for the CICT 



 

 

method, when the scenario is a clear fail it only requires 50 simulations to demonstrate and if the case is a clear 

pass it only requires 100 simulations.  Large numbers of simulations are generally only required if the PFCT is 

“close” to the 95th percentile of the actual population of cases.    

The CICT methodology is straightforward to implement and reverts to the brute force methodology as specified 

in the current IMO Guidelines when 500 simulations are required.  Used in this way the CICT method has 

comparable accuracy to the brute force method presented in the IMO Guidelines.  To address the more 

significant second failing of the brute force method, the CICT method can achieve superior overall accuracy (i.e. 

predicts fewer false positives/negatives) to the brute force method if nmax is set to 1000 and will generally use 

less than 500 simulations in practice.  Furthermore, as the CICT method produces a CI together with the sample 

95th percentile time, there is always an unambiguous indication when the predicted result may be in doubt, 

thereby highlighting the need to consider additional simulations before a final pass/fail decision can be made.  

As the methods identified within the current IMO Guidelines do not require the determination of a CI, using 

these methods it is not possible to identify when an uncertain determination is made.  

It has also been demonstrated that simple convergence methods, as used for iterative numerical solvers, should 

not be used for the determination of 95th percentile values as they are subject to producing a significant number 

of false positive/negative results even when corrective measures are taken to limit premature convergence. 

Furthermore, it is suggested that their use for other sampling statistics is also questionable and should not be 

used to demonstrate convergence of any stochastic evacuation model – including those used in the building 

industry.      

Finally, it is also recommended that all TETs are quoted to include the highest possible confidence interval with 

the sample size used and that population parameters (walking speeds, response times, etc) and initial locations 

are randomised within the limits prescribed for every simulation within a sample to avoid potential biasing.  

While it is possible to use the CICT method manually it is envisaged that the methodology will be automated by 

embedding it within the evacuation modelling tool.   
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