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Abstract: We synthesized a two-dimensional (2D) crystalline covalent organic framework (sp2c-

COF) that was designed to be fully π-conjugated and constructed from all sp2-carbons by C=C 

condensation reactions of tetrakis(4-formylphenyl)pyrene and 1,4-phenylenediacetonitrile. The 

C=C linkages topologically connect pyrene knots at regular intervals into a 2D lattice with π-

conjugations extended along both x and y directions, and develop an eclipsed layer framework 

rather than the more conventionally obtained disordered structures. The sp2c-COF is a 

semiconductor with a discrete band gap of 1.9 eV and can be chemically oxidized to enhance 

conductivity by 12 orders of magnitude. The generated radicals are confined on the pyrene knots, 

enabling the formation of a paramagnetic carbon structure with high spin density. The sp2-carbon 

framework induces ferromagnetic phase transition to develop spin-spin coherence and align 

spins unidirectionally across the material. 

One Sentence Summary: A 2D sp2-carbon framework is synthesized being fully π-conjugated 

to attain exceptional spin density and is capable of unidirectional spin alignment. 

Main Text: Covalent organic frameworks that exploit conjugated bonding based on sp2-

hybridized carbons could create materials with exceptional electronic and magnetic properties 

(1). To design such an extended structure, the sp2-carbon chains must be able to diverge at 

regular intervals. Such branches should have appropriate geometry for extended π-conjugation at 

the point of knot, so that the chains strictly propagate along the x and y directions without 

blocking the extension of π-conjugation. However, amorphous materials will form if the sp2-

carbon bond formation reactions are irreversible if an in-situ structural self-healing process is 

lacking (2, 3). Thus, designing well-defined 2D materials and fabricating extended sp2-carbon 

networks with chain propagation along both x and y directions are challenging goals. 

 We report a topology-directed reticular construction of crystalline sp2-carbon-conjugated 

covalent organic framework (sp2c-COF) by designing a C=C bond formation reaction (Fig. 1A). 

This reaction (4, 5, 6, 7) enables structural self-healing under thermodynamic control during 
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polycondensation. Topology-directed polycondensation (8, 9, 10, 11, 12, 13) of C2-symmetric 

1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy) as knots and C2-symmetric linear 1,4-

phenylenediacetonitrile (PDAN) as linkers under solvothermal conditions (mesitylene/dioxane = 

1/5 v/v, 4 M NaOH, three days, 90 °C) yielded sp2c-COF. The 2D sp2-carbon sheet consists of 

sp2-carbon chains extended along x and y directions in which pyrene units serve as interweaving 

registry points that are periodically pitched at 2-nm intervals (Fig. 1B and 1D). The 2D sheets 

crystallize and form stacked layers at 3.58 Å separation, creating ordered pyrene columnar arrays 

and 1D nanochannels (Fig. 1C and 1E). We use the term π-conjugation rather than 2D for sp2c-

COF because it offers π-conjugation along both x and y directions. Note that a 2D sheet can 

form, with restricted π-conjugation blocked at the point of vertices, as occurs in 2DPPV (two-

dimensional polyphenylenevinylene framework) knotted by all meta-substituted 1,3,5-phenyl 

focal units (14). We unexpectedly found that the fully conjugated 2D layers offer the structural 

base of an sp2-carbon lattice that can accommodate exceptionally dense spins and unidirectional 

spin alignment via ferromagnetic phase transition. 

The chemical structure of sp2c-COF was characterized by various analytical methods [see 

supplementary materials, figs. S1 to S7, and tables S1 and S2 (15)]. Fourier-transform infrared 

spectroscopy revealed that the peak at 2220 cm–1 was newly appeared for the cyano side group 

(16) and the peak at 2720 cm–1 assigned to the C–H bond of the aldehyde group was greatly 

attenuated, indicating the polycondensation between TFPPy and PDAN (fig. S1). Solid-state 13C 

nuclear magnetic resonance spectroscopy of sp2c-COF revealed that the peak at 24.20 ppm for 

methylene carbon of PDAN disappeared upon polycondensation and the peak at 120.44 ppm 

assigned to PDAN units was shifted to 107.74 ppm (cyano side group), indicating the formation 

of C=C linkages in sp2c-COF (fig. S2). Similar spectral changes were also observed for a model 

compound (a TFPPy core bound to four PDAN groups) (figs. S1 and S2, scheme S1A). Field-

emission scanning electron microscopy revealed that sp2c-COF and model compound adopted a 

belt morphology (fig. S3). Thermogravimetric analysis suggested that sp2c-COF was stable up to 

350°C under nitrogen (fig. S4). 

The sp2c-COF exhibited powder x-ray diffraction (PXRD) peaks at 3.6°, 5.2°, 5.9°, 7.3°, 

11.2°, 11.8°, 14.2 , and 24.7°, which were assigned to the (110), (200), (210), (220), (240), (420), 

(520) and (001) facets, respectively (fig. S5, red curve and inset). We optimized the 

conformation of 2D single layer and the configuration of different stacking models using density 

functional theory tight binding calculations (17, 18). The energetically most favorable AA-

stacking model yielded a PXRD pattern (fig. S5, pink curve) in good agreement with the 

experimentally observed profile. The Pawley-refined PXRD pattern (fig. S5, black curve) with 

the C2/m space group with unit-cell parameters of a = 34.4632 Å, b = 35.4951 Å, c = 3.7199 Å, 

 = = 90° and  = 104.0277° reproduced the experimentally observed curve with negligible 

differences (fig. S5, green curve). Tables S1 and S2 summarize the atomistic coordinates 

generated by DFTB calculation and Pawley refinements, respectively. Thus, the reconstruction 

of sp2c-COF structure shows an extended 2D tetragon lattice with sp2-carbon backbones along x 

and y directions (Fig. 2A). The presence of the (001) facet at 24.7° suggests the structural 

ordering with 3.58 Å separation in the z direction perpendicular to the 2D sheets (Fig. 2B).  

The sp2c-COF exhibited reversible nitrogen sorption isotherm curves with a Brunauer-

Emmett-Teller (BET) surface area of 692 m2 g–1 (fig. S6A). The pore size distribution profile 

revealed that sp2c-COF is microporous with pore size of 1.88 nm (fig. S6B). This result is 

consistent with the lattice as revealed by the structural analysis. 



Solid-state electronic absorption spectroscopy of sp2c-COF (fig. S7A, red curve) showed 

an absorption band at 498 nm, whose red-shift of 53-nm from that of the model compound (fig. 

S7A, black curve, scheme S1A) is indicative of extended π-conjugation. In contrast, the imine-

linked 2D COF (fig. S7A, blue curve, figs. S8 and S9, scheme S1B), an analog to sp2c-COF, 

exhibited an absorption band blue-shifted 21-nm relative to sp2c-COF, indicating that the C=C 

linkage is more effective in transmission of π-conjugation over the 2D lattice than that of the 

C=N bond. Moreover, the contrast in the optical colors (fig. S7B) between sp2c-COF (red), 

imine-linked 2D COF (yellow) and model compound (yellow-orange) also reflects the extended 

π-conjugation in sp2c-COF. Cyclic voltammetry of sp2c-COF (fig. S10) revealed an oxidation 

potential at 0.94 V and reduction potential at –0.96 V, indicating a narrow band gap of 1.90 eV. 

The highest occupied molecular orbital (HOMO) level was evaluated (19) as –5.74 eV and the 

lowest unoccupied molecular orbital (LUMO) level was –3.84 eV, constituting a semiconductor 

band structure. 

The sp2c-COF solid samples were chemically oxidized by iodine and pressed to make 

thin discs with a thickness of 0.08 cm. The electrical conductivity was measured across a 0.2-cm-

width Pt gap electrode under air at 25 °C. The iodine-doped sp2c-COF exhibited a linear current-

voltage (I–V) profile indicative of ohmic conduction (fig. S11, red curve). The slope gave a 

conductivity of 7.1  10–2 S m–1. The pristine COF sample was an insulator with a conductivity 

of only 6.1  10–14 S m–1 (fig. S11, black curve). 

To investigate the feature of radical species in the 2D sp2-carbon framework, we 

monitored the doping process of the COF samples in the presence of iodine vapor under iodine-

saturated pressure in a sealed quartz tube with electron spin resonance spectroscopy (ESR, Fig. 

3). An ESR signal appeared at g = 2.003, just after 3-min iodine doping (Fig. 3A). The peak-to-

peak height increased and leveled off after 1 day doping (Fig. 3B). The increase in ESR intensity 

with iodine doping indicates that the charge carriers generated also possess a spin degree of 

freedom. The ESR linewidth and resonance field (g-factor) were almost constant regardless of 

the doping level; the shift of the g-factor from that of free electron (g = 2.0023) was very small. 

The ESR linewidth of 0.13 mT indicates that the sp2-carbon lattice is free of anisotropic g-tensor 

and hyperfine interactions. These results suggest that the frontier electrons maintain to locate at 

the pyrene knots and do not form non-radical bipolarons. 

The temperature dependence of the spin susceptibility χspin determined by integrating the 

ESR signal intensity (Fig. 3C) shows that the g-factor was temperature independent. The Curie-

like enhancement of the χspin value indicates the existing spin freedom persists to the low 

temperature (Fig. 3C). Figure 3D shows the temperature dependency of the ESR linewidth ΔHpp. 

The ESR linewidth is almost constant above 100 K. The temperature independent ESR linewidth 

is dominated by the spin-spin exchange interaction through space between spins in neighboring 

layers and indicates the localized nature of the spins at the pyrene knots. Considerable exchange 

interaction between spins is an evidence for the high density of spins generated in the iodine-

doped sp2c-COF. The ESR linewidth gradually increased below 100 K, suggesting that long-

range magnetic order developed in the framework. Such a 2D spin structure is inaccessible by 

either 1D conjugated polymers (20, 21) or conventional 2D COFs (1). 

The absence of bipolarons observed for sp2c-COF is totally different from 1D conjugated 

polymers, which eventually form bipolarons without spins and greatly diminish the spins in the 

doped materials (22, 23, 24, 25). We compared the ESR spectra with those of 1D sp2c-polymer 

(scheme S2) and C=N linked 2D COF upon iodine doping, which gave rise to only very weak 

ESR signals (fig. S12). Indeed, the ESR intensity of sp2c-COF was 120 and 25 fold higher than 



those of 1D sp2c-polymer and C=N linked 2D COF at room temperature, respectively. The fully 

π-conjugated sp2-carbon 2D lattice is essential for generating high-density radicals in the 

materials. Moreover, we investigated the structure of crystalline sp2c-COF upon iodine doping 

using wide-angle x-ray scattering (WAXS) (26, 27). The WAXS peaks were unchanged before 

and after prolonged iodine doping with respect to the (110), (200), (210), (220), (240), (420) and 

(001) facets (fig. S13) indicating that the pyrene arrays retain upon chemical oxidation. 

To verify the observed long-range order was intrinsic, we performed magnetic 

susceptibility measurements using  SQUID (superconducting quantum interference device) 

magnetometry. Figure 4A shows the temperature dependence of the magnetic susceptibility (). 

The spin susceptibility determined by both ESR and SQUID measurements were in agreement in 

the entire temperature range. Above 100 K, the spins were paramagnetic and randomly oriented 

in the material. Remarkably, the magnetic susceptibility was greatly enhanced below 100 K. By 

using the magnetic susceptibility below 30 K and assuming S = 1/2 spin, the spin concentration 

and the Weiss temperature Θ was estimated to be 0.7 per pyrene unit and 8.1 K, respectively. 

Therefore, iodine-doped sp2c-COF with exceptionally dense spins is a bulk magnet. 

Magnetization (M)-applied field (H) relations revealed that sp2c-COF yielded linear 

curves at the temperatures above 20 K; below 10 K, the M–H plots became nonlinear (Fig. 4B, 

blue and red curves). The nonlinearity denotes a ferromagnetic phase transition, whereas the 

spin-spin coherence is developed with unidirectionally aligned spins across the material (Fig. 

4C). 

As controls, we investigated the electronic and magnetic behaviors of the model 

compound, a 1,6-linear polymer (scheme S3) and an amorphous version of sp2c-COF named as 

sp2c-CMP (scheme S4), which has the same building units as sp2c-COF but it does not possess 

ordered layer structure (figs. S14A to C). The 1,6-linear polymer exhibited an absorption band at 

446 nm (fig. S15) and electronic bandgap of 2.34 eV (fig. S16B, table S3). The sp2c-CMP 

sample exhibited an adsorption band at 436 nm (fig. S15), which is 62-nm blue-shifted from that 

of sp2c-COF (498 nm). From the adsorption spectrum, the optical bandgap of sp2c-CMP was 

evaluated to be 2.01 eV, whereas its electronic bandgap was 1.96 eV (fig. S16C, table S3) 

according to the CV measurements. Upon doping with iodine, the model compound exhibited a 

conductivity of only 4.1 × 10–8 S m–1 (fig. S17A) and an ESR intensity of 1/100 that of sp2c-COF 

(figs. S18A and B). The spin density is negligible (figs. S19A and B). The model compound 

upon doping did not exhibit magnetic state transition and magnetic field response from the M–H 

curve (fig. S20A). The 1,6-linear polymer upon doping with iodine exhibited a conductivity of 

2.9 × 10–7 S m–1 (fig. S17B). From the time-dependent ESR measurements (fig. S18C), the 

saturated ESR intensity is 1/406 that of sp2c-COF (fig. S18A). The 1,6-linear polymer had a spin 

density of only 0.004 per pyrene unit (figs. S19A and C) and did not exhibit magnetic state 

transition and magnetic field response (fig. S20B). The sp2c-CMP samples upon doping with 

iodine exhibited a conductivity of 8.1 × 10–3 S m–1 (fig. S17C), which is one order of magnitude 

lower than that of sp2c-COF. The time-dependent ESR measurements revealed signals at g = 

2.003 (fig. S18D). However, the saturated ESR intensity is only 1/5 that of sp2c-COF (fig. 

S18A). Indeed, the spin density is 0.057 per pyrene unit (figs. S19A and D).  These results that 

the amorphous sp2c-CMP cannot form a dense spin system. The SQUID measurements revealed 

that a small amount of part of sp2c-CMP is paramagnetic at room temperature and shows trace of 

superparamagnetic at low temperature (fig. S20C, Θ = 1.5 K), as indicated by the decreased 

magnetism after the field of 40000 Oe (red curve). In contrast, the ferromagnetism with 

increasing magnetism is an overwhelming majority in sp2c-COF with saturated magnetism after 



the field of 40000 Oe (Fig. 4B, red curve). These results confirmed that the observed electronic 

and spin functions are inherent to sp2c-COF and originate from its extended crystalline structure. 
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Figure Captions 

 

Fig. 1.  Chemical and lattice structures of a crystalline porous sp2-carbon framework. (A) 

Schematic representation of the synthesis of the crystalline porous sp2-hybridized carbon 

covalent organic framework (sp2c-COF) with pyrene knots and phenylenevinylene linkers 

connected by C=C bonds (one pore is shown). (B and C) Reconstructed crystal structures of (B) 

one layer and (C) many layers of the 2D sp2-hybridized carbon framework (sp2c-COF; 3  3 unit 

cell). The pyrene knots are regularly interweaved in a 2 nm pitch along the x and y directions and 

are stacked at an interval of 3.58 Å along the z direction via π-π interactions to form ordered 

pyrene knot π-arrays and 1D channels. (D and E) Ball (pyrene knot) and stick 

(phenylenevinylene chain) representations of (D) a 2D sheet with extended π-conjugations along 

x and y directions and (E) the stacked sp2c-COF. 

Fig. 2. Crystal structure. (A and B) Reconstructed crystal structure at top (A) and side (B) 

views. The 2D layers stacked at a 3.58 Å interval along the z direction. 

Fig. 3. ESR studies. (A) Time evolution of the ESR spectra upon iodine doping. (B) The plot of 

the peak-to-peak height of the ESR signals versus doping time. The peak intensity was saturated 

after 26 h and did not decrease after doping. (C) Temperature dependency of the spin 

susceptibility spin for the iodine-doped sp2c-COF. (D) Temperature dependency of the ESR 

linewidth (Hpp). 

Fig. 4. Magnetization and spin alignment. (A) Temperature dependence of the spin 

susceptibility, , determined by the SQUID magnetometer for the iodine-doped sp2c-COF. (B) 

Magnetic (M)–applied field (H) profiles at different temperatures (red, 2 K; blue, 5 K; purple, 10 



K; brown, 20 K; green, 100 K; black, 300 K). The nonlinearity of the curves denotes the 

ferromagnetic phase transition. (C) Schematic of spin alignment in sp2c-COF (3  3 lattice). Red 

arrows represent spins. The spins are isolated at the knots and are unidirectionally aligned across 

the framework via ferromagnetic phase transition to develop spin-spin coherence.  
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