

CRANFIELD UNIVERSITY

MINH HOANG TO

A Framework for Flexible Integration in Robotics
and its Applications for Calibration and Error Compensation

SCHOOL OF ENGINEERING

PhD THESIS
Academic Year: 2009 - 2012

Supervisor: Prof. Phil Webb
June 2012

CRANFIELD UNIVERSITY

SCHOOL OF ENGINEERING

PhD THESIS

Academic Year 2009 – 2012

MINH HOANG TO

A Framework for Flexible Integration in Robotics
and its Applications for Calibration and Error Compensation

Supervisor: Prof. Phil Webb

June 2012

This thesis is submitted in partial fulfilment of the requirements for
the degree of PhD

© Cranfield University 2012. All rights reserved. No part of this
publication may be reproduced without the written permission of the

copyright owner.

i

ABSTRACT

Robotics has been considered as a viable automation solution for the
aerospace industry to address manufacturing cost. Many of the existing robot
systems augmented with guidance from a large volume metrology system have
proved to meet the high dimensional accuracy requirements in aero-structure
assembly. However, they have been mainly deployed as costly and dedicated
systems, which might not be ideal for aerospace manufacturing having low
production rate and long cycle time. The work described in this thesis is to
provide technical solutions to improve the flexibility and cost-efficiency of such
metrology-integrated robot systems.

To address the flexibility, a software framework that supports reconfigurable
system integration is developed. The framework provides a design methodology
to compose distributed software components which can be integrated
dynamically at runtime. This provides the potential for the automation devices
(robots, metrology, actuators etc.) controlled by these software components to
be assembled on demand for various assembly applications.

To reduce the cost of deployment, this thesis proposes a two-stage error
compensation scheme for industrial robots that requires only intermittent
metrology input, thus allowing for one expensive metrology system to be used
by a number of robots. Robot calibration is employed in the first stage to reduce
the majority of robot inaccuracy then the metrology will correct the residual
errors. In this work, a new calibration model for serial robots having a
parallelogram linkage is developed that takes into account both geometric
errors and joint deflections induced by link masses and weight of the end-
effectors.

Experiments are conducted to evaluate the two pieces of work presented
above. The proposed framework is adopted to create a distributed control
system that implements calibration and error compensation for a large industrial
robot having a parallelogram linkage. The control system is formed by hot-
plugging the control applications of the robot and metrology used together.
Experimental results show that the developed error model was able to improve

the 3 positional accuracy of the loaded robot from several millimetres to less
than one millimetre and reduce half of the time previously required to correct the
errors by using only the metrology. The experiments also demonstrate the
capability of sharing one metrology system to more than one robot.

Keywords:

Airframe Assembly Automation, Metrology-Integrated Robots, Plug and
Produce, Robot Accuracy, Kinematic Identification

iii

ACKNOWLEDGEMENTS

First of all, I would like to thank my supervisor Prof. Phil Webb for giving me a

wonderful opportunity to study in the United Kingdom. Without his guidance and

patience during my slow writing-up, this thesis would never have been

completed.

I would also thank Dr. Chen Ye, former researcher at the University of

Nottingham, for his contributions at the early stage of this research and Dr. Amir

Kayani, lead manufacturing engineer at Airbus UK, for his valuable comments.

I would like to thank all the people at Cranfield University who helped and

supported me during my PhD study, especially Mr. John Thrower who has been

a great friend and colleague to me. Special thanks would also be sent to Mrs.

Rachael Wiseman for helping me submit this thesis.

Finally, I would thank my dearest wife and parents in Vietnam for their support

during the last three years.

v

TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGEMENTS... iii
LIST OF FIGURES ... viii
LIST OF TABLES .. xii
LIST OF ABBREVIATIONS .. xiii
1 INTRODUCTION ... 1

1.1 Context ... 1
1.2 Motivation ... 1

1.3 Research Objectives ... 4
1.4 Thesis overview .. 6

2 BACKGROUND ... 9

2.1 Aircraft Assembly .. 9
2.1.1 Basic aircraft structure .. 9
2.1.2 Assembly process .. 10
2.1.3 Automation in aircraft assembly ... 12

2.2 Industrial robots .. 13
2.2.1 Mechanical structures .. 13

2.2.2 Control architecture .. 17
2.2.3 End-effector .. 20
2.2.4 Programming .. 21

2.2.5 Robot accuracy and the challenge in airframe assembly 23

2.3 Metrology for robotics ... 27
2.3.1 Global sensors ... 27
2.3.2 Local sensors ... 32
2.3.3 The use of sensors in robotics ... 34

2.4 System integration .. 38
2.4.1 Communication architectures ... 38

2.4.2 Control applications .. 40
3 LITERATURE REVIEW ... 47

3.1 Applications of robotics in airframe assembly ... 47
3.2 Error compensation techniques .. 54

3.2.1 Part localization .. 54

3.2.2 Robot positioning accuracy .. 55
3.2.3 Deflections in drilling .. 59

3.3 System integration .. 61
3.3.1 Direct communication and centralized control for dynamic correction
 .. 61
3.3.2 Distributed control .. 62

3.4 Discussions ... 70
4 METHODOLOGY .. 75

4.1 The application framework for flexible system integration in robotics 75

4.1.1 Features of the framework ... 75
4.1.2 Selecting the middleware ... 77
4.1.3 Approach to PnP integration .. 79

4.1.4 Approach to lock-free task synchronization 85

vi

4.2 Robot calibration and error compensation .. 86

4.2.1 Kinematic calibration for open-loop serial manipulators 86
4.2.2 Kinematic calibration for serial manipulators having a parallelogram
linkage ... 92

5 DEVELOPMENT OF THE FRAMEWORK... 97
5.1 Robotics Developer Studio: the middleware ... 97

5.1.1 Decentralized Software Service Protocol ... 97
5.1.2 Concurrency and Coordination Runtime .. 105

5.2 The framework .. 106
5.2.1 Predefined data structures ... 107
5.2.2 Service architecture.. 109

5.2.3 Service implementation .. 113
5.3 Performance evaluation .. 127

5.3.1 Experiments ... 127
5.3.2 Results and discussions ... 128

6 CALIBRATION AND ERROR COMPENSATION FOR SERIAL ROBOTS
HAVING A PARALELLOGRAM LINKAGE ... 133

6.1 Robot forward kinematic model .. 133
6.2 Modelling of geometric errors ... 137

6.2.1 Modelling of errors in the robot’s internal parameters 137
6.2.2 Modelling of errors in the base and tool transformations 141
6.2.3 Elimination of redundant parameters.. 143

6.3 Modelling of joint deflections ... 144

6.3.1 Joint deflections due to structural loading 144
6.3.2 Joint deflections due to payload ... 146

6.4 Error identification ... 150
6.5 Error compensation... 151

6.5.1 Model-based error compensation ... 151
6.5.2 Sensor-based error compensation ... 152

7 EXPERIMENTAL SETUP .. 155
7.1 Overview ... 155

7.2 Robot service .. 157
7.3 Matlab service ... 158
7.4 Laser tracker service ... 159

7.5 Laser tracker visualization service .. 161

7.6 Cell controller service .. 162
8 SIMULATION, EXPERIMENT RESULTS AND ANALYSIS 165

8.1 Simulation ... 165

8.2 Calibration ... 168
8.2.1 Experiments ... 168
8.2.2 Implementation ... 170
8.2.3 Results and analysis .. 171

8.3 Error compensation... 176

8.3.1 Experiments ... 176
8.3.2 Implementations ... 177
8.3.3 Results and analysis .. 180

8.4 Demonstration .. 184

8.4.1 Description ... 184

vii

8.4.2 Implementation ... 186

8.4.3 Results and analysis .. 190
9 CONCLUSSIONS .. 193

9.1 Summary .. 193
9.1.1 A framework for flexible system integration 193
9.1.2 Error modelling and compensation for robots 194

9.1.3 Experimental evaluations ... 195
9.2 Contributions ... 197
9.3 Future works ... 198

REFERENCES ... 201
APPENDICES .. 211

Appendix A Forward kinematic model... 211
Appendix B Derivation of Kinematic Error Model using Differential
Homogeneous Transformation ... 214
Appendix C Position equations of a four bar linkage 217
Appendix D Determining the metrology and robot frames’ transformations 218
Appendix E Main components of the CCR .. 223

Appendix F Predefined classes and enumerators 230

viii

LIST OF FIGURES

Figure 2-1 Basic aircraft structure (Kayani et.al., 2008) 9
Figure 2-2 Components of a wing box (Kayani et.al., 2008) 10

Figure 2-3 Assembly levels (Kihlman, 2005) .. 11
Figure 2-4 The E4380 auto-riveting machine (ElectroImpact) 12

Figure 2-5 Two types of robots: serial (left) and parallel (right) robots (Angeles,
2003) ... 14

Figure 2-6 Articulated manipulators: the elbow type (left) and the parallelogram
linkage type (right) ... 15

Figure 2-7 Types of reference frames .. 16
Figure 2-8 Robot accuracy and repeatability (Khalil et.al., 2004) 17

Figure 2-9 Components of a robot system (Comau Robotics).......................... 18

Figure 2-10 Functional block diagram of a robot system 20
Figure 2-11 A multifunctional robot end-effector for drilling and hole inspection

(ElectroImpact) .. 21
Figure 2-12 Path generation and simulation of a robotic painting process for

Lockheed Martin‘s F35-Lighting II aircraft by OLP software DELMIA
(Ponticel, 2011) ... 23

Figure 2-13 Principle of robot calibration for accuracy improvement 26
Figure 2-14 Components a laser tracker (Leica Geosystems) 28
Figure 2-15 Principle of target tracking ... 28

Figure 2-16 Working principle of the laser tracker and T-MAC to provide 6D
measurements .. 29

Figure 2-17 The K-series Optical CMM (photogrammetric system) is used for
tracking the position of a KUKA robot (Nikon Metrology) 30

Figure 2-18 Wrist F/T sensor (Craig, 1989) .. 33
Figure 2-19 Laser sensor based on optical triangulation 34
Figure 2-20 Sensor-based correction strategies (Warhburg, 1988) 35

Figure 2-21 Functional block diagram of a robot system with sensor-based
corrections ... 36

Figure 2-22 Example of a metrology assisted robot system for assembly
applications ... 36

Figure 2-23 Control hierarchy in manufacturing systems (Leitão, 2009) 38

Figure 2-24 A typical network architecture in industrial automation (Zurawski,
2007) ... 40

Figure 2-25 A control application with centralized processing 41
Figure 2-26 Control application of the camera allows interactions with other

applications via its standardized interface ... 43
Figure 2-27 Client-server invocation via a middleware platform 44
Figure 2-28 A system of distributed control applications 45
Figure 3-1 The ARMA cell (Da Costa, 1996) .. 48
Figure 3-2 Recent applications of robots in airframe assembly. From left to right:

a. The TI2 system at Boeing (INS-News, 1998); b. Robot measuring rib
pads in the AWBA project (Hemsptead et.al., 2001); c. Robot for the
assembly of fuselage sections of C-series aircraft at Bombardier (Arnone,
2011) ... 50

ix

Figure 3-3 The flexible robotic cell developed by the University of Nottingham.
From left to right: a. The Smart H4 and Tricept robots for drilling and
fastening; b. The S2 robot for stringer loading; c. The cell control
application. .. 52

Figure 3-4 Overview of the ART concept. From left to right: a. The robot
configures a flexible tooling; b. A system of tooling is used for holding an
aircraft part in-position during assembly (Kihlman, 2005) 53

Figure 3-5 Control application of the robotic cell developed by Linköping
University. From left to right: a. Functional diagram; b. Graphical interface
(Kihlman, 2005). .. 54

Figure 3-6 A fixtureless robotic assembly cell. From left to right: a. The robot
end-effector with CCD camera; b. Detected features (Bone et.al., 2003) . 55

Figure 3-7 Sensor-based correction is for gradually reducing the 6D error vector
V between the programmed B and measured L (Kihlman, 2005) 58

Figure 3-8 The visual-servoing demonstrator of the ARFLEX project (ARFLEX,
2011) ... 59

Figure 3-9 Robot axis with secondary encoder for deflection compensation
(DeVlieg, 2010) ... 60

Figure 3-10 Integration between the Force Sensor, the control PC (Force
Computer) and ABB S4C+ robot controller for force-control application via
PCI bus (Blomdell et.al., 2005). ... 62

Figure 3-11 System layout of a robot system for train maintenance 67

Figure 3-12 Brief description on the IEC 61499 standard. From left to right: a. A
function block with standardized external interface; b. A distributed control
application built on these functional blocks (Hanisch et.al., 2007) 70

Figure 3-13 Concept of the proposed framework for PnP integration 73
Figure 3-14 The purpose of model-based error compensation is improving robot

accuracy and allowing one laser tracker to serve multiple robots 74
Figure 4-1 Overview of the framework and its applications for robot calibration

and error compensation .. 76
Figure 4-2 RDS service structure and concurrent message handling (Jackson,

2007) ... 78
Figure 4-3 Any service in the framework has both female adapter (the Generic

Interface) and male adapters (a dynamic array of server stubs) allowing
arbitrary incoming and outgoing connections with other services 80

Figure 4-4 Connection topology of services in the framework 81
Figure 4-5 The robot service can invoke different commands on other services

via one standard CreateProcess operation. .. 82

Figure 4-6 Task synchronization. From left to right: a. Deadlock situation when
using traditional locks; b. To avoid, services in the framework use internal
task queues ... 85

Figure 4-7 Error compensation using the calibration model 90
Figure 4-8 Small deviation from the ideal parallelism (left) may cause unrealistic

identified value of di (right) .. 91

Figure 4-9 Rotating the forearm causes deflection of the upper arm (left) as a
result of the moment Mg created by the mass Fg of the forearm (right). 94

Figure 5-1 DSS service architecture (Microsoft, 2008) 98

Figure 5-2 Class diagram of a DSSP service ... 99

x

Figure 5-3 Example of the message exchange of the camera service 100

Figure 5-4 Class diagram of services derived from the abstract Camera service.
 .. 104

Figure 5-5 Architecture of the Concurrency and Coordination Runtime 106
Figure 5-6 The main predefined classes/enumerations in the framework 107
Figure 5-7 Class diagram of the GenericDevice abstract service and two

examples, the Camera and Robot services, derived from it. 110
Figure 5-8 Class diagram of the class GenericDeviceState. 111
Figure 5-9 Class diagram of the class GenericDeviceOperations 112
Figure 5-10 Functional blocks of the class CameraService 114
Figure 5-11 Class diagram of the class CameraService 114

Figure 5-12 Activity diagram of the function ProcessHandler of the service
CameraService ... 123

Figure 5-13 Scheduling method for the process queue 124
Figure 5-14 Activity diagram of the function ExternalProcessHandler of the

service RobotService. ... 125

Figure 5-15 Interactions between a robot and a camera through their services
on the exchange of different command types.. 126

Figure 5-16 The ProcessUpdate notification message’s flow in the tests 128

Figure 6-1 The Comau Smart H4 robot (Comau Robotics, 1998) 133
Figure 6-2 Schematic diagram of the Smart H4 robot with DH frame

assignments (passive joints are marked in gray colour). 134

Figure 6-3 The closure constraints between frame 4’ and frame 2 at cut joint 3
 .. 136

Figure 6-4 A degenerated parallelogram with uneven link lengths. 139
Figure 6-5 Transformations between robot and metrology systems 142
Figure 6-6 Errors in the PROBE transformation are modelled by

0000
,,, ba and 77

, a ... 143

Figure 6-7 Free body diagram of forces in the x1y1 plane of frame 1 145

Figure 6-8 The robot carrying a deadweight. .. 147
Figure 6-9 The error parameters identification algorithm 151
Figure 6-10 Flowchart of the model-based error compensation 152
Figure 6-11 Error correction using a 6dof measuring device 153

Figure 6-12 Error correction using 3dof measuring device 154

Figure 7-1 The hardware setup ... 155

Figure 7-2 Network architecture ... 156
Figure 7-3 The software (service) setup. .. 157
Figure 7-4 The robot service .. 157
Figure 7-5 The Matlab service .. 158
Figure 7-6 The laser tracker service ... 159

Figure 7-7 Measurements of the laser tracker are transformed and converted to
proper robot data types. .. 161

Figure 7-8 The laser tracker visualization service .. 162
Figure 7-9 Discovery and setting up the integration of services 162
Figure 7-10 Assigning the tasks to services ... 163

Figure 7-11 Monitoring service activities at run-time 164
Figure 7-12 The system of developed services .. 164

xi

Figure 8-1 Accuracy of the proposed calibration model (Model 1) and a
competitive model (Model 2) from (Marie et.al., 2008) after the 2nd iteration
 .. 166

Figure 8-2 Calibration is performed in the main working volume of the robot.
From left to right: a. Location of the volume in the robot workspace; b.
Visualization of the laser tracker’s measurements in the volume. 168

Figure 8-3 Applied loading at the robot TCP. From left to right: 169
Figure 8-4 Implementation of the calibration process 171
Figure 8-5 Experimental evaluation of the standardized serial link model and the

proposed calibration model when the robot is unloaded 173
Figure 8-6 Elastic deflections caused by the deadweight, measured over 150

data points. .. 173
Figure 8-7 Experimental evaluations of the proposed calibration model

without/with compensation for external loading. 174
Figure 8-8 Output of the Matlab function H4Calibration at the end of the

automated calibration process .. 175
Figure 8-9 The test points for error compensation .. 177

Figure 8-10 Loading identified calibration parameters into memory 178
Figure 8-11 Implementation of the two-stage error compensation 179

Figure 8-12 Initial position errors of the robot in the 36kg loaded case 180
Figure 8-13 Residual position errors of the robot in the 36kg load case 181

Figure 8-14 Correcting the robot position to 0.08mm using the laser tracker 182

Figure 8-15 Correcting the robot orientation to 0.05º using the laser tracker 182

Figure 8-16 Straightness showing the deviation in the Z-axis when the robot
travels along the Y axis. From top to bottom: a. Initial; b. After model-based
compensation; c. After sensor-based correction. 183

Figure 8-17 Straightness showing the deviation in the X-axis when the robot
travels along the Y axis. From top to bottom: a. Initial; b. After model-based
compensation; c. After sensor-based correction 184

Figure 8-18 In the demonstration, the robot must align the tool frame with 24
target frames located on a stabilizer structure ... 185

Figure 8-19 Robot motions are generated in DELMIA whereas actual target
coordinates are constructed from the best-fit geometries on the
measurements of the laser tracker .. 186

Figure 8-20 The process of hole alignment performed by the Smart H4 robot 187

Figure 8-21 The laser tracker serving the Comau and virtual Kuka robots 187
Figure 8-22 Accuracy in the position of the robot. .. 188

Figure 8-23 Accuracy in the orientation of the robot. 189
Figure 8-24 . Robot configurations during the process. From left to right: a. At

bar 1, where the initial accuracy is highest; b. At bar 3, where the initial
accuracy is lowest. .. 190

Figure 8-25 Visualisation of the alignment process .. 191

Figure 8-26 Two robots sharing one laser tracker .. 191

xii

LIST OF TABLES

Table 2-1 Error budget of an industrial robot .. 25
Table 2-2 Large volume metrology used in airframe assembly 31
Table 5-1 Members of the class GenericDeviceState 111
Table 5-2 Standard methods of the class GenericDeviceOperations 112

Table 5-3 Defined ports and receivers of the class CameraService 115
Table 5-4 Tested payloads ... 128
Table 5-5 Message throughput and latency between two local services 129
Table 5-6 Message throughput and latency between two networked services129

Table 6-1 Nominal DH parameters of the Smart H4 robot 135
Table 6-2 Identifiable geometric error parameters .. 143
Table 6-3 Identifiable compliance parameters due to payload 150

Table 7-1 Control commands of the robot service .. 158
Table 7-2 Control commands of the Matlab service 159
Table 7-3 Control commands of the laser tracker service 160
Table 8-1 Identified errors parameters from the simulation 167

Table 8-2 Residual errors in position and orientation of the models 172
Table 8-3 Accuracy of the calibration models ... 174

Table 8-4 Identified parameters of the calibration model in the 36kg loaded case
 .. 176

Table 8-5 Absolute accuracy of the robot before and after the two stage error
compensation .. 181

xiii

LIST OF ABBREVIATIONS

ACE Adaptive Communication Environment

ADM Absolute Distance Meter

API Application Programming Interface

CAD Computer Aided Design

CCD Charged Couple Device

CCR Concurrency and Coordinate Runtime

CMM Coordinate Measuring Machine

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

DCOM Distributed Component Object Model

DH Denavit - Hartenberg

DLL Dynamic Link Library

DOF Degree of Freedom

DSS Decentralized Software Services

F/T Force/Torque

FIFO First In First Out

I/O Input / Output

IDL Interface Definition Language

IFM Interferometer

IP Internet Protocol

HTTP Hypertext Transfer Protocol

MiRPA Middleware for Robotic and Process Automation

OLP Offline Programming

ORB Object Request Broker

ORiN Open Robot / Resource interface for the Network

OROCOS Open Robot Control Software

OS Operating System

PCI Peripheral Component Interconnect

RDS Robotics Developer Studio

RPC Remote Procedure Call

RTAI Real-time Application Interface for Linux

PnP Plug and Produce

xiv

SOAP Simple Object Access Protocol

SDK Software Development Kit

SMR Spherical Mounted Reflector

TAO The ACE Orb

TMAC Tracker-Machine control sensor

TCP Tool Centre Point

TCP Transmission Control Protocol (as in TCP/IP)

UDP User Datagram Protocol

USB Universal Serial Bus

XML eXtensible Markup Language

1

1 INTRODUCTION

1.1 Context

The work presented in this thesis is based within the field of manufacturing

engineering, specifically the field of robotics. This PhD was undertaken as part

of a completed research project sponsored by Airbus UK and the Engineering

and Physical Science Research Council (EPSRC) toward the wide adoption of

automation in the aerospace industry by the Aero-structure Assembly and

Systems Installation Research Group, located at Cranfield University.

1.2 Motivation

Traditionally, airframe assembly is labour-intensive. Mark Summers, Head of

Manufacturing Engineering Research, Airbus UK stated that nearly half of 50

millions of holes drilled per year during manufacturing and assembly processes

of Airbus wings are done manually (Warwick, 2007). Ideally, more of these

processes should be carried out using automation, but this presents many

difficulties due to the physical size and shape of the parts involved and the

accuracy of the alignments required. To meet these challenges, current

automation solutions in airframe assembly must rely on very large machine

tools, often gantry-mounted drilling systems and monolithic jigs. This is referred

to as the fixed automation solution since these bespoke machines and tooling

are dedicated for only a specific aircraft model and product type, very expensive

and require a long lead time for design and manufacture.

A solution to the flexibility and cost issues in airframe assembly automation is

possible through the use of robotics. Industrial robots have been well-

established in the automotive industry and their technological maturity has

earned them their way into aerospace applications (Jamshidi et.al., 2010).

Unlike custom-designed gantry systems and other monumental pieces of fixed

automation, industrial robots are mass-produced and are highly flexible.

Designed to be versatile manipulators, they are considered viable for many

repetitive processes such as drilling, fastening, composite layup as well as

2

painting and coating in the aerospace industry (Webber, 2007). In addition,

these relatively light weight structures do not require special foundations and

hence, can be relocated throughout the shop floor to meet new production

needs. They can be put on a mobile platform that augments their reach to

service a large aero-structure, and yet are small and dexterous enough to

perform operations in confined spaces within a wing box. The flexibility is also

achieved through their ease of programming: industrial robots are usually

enhanced with programming languages, offline programming (OLP) and

simulation software. These technologies help shorten the lead time by letting

manufacturers design the work-cell, tools, manufacturability before the actual

production is put into place, thus providing the robots with the possibility to be

deployed quickly for various assembly processes.

One of the main reasons for delays in the widespread use of robots in the

aerospace industry has been their insufficient accuracy. Compared to the

proven gantry systems, off-the-shelf industrial robots possess much lower

accuracy due to their articulated structures. The accuracy is further degraded by

structural deflections induced by applied forces and loads during an assembly

process, resulting in significant errors of the end-effectors. The accumulated

errors are often in the order of several millimetres, far beyond the tolerance

allowances for aerospace applications, which are in many cases selected as

±0.2mm (Kihlman, 2005). To meet such high demand for accuracy, current error

compensation technique for the robots is through metrology guidance, in which

an external measurement system is utilized to track the location of the robot

end-effector continuously and send this data via a feedback loop to the robot

controller. Based on the feedback data, the robot position is adjusted iteratively

until a satisfactory level of deviation from its nominal position is met. It has been

reported that such a metrology-guided robot system is able to deliver the

positional accuracy greater than 0.1mm over the working volume of several

metres (Calder, 2011). The system can also be combined with other optical

sensors and localisation techniques to compensate for the dimensional and

positional variations of the part due to temperature fluctuations and

3

misalignments, thus reducing the reliance on monolithic jigs and manual setup

process previously required to fix the part accurately in space.

Despite the important advancements in addressing the accuracy, there are a

number of issues related to the cost and flexibility of the metrology-integrated

robotics solution (Morey, 2007). The cost issue is firstly due to the expense for

the external metrology system that positions the robot. Such a high-end large

measuring volume instrument (e.g., laser tracker, photogrammetry, Indoor GPS)

might cost hundreds of thousand pounds, several times more expensive than

the robot alone (Saadat et.al., 2002). A full-scale assembly cell might consist of

multiple robot and metrology systems and hence, requires intensive capital

investments. This has motivated the search for an economically-feasible

solution undertaken in this thesis that allows for several robots to share one

metrology system to reduce the cost of investment.

The problem of flexibility is inherited from those of the support technologies that

facilitate the robotics solution, such as end-effectors, tooling and most of all,

system integration. The abovementioned robot assembly work-cell with

enabling sensory capabilities requires physical and functional integration of

multi-vendor equipment (e.g., robots, actuators, metrology etc.). Typically, this

leads to the development of a dedicated control system (largely implemented in

software) that links these incompatible devices and performs correction

activities for the robots and the part. This kind of control architecture, which is

explored in this thesis, is application-specific and thus, might not be flexible

enough for the aerospace industry. Unlike the automotive industry where the

production rates are so high that it allows robots to perform a single task

repeatedly, aerospace manufacturing has to deal with much lower production

volumes, longer cycle times and thus, demands robots that can perform more

than one function (Webber, 2007; Lott, 2011). One approach toward this

direction is a “Plug and Produce” manufacturing work-cell that is able to alter its

original setups with varying number of machines/robots whilst the robots

themselves are reconfigurable with various end-effectors to accommodate

different products and operations (Minhas et.al., 2011). Under these

4

circumstances, a cell control system with strongly-coupled components and

hard-coded control logic dedicated for a specific application will cause huge

production downtime and cost for software modification. This shortcoming has

resulted in the consideration for a more flexible software environment that

allows fast and easy changeover, eventually making robotics a good fit in terms

of cost and flexibility for airframe assembly. This thesis is attempting to provide

a stepping stone towards achieving this goal.

1.3 Research Objectives

The primary aim of the work described within this thesis is to improve the

flexibility and cost-efficiency of robotics in airframe assembly. This has led to

two equally important research topics presented in this thesis:

 To improve the flexibility, the thesis proposes a software framework that

supports reconfigurable integration of automation equipment in a robot

work-cell. The framework provides a design template to develop

modular, distributed software components, namely services, each of

which controls one or a subset of the above hardware components.

These services can be hot-plugged at runtime to form a control system

on demand for the equipment commissioning, making it possible to

assemble the work-cell dynamically for various assembly applications.

 To reduce the cost of investment, this thesis proposes a two-stage error

correction scheme that promotes the use of one expensive piece of large

volume metrology for several robots. For each robot position, the

accuracy of the robot is firstly improved by an error compensation model

which narrows down drastically the error band of the robot from several

millimetres to sub-millimetre then the residual errors can be corrected by

the metrology system. Since the metrology system does not have to be

operational the whole time, it is able to support a number of robots.

When one robot has been accurately positioned and, for example, starts

machining, the metrology system can be deployed for the others.

5

The error compensation model in the first stage is obtained from a robot

calibration procedure. The idea of utilizing kinematic calibration as a

cost-saving method to improve the robot accuracy is not new. Indeed,

the technique has been intensively studied in literature and well-

established for standard serial (e.g. the elbow type) robot manipulators.

Nevertheless, there has been no simple calibration model for serial

robots having a parallelogram linkage due to the complication in

modelling error propagation in the linkage. In this thesis, a simple yet

accurate error model for this type of robots will be introduced that takes

into account not only kinematic errors of the robot but structural

deflections induced by its link masses and applied load (e.g., the weight

of the end-effector).

The research objectives of this thesis are as follows:

a. Develop and implement the software framework:

 Identify the technologies that enable the development of distributed

control systems for the purpose of flexible integration, including their

advantages and limitations.

 Develop the proposed framework.

 Implement the framework.

b. Error modelling and compensation for industrial robots:

 Review error compensation techniques for industrial robots including

robot calibration for elbow-type manipulators.

 Develop an efficient calibration model for the parallelogram linkage-type

manipulators.

 Develop the aforementioned two-stage error compensation algorithm for

representative robot and metrology systems.

c. Adopt the proposed software framework to develop a control system that

implements the calibration and error compensation processes:

 Demonstrate the application of the framework for the flexible integration

of the robot and metrology systems used.

6

 Validate the implemented error modelling and compensation strategy

and the possibility of utilizing one metrology system for multiple robots.

1.4 Thesis overview

Chapter Two – BACKGROUND

This chapter provides background information pertaining to the main research

areas of the thesis, including industrial robots, metrology, error compensation

and system integration for a robot work-cell.

Chapter Three – LITERATURE

This chapter provides a review of relevant research including error

compensation techniques employed to improve the accuracy of robotic

assembly processes and system integration in robotics, particularly distributed

control frameworks/systems. The chapter also addresses the implications and

remaining issues of these works that the research will attempt to address.

Chapter Four – METHODOLOGY

This chapter presents the methodology used to achieve the objectives of the

research. The chapter firstly outlines desirable features of the proposed

application framework then describes the approach to these features. Next,

details on the robot calibration technique for the elbow type manipulators are

discussed. Remaining challenges and the author’s approach to the calibration

of the parallelogram linkage type manipulators are described.

Chapter Five – DEVELOPMENT OF THE FRAMEWORK

This chapter presents in detail the architecture of the proposed application

framework. Assessment of the performance of the framework is also provided.

7

Chapter Six - CALIBRATION AND ERROR COMPENSATION FOR SERIAL

ROBOTS HAVING A PARALELLOGRAM LINKAGE

This chapter presents the theoretical work on calibration and error

compensation developed for parallelogram linkage type manipulators, taking

into account kinematic and compliance (deflection) errors.

Chapter Seven – EXPERIMENTAL SETUP

This chapter describes the experimental setup developed using the proposed

framework given in Chapter 5. The system will be used to implement the robot

calibration and error compensation presented in Chapter 6.

Chapter Eight – SIMULATION, EXPERIMENT RESULTS AND ANALYSIS

This chapter presents results and analysis of the simulation and experiments

undertaken to validate the works presented in previous chapters.

Chapter Nine – CONCLUSSIONS

This chapter concludes the work and gives some suggestions for future work.

9

2 BACKGROUND

This chapter provides the reader essential background information pertaining to

the main research areas in this thesis. Firstly, section 2.1 will briefly introduce

aircraft assembly processes and their current automation solutions. The

subsequent sections will discuss in more detail the technologies enabling

flexible automation in the area, i.e., industrial robots, offline programming,

metrology as well as system integration of these manufacturing resources.

2.1 Aircraft Assembly

2.1.1 Basic aircraft structure

Figure 2-1 Basic aircraft structure (Kayani et.al., 2008)

An airplane is a transportation device designed for carrying people and cargo

from one place to another. Figure 2-1 depicts its basic components, many of

which are produced on different sites and are brought together for final

assembly. Their functionalities are described briefly as follows:

- Wings: to generate most of the lift that holds the airplane in the air,

- Turbine engines: to generate the thrust that pushes the airplane forward

through the air,

Vertical

Stabilizer

Horizontal

Stabilizer

Fuselage

Wing

Wing root
Cockpit

Engine

Pylon

Slats

Flaps

Aileron

10

- Stabilizers: to provide stability to the airplane, i.e., to control its

orientation. The yaw and pitch of the aircraft are controlled by the vertical

and horizontal stabilizer respectively whereas the roll of the aircraft is

manoeuvred by the ailerons located at the wings,

- Fuselages: the main body of the airplane – for carrying passengers and

cargo,

- Cockpit: contains the control centre of the airplane and pilot seats.

A more detailed construction of the aircraft wing is illustrated in Figure 2-2. A

wing box is made up of spars, ribs, stringers and skin panels. The spars and

ribs are skeleton structures of the wing, providing it with the longitudinal and

lateral stiffness whereas the stringers are for strengthening the skin panels with

thousands of rivets and bolts.

Figure 2-2 Components of a wing box (Kayani et.al., 2008)

2.1.2 Assembly process

In aircraft assembly, airframe parts and substructures are joined together to

form product families, such as wings, fuselages, cockpit etc. that eventually

become the complete aircraft. As opposed to automotive assembly, in which

the parts are mostly welded together, the joining elements used in aircraft parts

11

are rivets and thus, the assembly process is carried out by drilling holes,

followed by fastening (Rooks, 2001). Airframe assembly sequence has been

classified into four levels (Kihlman, 2005):

- At the first level, stringers and stiffeners (frame)

are attached to the skin panel. A large number of

holes are drilled, followed by fastener installation.

Tooling (fixtures and jigs) is used to position and

hold the structure from one side whereas the other

side is open for automated drilling and fastening

machines.

- At the second level, the skeleton structures are

jointed and combined with the first panel from at

least two directions. While the Level 1 Assemblies

are part of the Level 2 Assemblies, the latter has

lower throughput and hence is suited for industrial

robots for part loading and drilling.

- At the third level, the structure from Level 2 is

closed with an additional panel. This panel is

usually pre-fixed manually and the remaining

drilling will be carried out automatically. After this

process, the entire structure is disassembled, de-

burred, cleaned from the inside and re-assembled

again by fastening.

- At the final level, the substructures from Level 3,

such as wing boxes, fuselages, cockpit etc., are

brought together to form the aircraft. The

substructures are lifted by crane or gantry and

positioned accurately to each other. This

assembly has a high level of human activity due to

lack of innovation and development effort to find

flexible and adaptable alternatives (Figure 2-3).

Figure 2-3 Assembly

levels (Kihlman, 2005)

12

2.1.3 Automation in aircraft assembly

To guarantee the high demand for accuracy and large volume coverage, current

automation solutions for airframe assembly rely on large gantry type machines.

One example of such machine is the E4380 produced by ElectroImpact for

drilling and riveting upper and lower surfaces of the A380 wing panels (Figure

2-4). The work volume of the machine is 4m in vertical, 1.67m in horizontal and

175m in length, designed to access the whole surface of the wing panel. The

machine utilizes a yoke arm articulated in five axes to position process tools for

drilling and fastening operations. The accuracy of the machine is guaranteed by

its sturdy structure, weighing 160 tons, combined with a linear glass scale as

the secondary encoder on each servo axis and other sensors for adjusting the

normality of the tools with wing panel surfaces (Zieve et.al., 2004). These large

machines are typically employed at the aforementioned Level 1 Assembly

(Kihlman, 2005).

Figure 2-4 The E4380 auto-riveting machine (ElectroImpact)

Despite the extreme accuracy and stiffness, these custom-designed machines

exhibit a number of disadvantages (Kihlman, 2005; Webb et.al., 2005):

- Inflexibility: these machines are dedicated for a specific product. Change

to another product that the machine was not designed for has proven a

difficulty. They might become obsolete and stand still like monuments,

- High investment cost: these machines cost between £2.5 million to £3

million,

13

- High maintenance cost: they require hardened foundations and take up

floor space.

The aerospace industry, where the above large scale machines have been the

common method for automation, is now striving to reduce costs and shorten

lead times. Industrial robots have been considered promising alternatives to

these capital intensive machines to reduce the manufacturing costs and

increase flexibility. However, compared to these machines, robots possess

much lower accuracy and stiffness and thus, they must have improved accuracy

which can be delivered through some form of error compensation from

metrology systems. Issues relating to this metrology integrated robotic approach

will be presented in the subsequent sections.

2.2 Industrial robots

2.2.1 Mechanical structures

A robot is an automatically controlled, reprogrammable multifunctional

mechanical system (Spong et.al, 2004). The mechanical structure of a robot

manipulator is composed of a sequence of links connected by joints. The joints

typically are rotary (revolute) or linear (prismatic), allowing relative rotation or

translation between adjacent links. Depending on the how the links and joints

are interconnected, the types of robot manipulators are categorized into open

kinematic chain or closed kinematic chain (Siciliano et.al., 2007). In the former,

the links are serially connected via joints to form a single open chain. One end

of the chain is fixed and is called the base while the other end is freely

moveable. An end-effector is attached to this end, allowing the robot to perform

some interactions with its environment. In the latter, the end-effector is

connected to the base via several links working in parallel and hence, the robot

contains several closed loops. These two types of robots are well known as

serial and parallel robots (Figure 2-5).

Serial robots are the most commonly used in industry. According to the report of

the International Federation of Robotics, up to 2005, more than 99% of installed

14

industrial robots worldwide are serial manipulators (Siciliano et.al., 2007).

Though parallel kinematic machines have the advantages of higher structural

stiffness and accuracy over serial ones, their applications are limited due to the

relatively small work envelopes, difficult access to complex structures and high

costs and thus, they are mostly employed as 6-axis machine tools rather than

versatile manipulators (Dombre et.al., 2007; Angeles, 2003). In addition, the

accuracy of these machines is not sufficient for airframe assembly and would

require positional correction from a metrology system anyway (Kihlman, 2005).

The following sections will mainly discuss about serial manipulators.

Figure 2-5 Two types of robots: serial (left) and parallel (right) robots

(Angeles, 2003)

Serial manipulators may have several kinematic configurations, classified on the

basis of the first three joints whether they are prismatic (P) or revolute (R) joints

(Spong et.al., 2004). Among them, the most popular is the articulated structure,

which employs 6R joints: the first three are for positioning the arm in space and

the last three are for providing the wrist full orientation. In addition, the axis of

the first joint which rotates the whole structure in a horizontal plane is

perpendicular to the axes of the second and the third joints which elevate the

upper-arm (the second link) and the forearm (the third link) in a vertical plane.

The joints are typically actuated by electric motors.

Articulated manipulators are further categorized into the elbow and the

parallelogram linkage types (Figure 2-6). The notable difference between the

elbow and parallelogram linkage manipulators is the mounting location of the

base

base

links

links

joints

joints

end-effector
end-effector

15

motor that drives the forearm. In the former, the motor is mounted directly on

the upper arm whereas in the latter, it is mounted on the first link and drives the

forearm via a parallelogram mechanism. Joint 2 of the robot of this type has two

co-axial motors and hence, is referred to as “double revolute joint” in Figure 2-6

whereas other joints of the parallelogram linkage are un-actuated. By resorting

to the closed kinematic chain of parallelogram type, this hybrid design offers

advantages of higher stiffness and loading capacity over the purely open

kinematic chain while still maintaining a large working volume (Siciliano et.al.,

2007).

Figure 2-6 Articulated manipulators: the elbow type (left) and the

parallelogram linkage type (right)

An articulated manipulator usually possesses at least six independent degrees

of freedom (DOF): three for position and three for orientation. In this work, the

combination of position and orientation of the robot end-effector is sometimes

referred as location or pose for brevity. In order to specify the end-effector

location, a coordinate system or frame, is rigidly attached to it. The location of

this mobile frame, referred to as the Tool Centre Point (TCP), is then calculated

with respect to a fixed reference frame, which could either be the Robot base

frame, the World frame of the environment or the User frame attached to the

part on which the robot is working (Figure 2-7). Since the robot mobilizes its

end-effector by actuating the joints, there are necessary kinematic models to

establish the relationships between the location of the end-effector and

positions of the joints. They are:

upper arm

forearm
forearm

upper arm

double revolute joint

parallelogram

linkage

wristwrist

16

- forward kinematics : to find the location of the end-effector relative to the

base, given the positions of all the joints,

- inverse kinematics: to find the positions of the joints, given the targeted

location of the end-effector relative to the base.

These kinematic models are mathematical formulations of which the variables

are the joint positions and the constants are Denavit-Hartenberg (DH)

parameters (Spong et.al., 2004) that describe geometry of the robot, such as

link lengths and angles between joint axes. Further representation of the robot

kinematics will be described in Appendix A.

Figure 2-7 Types of reference frames

The performance characteristics of a robot manipulator are specified by several

factors, including the two most important, position accuracy and position

repeatability (Figure 2-8):

- Accuracy: the ability of the robot to position its end-effector to a

programmed position in space. It is measured as the difference between

the commanded position and the mean of attained positions when the

robot visits the commanded position several times from different initial

positions (ISO 9283, 1998).

- Repeatability: the ability of the robot to repeatedly return to the same

position. It is measured as the distance between the mean of the attained

positions and the furthermost attained position (ISO 9283, 1998).

TCP

User

Robot base

World

17

Figure 2-8 Robot accuracy and repeatability (Khalil et.al., 2004)

In addition to the repeatability and accuracy, other measures of robot

performances are:

- Workspace: the total volume swept by the end-effector as the robot

executes all possible motions. It is determined by the limits of the joints

and links employed by the robot mechanical structure.

- Payload: maximum load the robot can carry.

- Resolution: the smallest increment of motion that can be achieved by the

joint or the end-effector.

2.2.2 Control architecture

An industrial manipulator is not just a mechanical structure. Indeed, it is a

complex system, including:

- the mechanism, constituted by the links and joints described thus far;

- actuators (servomotors) that transmit their motion to the joints using

some suitable transmission systems;

- joint sensors (encoders or resolvers) that measure the joint positions;

- controller, which realizes motion of the manipulator by generating input

signals to the actuators and receiving feedback signals from the sensors

through closed loop control techniques;

- work-cell and peripheral devices, which constitute the environment in

which the robot works. The robot’s end-effector is a type of peripheral

device since it is not originally equipped by robot manufacturers;

Programmed position

Attained positions
(distribution of the positions the

robot actually stopped at)
x

y

z Accuracy
(distance to the center

of the sphere)

Repeatability

(radius of the sphere)

World CS

18

- communication interface, including the operator interface through which

the user plans the tasks of the robot and the periphery interface through

which the robot communicates with external systems (Khalil et.al., 2004).

Figure 2-9 Components of a robot system (Comau Robotics)

The hardware structure of a typical robot system is depicted in Figure 2-9. At

the heart of the robot industrial controller is the control unit having multiple

microprocessors: one (the System CPU) for overall system control and the

other (the Motion CPU) specialized for robot motion control. Specifically, the

System CPU is responsible for the management of:

- the operator interface, via a handheld device named teach pendant and

a computer (PC). The teach pendant is a joystick allowing the user to jog

the robot to a location and record its relevant coordinates.

- the periphery interface to external systems, e.g., sensors and actuators

of the end-effector, by using digital signal processing (DSP) electronic

circuits, namely the Interface Modules. Most of robot industrial controllers

provide parallel digital inputs/outputs (I/O), serial communications (RS-

232/485) and Ethernet to communicate with these auxiliary devices.

Other industrial protocols such as the fieldbuses (e.g., DeviceNet,

DIGITAL

SERVO

AMPLIFIER

ROBOT CONTROL UNIT

Motion

CPU

Shared Memory

INTERFACE

MODULES

System

CPU

Motor currents

Motor shaft positions (resolvers)

Teach pendant

Industrial controller

Robot

Host PC

Digital Inputs/Outputs

I O

RS-232

Ethernet

Fieldbus
(optional)

19

Profibus-DP, Interbus etc.) might also be supported via optional plug-in

boards.

By using the PC, the user is able to assign the tasks that the robot system

executes. This action is referred to as task planning, where the user specifies

the desired end-effector locations and the type of motion of the robot when

travelling between these locations, which can be either path free (known as

point-to-point motion) or a continuous path, e.g., a line or an arc. All industrial

robots are provided with high level robot programming languages for intuitive

task planning. Generated robot programs are downloaded from the PC to the

controller, interpreted into machine codes by the System CPU then transferred

to the Shared Memory of the Motion CPU via an internal bus.

The Motion CPU is in charge of trajectory generation and joint position servo

control as follows.

- Trajectory generation: given the programmed locations of the end-

effector in Cartesian space and its travelling path, the CPU calculates a

time sequence of corresponding variables (position, velocity and

acceleration) in joint space. At first, the CPU performs the inverse

kinematics to transform the coordinates from Cartesian to joint space.

Second, from the start and end locations of a path segment in joints,

trajectory points are interpolated at a certain rate, typically at 250 Hz in

modern controllers, serving as reference inputs to the servo control.

- Servo control: on the basis of the given motion trajectory, the CPU

implements a control algorithm to provide the driving signals to the

servomotors. At first, the reference trajectory is micro-interpolated at high

rate, typically at 1-2 kHz. Second, the closed loop control algorithm

operates on the error signals between the micro-interpolated reference

values),,(
rrr

and the actual values),,(
aaa

of joint position,

velocity and acceleration measured by joint sensors. Its outputs, the

torque signals , are finally sent through the Digital Servo Amplifier to

generate currents/voltages that drive the motors. The functional block

diagram of a robot control system is depicted in Figure 2-10.

20

Figure 2-10 Functional block diagram of a robot system

2.2.3 End-effector

In robotics, an end-effector is a peripheral device connected to the end of a

robot arm to interact with the environment. The specific design, mechanical

structure and components of this device depend on the robot’s application.

Since airframe assembly is primarily focused on drilling, fastening and accurate

positioning and inspection of aero-structures, the end-effectors of dedicated

robots usually have processing tools and sensors for such operations (Kihlman,

2005; DeVlieg, 2010). Moreover, because it is difficult to command a robot to

perform one operation, e.g., drilling, change its end-effector and return to the

exact position to perform subsequent operations, e.g., fastening, the end-

effector is usually designed to be multi-functional. The robots are kept static at

the programmed location whereas the end-effector comprises the components

to perform all necessary functions. Figure 2-11 illustrates such a multifunctional

end-effector which incorporates two main functions: drilling and hole inspection.

The basic platform of the end-effector consists of the base that attaches to the

robot, a shuttle table, frame/pressure foot, a nosepiece, and process tools (drill,

probe). When the robot is in position, the nosepiece is pressed against the

work-piece by the pressure foot to provide the system overall stiffness and

prevent burrs from forming between stacked materials. The shuttle table drives

the tools to the nosepiece where the tools will perform drilling and inspection of

the quality of the hole.

Task

design

Robot

program

Trajectory

Generation

Servo

Control

Robot

Electromechanical

Structure

Task planning Industrial Robot

Joint sensors

...

,,
aaa

...

,,
rrr

21

Figure 2-11 A multifunctional robot end-effector for drilling and hole

inspection (ElectroImpact)

2.2.4 Programming

Similar to computer numerical controlled machine tools, industrial robots can be

programmed either by manual coding in robot programming languages or using

simulation software to generate the code automatically. The two methods are

given the names online and offline programming to differentiate whether the

programming process actually involves the physical robot system.

In online programming, the initial robot program can be created by using a text

editor on the PC then downloaded to the controller or directly on the teach

pendant, but the main point of this method is that the robot is taught position

data. The operator uses the teach pendant to step through the program and jog

the robot along the desired path. At each path point, position and orientation of

the end-effector is visually corrected and recorded in the robot controller. When

the program is executed in automatic mode, the robot can return to these taught

locations accurately, owing to its repeatability. This teach-and-repeat method,

though straightforward, is time consuming and only suitable when the path

contains a few numbers of points. It is not viable, for example, if the task is a

machining operation on a part having complex surfaces (e.g., a wing skin) since

no visual aided method can guarantee the required normality between the TCP

and the machined surface in such cases.

shuttle table

nosepiece

hole probe

drill spindle

end-effector

robot

22

Offline programming (OLP) software, on the other hand, generates a robot’s

paths automatically based on the 3D CAD model of the part. OLP software can

be provided by robot manufacturers or a third party vendor, such as DELMIA

from Dassault Systems, the vendor of the popular CATIA software in CAD/CAM

technology. Herein, a virtual environment that models the actual work-cell,

including the robots, the part, the end-effector and other supporting structures

such as linear rails, jigs, fixtures etc., is constructed using computer graphics

(Figure 2-12). Within the environment, robot TCP locations are extracted from

the CAD model of the part by assigning corresponding name tags. Additional

tags such as home points, approach and retract points as well as the paths

along which the robot travels from one tag to another also need to be specified.

Notice that these points are usually defined in the User frame associated with

the CAD model of the part. The whole process can be simulated for accessibility

and collision detection then fine-tuned for cycle time optimization before the

robot program is generated and used by the robot system.

OLP offers several advantages over the traditional manual online programming.

Firstly, since the programming stage does not involve the actual robots, it can

be carried out before or in parallel with production, and hence, reduces the

production down–time. Secondly, through visualization and simulation, OLP is

helpful for designing the work cell layout, selecting the right robot models,

tooling and equipment needed as well as verifying the robots’ reaches and

accesses before the actual process takes place. Moreover, the generated

programs are less error prone and robots’ movements are optimized, thereby

increasing safety and productivity (Pan et.al., 2012). OLP, however, also comes

with shortcomings, i.e., discrepancy between the virtual and the real worlds.

Therefore, rigorous calibration must be carried out to find exactly offsets in

translation and orientation between the actual robot Base and the part’s User

frames before the generated OLP program can be used.

23

Figure 2-12 Path generation and simulation of a robotic painting process

for Lockheed Martin‘s F35-Lighting II aircraft by OLP software DELMIA

(Ponticel, 2011)

2.2.5 Robot accuracy and the challenge in airframe assembly

Industrial robots are ideal for repetitive tasks like spot welding or pick-and-place

in automotive assembly. The high production rates in the automotive industry

allow robots to be used for a single process or in some cases, a single

component thousands of times. In that sense, robots only need to be repeatable

but not necessarily accurate since the accuracy can be manually corrected with

the aid of the teach pendant during online programming. Robot manufacturers

have managed to improve robot repeatability by increasing the interpolation

rates and resolutions of the joint position sensors. Current industrial robots

possess quite good repeatability, ranging from 0.05 to 0.3mm. The absolute

accuracy usually is not documented by robot manufacturers but is much worse,

from 10mm to a few millimetres for off-the-shelf industrial robots (Siciliano

et.al., 2008).

In aircraft assembly, unfortunately, absolute accuracy is mandatory. In contrast

to the automotive industry, aerospace manufacturing has much lower

production rate but enormous number of contained parts and operations

required for the final assembly of an aircraft. To give a concrete comparison, an

24

automobile usually comprises 20000 components while that number for the

Boeing 777 is 4 million (Kihlman, 2005). During the assembly process of the

Airbus A340-500/600 wing panels, approximately 65000 holes have to be drilled

on each skin (Rooks, 2001). On top of that, airframe assembly demands for

tighter tolerances: while a spot weld gun in car assembly is usually positioned

within 1-2mm (Axelsson, 2002), the tolerance for a drilled hole in aero-

structure assembly is usually 0.2mm. In such scenarios, manual compensation

of robot inaccuracy by the teach-and-repeat method is too costly, tedious or

even impossible. OLP, on the other hand, must rely on robot absolute accuracy

and accurate modelling of the virtual environment.

Why do robots have poor accuracy? During trajectory generation for motion

control, a robot controller uses the kinematics to infer the end-effector locations

from joint positions. For the sake of computability, the kinematic models used by

robot controllers are based on several assumptions, such as nominal link

lengths and perpendicularity or parallelism between joint axes but in fact, these

parameters are subjected to manufacturing tolerances. In addition, joint position

sensors also have errors and since they are located at the back of servo

motors, any errors in transmission components ahead of them, such as

compliance and backlash, go unaccounted for. These errors are usually small

but due to the nature of coupling of links in serial manipulators, they are

amplified throughout the remaining links and finally yield significant errors in the

tool pose. In general, the internal errors can be categorized into:

 Geometric errors: errors in the kinematic parameters, such as offsets in

joint positions, dimensional and angular variations in link lengths and

angles resulted from imprecise manufacturing. They are constant or

position-independent.

 Non-geometric errors: including compliance, backlash, eccentricity and

wear in gear transmission as well as thermal expansion etc. that

deteriorate robot accuracy. They are variable but somewhat predictable

(Renders et.al., 1991, Karan et.al., 1994).

25

DeVlieg (2010), a researcher at ElectroImpact on robotic applications for

airframe assembly has made several assessments on the robot accuracy. He

stated that, on a typical 3 meter serial robot, geometric errors may cause errors

in the TCP of about 2mm to 4mm. Compliance (or deflection) is another main

source of inaccuracy for serial manipulators due to the inherent lack of stiffness.

Since the structure of a serial manipulator is a concatenation of links, the

majority of compliance occurs at the joints and could be induced by both link

masses and applied payload, e.g. weight of the end-effector used. The author

claimed that these deflections might contribute to an error of 3mm or more at

the end-effector’s TCP. When the robot performs machining, e.g., drilling, its

accuracy is further degraded under the effect of contact forces. The contact

forces in this case include the pre-pressured static force applied before drilling

when the nosepiece is pressed against the work-piece surface and the dynamic

thrust force during drilling. Under the effects of these contact forces, the robot

may exhibit further errors up about 2mm. Table 2-1 summarizes the error

sources that degrade the performance of a robot.

In general, the accuracy of the robot system depends not only on the robot but

other factors:

 Accuracy of the coordinate transformation between the robot Base frame

and the part’s User frame;

 Dimensional variations and deformations of the part; this is originated

from the fact that the parts in airframe assembly are usually large and

compliant structures (Sadaat et.al., 2009);

 Accuracy of the transport system, e.g., linear track or gantry platform

used for expanding the workspace of the robot.

Table 2-1 Error budget of an industrial robot

Sources of error Type Characteristics TCP error

Joint offsets Geometric
errors

Constant, ever-present 2-4 mm

Manufacturing tolerances

Joint and link elasticity Non-
geometric

errors

Variable, presences and magnitudes
depending on the property and
status of the robot mechanical
structure and working environment

3mm

Thermal effects 1mm

Backlash, wear etc.

26

An economically feasible solution for improving the accuracy of the robot is via

calibration: by identifying and compensating for the above geometric and non-

geometric errors in the robot structure. Since these internal errors usually

cannot be measured directly, they must be identified via a mathematical model

relating them with the measurable tool pose errors. This model is referred to as

the error model of the robot. After the model has been constructed, the robot is

commanded to a number of programmed locations in the workspace and its

actual tool poses are measured by a sensor. Tool pose errors are determined

from the measurements and hence, the internal errors of the robot structure can

be solved from the error model. If the model is accurate, its predicted tool

poses, which are the nominal plus the predicted errors, must be close to the

measured values (Figure 2-13). After calibration, the error model can be used

as a virtual sensor that “measures” and compensates for robot inaccuracy

without the need for the actual one. It has been reported that through proper

calibration technique, the accuracy of a serial manipulator could be improved up

to 0.5mm (Schröer et.al., 1997). Further details of the technique will be

described in Chapter 4.

Figure 2-13 Principle of robot calibration for accuracy improvement

It can be seen that industrial robots, though properly calibrated, still require in-

process error correction from an actual metrology system to meet the 0.2mm

required tolerance in airframe assembly. The general idea of utilizing metrology

in the area is to provide the robots direct perceptions on the positions of their

n1

n2

n3

n4

n5

n6

r1

r2

r3

r4

r5

r6

m1

m2

m3

m4m5

m6

mi: predicted positions

ni: programmed positions
ri: measured positions

27

end-effectors or the part, from which fine adjustments can be performed. The

metrology that has been used for improving robot accuracy will be presented in

the next section.

2.3 Metrology for robotics

2.3.1 Global sensors

The term “global sensors” in this work refers to large volume metrology such as

laser and vision systems located separately from the robots. Large-volume

metrology is used conventionally in aircraft manufacturing industry for

integration and assembly of aircraft structures (Rooks, 2001), verification and

calibration of jigs, fixtures, and tooling (Saadat et.al., 2002), as well as part

conformity inspection (Saadat et.al., 2009). Due to the capability of providing

accurate measurements in three or even six dimensions, such a global

metrology system can be used to measure robot positions and form a closed

loop control to improve its positional accuracy. The following sections will

introduce the technologies that have been used for this purpose.

2.3.1.1 Laser tracking system

A laser tracker is a non-contact coordinate measuring machine (CMM), capable

of taking a large volume of measurements with an accuracy of few micrometers

over a range of tens of meters. The main part of a laser tracker is a Laser

Interferometer (IFM) having a beam-steering mirror driven about horizontal and

vertical axes to direct the laser beam in a wide range of directions. When the

beam is pointed at a retro-reflective target [e.g., a spherical mounted reflector

(SMR)], it returns along its original path back to the IFM. Based on classical

interferometry, the IFM determines the relative distance between the reflector

and the tracker, providing one dimensional measurement. It is then combined

with the other two dimensions, the azimuth and elevation angles, measured by

optical encoders at the motorized stage that drives the beam-steering mirror

(Figure 2-14). These measured polar coordinates can be transformed to give

the Cartesian coordinates of the SMR target.

28

Figure 2-14 Components a laser tracker (Leica Geosystems)

A notable feature of a laser tracker is the ability to follow the movements of the

target. When the reflector moves, the beam hits the target off-centre, causing a

lateral displacement between the emitted beam and the returned beam. A two

dimensional position detector in the laser tracker measure this displacement

and generates a signal to adjust the steering mirror until the beam is centered

back to its desired coaxial state (Figure 2-15). This mechanism allows the

device to keep track of the target movements of up to 5 meters per second.

Figure 2-15 Principle of target tracking

Motors for tracking and

automated positioning

Position detector for tracking

the reflector

Encoders for measuring

azimuth and elevation

angles

Reflector

Absolute Distance

Meter (ADM)

Laser interferometer (IFM) for

measuring distance

Portable stand

29

Newly developed laser trackers by Leica Geosystems are capable of measuring

both positions and orientations of an object when they are equipped with a

camera and use a special reflector called TMAC (Tracker-Machine control

sensor). This reflector is a versatile device which can be mounted on a robot or

machine spindle to provide offset positions of their TCPs in six degrees of

freedom. It comprises of a prism located at the centre of an aluminium housing

and a pattern of ten light emitting diodes (LEDs). While the prism is measured

by the tracker to provide three position parameters, images of the LEDs

captured by the camera are used to determine three orientation parameters of

the TMAC around the principal X, Y and Z axes (Figure 2-16).

Figure 2-16 Working principle of the laser tracker and T-MAC to provide

6D measurements

Another advanced technology, the Absolute Distance Meter (ADM) also

patented by Leica Geosystems, was introduced into the latest versions of their

laser trackers. The conventional laser interferometer IFM, in fact, can only

measure relative distance between the reflector positions when it moves. To

determine the absolute distance of a new reflector position, distance to a known

starting point in space must be measured in advance. In earlier versions of laser

tracker, this required the operator to bring the reflector to a pre-calibrated

‘home’ position before any measurement takes place or whenever the laser

beam is interrupted. This manual action prevents the measuring process from

being fully automated. ADM, a laser technique utilizing the polarization

modulation of the laser light (Leica, 2008), was implemented in new laser

T-Cam

T-MAC

LEDs (10 total)

prism

Laser tracker

orientation

position

30

trackers to determine the absolute distance without the requirement to relocate

the reflector to a home position. By exploiting this useful feature, the work

presented in this thesis proposed a method using one laser tracker for multiple

robots, in which the laser beam can be disconnected selectively from one robot

and pointed to another to measure and correct its end-effector’s position.

2.3.1.2 Other technologies

Other large scale metrology technologies widely used in airframe assembly are

photogrammetry and Indoor GPS (iGPS). These technologies rely on the

principle of sensor triangulation to determine position of a target in space. In a

photogrammetric system, the 3D position of a target (e.g., a light emitting diode

or a retro-reflective target) is constructed from the images taken by a system of

cameras at pre-calibrated configurations. Several targets can be used to infer

both the position and orientation of the object, i.e., the part or the robot end-

effector, to be measured. An example of a photogrammetric system is the K-

series Optical CMM of Nikon Metrology which has been used to correct robot

positions (Figure 2-17). An iGPS system, on the other hand, uses a network of

transmitters emitting laser and infrared lights to determine the position of a

receiver in its working volume. Signals from two or more transmitters to the

receiver will be used to triangulate three dimensional coordinates of the

receiver, assuming the relative distances between transmitters are known

beforehand (Nikon Metrology, 2011).

Figure 2-17 The K-series Optical CMM (photogrammetric system) is used

for tracking the position of a KUKA robot (Nikon Metrology)

31

Each large volume technology presented in this section has its advantages and

disadvantages when used for the purpose of robot positioning. The key factors

of laser tracking technology are its superb accuracy, large measurement

volume and speed. A typical laser tracker can measure a target with the

accuracy of 15m in its near field (within 7m) and with the sampling speed of

1000 points per second. Its shortcoming is the requirement of continuous line-

of-sight between the tracker and the robot end-effector when the robot is

moving. The ADM technology of new laser trackers can be used to overcome

this problem when the laser beam is accidently broken, but it needs to know

accurately the robot’s new position in order that the connection can be re-

established. Photogrammetric and iGPS systems, on the other hand, do not

suffer from this problem and have the capability of measuring several targets

simultaneously. The downsides of a photogrammetric system are its limited

measurement volume, constrained by the field of views of the cameras and the

degraded accuracy when the measured target is far from near field of the

sensors (Kihlman, 2005). Accuracy and measurement speed are also the main

drawbacks of iGPS systems despite their large measurement volume (Wang

et.al., 2010). To summarize, a comparison between current large volume

metrology technologies is given in Table 2-2.

Table 2-2 Large volume metrology used in airframe assembly

(Saadat et.al., 2002)

It can be inferred from the table that laser tracking apparently is the proper

technique when accuracy is a prerequisite. It is also worth noticing that all of

these technologies, though necessary to improve robot accuracy, require capital

Technologies Laser Tracker Photogrammetry iGPS

Measurement Range 45m 17m 200m

Accuracy 15m + 6m/m 90m + 10m/m 170m within 12m

Sampling rate 1000Hz 1000Hz 40Hz

Working volume Large Limited Large

Multiple targets No Yes Yes

Cost (€) 150K 120K 250K

32

investment. This is somewhat contradictory to the original purpose of utilizing

industrial robots in airframe assembly for cost reduction. Therefore, having one

accurate metrology system capable of serving multiple robots is desirable.

2.3.2 Local sensors

The term “local sensors” in this context refers to a variety of sensors mounted

on the robot arms. They are categorized into:

- Proprioceptive sensors: to measure the internal state of the manipulator.

Common proprioceptive sensors are encoders and resolvers for

measuring joint positions and tachometers for measuring joint velocities.

These sensors are integrated as parts of a robot system; their

measurements are used as position feedback in the servo control as

presented in section 2.2.2;

- Exteroceptive sensors: to provide information about the external

environment in terms of distance to the part, its size and shape,

interaction forces, and so forth.

According to (Siciliano et.al., 2007), common exteroceptive sensors used for

industrial robots are:

- Stress sensors: including wrist Force/Torque (F/T) sensors and shaft

torque sensors used in-process for measuring the stress induced by the

contact between the robot and the part. Other sensors of this type are

tactile sensors and other sensorized compliant devices;

- Range sensors: including laser sensors, vision systems and mechanical

probes to measure dimensional quantities of the part;

- Other types of sensors used for a specific process, such as proximity

sensors, temperature sensors, accelerometers and gyroscopes etc.

These sensors can also be classified on the basis of sensing mechanisms into

contact and non-contact sensors (Gupta et.al., 2007) or type of output signals

into digital and analog sensors (Kurfess, 2005).

A typical stress sensor is the wrist F/T sensor usually mounted between the

outer link of the manipulator and the end-effector. The main component of the

33

sensor is an elastic structural element which deflects proportionally to the

applied force or torque when the end-effector is in contact with the environment,

e.g., drilling or picking an object. Either strain gages or piezoelectric materials

are used to measure the deflection of the elastic structure to provide complete

contact force information: three translational forces and three torque

components around the principal X, Y and Z axes (Figure 2-18).

Figure 2-18 Wrist F/T sensor (Craig, 1989)

A typical range sensor is the laser sensor. Laser sensors can operate on the

principles of time-of-flight, optical triangulation and interferometry (Siciliano

et.al., 2007), which basically are the technologies employed in the iGPS,

photogrammetric and laser tracking systems presented in section 2.3.1. The

operating principle of optical triangulation laser sensors is illustrated in Figure

2-19. Light emitted from a laser diode is projected on the object, usually in the

shape of a point or a stripe. The reflected beam is focused by a converging lens

onto a photo-detector, which usually is an array of Charge Couple Devices

(CCD). Once the relative distance and orientation between the CCD array and

the laser is known precisely, e.g., through a calibration procedure, it is possible

to determine from the captured image the distance between the sensor and the

object by simple geometrical calculation. A special sensor of this type

commonly used in robotics is the seam tracking sensor for welding applications.

In such a sensor, the sensor head has a built-in electronic circuit that detects

and calculates simple geometries of the joint between two parts to be welded,

e.g., its shape, height, gap size and position of the centre point. Based on these

wrist F/T

sensor

Instrumented with

strain gages

34

data provided in real-time, robot motions can be continuously adjusted such that

the welding torch always follows the seam (Gooch, 1998).

Figure 2-19 Laser sensor based on optical triangulation

2.3.3 The use of sensors in robotics

Sensors in robotics are classified according to their functions into the following

categories (Duelen et.al., 1987).

2.3.3.1 Process control

The sensors supervise the work in progress or the work-cell in order to

sequence the tasks between multiple robots and machine stations in a

production line or to detect the existence of parts and human for safety or

human robot collaboration. A variety of sensors can be used for this purpose,

ranging from simple tactile and proximity sensors to more complex vision

systems. Nevertheless, they only behave like electric switches to start different

routines in a robot program or interrupt the current program to handle safety

conditions.

2.3.3.2 Robot control

Signals provided by the sensors are used to modify the programmed motion

profile of the robot in order to correct deviations in position and orientation of the

robot, the part, fixtures or all of them. The correction actions are further

classified as:

35

- Static correction, where sensor signals initiate the corrections in the robot

program coordinates before the coordinates are processed by the robot

controller for motion control. Error corrections and robot motions,

therefore, take place in sequence.

- Dynamic correction, where the corrections take place in parallel with the

robot motions (Figure 2-20).

 a) Static correction b) Dynamic correction

Figure 2-20 Sensor-based correction strategies (Warhburg, 1988)

The main difference between the two correction methods is that static correction

does not require continuous feedback from sensor signals whereas dynamic

correction utilizes these signals as continuous feedback in a closed-loop control

strategy superimposed on the joint servo control of the robot controller. The

latter thus requires signal processing of sensor information and computation of

relevant control algorithms at a high cycle rate and within a specific time frame,

i.e., real-time characteristics. Typically, these tasks are implemented during the

interpolation cycle of the robot industrial controller (Schreiber et.al., 2010) as

depicted in Figure 2-21.

To the best of the author’s knowledge, the sensors and corresponding dynamic

control include:

- Wrist F/T sensors for force control in robotic drilling, de-burring etc.,

- Seam tracking sensors for continuous tracking control in welding,

- Vision systems for visual servoing and target tracking control in pick and

place operations.

Sensor

processing and
Corrections

Robot motions

(servo control)

time time

36

Figure 2-21 Functional block diagram of a robot system with sensor-based

corrections

To give the readers an overview of how metrology assists robotic assembly, an

example is given in Figure 2-22. In the figure, the robot carries a multifunctional

end-effector embedded with a drill actuator, a range sensor, e.g., laser sensor

or vision system, a wrist F/T sensor and is tracked by a laser tracker.

Figure 2-22 Example of a metrology assisted robot system for assembly

applications

Before the drilling process can take place, the sensors will be used for part

localization, that is, calibration of the User and Base frames. Based on prebuilt

knowledge of the part (from its nominal CAD model), the robot commands the

vision system and the laser tracker to measure some features (dowel holes,

edges etc.) on the part and then uses these measured features to set-up the

Trajectory

Generation

Servo

Control

Robot

Electromechanical

Structure

Industrial Robot

Joint sensors

...

,,
aaa

Sensors
Correction

(dynamic)
External PC

Correction

(static)
Sensors

Task

design

Robot

program

Task planning

Base frame

User

frame

Vision system

Drill

Part

Laser tracker

Robot

End-effector

F/T sensor

37

User frame. Offsets in positions and orientations between this actual User frame

and its nominal frame constructed from the part’s CAD model due to

misalignment or distortion of the part due to temperature fluctuations are

computed, allowing for the robot to make (static) corrections to programmed drill

locations accordingly. This approach is only feasible if the part contains

measurable features, otherwise the laser tracker must be used to measure

some reflector targets mounted on the fixtures holding the part (not shown in

the figure) to construct the User frame. By having the robot capable of part

localisation, the necessity for large and dedicated fixtures used for positioning

the part, such as the one shown earlier in Figure 2-4, can be eliminated.

When the robot approaches a drill location, the laser tracker is employed to

correct the positional error of the robot. This error is the combination of the

robot’s inaccurate kinematics and elasticity induced by the gravitational force on

the end-effector and the pre-pressured force as presented previously in section

2.2.5. Because these forces are only static, a static correction strategy is

usually performed: the robot will be positioned iteratively until the position of the

end-effector, measured by the laser tracker, is well within the required 0.2mm

tolerance.

During the drilling process, dynamic correction for the tool’s deflections is

necessary because the thrust force might change its magnitude rapidly

(Kihlman, 2005). If the laser tracker is capable of measuring in real-time, its

measurements can be used to correct the tool’s deviation by a closed-loop

position control algorithm. Otherwise, the F/T sensor and a force control

algorithm must be employed to maintain the tool at the programmed position

despite the effect of the cutting forces.

After the drilling has been completed, the vision system can be used again to

verify the position of the drilled hole. By doing this, the robot system is

employed at this stage as a shop floor CMM without having to divert the part to

the laboratory for quality checking. Examples of these correction methods will

be presented in part 3.2 of Chapter 3.

38

2.4 System integration

The metrology-assisted robot system presented above requires integration of

the robot with other peripheral devices, i.e., actuators, local and global sensors.

On a larger scale, this robot system is part of a work-cell that might consist of

several robot systems, automated machines and vehicles, conveyors and other

sensors for process control etc. The use of these proprietary field devices

requires communication and control infrastructures, developed to link and

coordinate the activities of specific devices and systems having incompatible

communication interfaces and data representations.

Figure 2-23 Control hierarchy in manufacturing systems (Leitão, 2009)

2.4.1 Communication architectures

An automated assembly system, or manufacturing system in general,

comprises three levels of hierarchy: shop, cell and machine levels as depicted

in Figure 2-23 (Dilts et.al., 1991). The operations at shop level involve

production planning and manufacturing resource allocation. Cell level is

responsible for scheduling and dispatching the production plan, e.g., offline

robot programs, issued from the upper level as well as monitoring process

status reported from lower level. These activities are referred to as process

signals to

actuators

Planning

Scheduling

Dispatching

Machine / Device

Control

Monitoring Diagnosis

Error recovery

production

plan

detailed

scheduling

NC programs

signals from

sensors

performance

evaluation

recommended strategies

error

detection

signals to

actuators

signals from

sensors

States of

resources, error

messages and

process

parameters

Shop level

Cell level

Machine

level

39

control. Physical manufacturing activities, e.g., assembly processes, take place

at the machine level where separated robots and field devices are co-ordinated

together, or machine/device control, by dedicated controllers which usually are

PCs running on top of their industrial controllers. These industrial controllers are

in charge of low-level motion control (for robots/actuators) and signal

processing (for sensors) of their devices. Static correction is thus a type of

device control whereas dynamic correction is a type of motion control with aid

from the sensors.

The primary conduit for data exchange between relevant stations

(computers/controllers) at the same and different levels leads to a

corresponding system of networks depicted in Figure 2-24 (Zurawski, 2007;

Hung et.al., 2010):

- At shop level, the network(s) are typically used for exchanging

manufacturing/process messages and various enterprise management

applications. Ethernet based on the TCP/IP protocol suite represents the

backbone with which the computers at this level are connected to each

other and with cell controllers at cell level. At this level, the traffic is

characterized by high data rates (the amount of data) whereas message

delivery time is not critical.

- At cell and device levels, field devices are connected to the PC-based

controllers either directly, i.e., point-to-point connection or via industrial

networks to exchange data for process control (at cell level) and device

control (at device level). Serial communication buses such as the RS-

232/485, PCI (Peripheral Component Interconnect) and USB (Universal

Serial Bus) are typically used for point-to-point connections. On the other

hand, network connections are usually formed by a variety of fieldbus

systems whose communication protocols are either built upon their own

protocol suites such as the Profibus, Interbus, WorldFIP etc. or on top of

the TCP/IP protocol suite such as the ProfiNet, Ethernet/IP, DeviceNet

etc. Comprehensive reviews of these fieldbus technologies can be found

in the book edited by (Zurawski, 2007). There is a growing tendency for

these levels of networks to be based directly on the standard Ethernet

40

and TCP (UDP)/IP protocol suite (Vitturi, 2001). These networks are

characterized by small data rates and cycle time, typically from 1-10ms

(Neumann, 2007).

Figure 2-24 A typical network architecture in industrial automation

(Zurawski, 2007)

2.4.2 Control applications

In Figure 2-24 above, the Controllers at machine level usually are PCs with

control applications developed in some computer programming languages to

co-ordinate separate field devices through their industrial controllers. At times,

these control applications might also link with other non-physical resources

such as third party software for complex processing of sensor data (e.g., image

processing or numerical regression analysis). They will be described further in

the following sections.

Management Storehouse Database

Cell

Controller

Switch

Shop Level

Cell Level

Machine Level

Ethernet

Switch

Fieldbus (Ethernet)

Controller 1

Fieldbus (Ethernet)

Controller 2

Switch

…

…

…

41

2.4.2.1 Control applications with centralized processing

A control application at machine level usually comprises the following

abstraction layers (Figure 2-25):

- At the bottom is the Device Interface for communication with the

controlled components (hardware/software) via some types of

communication libraries provided by their vendors. The communication

libraries typically are usually known as the Application Programming

Interface (API) and Software Programming Kit (SDK), or simply “drivers”

in the computer world.

- At the middle is the Control layer, which interprets the OLP robot

program dispatched from the Cell controller along with its associated

name tags into native API control commands of the robot and peripheral

devices to be executed. It also performs necessary orchestrations and

correction activities previously described in section 2.3.3.2.

- At the top level is the Application Interface through which the application

receives input and reports process/system status to human operators

and the cell controller.

Figure 2-25 A control application with centralized processing

Such an application exhibits a centralized control unit since all the control and

data processing functions are performed on a single computer. If only a few

42

numbers of devices are used, e.g. one robot with simple peripherals, developing

a control application following this centralized approach is intuitive and relatively

simple. In addition, direct communication between the application (software)

and the hardware components implies fast and reliable data transfer and

control. This feature essentially makes centralized control architectures ideal if

the control algorithm must be guaranteed in real-time. However when

numerous devices are used, this type of control application exposes several

disadvantages. When it has to manage multiple concurrent processes,

bottlenecks might occur at the Device Interface and Control layers due to the

limited processing capability of a single computer. Increased software

complexity will also be linked with inconsistency and a greater likelihood of

failures during runtime, such as conflicts or deadlocks in parallel operations. On

top of that, the major disadvantage of this type of application is the weak

response to change since its control logic was developed to be tailored with

existing hardware and was hard-coded in the software. As a consequence, any

changes in the structures due to hardware replacements, upgrades or in

production scale, products and control algorithm might require tedious

modification of the software.

2.4.2.2 Control applications with distributed processing

The aforementioned shortcomings of a centralized control unit have led to the

consideration for distributed control systems. Distributed control was originated

with advances in information technology: the Remote Procedure Call (RPC)

which allows separate software applications to exchange information at

programmatic level to share the work load. By exploiting this capability, the

centralized control application can be subdivided into several networked

applications, each of which provides a service, representing either a physical or

non-physical (software) device or a subsystem. Each of these distributed

applications has its own external interface (a collection of public functions)

allowing other applications to manipulate the devices represented. For example,

the interface of the control application for a camera might have a function

named SnapShot for taking a single picture (Figure 2-26). The function might be

43

implemented in different ways for different cameras used, based on their APIs,

but is still invoked in the same manner by other applications. As a result, these

applications are able to control the camera, or in order words, consume its

service via the standardized interface without having to know the

implementation details and hardware specifics of the camera. Any changes

regarding how the camera is controlled or replacement of the camera with

another one might only require modification of its control application without

affecting the dependants.

Figure 2-26 Control application of the camera allows interactions with

other applications via its standardized interface

The principle of remote procedure calls between distributed applications is

described in Figure 2-27. A RPC platform, also known as communication

middleware, acts as an application layer for one application to transparently

invoke a function of a remote application as if it were its local function. It allows

for applications to exchange functionality without having to know their locations

on the network, communication protocols, programming languages, operating

systems, etc. When two applications are supposed to interact, the middleware

automatically establishes the client-server relationship between them via a

piece of code called a stub on each side. When the client application wants to

invoke a method on the server application, e.g. the SnapShot function, it

actually calls the stub on its side. The call is serialized into the middleware’s

message (data structure) and sent via the network to the server side via some

transport protocol. Here, the message is de-serialized by the server’s stub back

to the original SnapShot function call in the camera control application, which

then carries out the work and returns the captured image in the same manner.

Camera

Camera

Control
Application

SnapShot

image

Camera API

Interface

Control

44

Examples of the well-known communication middleware technologies that

provide this capability are CORBA (Common Object Request Broker

Architecture) of Object Management Group, DCOM (Distributed Component

Object Model) of Microsoft, Web Services and the recently introduced RDS

(Robotics Developer Studio) of Microsoft which targets robotic applications.

These middleware platforms will be further discussed in section 3.3.2.1.

Figure 2-27 Client-server invocation via a middleware platform

A system of distributed control applications communicating via such a

middleware platform is depicted in Figure 2-28. The Controller in this case,

namely the composite service, communicates with the robot, tool, sensor and

software used through their control applications, namely the basic services,

which can reside on the same computer or distributed across the Ethernet.

Each basic service controls their own device(s) and performs necessary data

pre-processing in order that the data can be used by the composite service. The

composite service communicates with the basic services via their application

interfaces realized by the middleware used. With this architecture, the Device

Interface layer of the composite service contains pointers (the client stubs) to

these basic services instead of the devices’ APIs. The Control Logic of its

Control layer are developed based on the functions provided by the basic

services, and thus are less dependent on the devices’ hardware. The

Application Interface contains the interface of the composite services provided

to cell controllers. Up to this point, the reader can figure out the cell controller at

cell level also is a composite service built on top of these control applications;

the cell controllers again have interfaces which can be accessed by other

computers at shop level and so forth.

camera SnapShot

camera Image

C
lie

n
t stu

b

Implementation

SnapShot

S
e
rv

e
r stu

b

Image

Program

message

message

Client Application Server Application (Camera)

Client Server

45

Figure 2-28 A system of distributed control applications

It is straightforward to see that the main advantages of this distributed control

and service-based architecture over the centralized control architecture include:

a. Interoperability: multiple devices, regardless of their hardware,

communication buses and programming languages supported by the

APIs, are able to exchange information.

b. Distributed control: to ease the computation burden on the controllers at

higher levels by outsourcing Device Control to corresponding basic

services at lower level. This feature is particularly useful when the Device

Control requires intensive CPU payload such as image processing or

numerical regression analysis etc.

c. Flexibility attained through the loosely-coupling nature of services: they

communicate via their well-defined interfaces without having to know the

implementation details of the others. Therefore, changes that occur

within one service, e.g. due to replacement/modification in

hardware/control, might not cause cascading changes to other services

that consume its functionality. This characteristic makes the system

flexible and less dependent on the hardware used (Pires et.al., 2009;

Pereira et.al., 2007; Brugali, 2007).

46

As a trade-off to its flexibility, the main drawback of this control architecture is

the inherent latency in data transfer due to the intermediate layers (middleware

and Ethernet) between the hardware and software. For this reason, sensors

that communicate with robot on real-time basis, i.e., the ones used for dynamic

correction, should interface directly with the robot service; even in some

restricted cases, they must be integrated into robot controllers. These specific

techniques will be discussed further in section 3.3.1 of Chapter 3.

47

3 LITERATURE REVIEW

This chapter presents a review of the published research relevant to the topics

covered in this thesis. In addition, the applications of robotics in airframe

assembly will be introduced to provide the reader a wider view.

3.1 Applications of robotics in airframe assembly

Within the literature, a number of historical and current applications of robotics

in the aerospace industry that have had varying degrees of success are

described. One of the early attempts at using robots in aircraft manufacturing is

the EMAP project at British Aerospace (now BAE Systems) in the late 1980s.

The system consisted of a large gantry robot performing automated drilling and

fastening operations on aluminium flat and formed parts. The system, however,

failed due to the inherent quality of individual components (Calder, 2011). In the

mid-1990s, Boeing also failed to use a six-axis robot to join the body of its 777

jetliner (Weber, 2009). The concept of open loop control in which the accuracy

of the system merely relies on that of the robot was thus to prove a failure. To

overcome the inherent inaccuracy limitation of the robots, templates were first

utilized as guides for the drill tools. In 1990s, Airbus employed them in the

robotic assembly line of A330/340 FAL in Toulouse (Airbus, 2012). Eight Kuka

robots, arranged in four sets of pairs, two above/below the wing and on either

side of the aircraft, were used for riveting of the wings into the fuselage body.

The robots, however, only performed drilling whereas the subsequent insertion

of fasteners was still done manually. Pilot holes on the templates were detected

by laser sensors mounted on the robot end-effectors so that the robots could

adjust their programmed positions within the tolerances of 2.5mm (Kochan,

1991). Another early robot system dedicated for airframe assembly was the

Adaptive Robotized Multifunction Assembly (ARMA) cell developed by the

robotic division of Dassault Aviation in 1993 for the assembly of Rafale and

Falcon panels (Figure 3-1). The cell was based around two Fanuc S420 robots

working synchronously from both sides of the jig; one robot mainly performed

clamping, drilling, countersinking, applying sealant and inserting rivets whereas

48

the other was used for clamping from the other side and detecting the installed

rivets. Before the assembly process took place, the two robots manipulated

their end-effectors with an array of sensors to contact some cubes located at

the extremities of the jig in order to calibrate the position of the jig relatively to

the robot bases. During the process, the drilling robot used a vision system with

an accuracy of 0.1mm for finding pilot holes on the template to adjust its

programmed points (Da Costa, 1996). It can be seen from these examples that

the use of drilling templates and local sensors can overcome the inherent

inaccuracy of the robots to some extent, but the full potential of jigless

manufacture was not realized. For example, around 30 of these templates were

required to be manually mounted in position for the robotic assembly of each

A330/340 FAL airplane wings. This is a laborious process given that each

template weighs about 45kg (Kochan, 1991).

Figure 3-1 The ARMA cell (Da Costa, 1996)

In more recent applications, large volume metrology has been utilized as

guiding sources for the robots used. The first robot system incorporated with

metrology probably is the TI2, whose name is derived from using a Tricept

robot, a photogrammetric system from Imetric SA and the IGRIP offline

programming software (Figure 3-2a). The Tricept robot, produced by Neo

Robotics, is a hybrid parallel robot having a parallel tripod-like structure with a

spherical wrist commonly found in serial manipulators. The accuracy of a TI2

robot is 0.2mm, enhanced by multiple cameras tracking LED targets attached

on the wrist. Boeing is the first user to use TI2 systems in producing floor beams

49

for their 737, 747 and 767 airplanes (Staff, 2000; Fayad, 2002). Within the

project Automated Wing Box Assembly (AWBA), a collaboration between seven

UK companies including BAE and Airbus UK in the early 2000s, industrial

robots are employed for rib loading and drilling/fastening of skin panels into the

ribs. In the first application, one Kuka robot has to position the rib between the

lower (trailing edge) and upper (leading edge) spars of a wing box. A Leica

LTD500 laser tracker is used to measure the positions of the spars and guide

the robot within an accuracy of 0.5mm. In the second application, the fastening

robot is equipped with a multifunctional end-effector, including a vision system,

high speed spindle drilling head and stud inserter. Before skin wrapping takes

place, the vision system is used to locate the position of each rib pad (Figure

3-2b). The position is then recorded in the memory so that the robot knows

exactly where to drill through the skin and the pad once the skin has been

placed. Drilling and fastening is done within a cycle time of 15s per hole (Rooks,

2001; Hemsteads et.al., 2001). Kuka, Airbus UK and Metris (now Nikon

Metrology) along with other 51 companies also participated in the recent

Advanced Low Cost Aircraft Structure (ALCAS) project, a €100 million

European Commission (EC) funded research program that aims to identify new

composite manufacturing and assembly strategies. In the project, Kuka was in

charge of developing a robotics system for the horizontal assembly of

composite wings to replace the conventional vertical method. Two of the robots

carried the photogrammetric K-series CMMs of Nikon Metrology for monitoring

the heads of another two robots, which drilled holes from 6 to 22mm diameters

and up to 100mm depth by using orbital drilling. With these enhanced systems,

absolute accuracy of better than 0.1mm is easily achievable over working

volumes of several meters (ALCAS, 2012; Richards, 2010; Calder, 2011). Most

recently, a Volumetric Robotic Cell has been developed and currently is under

final test before being put into the assembly line of nacelle systems for the

newest Airbus A350 XWB in Toulouse (Goodrich, 2011).

50

Figure 3-2 Recent applications of robots in airframe assembly. From left to

right: a. The TI2 system at Boeing (INS-News, 1998); b. Robot measuring

rib pads in the AWBA project (Hemsptead et.al., 2001); c. Robot for the

assembly of fuselage sections of C-series aircraft at Bombardier (Arnone,

2011)

A number of robotic applications at Boeing are also found in the literature; most

of them are subcontracted to automation solution suppliers. In the early 2000s,

ElectroImpact developed the ONCE (One Side Cell End-Effector) system to

drill, countersink and measure fastener holes in the trailing edge flaps on the

Boeing F/A-18E/F Super Hornet. The end-effector of this robot system, shown

previously in Figure 2-1, has multiple machining tools, hole probe and

resynchronization camera to align the system to a datum target after each

fixture rotation (DeVlieg, 2002). Using this multi-functional end-effector, other

robot systems are developed for the assembly of 737 ailerons and 787

Dreamliner trailing edges (Atkinson et.al., 2007; DeVlieg, 2008). Another

company, Spirit AeroSystems in Kansas, USA, currently uses robots on several

product lines of Boeing, including 787 fuselage, pylon and wing structures; 737

fuselage and thrust reverser components (Calder, 2011). Lately, Bombardier

has also adopted six industrial robots in the assembly of C-series aircrafts’

fuselage sections at their Saint-Lauren Manufacturing Center in Montreal. The

robots are able to extend to a full height of 5.72m by using vertical lifts to reach

the top and bottom of the aircraft (Figure 3-2c). Each robot can drill then

51

precisely rivet or hammer a fastener in 32 seconds and with the accuracy of one

hundredth of an inch (0.254mm), enhanced by laser trackers (Arnone, 2011).

VRSI, an automation solution supplier based in the US, has successfully

applied robots for drilling inlet ducts in the F-35 Lightning II center fuselage at

Northrop Grumman. The system employs DELMIA OLP software for process

simulation, a Fanuc series 2000/125 robot for the drilling operations and a

vision system for verifying the quality of each drilled hole. Previously, they used

photogrammetric and hybrid systems for correcting the tool positions but they

found only a laser tracker, provided by FARO, could maintain a high accuracy of

0.01 inch over a large volume (Costlow, 2009; Grasson, 2011).

There also exist several academic researches toward the use of robotics in

airframe assembly. At the Robotics Research Group at the University of

Nottingham, UK, a number of robotic applications on actual aerospace parts

were carried out in order to evaluate the capabilities of metrology integrated

robot systems for the assembly tasks. For example, Eastwood et.al. (2003) and

Webb et.al. (2004) investigated the accuracy of the TI2 system in drilling and

milling of aerospace panel, rib and spar structures of the Bombardier Lear 45

business jet and Airbus A320. It was concluded that while the Tricept robot had

sufficient repeatability and stiffness to perform machining, the obtained results

relied on how accurately the transformations between the robot and the parts

were determined, in these cases, by the photogrammetric cameras of the TI2

system. Later on, a flexible robotic cell was developed (Webb et.al., 2005). The

cell was based around three robots working simultaneously: a Comau S2 for

loading stringers to the skin panel, a Comau Smart H4 for drilling,

countersinking and installing solid rivets onto the panel and the Tricept robot

opposite to the H4 for creating the reaction force (Figure 3-3a). The S2 robot

carried seam tracking sensors capable of detecting and measuring edge and

pre-drilled holes on the stringer and on the panel, from which coordinate frames

were constructed (Figure 3-3b). These frames served as the targets for the

robot to pick up the stringer then attach the stringer to the panel. Since both the

parts may contain distortions and misalignments, the frames were not built

directly on the measured features but rather on the best-fit geometries of these

52

features and hence, deviations of the part were partly compensated. With this

so-called adaptive assembly methodology, the robot was capable to do the

assembly within the tolerance of 0.8mm, an encouraging result considering

that accuracy of the sensors used were worse than 0.3mm (Jayaweera et.al.,

2007). A cell control application was developed to control and coordinate the

robots, sensors, end-effectors and Matlab software used during the best-fit

construction (Figure 3-3c). It is a typical example of a centralized control unit

with all the control and processing functions of relevant devices and processes

concentrated on one computer.

Figure 3-3 The flexible robotic cell developed by the University of

Nottingham. From left to right: a. The Smart H4 and Tricept robots for

drilling and fastening; b. The S2 robot for stringer loading; c. The cell

control application.

To the author’s opinion, one of the most outstanding academic researches in

the area probably is the work presented in Henrik Kihlman’s PhD thesis

“Affordable Automation for Airframe Assembly” at Linköping University, Sweden

(Kihlman, 2005). The affordable automation solution developed by the author

covers five major areas: robotics, drilling, tooling, metrology and operation

planning. In this work, an ABB IRB 4400 robot is equipped with a 6D TMAC

reflector (section 2.3.1.1), allowing for the robot to be tracked by a Leica

LTD800 laser tracker. The robot, with aid of the metrology system, is used to

configure the location and orientation of other passive tripods and hexapods

acting as flexible tooling actuators to give the part its specific localization. This

is one of the main concepts of a proposed Affordable Reconfigurable Tooling

(ART) framework, which is also based on steel bars bolted together by modular

53

box joints, rather than welded, to create its surrounding structure. Having

reconfigurable components, this novel fixture can be rebuilt easily on demand

when it has to be redeployed for different products (Figure 3-4).

Figure 3-4 Overview of the ART concept. From left to right: a. The robot

configures a flexible tooling; b. A system of tooling is used for holding an

aircraft part in-position during assembly (Kihlman, 2005)

Later on, the robot is used as a drilling machine of which the tool tip is guided

by the laser tracker to programmed locations. Calibrations were carried out to

determine transformations between different coordinate frames: from the laser

tracker base to the robot base, from the TMAC to the TCP and from the TCP to

tool tip. Orbital drilling, a circular milling-like drilling technique, is employed in

order to minimize the axial thrust force which tends to cause dynamic errors to

the robot (section 2.2.5). The whole assembly cell is modelled and the operation

processes are planned in DELMIA. In this OLP software, positions of the end-

effector with different operations (configuring the tooling or drilling) and different

required accuracy, either with or without metrology correction, are assigned with

different name tags. The generated offline program, in the form of a readable

text file, is then input to a control application which replaces these name tags

with control commands of the robot, laser tracker and drill to be sent to their

controllers for execution. This application is also a form of a centralized control

unit (Figure 3-5).

54

Figure 3-5 Control application of the robotic cell developed by Linköping

University. From left to right: a. Functional diagram; b. Graphical interface

(Kihlman, 2005).

3.2 Error compensation techniques

As previously presented in section 2.2.5, accuracy of a robotic assembly system

depends on those of the robot and the part. An overview of error compensation

techniques for improving system accuracy has already been introduced in

section 2.3.3.2. This section will cover existing techniques in the literature.

3.2.1 Part localization

The general idea of this type of correction is that the robot uses a sensor to

measure some features on the part to determine the User frame. This replaces

the nominal one pre-defined in the robot program, allowing the robot to

compensate for positional error of the part due to misalignment or distortion.

This static correction approach has been adopted in the works of (Da Costa,

1996; Jayweera et.al., 2007) presented in part 3.1 above. Another example of

this method is the work of (Bone et.al., 2003). The robot of this “fixtureless

robotic assembly” cell carries a CCD camera used for capturing an image of the

part before the assembly takes place (Figure 3-6a). The image is processed by

a commercial software package which detects the edge contours of the part.

The orientation components of the User frame were calculated from these edge

contours (Figure 3-6b) while the position components were determined by

another range sensor (not shown in the figure). Using this vision-guided

method, assembly accuracy of 2mm was achieved.

55

Figure 3-6 A fixtureless robotic assembly cell. From left to right: a. The

robot end-effector with CCD camera; b. Detected features (Bone et.al.,

2003)

3.2.2 Robot positioning accuracy

Robot accuracy can be improved by model-based or sensor-based error

compensation (section 2.3.3.2). Model-based error compensation employs error

models to compensate for sources of inaccuracy in the robot structure. These

error compensation models are developed either based on error mapping

techniques, such as polynomial, bilinear, cubic spline or fuzzy interpolations

(Eastwood, et.al., 2010; Bai et.al., 2004; Bai et.al., 2005) or by systematic

modelling and identification of error sources in the robot structure, which is well

known as the robot calibration technique.

3.2.2.1 Robot calibration

As briefly introduced in section 2.2.5, a robot calibration procedure involves

three steps: (1) modelling: developing a model relating geometric and non-

geometric errors in kinematic parameters to be identified with tool pose errors,

(2) measurement: measuring the tool pose errors with an external sensor and

(3) identification: solving the developed model for the errors in kinematic

parameters. The choice of the error model which contains all identifiable

parameters is the most important step in the process. With regards to the

geometric errors, various error models were already introduced. Several models

56

were derived from the well known Denavit - Hartenberg (DH) convention while

the others were specially developed for the purpose of calibration (see e.g.

(Mooring and Tang, 1984; Hayati et.al., 1985; Hsu et.al., 1985; Veitschegger

et.al., 1987; Driels et.al., 1987; Stone et.al., 1987; Zhuang, 1993)).

Nevertheless, the four parameter DH model with Hayati’s modification for

handling the cases of successive parallel joint axes (Hayati et.al., 1985) has

been widely accepted and become the most popular convention in calibration of

geometric errors owing to its ‘user-friendly’ form. Schröer et.al. (1997) further

proposed that this combined model is only a subset of their DH-based

“complete, minimal and continuous” kinematic models. The contribution of their

research is a systematic rule for setting up DH/Hayati frames for different types

and configurations of joints in open-loop robot structures, e.g., the elbow type

manipulators. Once followed, the work of geometric error modelling of these

manipulators becomes formulaic. It has been shown that the major sources of

errors in a robot structure are joint offsets and misalignment of joint axes

(Mooring et.al. 1989; Judd et.al., 1990; Bernhardt et.al., 1993). By

compensating for these errors, robot accuracy can be improved up to 1mm,

depending on the sizes of the robots and the accuracy of measuring systems

used.

For further error reduction, below 1mm, it is necessary to take into account

other non-geometric effects, i.e. elastic deformations of joints and links induced

by link weight (Judd et.al., 1990; Schröer et.al., 1997; Drouet et.al., 2005; Gong

et.al., 2000), thermal errors (Gong et.al., 2000), nonlinearity and backlash in

gear and drive train (Schröer et.al., 1997), gear run-out (eccentricity), gear

orientation errors (Renders et.al., 1991) etc. A comprehensive survey of

developed models for these types of errors can be found in the review of (Karan

et.al., 1994). In contrast to geometric error modelling which has been somewhat

standardized, non-geometric error modelling unfortunately varies from one

researcher’s point of view to another. The reasons are these errors are not

ever-present in all manipulators and hard to model precisely, especially the

backlash (Karan et.al., 1994). Only a few agreements were made, such as link

flexibility usually is less than joint flexibility: less than 20% of total flexibility,

57

thermal effects might cause more errors to the measuring system than the robot

structure (Renders et.al., 1991; DeVlieg, 2010). It is therefore necessary to

solve for non-geometric errors on case by case basis. With both geometric and

non-geometric errors, the best calibration result for long reach (over 2.5m) and

heavy duty robots reported in the literature is in the order of 0.5mm (Schröer

et.al., 1997). CalibWare, an optional calibration package to purchase with ABB

robots, also offers similar results, with the average accuracy of 0.52mm and

maximum of 1.2mm (ABB, 2010).

3.2.2.2 Sensor-based correction

In this technique, the robot is guided by a global sensor to its target locations. In

Kihlman’s thesis, absolute accuracy of the ABB’s IRB 4400 robot is corrected by

iteratively moving the robot and evaluating the errors between its programmed

and actual 6D locations measured by the Leica’s LTD800 laser tracker (Figure

3-7). The process is terminated, typically after 6-10 seconds, when the errors

are below 0.05mm in translation and 0.0005rad (0.03) in orientation. It was

pointed out that to meet such small threshold, smaller than the repeatability of

the robot used (0.07-0.1mm), the robot’s resolution in translation (5m) plays

the main role. This static correction method achieved an accuracy of 0.1mm

throughout the entire working range (Kihlman, 2005).

The so-called Adaptive Robot Control of Nikon Metrology is another similar

technique in which photogrammetric K-series Optical CMMs are used instead of

laser trackers. The method is quoted by the company as a “real-time continuous

corrective adaptation” for high precision robotic drilling, milling and mould and

die applications (Nikon Metrology, 2011). However, in a private conversation

with the author within the Large Volume Metrology conference in 2011, R.

Holden, director of the company’s centre for Metrology Integrated Robotics,

revealed that the technique by far has still been a “move then measure” method

and thus, mostly suitable for quasi-static (e.g., drilling) applications. For milling,

it is necessary to define along the path several intermediate points at which the

correction will take place (Holden, 2010). Currently, researchers at the centre

58

are striving to make the technique a true dynamic correction within the EC

project COMET (Plug-and-produce COmponents and METhods for adaptive

control of industrial robots enabling cost effective, high precision manufacturing

in factories of the future) (COMET Project, 2012).

Figure 3-7 Sensor-based correction is for gradually reducing the 6D error

vector V between the programmed B and measured L (Kihlman, 2005)

Dynamic positioning correction obviously is more desirable in terms of time

efficiency but presents a lot of challenges in practice. To the author’s

knowledge, they include:

- Measurement uncertainty. For example, a laser tracker’s single

measurement taken in one second actually is the average of 3000

samples processed internally to cancel out the effects of noises and

thermal drift (Leica, 2008). High measuring rate in dynamic correction,

therefore, will result in higher uncertainty, which includes that of the

optical system and oscillation of the robot when moving. In the author’s

experience when using a Leica AT901 laser tracker, discrepancies

between the measurements of a static target taken in short periods

(<10ms) and longer periods (>1s) are not always better than 0.05mm

whereas oscillation of the robot might degrade the result further.

- High frequency data update between the metrology and control

application to the robot controller. Despite a Leica laser tracker is able to

measure up to 1KHz, it transmits the data over the network in packets of

10 measurements and hence, its practical sampling rate is only 100Hz.

59

In addition, dynamic correction requires direct access to the internal

architecture of a robot controller, which is not always opened to all users

due to proprietary and safety issues (Kihlman, 2005). This problem will

be described further in section 3.3.1.

A successful case study of dynamic correction for robot positional accuracy is

reported in the on-going EC project ARFLEX (Adaptive Robots for Flexible

Manufacturing Systems). In the project, a system of fixed cameras is used for

visual servoing of a robot with an update rate of 100Hz (Figure 3-8). Positioning

accuracy of the robot system is claimed to be 0.1mm (ARFLEX Project, 2012).

Figure 3-8 The visual-servoing demonstrator of the ARFLEX project

(ARFLEX, 2011)

3.2.3 Deflections in drilling

Two existing techniques for minimizing or correction of deflections of the robot

structure induced by dynamic thrust force in drilling are the orbital drilling and

sensor feedback drilling. Orbital drilling is a novel drilling technique, in which the

drive spindle rotates eccentrically in addition to tool rotation and feed

movement, leading to a circular path of the cutting tool. Compared with

conventional drilling, it significantly reduces the thrust force and is possible to

compensate for tool diameter deviations. Orbital drilling is demonstrated in the

ALCAS project and already applied in many Airbus sites. Nevertheless, the

60

technique also faces many challenges, such as tool bending when drilling high

thickness and vibrations (Kihlman, 2005; Deitert, 2011).

Sensor feedback drilling is a conventional drilling technique enhanced by a

dynamic correction of the robot’s deflections in real-time. For example, based

on force feedback from a wrist F/T sensor, a force control algorithm will

calculate a small change in position of the manipulator in order to generate and

maintain the clamp force orthogonal to the part surface while suppressing other

tangential components that cause slipping of the tool tip (Alici, 1999; Ple et.al.,

2011). The resulting position change is added to the reference position of the

inner control loop in the robot controller, as previously depicted in Figure 2-21.

By deploying such a force control scheme, Olsson et.al. (2010) have managed

to reduce the tangential deformations from 1.6mm to below 0.3mm within the

robot workspace. Another approach is utilizing high resolution encoders

mounted at the arm side of joint axes (Figure 3-9). These secondary encoders

are used to measure joint deflections, the majority of deflection in the robot

structure, through which deviation of the tool tip during drilling can be

compensated. DeVlieg (2010) at ElectroImpact stated that with this patent

pending solution and robot calibration, robot systems produced by the company

are able to drill with positional accuracy better than 0.25mm. Particularly, when

the robots are guided by a laser tracker, they are able to achieve the accuracy

of 0.08mm, a remarkable result.

Figure 3-9 Robot axis with secondary encoder for deflection

compensation (DeVlieg, 2010)

61

3.3 System integration

3.3.1 Direct communication and centralized control for dynamic

correction

As introduced in section 2.3.3.2, dynamic correction (e.g., closed-loop position

or force control) must be implemented at low level in such a way that the control

set points are fed into the robot controller within its interpolation cycle, which

typically is 4ms. This usually requires high speed, point-to-point connections

between the sensor, control PC and robot controller as well as open access to

the robot controller’s internal architectures. In most force control applications

(grinding, deburring, polishing and drilling etc.), the connection between the F/T

sensor and the control PC is via PCI bus which is roughly ten times faster than

the Ethernet whereas that between the control PC and the robot controller is

either via a dedicated fieldbus or the PCI bus as well. This approach is realized

from the fact that modern robot controllers, e.g., the S4 and IRC5 of ABB

robots, C4G, C5G of Comau robots and KRC4 of Kuka robots, are just Intel

PCs having several open PCI slots which can be used for additional periphery

(ABB, 2010; KUKA, 2008). Via the PCI bus, these robot controllers allow access

to the shared memory interfaces of their inner control loops, i.e., the trajectory

generation (at 250Hz) or even the servo control (at 1-2kHz) via their APIs.

Examples of such low level APIs are the Fast Research Interface of Kuka for

their LWR (Light Weight Robot) series, the C4GOPEN of Tecnospazio s.p.a for

Comau robots running on C4G controllers and the RCAL (Robot Controller

Abstraction Layer) library of Stäubli for their RX, TX robot series. These

features are exploited in many researches: the control PC and F/T sensor are

connected directly to these of the PCI slots and share the same bus (Figure

3-10); the set points (joint positions/velocities) calculated by the control PC will

overwrite the original values in these shared memory addresses within the 4ms

time frame (Blomdel et.al.,2005; Pires et.al., 2006; Garcia et.al., 2009; Antonelli

et.al., 2010). The capability of accessing the shared memory interface,

however, is not granted to all end-users due to proprietary and safety issues,

explaining why researches on force control are mostly undertaken by Swedish,

62

Italian and German researchers who have close collaborations with their robot

manufacturers. Nevertheless, it is a must when one wants to implement custom

control at low level (Kröger et.al., 2008; Pedrocchi et.al., 2010).

Figure 3-10 Integration between the Force Sensor, the control PC (Force

Computer) and ABB S4C+ robot controller for force-control application via

PCI bus (Blomdell et.al., 2005).

3.3.2 Distributed control

This section firstly introduces well known middleware technologies including the

ones used in distributed manufacturing systems in general as well as those

developed for robotics in particular. Finally, it addresses common attributes of

distributed control frameworks/systems through existing research in the area.

3.3.2.1 Communication middleware

CORBA (Common Object Request Broker Architecture) is a standard open

architecture developed to integrate distributed applications by Object

Management Group (OMG), a non-profit organization participated in by 700

companies and vendors. The core component of CORBA is the ORB (Object

Request Broker), the middleware for integrating applications on heterogeneous

operating systems (OS) and in different programming languages including

C/C++, Java, COBOL and Python. To achieve language independence,

CORBA requires developers to express how clients will make requests to a

service using a standard and neutral language: the OMG Interface Definition

63

Language (IDL), a C++ syntax-like language. After the interface has been

defined in IDL, an IDL compiler generates client stubs and server skeletons

according to the chosen programming language and operating system (OMG,

2011). The ORB will be in charge of the communication between the client and

server applications via their stub and skeleton, as depicted previously in Figure

2.27. For robotics and process automation, the real-time ORB of CORBA (RT-

CORBA) is mostly used. RT-CORBA was implemented under The ACE ORB

(acronym: TAO), an Open Source project founded at Washington University.

TAO supports various OS platforms including Linux, Windows and Solaris

(Schmidt et.al., 2010). A comprehensive overview on the use of CORBA for

control systems is given in (Sanz et.al., 2001).

DCOM (Distributed Component Object Model) is Microsoft’s solution for

distributed, object-oriented applications in client-server architecture. In DCOM,

a server computer contains one or more component objects, each of which may

serve several services. Similar to CORBA, the structure of the component

objects, their interfaces, methods, and parameters is also defined in an IDL file,

which describes the contract between a client and server. To start accessing

methods at interfaces of a server’s component object, the client program firstly

requests the Service Control Manager (SCM), a part of Windows, to create an

instance of the object on the server computer. Once the remote COM object

has been created, all further message exchange will be handled by the RPC

stubs of the object and the client as already known. As a Microsoft proprietary

technology, DCOM only runs on Windows OS and supports C++, C#, Visual

Basic and Java programming languages (Rubin et.al., 1999).

Web Services can be thought as a new RPC architecture introduced to

overcome limitations of CORBA and DCOM. The problem with CORBA and

DCOM is that each vendor uses different standards for data serialization and

transmission protocol and hence, they have compatibility issues (Schmelzer

et.al., 2002; Hochgurtel, 2003). Web Services encapsulates the RPC using the

standardized SOAP (Simple Object Access Protocol) for data serialization. As

opposed to CORBA and DCOM which use binary data format and wire

64

protocols, SOAP uses XML (eXtensible Markup Language), a human readable

document, as the neutral data format and HTTP (Hypertext Transfer Protocol)

as the data transmission protocol between its distributed services. In addition,

the WSDL (Web Services Description Language) used for defining interfaces of

the services is also based on XML. These technologies (XML, HTTP) have

already been well-defined for Internet communication, what makes it easy for

Web Services to gain interoperability among distributed systems over both local

and wide area networks as well as platform and programming language

independence. Web Services, however, are mostly suitable for plant information

management between cell with shop levels and between computers at shop

level with the outside world, in which data usually are highly structured, in large

amount but the data transfer time is not critical (Hu et.al., 2007). At lower levels,

Web Services' message exchange rate using SOAP can be considerably slower

than other binary-based protocols due to the verbose XML format (Amoretti

et.al., 2006).

3.3.2.2 Robotic middleware

A number of middleware platforms have been developed for robotic

applications, mostly by university research groups. They typically include a RPC

as the core component and other value-added components

(modules/libraries/classes) helpful for developing robotic applications.

RDS (Robotics Developer Studio) is the middleware for distributed robotic

applications developed by Microsoft since 2004. RDS runs on Windows OS and

supports .NET programming languages including C++, C# and Visual Basic. It

consists of a number of software modules, including the two most important:

- DSS (Decentralized Software Services protocol): a light weight SOAP-

based RPC platform. Unlike in Web Services, the SOAP in DSS uses

binary serialization and TCP/IP as the transmission protocol in order to

attain a higher communication rate for robotic applications.

- CCR (Concurrency and Coordination Runtime): an event-based

programming model for handling concurrency and inter-task

synchronization commonly encountered in robotics.

65

In addition, RDS also provides additional modules, such as the Visual

Programming Language to create the composite service without the need for

serious coding and Visual Simulation Environment for realistic on-line simulation

of interactions between robots with the surrounding environment (Johns et.al.,

2008).

MiRPA (Middleware for Robotic and Process Automation) is a distributed real-

time middleware developed by the Institute for Robotics and Process Control at

TU Braunschweig, Germany. The greatest advantages of MiRPA are its very

high update rate, 1kHz, and low latencies, around 10μs for local communication

(when software modules reside on the same computer) and less than 100μs in

a distributed system. Owing to its high performance, MiRPA is suitable for high-

rate low-level control of robot manipulators, where a distributed control system

powered by the MiRPA API can replace a centralized controller with point-to-

point connections. It has been used for the integration of a force sensor and

haptic device into a Stäubi’s RX series robot, in which MIRPA is the

communication layer between a control PC with a sensor-based control

algorithm and the CS7 robot controller for exchanging set points within the 4ms

cycle. The main drawback of the MiRPA is its reliance on the QNX, a light

weight real-time operating system (RTOS), to achieve its performance. The

availability of device drivers and engineering tools such as programming

environment and computing software necessary for developing complex

applications on this unpopular OS might be an issue. Indeed, the authors of

MiRPA experienced this problem when there was no driver for the haptic device

used and they had to develop it themselves (Kunbus et.al., 2010).

OROCOS (Open Robot Control Software) is an Open Source C++ software

framework developed by the University of Leuven, Belgium for building

component-based applications in automation and robotics. OROCOS is

composed of three main components: a) Real-time Toolkit which is a RPC

platform based on RT-CORBA running on RTAI, a Linux-based RTOS; b)

Kinematic and Dynamic Library for numerical computation of kinematics and

dynamics of serial robot manipulators and c) Bayesian Filtering Library for

66

sensor fusion (Bruyninckx, 2001). It is stated that integration of the K-series

optical CMM with a Kuka robot controller via OROCOS was successfully

demonstrated at 500Hz update rate. The result of improved robot accuracy

using this metrology system, however, was not given (OROCOS project, 2011).

ORiN (Open Robot/Resource interface for the Network), developed by JARA

(the Japan Robot Association) in collaboration with 13 Japanese robot

manufacturers, is another middleware platform for accessing information in

robots, devices and equipments used in factory automation. In the ORiN

context, robots from different vendors are accessed via their services, namely

the RAO (Robot Access Object). ORiN is based on DCOM but uses SOAP as

message transport protocol over network. ORiN operates on Windows OS and

supports Microsoft Visual C++ and Basic programming languages (Mizukawa

et.al., 2004).

3.3.2.3 Existing distributed control frameworks/systems and their features

A large number of distributed control frameworks/systems have been reported

in the literature. CORBA is the most commonly used middleware for developing

distributed robotic systems, owing to its support for several OS and real-time

capabilities. Song et.al. (2007) developed a test-bed for a robotic train

maintenance system in which the robots perform disassembly of parts,

replacing the worn components and re-assembling the parts back together. RT-

CORBA (TAO) is used as the middleware connecting robot managers

(services), main servers (cell controllers) and other client applications as

depicted in Figure 3-11. In the work, the authors have pointed out several

advantages of the developed distributed system including the interoperability

and flexibility, thanks to the separation of interfaces from implementation. When

robots are added into or removed from the system, the main server only needs

to add or remove the corresponding robot managers without affecting the

system’s high-level conceptual service design and implementations. When the

main server is ported to a new hardware server or different OS, there is no need

to recompile low level robot applications in a new environment. Similar works

and conclusions can be found in (Paolini et.al., 1997; Jia et.al., 2008; Song

67

et.al., 2003), where CORBA was employed as the solution for integration of

multi-vendor robots and sensors having APIs provided in various programming

languages and various operating systems, or for teleoperation of robotic work-

cells (Tu et.al., 2005). Reports on the use of other middleware technologies

(e.g., DCOM, Web Services etc.) for distributed manufacturing systems, though

less popular, are also found in literature. For example, DCOM was used to

develop distributed robotic manufacturing cells (Pires et.al., 2000) and open

architecture robot controllers (Hong et.al., 2001; Short et.al., 2011) whereas

Web Services were used for the interconnection of relevant workstations in a

semiconductor manufacturing plant (Hung et.al., 2010).

Figure 3-11 System layout of a robot system for train maintenance

(Song et.al., 2007)

Through research in the literature, several essential features of modular,

distributed control systems from a software engineering point of view have been

outlined. In the work of (Amoretti et.al., 2006), the authors demonstrated a

system in which a robot serves several client applications and thus, it must

respond to multiple requests from the clients at the same time. Commands for

querying the robot’s status, e.g., its instant position, can be performed in parallel

whereas other commands involving motions must be performed successively.

Therefore, concurrency (multi-tasking) in server operations is needed,

however, a synchronization mechanism among the threads must be used for

the latter case: a client must acquire a software lock from the robot in order to

gain its exclusive control while the others must wait until the lock is released.

68

This is the traditional locking mechanism to resolve simultaneous requests to

the shared resource commonly found in concurrent programming. In addition,

asynchronous communication (non-blocking) between client and server is

also desirable. In contrast to synchronous communication which halts operation

of the client until it receives response from the server, asynchronous

communication allows for the client to perform other tasks while waiting for the

response and resume its execution once the message arrives. Colon et.al.,

(2005) also specified that distributed control systems would support not only

request/response but publish/subscribe communication mechanisms.

Request/response is the typical bidirectional communication used in

client/server architecture: the client firstly invokes a function at the server then

the server, as a result, returns the data back to the client, either synchronously

or asynchronously. On the other hand, the publish/subscribe is a unidirectional

communication: the publisher (e.g., a touch probe) notifies the data to a group

of subscribers (e.g., a robot) either automatically upon an event (e.g., touching

a surface) or on demand when a subscriber asks for updates. As opposed to

the tightly-coupled and one-to-one request/response model, the

publish/subscribe model exhibits a loosely coupled mechanism: the publisher

does not need to be aware of the subscriber presence and it can be used for

one-to-many and many-to-many (peer-to-peer) communications (Lee, 2007). In

CORBA, the aforementioned concurrency, locking mechanism, asynchronous

and publish/subscribe communications are provided by separate modules

Concurrency Control Service and Asynchronous Method Invocation.

Real-time capability, i.e., meeting deadlines for data transmission, is another

desirable feature of distributed control systems and for this reason, the RT-

CORBA (TAO) is usually selected as the middleware used. Interestingly, all the

frameworks/systems cited above, though claimed to be real-time capable, only

demonstrated applications of which the real-time requirements are not critical,

e.g., sensor-based robot control in static mode or robotics in factory automation.

In fact, achieving true real-time determinism is difficult since it demands not only

a RTOS but a real-time transmission protocol and is complicated by the

requirements of high sampling rate and low latency in dynamic correction. Many

69

middleware platforms, including the RT-CORBA, rest upon a Linux-based

RTOS (e.g., RTAI or XENOMAI) to achieve this capability. However, Kröger

et.al. (2008) have pointed out that these monolithic systems cannot guarantee

the worse case latencies due to the problem of priority inversion in inter-node

communications. In addition, CORBA and CORBA-based robotic middleware

such as the OROCOS is built upon TCP/IP, which is rather more suited for

transmission of long messages over long distances than high rate and short

messages either (Pan, 2011). It is suggested that in order to implement

distributed control at low level, middleware built on a microkernel-based OS

(e.g., VxWorks, QNX) and UDP transmission protocol, such as the MiRPA, is a

better choice (Kröger et.al., 2008; Bäuml et.al., 2008). However, whether it is

convenient to develop complex robotic applications based on these middleware

and OS, is still questionable, not to mention that UDP is an unreliable protocol

(no packet loss recovery). Implementing real-time control via middleware is thus

a challenge. That explains why in most low level control applications found in

the literature, resorting to centralized control and point to point robot sensor

integration (section 3.3.1) is still the dominating approach.

In order to achieve dynamic reconfigurability at runtime, distributed control

systems should provide the “Plug and Produce” capability. The phrase Plug

and Produce (PnP) is inspired from the concept of Plug and Play technology in

Windows OS where a device (e.g., a printer, webcam) can be freely connected

to or removed from a computer without requiring manual configuration. A PnP

automation system, therefore, will allow for a machine/component to be brought

into or withdrawn from production instantly without having to redesign

(reprogram) the existing infrastructure, which causes disruption to the

manufacturing process. However, this behaviour is quite difficult to achieve in

practice, since without human knowledge, the system itself would not be able to

know what functionality the new device offers and how to actually process its

data (Pitzek et.al., 2007). Indeed, existing researches toward PnP automation

so far (e.g. (Deter, 2001; Naumann, 2007; Ahn et.al., 2009; Pires et.al., 2009))

are only able to solve the plug-ability of system components, that is, a new

device joining the system is able to be automatically detected and advertises its

70

interface to other devices so that they can potentially use it. This is typically

achieved by adopting a communication platform capable of automatic discovery

of its heterogeneous services, such as the Universal Plug and Play (UPnP

Forum, 2012). Another approach toward this feature is described in the new

International Standard IEC 61499 (Hanisch et.al., 2007; Vyatkin, 2009). The

standard defines a homogeneous architectural design for function blocks having

inputs and outputs which can be interconnected, or “plugged” together, to form

a more complex software component or system (Figure 3-12). Nevertheless,

programming (in a computer programming language) is still required in both

approaches to define the execution semantics as well as to perform data

conversion/transformation between different software components. True PnP

capability, without user intervention, thus still remains an appealing vision. PnP

automation currently is the research theme of several on-going EC-funded

projects, including the SMERobot and POPJIM - Plug and Produce Joint

Interface Modules (SMERobot Project, 2012; POPJIM Project, 2012).

Figure 3-12 Brief description on the IEC 61499 standard. From left to right:

a. A function block with standardized external interface; b. A distributed

control application built on these functional blocks (Hanisch et.al., 2007)

3.4 Discussions

The literature review described in this chapter has shown that there is great

potential for a wider utilization of industrial robots in airframe assembly,

especially when they are combined with metrology. Many of the existing robot

systems augmented with guidance from an external sensor and localized

71

correction have been proved to meet the high dimensional accuracy

requirements. However, their control systems usually exhibit a centralised

architecture with strongly-coupled hardware/software which limits their use to a

dedicated operation or product once delivered to the floor. Since aerospace

manufacturing has low production rate but diversity of subassembly

components, it is desirable to improve the flexibility of these robot systems such

that they can be redeployed rapidly for different operations and product

variants.

In order to achieve flexibility, the control architectures of these robot systems

must be organized in modular, distributed manner. In such a system,

manufacturing resources (robots, actuators, sensors, 3rd party software etc.) are

controlled by separated software components, namely services, which can

reside on different computers and are linked together by a middleware platform.

Since the services are loosely-coupled via their interfaces, modification made to

one component would not cause cascading changes to the whole system.

To provide the system with a further degree of flexibility, that is, dynamic

reconfigurability at runtime, PnP integration should be supported. Ideally, it

would allow the system to be reconfigured (e.g., components to be added

to/withdrawn from the existing infrastructure) for different manufacturing

processes without user intervention. However, it has been pointed out in section

3.3.2.3 that software modification is still required to define control activities

between the components even though they have been made pluggable to each

other. System programming still requires expert knowledge and hence, might

cause significant delay to manufacturing activities. Improvements should be

made so that reprogramming in such cases is easier and quicker.

Also outlined in section 3.3.2.3, a distributed robot control system should

support both concurrency and synchronization in processing, asynchronous

communication in request/response and publish/subscribe manners. On top of

that, it must be able to facilitate several error correction and verification stages

required in airframe assembly processes (i.e., measurement, part localisation,

robot positioning and force control during drilling). Among them, it appears that

72

distributed control systems, due to limitations in current middleware technology,

are not well suited for force control which requires high speed and low latency

communication. For the components supposedly used in low level control and

requiring strict real-time characteristics, resorting to direct communication is still

necessary, rather than via a middleware platform. The other components, on

the other hand, could be controlled by separate and pluggable services, making

the system reconfigurable.

In addition to inflexibility, another disadvantage of current metrology-integrated

robot systems in airframe assembly is cost ineffectiveness since one expensive

piece of large volume metrology (e.g., a laser tracker) is used only for one

inexpensive robot, which usually costs several times less. This is primarily due

to the way the sensor is strongly-coupled in the robot control application and the

feature of the laser tracker which tends to follow one target. Since airframe

assembly mostly involves drilling or handling operations which require only

static accuracy, the laser tracker can possibly serve more than one robot to

reduce the cost of investment. This approach is feasible by exploiting the

advantage of the ADM (section 2.3.1.1) to unlock the laser beam selectively

from one robot and point to another.

The work presented in this thesis attempts to fill the gaps discussed above. To

improve the flexibility of robots systems used in airframe assembly, an

application framework for developing distributed, service-based control systems

in a PnP manner is introduced (Figure 3-13). Reprogramming is still needed

when the control system is reconfigured for a new manufacturing process to

define the execution semantics between services but it will be done in robot

programming languages by technicians on the floor, who only need to write

robot programs, instead of computer programs, to develop new applications.

Complex and time-consuming system programming is not required.

73

Figure 3-13 Concept of the proposed framework for PnP integration

To reduce the cost of investment for a global metrology source (e.g., a laser

tracker), this thesis proposes a two-stage (model-based and sensor-based)

error compensation scheme that promotes the use of one laser tracker for

several robots. The main purposes of utilizing an error compensation model for

each robot in the first stage as subordinate to the laser tracker are twofold:

- To narrow down the error bandwidth of the robot thus reducing the time

needed for sensor guided correction.

- To provide the laser tracker the position of the reflector mounted on a

robot so that it can point the laser beam toward (Figure 3-14). This

information is also helpful to reconnect the laser beam in case it is

accidently interrupted due to the presence of fixtures and other

supporting structures in the workspace, thus making the laser tracker

less prone to its line-of-sight problem.

The proposed framework will be adopted to develop a distributed control system

that automates the calibration and the aforementioned hybrid error

compensation processes. Whenever a robot is reconfigured with a new end-

effector or when it is relocated in the work-cell, the user only needs to run a

robot program that performs the calibration and builds up the error

compensation model automatically. Thereafter, the robots are able to improve

the positioning accuracy with their own models and share the laser tracker to

guide their tools into work. There is no need for a central cell controller that

coordinates the exclusive use of the shared metrology system. Multiple robots

will be able to send their requests for positional correction to the metrology

Robot Tool Sensor Software Robot
New

device

Service

The framework

74

system simultaneously. The metrology system will collate these requests and

through its task queue, perform the measurements in sequence.

Figure 3-14 The purpose of model-based error compensation is improving

robot accuracy and allowing one laser tracker to serve multiple robots

75

4 METHODOLOGY

This chapter presents the reader with the methodology used to achieve the

objectives of this thesis. To address the first objective, an application framework

for the integration of manufacturing resources (robots, sensors, end-effectors

etc.) in the work-cell in a PnP manner is introduced. For the second objective, it

is proposed that each robot should be calibrated beforehand to reduce its error

band to an acceptable level, allowing for one global metrology source to be

used for several robots. Typically, calibration is performed before the robots are

put into production. This thesis, however, will demonstrate the use of the

framework to automate the calibration and error compensation processes in-line

with production activities. The following sections will describe the research

approaches used. Section 4.1 firstly outlines features of the framework then

describes the techniques to retain these features. Section 4.2 presents the

robot calibration technique for elbow type manipulators, the challenges and the

author’s solution for modelling errors in the parallelogram linkage type

manipulators. Further details on the developed framework, error modelling and

compensation will be presented in Chapters 5 and 6. Figure 4-1 summarizes

the work performed in this thesis.

4.1 The application framework for flexible system integration in

robotics

4.1.1 Features of the framework

It is proposed that the framework would support the following capabilities which

have been outlined in the literature review:

a. PnP integration: the framework permits removal of existing components /

addition of new components without the need for shutting down the system

and manual configuration. This characteristic encompasses the

interoperability between the components, the modifiability and extensibility of

the framework. It includes the “pluggable” ability, meaning that new

components can be detected and hot-wired with others at run-time and the

76

“playable” ability, meaning that the functionalities of these components can

be exploited without requiring software programming by system integrators.

b. Reusability: the framework provides a design template to develop the

services for future components.

Other features from a software engineering standpoint are also provided:

c. Concurrent (multi-tasking) processing: processes within a service are

distributed in independent threads to boost the performance whenever it is

applicable.

d. Lock-free synchronization: services of shared resources (e.g., the laser

tracker) use message queues, instead of the error-prone locking

mechanism, to synchronize the tasks sent to it.

e. Asynchronous and publish/subscribe communications: services in the

framework communicate with each other in non-blocking, publish/subscribe

manners.

Figure 4-1 Overview of the framework and its applications for robot

calibration and error compensation

Initial

Robot 1
service

Computing
service

Metrology
service

Robot n
service

After model-based
error compensation

After sensor-guided
error correction

Error compensation

Error correction Error correction

After model-based
error compensation

After sensor-guided
error correction

Error compensation

…

Framework for reconfigurable system integration

Calibration models
Error compensation
models

77

4.1.2 Selecting the middleware

In this work, RDS from Microsoft has been chosen as the middleware for the

framework due to the following advantages:

- RDS supports concurrent programming. Except for CORBA which also

provides its own concurrency handlers, other communication middleware

requires the programmer to rely on the OS kernel-supported methods for

handling multi-tasking. Development and particularly debugging of

software systems with many parallel processes using these methods

(e.g., locks, semaphores) has historically been very difficult, especially

for inter-process communication and synchronization. With CCR’s novel

concepts, such as Port (message queue), Receiver (message handler)

and Arbiter (coordinator applied on the received message at a Port,

allowing for different Receivers to be selected), complex concurrency

problems can be solved in simple and robust codes (Figure 4-2).

- RDS supports communication in asynchronous and publish/subscribe

manners which are necessary to implement loosely-coupled interfaces of

services. It is worth noting that not all communication and robotic

middleware provide such mechanisms, e.g., the DCOM and its variants

(Namoshe et.al., 2008; Mohamed et.al., 2008).

- The availability of device drivers, familiar programming environments and

supporting software on Windows OS. Indeed, when the Leica laser

tracker AT901-MR was brought to the lab facility in early 2009, its SDK

was provided only for the Windows platform. Having a friendly

programming and run-time environment is also an important factor, given

that the framework might be extended by other programmers and used

by technicians on the floor. In the author’s experience, it was much

easier to absorb RDS concepts rather than those of DCOM or CORBA,

which are intended to use for business integration. In this work, services

are created using different programming environments (C#, C++, Matlab)

and yet they are able to communicate with each other.

78

- RDS is freely provided for non-commercial use and frequently upgraded.

Microsoft also holds a forum where programmers exchange their

expertise with RDS’s developers (MRDS Forums, 2012).

Figure 4-2 RDS service structure and concurrent message handling

(Jackson, 2007)

As presented in section 3.3.2.3, there is always a trade-off between flexibility

and real-time capability in every middleware platform and apparently, none is

able to afford both the requirements. RDS is not an exception: it is not an ideal

platform for implementing real-time systems with high rate and low latency

communication. The RDS operates on top of the Windows.NET framework

having too complicated memory management to guarantee real-time

determinism. Therefore, to implement low level sensor guided robot motion

control, it is suggested to keep the real-time code running in an unmanaged

environment and then write an RDS service that interacts with the real-time

code and the rest of the robot system (Jackson, 2007). In addition to the

software part, point-to-point communication between the hardware parts (e.g.,

the robot and sensor) might also be needed, instead of via the RDS, to meet the

demands for high data exchange rate in such situations. The author, however,

does not rule out the possibility of using RDS for low level control. Experimental

evaluation presented in part 5.3 will validate the communication rate of RDS for

dynamic correction. RDS service structure and how it handles concurrency will

be described in further details in part 5.1 of Chapter 5 and Appendix E.

79

4.1.3 Approach to PnP integration

Though exhibiting some degree of flexibility, the conventional distributed control

architecture shown earlier in Figure 2-28 of Chapter 2 does not support PnP.

Replacing an existing or adding a new basic service (BS) does require

modification of the composite service (CS) because:

a. The new BS interface is unknown to the CS. This problem is due to the

diversity of naming conventions, data types and message exchange patterns

provided by heterogeneous basic services. The programmer must create an

instance (stub) of the new BS in the CS in order that its input and output are

transparent to the CS. This process must take place at development time.

b. The Control Logic is hard-coded in the CS and thus, must be modified to

make use of the new BS’s functionality.

Solutions to the problems will be presented in the following sections.

4.1.3.1 The “pluggable” Generic Device abstract service

In this work, the solution to the problem (a) stated above is providing services

with a unique architectural design similar to what has been conceptually drawn

in the IEC 61499 standard (section 3.3.2.3). Assuming that all components are

derived from a virtual “generic device”, their services thereby can be sub-

classed from a common abstract service, namely the Generic Device service.

When services are sub-classed from an abstract service, they inherit the

interface of the abstract service (see section 5.1.1.4 for further details). As a

result, any service in the framework will share the same interface of the Generic

Device service, namely the Generic Interface, for receiving inbound messages

from other services. It also has a dynamic array of the Generic Device service

instances for sending outbound messages to any other services (Figure 4-3).

Since all services appear to be identical from their viewpoints, connecting a new

service to another service or detaching an existing one out of it only requires

shrinking or growing the array by one instance, something that can be handled

by the service itself automatically without the need for reprogramming.

80

Figure 4-3 Any service in the framework has both female adapter (the

Generic Interface) and male adapters (a dynamic array of server stubs)

allowing arbitrary incoming and outgoing connections with other services

With the given structure of a service, it is possible to construct the connection

topology for a robot system as depicted in Figure 4-4. In the figure, the robot

service connects with the tool, sensor and computing services; the sensor

service might also connect with the computing service that processes its

measurements, e.g., image processing, before returning the results to the robot

service. There is no need to create a CS that glues the services together; each

service in the framework is a CS itself whose connections with others can be

established and destroyed at runtime. Notice that a robot service might include

not only the robot API but those of the sensors that connect directly and

communicate with it on a real-time basis for dynamic correction. Unlike other

resources integrated via the framework, these modules are not detachable from

the robot service and are controlled by the real-time code as presented earlier.

The Generic Interface consists of a number of functions that facilitate the

exchange of messages between the services. In order that a service connects

with another one on the network, it invokes a function named

Subscribe(address) provided the IP address of the remote service. For

example, the robot service in Figure 4-4 must subscribe to the tool, sensor and

computing service by calling this command. Thereafter, the robot service is able

to send requests to them and receive their status and data feedback in

publish/subscribe manner. To send a request, the robot service invokes a

function named CreateProcess(process) to initialize a process at the remote

service. The parameter process passed to the function is a data structure

containing the command to be executed along with its optional parameters and

input data, if required. The idea is depicted in Figure 4-5, in which the robot

81

service uses the CreateProcess function to activate the commands SnapShot of

the camera service and Drill of the tool service. After the camera and tool’s

controllers have executed these commands, their services will return the

feedback including the command results and data, if any, to the robot service

via ProcessUpdate(process) event notifications. The ProcessUpdate notification

might be sent once or several times, depending on the type of the executed

command. An example of the latter case is when the camera takes a movie

which results in a time series of images. It is also worth noting from Figure 4-5

that the CreateProcess and ProcessUpdate messages are able to envelope

different types and sizes of data between the services. Obviously, the recipient

services must also have functions for handling these messages in proper ways.

Service structure and message handlers will be explained in detail in part 5.2 of

Chapter 5.

Figure 4-4 Connection topology of services in the framework

4.1.3.2 The “playable” robots

Conventionally, the robot service must interpret the dispatched offline program

line by line into equivalent robot APIs motion commands. It must also replace

associated name tags in the program with relevant CreateProcess function calls

to the sensor and tool services. In this way, the Control Logic is hard-coded in

the robot service. As a result, the robot service must be reprogrammed if a new

82

device is used, even when the service of this device has already been made

pluggable.

Figure 4-5 The robot service can invoke different commands on other

services via one standard CreateProcess operation.

In this work, a simple solution to the problem above was found by realizing that

robots are reprogrammable devices. Indeed, all industrial robots are equipped

with high-level programming languages (e.g., Comau robots use PDL, ABB

robots use RAPID, Kuka robots use KRL languages etc.). These programming

languages are provided with a variety of condition handlers and mathematical

functions enough for handling complicated control flow and data processing.

Therefore, instead of being treated like dumb devices: the robots receive and

execute control commands sent from their computer programs (services) in the

slave/master relationship, their roles are reversed: the robots execute the

provided offline programs and send instructions to their services to control the

peripherals. The robots can also delegate complex tasks, e.g., image

processing, regression analysis to the computing service and retrieve the final

results. The main advantage of this reversal approach is that the Control Logic

resides in an editable robot program instead of being hard-coded in computer

program, thus can be easily modified. The following example will demonstrate

how the robot generates the activities given in Figure 4-5 in Comau robots’

PDL, a PASCAL-like language.

Control

Generic Interface

Stubs …Stubs StubsCamera API

Control

Generic Interface

Stubs …Stubs Stubs
Tool API

Control

Generic Interface

Stubs …Stubs StubsRobot API

83

The process takes place as follows:

 In the main PDL program, the robot moves to two points. At one point, it

activates the camera by calling the routine SNAPSHOT which sends the

string “ACTIVATE CAMERA #SnapShot##500”, at the other point, it

activates the tool by calling the routine DRILL which sends the string

“ACTIVATE TOOL #Drill#Air#550,1100” to the robot service. After sending

each string, the robot halts its execution and waits until the variable

ext_cmd_finished is set to true.

 When receiving these strings, the robot service interprets them to the

CreateProcess function calls to remotely activate the commands SnapShot

at the CAMERA service and Drill at the TOOL service. After receiving the

PROGRAM EXAMPLE

…

-- Subroutines

ROUTINE SNAPSHOT (exposure_time: integer): boolean

BEGIN

ext_cmd_finished:=false

ext_cmd_result:= false

WRITE pc_client ('ACTIVATE CAMERA #SnapShot##', exposure_time)

 WAIT FOR ext_cmd_finished

RETURN ext_cmd_result

END SNAPSHOT

ROUTINE DRILL (air: boolean, feed: integer, speed: integer): boolean

VAR air_on:string[3]

BEGIN

ext_cmd_finished:=false

ext_cmd_result:= false

IF air=true THEN air_on:= 'Air'

ELSE air_on:= ''

ENDIF

WRITE pc_client ('ACTIVATE TOOL #Drill#',air_on,'#', feed, ',',speed)

WAIT FOR ext_cmd_finished

RETURN ext_cmd_result

END DRILL

-- Main Program

BEGIN

…

MOVE TO pnt0001

 IF SNAPSHOT(500)=FALSE THEN

DEACTIVATE

 ENDIF

 MOVE TO pnt0002

 IF DRILL(TRUE,550,1100)= FALSE THEN

DEACTIVATE

 ENDIF

END EXAMPLE

84

ProcessUpdate notifications from these two services, the robot service

returns the results in the variable ext_cmd_result then sets the variable

ext_cmd_finished of the PDL robot program to true, which resumes the robot

execution. Based on the retuned value of the variable ext_cmd_result, the

robot can perform proper actions (in the example, it simply deactivates itself

from running if there are errors in the sensor and tool services). Handling

data returned by the sensor would be done in a similar manner where the

feedback data are converted into data types supported by PDL language

and processed by the robot program (not shown in the code snippet above).

For low-level dynamic correction (e.g., force control), the robot program might

send a different string and relinquish its control to the robot service. The robot

service then executes its real-time code written using the robot and sensor APIs

for dynamic correction (e.g., force control). When the correction has finished,

the control will be returned to the robot program.

This approach differs from the conventional PC-based control as follows:

 The Control Logic resides in editable, text-based robot programs. Therefore,

a new device introduced to the system only requires writing new routines in

a robot programming language while all computer programs remain

unchanged. This is a relatively simple job compared with reprogramming the

services in C/C++, and hence, can be done by technicians on the floor,

without concerns about network, threads, synchronizations and the like.

Since the technicians can develop new applications by themselves without

the need for a specialist from outsourced companies, production downtime

and costs are reduced.

 There is no need to translate the robot program into robot API motion

commands. When generating the robot program in some OLP software, the

technicians also assign specific name tags that correspond to the operations

of the robot. After these name tags are replaced by the corresponding

routine calls (e.g., SNAPSHOT, DRILL) using a text editor, the robot

program can be downloaded directly to the robot controller for execution

without the need for any further translation.

85

 Less error prone. In the code snippet above, after the robot sends out a

string command, it waits until the handshake variable ext_cmd_finished is

set by the service when the communications with the peripheral devices

have completed. Any errors induced by noise or device malfunction that

corrupt services’ activities will only halt the robot execution at this point

rather than causing fatal failures. In addition, since the robot program is

executed by the robot controller instead of the PC, the technicians are able

to test the program using the teach pendant on the floor, thus reducing the

likeliness of failures.

4.1.4 Approach to lock-free task synchronization

Figure 4-6 Task synchronization. From left to right: a. Deadlock situation

when using traditional locks; b. To avoid, services in the framework use

internal task queues

As presented in section 3.3.2.3, a locking mechanism is usually employed to

resolve mutually exclusive access to shared resources (e.g., global metrology,

conveyor). This mechanism, however, may cause the so-called deadlock

situation in which each robot holds a lock and waits for the other to be released

and thus, all end up waiting forever. In the framework, the necessity of locks is

eliminated. Each service in the framework utilizes a First-In-First-Out (FIFO)

task queue built upon the CCR’s Port structure for sequencing the tasks (Figure

4-6). It also has a scheduling algorithm that will rearrange the tasks in the

queue so that they will be processed in the right order. The scheduling

mechanism will be described in section 5.2.3.5.

Robot 2

Resource A

Resource B
Robot 1

Robot 1

lock(resource A)

{
wait for (resource B)
{

}
}

Robot 2

lock(resource B)

{
wait for (resource A)
{

}
}

Deadlock !!!

Resource A

Robot 1

Robot 2

task 1task ntask n+1

out for processing

…

Resource B

task 1task ntask n+1 …

86

4.2 Robot calibration and error compensation

Robot calibration technique, which has been well-established for open-loop

serial manipulators (e.g., the elbow type robots), will be introduced in section

4.2.1. Section 4.2.2 presents the author’s novel approach to resolve remaining

challenges in the calibration of serial manipulators having a parallelogram

linkage.

4.2.1 Kinematic calibration for open-loop serial manipulators

4.2.1.1 Error modelling

As briefly introduced in section 3.2.2.1, the most important step in a robot

calibration process is error modelling: deriving a mathematical formulation

mapping the unknown error sources in the robot structure with the measurable

tool pose errors. Error modelling usually starts from the kinematic model of the

robot then perturbs the nominal kinematic parameters with the unknown error

sources, which will result in the tool pose errors.

Suppose an open-chain manipulator has n+1 links numbered from 0 to n serially

connected together via n actuated joints, numbered from 1 to n. Denote

),,,,,(
zyxzyx

pppx

the (6 1) - vector of positions and orientations of the

end-effector (the TCP frame) in the base frame. It is possible to write the

forward kinematic model of the robot given in the Appendix A in the form:

),(gqfx (4.1)

where the function f is derived from equations (A.1) and (A.2);),...,,(
21 n

qqqq

is (n1) - vector of command joint variables;

),,,(adg is (4n1) - vector

of nominal DH parameters of the manipulator, in which i, di, ai, i respectively

are joint angles, link offsets, link lengths and twist angles associated with link i.

Note that in calibration, the units are represented in metres and radians.

87

Considering geometric error parameters: if g is perturbed with the error

),,,(adg to be identified, x will deviate from its value an amount

),,,,,(
zyxzyx

pppx as:

),(ggqfxx (4.2)

Assuming g is small, the linear approximation of x can be obtained as:

ggHx)((4.3)

where:

HHHH
f

a

f

d

ff

g

f
gH

ad

)(

(4.4)

is a)46(n - matrix relating x

with g and is called the identification Jacobian

matrix. Each column of)(gH represents the sensitivity of the tool pose error

x with regards to a particular parameter in g , for example, 2H is the

Jacobian of parameter 2
 of link 2 and so forth. In practice,)(gH is usually

derived through the so-called differential homogeneous transformations (Paul,

1981), rather than differentiating equation (4.2) directly to avoid complication.

Detailed derivation of)(gH using this method is given in Appendix B.

The system of six equations (4.3) represents the desirable mathematical

formulation (error model) between the unknown error parameters g and the

measurable tool pose error x :

xxx
M
 (4.5)

where xM is the measured tool pose by an external sensor.

4.2.1.2 Identification

The actual number of equations k)6(k in equation (4.3) that can be used to

identify g depends on how many components of xM (and thus x) are

observed by the sensor in equation (4.5). For example, if the sensor only

measures position components of the end-effector then each measurement

provides k=3 equations and if it measures both positions and orientations of the

88

end-effector, k=6. Since k<<r: the number of identifiable geometric error

parameters in g (nr 4), equation (4.3) is underdetermined, thus a large

number of measurements of x are required to solve it in least square sense:

ggHx)(
11

ggHx

mm
)(

(4.6)

where m is the number of measurements taken with different robot

configurations (i.e., with different sets of q) such that rmk .

The system of mk equations (4.6) can be stacked into matrix form as:

x = H(g)g (4.7)

where x is a (mk1) – concatenated vector of the measurements mix
i

...1, ,

H(g) is the (mk r) – regression matrix.

If the matrix H(g) is full rank, the ordinary least square solution of (4.7) is:

g = (H(g)
T
H(g))

-1
H(g)

T
x (4.8)

Since the identification Jacobian contains a linear approximation, the process

(4.1-8) must be applied iteratively with the new update g = g+g until g

becomes sufficiently small. The calibration result (the magnitude of the residual

error x) depends mostly on whether)(gH has been accurately and

sufficiently modelled (with geometric and non-geometric errors) and the

accuracy of the sensor used.

When H(g) is rank deficient (e.g. due to the presence of unidentifiable, poorly

identifiable or linearly dependent parameters in g), it will cause a problem when

inverting (H(g)
T
H(g))-1 in equation (4.8). In such cases, numerical tools through

manipulation of H(g), e.g. using singular value decomposition (SVD), are

usually used to eliminate parameter redundancies in the model. For SVD, H(g)

is decomposed as:

H=UV
T
 (4.9)

89

where is the (mk x r) – diagonal matrix in decreasing order of singular values

1>2>…>r. Poorly identifiable parameters are indicated by zero or very small

singular values. It is heuristically suggested that the condition number of a well-

conditioned regression matrix should be less than 100 (Bernhardt, 1993):

100)(1
r

H

(4.10)

If condition number is above 100, elements of column r of matrix V are

examined. If there is an element j of r that is much larger than the others, the

corresponding error parameter gj is a candidate for elimination (Siciliano et.al.,

2008). This process of pinpoint and elimination of parameters is repeated until

the condition (4.10) is met, then it is possible to solve g from equation (4.8).

4.2.1.3 Error compensation

After the calibration process has completed, the kinematic model f with

identified parameters g is able to predict the actual tool pose more accurately

than the one used by robot controller. Ideally, g should replace for the nominal

values defined in the robot controller but in most cases, modification is not

allowable. Error compensation thereby is usually done by means of software as

follows.

Given the programmed end-effector location x
d
, calculate the joint solution q

using the nominal inverse kinematic model. The deviation x between the

desired x
d
 and the actual pose x predicted by the identified forward kinematic

model f can be compensated by small joint increments q as:

q = J (q)
 -1

 x (4.11)

where J(q) is the well-known manipulator Jacobian (Spong et.al., 2004). The

compensated joint values q
d
:

q
d
=q + q (4.12)

will be downloaded to the robot controller and replace the nominal q to correct

x before the motion take place (static correction). The idea of this error

90

compensation scheme can be thought of as ‘providing the robot a false target

so that when it reaches there, it actually is closer to the desired one (Figure

4-7).

Figure 4-7 Error compensation using the calibration model

(Khalil et.al., 2004)

4.2.1.4 The “standardized” modified DH model

As introduced in section 3.2.2.1 of the literature review chapter, the modified DH

model suggested by (Hayati et.al., 1985) is the most commonly used in

kinematic calibration. The authors have found that the original DH convention

suffers limitation when modelling parallelism of a consecutive pair of parallel

axes. When two adjacent joint axes are parallel, e.g., joint 2 and 3 of elbow type

manipulators, small tool error x may result in unrealistic identified 3
d (Figure

4-8). The reason is because 3
d is linearly dependent with 2

d . To overcome,

an additional term),(
i

yrot

is post-multiplied to the original DH model

(equation (A.2)), resulting:

),(),(),(),(),(
iiiii

1i

i
yrotxrotaxtrandztranzrotT

(4.13)

in which the identifiable kinematic parameters follow the rule:

 iiii
a ,,, if joint i is a rotary joint and zi-1 // zi

 iiii
ad ,,, if joint i is a rotary joint and zi-1 zi

 ii
 , if joint i is a prismatic joint.

It has also been proved that the maximum number of identifiable geometric

parameters for a robot having R rotary joints and P prismatic joint is 4N+2P+6

where the last number 6 is for parameters of two additional transformations

relating the sensor frames and the robot frames in cases the sensor cannot

Nominal inverse

kinematics

q=f -1(x)

Identified forward

kinematics

x=f(q,g)

xd q xa x q qd
+

-

+
+

q=J () -1x

q

g=g+g

+
+

91

measure position of the robot end-effector directly but a target fixed on it

(Veitsschegger et.al., 1988; Schröer et.al., 1997).

Using this convention, comprehensive formulations of the identification

Jacobian coefficients in equation (4.4) are given as (Benett et.al., 1995;

Siciliano et.al., 2008):

1

11

i

ii

i
z

pz
H ,

0

1i

di

z
H ,

0

i

ai

x
H

i

ii

i
x

px
H ,

i

ii

i
y

py
H

(4.14)

where xi, yi, zi are directional vectors and pi is the position of link frame Fi

expressed in the base frame F0. Details on this derivation are described in

Appendix B. From what has been described thus far, it can be seen that all

issues associated with modelling, identification and compensation for geometric

parameters of serial-link manipulators have been well-defined and treated in the

literature. Therefore, it is no longer a challenge to adopt the technique to

improve robot accuracy to some level.

Figure 4-8 Small deviation from the ideal parallelism (left) may cause

unrealistic identified value of di (right)

92

4.2.2 Kinematic calibration for serial manipulators having a

parallelogram linkage

4.2.2.1 Geometric error modelling

It is worth noting that the above error modelling convention, however, cannot be

employed directly on serial manipulators that contain closed-loop chains, i.e.

those with the parallelogram linkage. In these robots, passive joints are driven

by actuated joints through the parallelogram mechanism, implying that they are

dependent (unidentifiable) parameters via some constraints and are degraded

by the errors of these components. Therefore, an additional error model of the

loop must be derived from the constraint equations and then merged with the

global open chain’s error model described in equation (4.3). Deriving the loop’s

error model is usually complicated and introduces further parameter

redundancy which will cause the regression matrix H in equation (4.7) rank-

deficiency. For simplicity, many researchers ignored the parallelogram structure

and thus, regarded the robots as standard serial ones. However, it will be

shown later in Chapter 8 that identification accuracy can be drastically improved

if the loop’s errors are taken into account. In their paper, Schröer et.al. (1997)

modelled a degenerated parallelogram structure as a planar four bar linkage, of

which the position constraints were mathematically solved for its passive joint

angles with respect to actuated joint angles and actual link lengths. A similar

approach was taken in the work of (Marie et.al., 2008), where this solution was

further differentiated to obtain the loop’s error model. Though such derivations

are necessary, difficulties may arise because solutions of the loop constraints

usually are highly nonlinear and hard to be differentiated. The reader can look

up in Appendix C to see how complex it would be to differentiate the position

solution of the four bar linkage. In contrast, the calibration model suggested by

(Alici et.al., 2005) is too simple because the essential relation between errors in

passive joint angles and other loop parameters was not provided.

Ananthanarayanan et.al. (1992) suggested an experimental method to

investigate link length errors of a parallelogram mechanism. As this method

relies on moving the arm in a specific trajectory, the calibration results are prone

93

to unaccounted effects, i.e. the compliance due to robot’s gravitational loading.

It is thus desirable to have a simpler yet more accurate model for manipulators

of this type.

In this work, an improved kinematic model for parallelogram linkage type

manipulators is developed. To avoid the complications mentioned above, the

loop’s error model is derived by differentiating the loop’s position constraint

equations, instead of solving the equations first then differentiating the solution

(To et.al., 2012). After being merged with the resulting loop’s error model, the

manipulator’s global model becomes similar to that of an open-loop robot, which

makes it possible to exploit the well-defined techniques presented thus far in

section 4.2.1. The analytic form of the Jacobian matrix is also given, based on

which remained redundant parameters due to kinematic design of the

parallelogram structure can be eliminated without having to use the trivial

numerical technique described in equations (4.9-10). Geometric error modelling

for a parallelogram linkage type manipulator will be presented in detail in

section 6.2.1 of Chapter 6.

4.2.2.2 Non-geometric error modelling

To further improve robot accuracy, non-geometric errors must be considered.

As presented in section 2.2.5 of Chapter 2, among several non-geometric

sources which are not always evident, compliance (elastic deflection) due to

gravitational loading contributes significantly to inaccuracy and hence, was

chosen to be modelled and compensated. For a large robot, the deflection is

induced not only by applied payload (e.g., the end-effector’s weight) but its link

masses. Figure 4-9 describes an experiment in this work discovering the

deflections caused by link masses of the robot used: even when the robot is

unloaded, rotating the forearm alone around joint 3’s axis caused severe

deviation in the positions of a laser tracker’s SMR target fixed on the upper arm.

This can be explained as during the rotation of the forearm, its weight Fg

created a variable moment Mg at joint 2 that deflected the upper arm.

94

Figure 4-9 Rotating the forearm causes deflection of the upper arm (left)

as a result of the moment Mg created by the mass Fg of the forearm (right).

In this work, deflection modelling followed the assumption which has been used

in many other researches for elbow type manipulators that compliances mostly

occur at the joints whilst those at the links are negligible. A joint is modelled as

a torsional spring with constant joint stiffness (Nm/rad). Therefore, if i is the

generated torque at a joint i to counteract with the applied external moment

(e.g., Mg in Figure 4-9), joint deflection d

i

from its unloaded position is

calculated as:

ii

d

i
c (4.15)

where ci=1/i is joint compliance (rad/Nm). This is the constant to be identified

for each joint.

When joint deflection is considered, joint errors
i

in the parameter g in

equation (4.3) include not only the constant offsets but the parts due to

deflections:

e

i

s

i

off

i

d

i

off

ii
 (4.16)

for i=1..n. In (4.16), off

i
 is constant joint offset (geometric error) while s

i
 and

e

i
 are variable joint deflections (non-geometric errors) caused by structural

loading and external applied payload, respectively. Substituting (4.15, 4.16) into

(4.3) then rearranging the resulting equations, one may identify the compliance

95

coefficients ci of the joints, provided that the applied moment i is accurately

modelled or measured. The following calculations will be done in this work:

 For the deflection s

i

induced by link mass, i is calculated from the

static equilibrium at joint i. The computation of i for parallelogram

linkage type manipulators in this thesis is modified from the method

presented in (Judd et.al., 1990; Gong et.al., 2000) for elbow-type

manipulators. This model will be presented in section 6.3.1 of Chapter 6.

 For the deflection e

i

induced by applied payload, i is calculated from

the well-known static force-torque relation (Paul, 1981; Spong et.al.,

2004):

 WqJ T)((4.17)

where
ni
 ,,,,

1

is the (1n) – vector of torque generated at n

actuated joints to counteract with the generalized force (force and

moment) W applied at the end-effector. This equation usually requires an

F/T sensor to measure precisely W which, in this case, is the generalized

force created by the weight of the end-effector. This work will present a

compensation model for the deflection without the need for an F/T

sensor. This model will be presented in section 6.3.2 of Chapter 6.

It can be seen from section 4.2.1 that kinematic calibration for elbow type

manipulators has been “standardized” in the literature, especially for geometric

errors. This thesis further presents a relevant work for parallelogram linkage

type manipulators, taking into account both geometric errors and joint

compliance. It is thereby possible to adopt the calibration technique to most

popular kinematic designs of industrial robots to improve their absolute

accuracy to some level. The global metrology (e.g., a laser tracker) will only be

needed to correct small residual errors and thus, can serve more than one robot

in a multi-robot work-cell. Further details on how to automate the calibration and

the two stage (model-based and sensor-based) error compensation process

using the proposed framework will be described in Chapter 7 and 8.

97

5 DEVELOPMENT OF THE FRAMEWORK

This chapter presents the proposed application framework for flexible system

integration in robotics. Section 5.1 firstly introduces Microsoft Robotic Developer

Studio (RDS), the middleware platform that the framework is developed upon.

Background information provided in this section is essential for section 5.2

which describes the framework’s service architectures designed for PnP

integration capability. Section 5.3 describes the framework’s performance in

terms of message exchange rate and latency. Code snippets in C# along with

comments will be given in this chapter.

5.1 Robotics Developer Studio: the middleware

As introduced previously in sections 3.3.2.2, the RDS consists of two most

important modules: Decentralized Software Service Protocol (DSS) and

Concurrency and Coordination Runtime (CCR). The DSS is an ordinary

communication middleware allowing multiple services to interoperate via the

network whereas the CCR, operating at lower level, allows multiple tasks within

each service to run concurrently. These two modules will be presented in the

following sections.

5.1.1 Decentralized Software Service Protocol

5.1.1.1 DSS service

In the context of middleware technology, a service generally consists of:

 Interface: the description of what operations the service performs (the

types of messages the service can receive). In DSS, interface is also

referred as service contract.

 Implementation: actual handlers of the interface.

 State: a collection of state variables describing the content of the service.

For example, the interface (contract) of the camera service depicted earlier in

Figure 2-26 of Chapter 2 may consist of the operations Connect and Disconnect

for setting up communication with the camera controller, SnapShot, MovieShot,

98

and StopMovie for start/stop grabbing images. The service state may contain

variables describing the current image, image dimension, frame rate and other

parameters such as connection status, camera status (busy or idle) etc. When

the service receives a message, e.g. a SnapShot call, the corresponding

handling function in the service implementation will be triggered to perform its

action, e.g., to command the camera API to take an image, then write the image

to the state and return it to the caller.

The specific DSS service model, shown diagrammatically in Figure 5-1, can be

described as follows. Service URI (Universal Resource Identifier) and Contract

Identifier are just system numbers used to identify the service instance and its

contract with other resources on the network. The service may have a

Subscription Manager for managing a list of its subscribers (the services

subscribing to it). It may also have one or more Partners (other services that it

subscribe to). Messages sent from the service subscribers and notifications

sent from the service partners will arrive at the Main Port and Notification Ports,

which basically are FIFO message queues. Service Handlers and Notification

Handlers are functions of the service implementation that process these

messages and notifications out of their queues.

Figure 5-1 DSS service architecture (Microsoft, 2008)

In DSS, the components (state, interface and implementation) of the above-

mentioned camera service are encapsulated into three classes: CameraState,

CameraOperations and CameraService as depicted in Figure 5-2. The class

CameraService is the main body of the service, from which the other two

classes are instantiated with the objects state and mainPort, respectively. It also

Request/Response

messages

Notifications from Partners

Service URI

State

Notification Handlers

Contract Identifier

Main Port

Notification

Ports

Service Handlers

Partners

Subscription

Manager

Notifications to Subscribers

99

has a variable named submgrPort of type SubscriptionManagerPort through

which notifications to the service subscribers will be sent. DSS services also

use a manifest at start-up that describes its execution context. Manifest is a

XML file that lists service partners and their addresses on the network.

Figure 5-2 Class diagram of a DSSP service

5.1.1.2 Message exchange patterns

Within the context of a service handler, a DSS service can send messages to

other services in two manners:

 Request/Response (two-way) messaging pattern: a single request

message sent from a sender to a receiver, followed by a single response

sent from the receiver to the sender of the request.

 Publish/Subscribe (one-way) messaging pattern: a single message, in

the form of an event notification, sent from a publisher to subscribers.

The choice of message exchange patterns depends on the type of operations:

some operations only allow the programmer to use the one-way message

exchange pattern while others can support both. For example, the handling

function for the SnapShot request (SnapShotHandler) might either send the

captured image in the response or in a separate notification. On the other hand,

the handling function for the MovieShot request (MovieShotHandler) must use

notifications because it is not possible to send a time series of captured images

in a single response message. Multiple MovieUpdate notifications which

100

embody the images will be sent (through the submgrPort) until the camera

service receives a StopMovie request (Figure 5-3).

Figure 5-3 Example of the message exchange of the camera service

5.1.1.3 Procedure of service integration

Suppose a robot service is to use the camera service. The following procedure

must be followed while programming the robot service in order that it is able to

integrate with the camera service:

 When the camera service is compiled, its service contract is embodied

into a Proxy dynamic link library (DLL) file. The robot service needs to

reference with this Proxy DLL so that the camera’s functions SnapShot,

MovieShot etc. become transparent to it.

 In the robot service’s interface (the class RobotOperations), declare the

types of notifications from the camera service that the robot service

wants to receive, i.e., the Shutdown and MovieUpdate notifications

using camera = Camera.Proxy; // Using the camera Proxy DLL
[ServicePort()]

public class RobotOperations : PortSet<

DssDefaultLookup,

DssDefaultDrop,

Replace,

Get,

Subscribe,

camera.Shutdown, // Notifications received from the camera
camera.MovieShot,

… >

{

}

101

 At the start of the robot service implementation (the class RobotService),

invoke the standard operation Subscribe to subscribe the robot service to

the camera service.

Herein, the robot service declares the camera service as its partner

(publisher) in the bracket [Partner...]. Two instances (client stubs) of the

camera interface CameraOperations: camPort and camNotify, one for

sending outbound and another for receiving inbound messages

(notifications) with the camera service, are created. The robot service

then subscribes to the camera service by using the standard operation

Subscribe.

 Finally, provide the address of the camera service on the network in the

robot service manifest (configuration) file as follows:

<?xml version="1.0" ?>

<Manifest

 xmlns="http://schemas.microsoft.com/xw/2004/10/manifest.html"

 xmlns:dssp="http://schemas.microsoft.com/xw/2004/10/dssp.html"

 xmlns:Robot = "http://schemas.cranfield.ac.uk/2010/12/Robot.html">

 <CreateServiceList>

 <ServiceRecordType>

 <dssp:Contract> http://schemas.cranfield.ac.uk/2010/12/robot.html

 </dssp:Contract>

 <dssp:PartnerList>

 <dssp:Partner>

 <dssp:Service>http://192.168.0.2:50000/Camera</dssp:Service>

 <dssp:Name>Robot:Camera</dssp:Name>

 </dssp:Partner>

 </dssp:PartnerList>

 </ServiceRecordType>

 </CreateServiceList>

</Manifest>

using camera = Camera.Proxy; // Using the camera Proxy DLL
class RobotService : DsspServiceBase

{

// The robot service declares the camera service as its partner
[Partner("Camera", Contract = camera.Contract.Identifier, CreationPolicy =

PartnerCreationPolicy.UseExisting)]

// Defines instances of the camera service
camera.CameraOperations camPort = new camera.CameraOperations();

camera.CameraOperations camNotify = new camera.CameraOperations();

protected override void Start()

{

base.Start();

// Subscribing to the camera service
camPort.Subscribe(camNotify);

...

}

}

http://schemas.cranfield.ac.uk/2010/12/robot.html

102

Herein, the robot service indicates that its partner, enclosed in the

<dssp:Partner> </dssp:Partner> XML mark-up, is the camera service

supposedly running at the at IP address 192.168.0.2, port 50000. By

doing this, the client stubs camPort, camNotify of the class RobotService

become liaised with the server stub of the actual camera service running

at the given node on the network.

Having followed these steps, it is now possible to call the camera’s SnapShot

operation in request/response manner within a service handler of the class

RobotService as follows:

In the code snippet above, the camera’s SnapShot function is called via the

camPort instance provided the exposure time of 500ms as the parameter. After

sending the message to the camera service, the robot service waits for the

response, which could either be the captured image if successful or a Fault

message otherwise. The CCR’s command Arbiter.Choice will trigger the

corresponding delegate handler depending on the types of response messages.

The robot service can also simply invoke the camera’s MovieShot function as:

where the parameter 20 is the frame rate per second. Because MovieShot uses

the one-way messaging pattern, the captured images will be sent in separate

MovieUpdate notifications and the robot service must implement a separate

handler for these notifications, e.g., the MovieUpdateHandler below:

camPort.MovieShot(20);

// Invoke the SnapShot operation of the camera service
Activate(Arbiter.Choice(camPort.SnapShot(500),

delegate (byte[] image)

{

// If the call is succeeded, the response will be the captured image
…

},

delegate (Fault fault)

{

 // Otherwise, an error will be catched and processed here
…

})

);

http://192.168.0.2/

103

The function MovieUpdateHandler will be triggered every time a MovieUpdate

notification arrives at the camNotify instance until the robot service invokes the

camera’s function StopMovie.

5.1.1.4 Abstract service

In DSS, developers can define abstract services to represent actuators and

sensors that have common characteristics. For example, the camera service

discussed thus far may serve as an abstract service for many types of IP

cameras ranging from webcams to machine vision systems because all of them

operate in the same way regardless of their make: they’re all able to be

remotely connected / disconnected and take a single / a series of images.

Likewise, contact sensors and proximity sensors, though different, may share

an abstract service representing binary sensors that trigger signals whenever

they detect objects within their ranges. The reason for using abstract services

is, therefore, to reduce the diversity of service interfaces.

An abstract service, also referred to as generic contract in DSS, is analogous to

the concept of an abstract class in object-oriented programming, except there is

no implementation inheritance: an abstract service consists of solely a state and

an interface but no implementation. As a result, services derived from an

abstract service must implement service handlers on their own based on their

APIs. They can reuse the state and interface of the abstract service as-is or

extend them with additional variables and functionalities. Figure 5-4 depicts two

such services, the Webcam and MotorisedCamera services, in which the

extended MotorisedCamera service may have its own parameters for describing

and operations for adjusting its camera tilted angles in addition to the generic

state and operations inherited from the Camera abstract service.

public void MovieUpdateHandler(camera.MovieUpdate notification)

{

 // Retrieve the image out of the notification message
 byte[] image = notification.Body.Image;

 // Processing the image
…

}

104

Figure 5-4 Class diagram of services derived from the abstract Camera

service.

Abstract services offer many advantages whenever they are applicable.

Consider a robot using two similar cameras A and B from different vendors.

Without using abstract services, the robot service might have to reference with

the Proxy DLLs of the two camera services, subscribe to both of them and

finally end up dealing with two different conventions of SnapShot operations

and MovieShot notifications at compile-time. The situation becomes even worse

when it has to use a new camera C, which will require the robot service to be

reprogrammed following the procedure described in section 5.1.1.2. When

using the camera abstract service on the other hand, the cameras look all the

same from the robot service’s viewpoint and hence, it can be composed without

having to know what specific cameras it is using. If it is programmed with

dynamic arrays of the camera service instances (camPort, camNotify) which

can grow or shrink their sizes at run-time, the robot service can connect with an

arbitrary number of cameras at run-time without requiring modification. Actually,

this is the general idea to achieve the plug-ability for the framework services

proposed in this thesis.

105

5.1.2 Concurrency and Coordination Runtime

The CCR is a managed library that provides classes and methods for

concurrent and asynchronous I/O programming. The CCR architecture is

depicted in Figure 5-5. Unlike ordinary event-driven programming techniques

which rely mainly on the event subscription and registered callback functions,

the CCR derives its own abstraction layer formed by two novel concepts: Port

and Arbiter. The Port is simply a FIFO queue for event messages sent either

internally between the service’s components or externally from another service.

Messages posted to the ports remain there until they are consumed by

corresponding receivers. The Arbiter enables complex logics to be applied on

the receivers, such as a Join between two ports (two messages must arrive at

them, which effectively is a logical AND) or a Choice between them (a message

arrives at either port, creating a logical OR). This indirection allows selecting

appropriate tasks (handlers) in a much simpler way, compared with the ordinary

event-driven programming to achieve the same effects. Selected tasks are then

scheduled to a DispatcherQueue and finally passed to the Dispatcher. The

Dispatcher manages a pool of threads; the number of threads depends on the

number of CPU/core. The threads, assigned with different priorities, will pick up

the ready tasks for execution, creating a fully multi-tasking environment.

Detailed descriptions on the most important features of the CCR, the Port and

Arbiter classes, are given in the Appendix E. In addition, the Iterator, a C# 2.0

feature that is used in a creative way by the CCR, is also introduced. The

reader is recommended to read these descriptions to grasp the idea of how the

CCR handles concurrency and asynchronous communications. Further

information regarding the DispatcherQueue and Dispatcher can be found in

(Microsoft, 2008; Johns et.al., 2008).

106

Figure 5-5 Architecture of the Concurrency and Coordination Runtime

5.2 The framework

As presented in section 5.1.1.4, abstraction is the key enabling technique for

PnP integration. If there were abstract services for all types of robots, sensors,

tools etc., the services of these components would be totally pluggable, i.e.,

removing or adding a service of these types from/to an existing system will not

require any modification. However, defining standardized interfaces for a wide

range of devices would result in unnecessary complications and is somewhat

impractical for one person’s job. Therefore, instead of having various abstract

service interfaces with various I/O messages, all services in this proposed

framework are derived from a single GenericDevice abstract service and mainly

use two messages, the CreateProcess request and ProcessUpdate notification,

for communication (see section 4.1.3.1). The data embodied in these

messages, however, are structured in such a way that they are able to convey

sufficient information as the former does. These predefined data structure

(classes/enumerations) will be presented in section 5.2.1. Architecture of the

GenericDevice abstract service and its implementation (service handlers) will be

described in sections 5.2.2 and 5.2.3, respectively.

Arbiters

Dispatcher (Thread Pool)

Receiver

Messages Messages

Port

Receiver

…

…

Port

Dispatcher

Queue

Thread Thread Thread
…

Tasks

107

5.2.1 Predefined data structures

A full list of the data structures defined in this framework is provided in the

Appendix F; this section will discuss the most important ones: Command,

Process and ProcessUpdateNotification (Figure 5-6).

Figure 5-6 The main predefined classes/enumerations in the framework

5.2.1.1 Command

The class Command is used to describe a control command of a device. It

contains the fields describing the command name, command type, optional

parameters, sizes and types of input and output data. The command type (the

field Type) in the class needs a few more explanations. Regardless of various

naming conventions, the control commands can be generalized into four types

as follows:

(a) NoData: This type of command does not involve a measurement.

Examples of such commands are the Connect, Disconnect of the

camera service in section 5.1.1, Drill of the tool service in Figure 4-5 of

Chapter 4 which do not produce data feedback. The sender of the

command is supposed to receive only a command feedback from the

recipient specifying results of the command execution (whether it has

been processed, completed successfully or failed to complete).

108

(b) SingleData: This type of command involves a single measurement. The

sender is supposed to receive both command and data feedbacks in a

single notification messsage. An example of such commands is the

SnapShot of the camera service.

(c) MultipleData: This type of command involves multiple measurements.

The sender is supposed to receive command feedback and a time

series of data feedback in separate notification messages. An example

of such commands is the MovieShot of the camera service.

(d) StopData: This type of command will deactivate commands of type

MultipleData. An example of such commands is the StopMovie of the

camera service.

5.2.1.2 Process

The class Process represents the dynamic instance of a command. It contains

an identifier, names of the sender and recipient (in the field Tag), the command

that the sender requests the recipient to perform, the command’s current I/O

data and status. The Process is used as the input parameter type of the

CreateProcess request message.

5.2.1.3 ProcessUpdateNotification

The class ProcessUpdateNotification is a reduced form of the class Process

(without the field Command) and is used as the output parameter type of the

ProcessUpdate notification message. Command and data feedbacks (if any)

from the recipient to the sender are enclosed in the fields State and Data.

The communication between services using the CreateProcess request and

ProcessUpdate notification messages was already depicted in Figure 4-5 of

Chapter 4 and are summarized as follows. When the robot service connects to

the camera service, it retrieves the list of commands supported by the camera.

When receiving a string initiated with “ACTIVATE” (section 4.1.3.2 of Chapter 4)

from the current robot program, the robot service searches in its partners list for

the given device name, then searches the command list of this device for the

109

given command name. A process is then created with the corresponding

command along with its option and input data then is sent to the camera service

using the CreateProcess message. Based on the command type (the field

Command.Type), the camera knows how to dispatch it to the camera controller

and setup receivers for command and data feedback. Likewise, the robot

service also knows how to setup corresponding receivers on its side to intercept

the command and data feedback enclosed in the ProcessUpdate notifications

sent from the camera service and returns the results to the robot program.

Notice that input and output data (the field Data) in the CreateProcess and

ProcessUpdate messages are expressed as a generic object but are able to be

converted to the right types and sizes thanks to the descriptions given in the

fields (Command.InputDataType, Command.InputDataSize) and (Command.

OutputDataType, Command.OutputDataSize), respectively. As can be seen, by

having a comprehensive Command structure, different types of commands and

data can be properly handled by the robot service without prior knowledge of

the camera service. The following sections will describe the service architecture

and implementation that necessitate this mechanism.

5.2.2 Service architecture

In this section, architecture of the GenericDevice service, the base of all

services in the framework, will be described. The GenericDevice service is a

DSS abstract service, i.e., it contains solely a state (the class

GenericDeviceState) and an interface (the class GenericDeviceOperations). A

camera service, derived from the GenericDevice service thereby consists of

three classes:

1) CameraState sub-classed from the GenericDeviceState.

2) CameraOperations sub-classed from the GenericDeviceOperations.

3) CameraService which contains implementations of the operations

defined in the class CameraOperations (Figure 5-7).

The classes GenericDeviceState and GenericDeviceOperations will be

described in sections 5.2.2.1 and 5.2.2.2, respectively. Though the service

110

GenericDevice does not contain its implementation, a design template for it will

also be given in section 5.2.3 through the class CameraService so that all other

services sub-classed from it can reuse this template systematically.

Figure 5-7 Class diagram of the GenericDevice abstract service and two

examples, the Camera and Robot services, derived from it.

5.2.2.1 The generic state

The class GenericDeviceState and its aggregation are depicted in Figure 5-8. It

contains essential information about the device the service represented and a

list of the service’s partners (Table 5-1). For example, the field DeviceInfo of the

class RobotState will contain information about the robot while the field Partners

will contain information on the devices the robot is using (tools, sensors etc.).

The DeviceInfo is initialized by the service when it is activated while the list

Partners will be populated when it is subscribed to other services at run-time.

DeviceInfo and Partners are of class Device which includes the device name,

vendor and its current statuses etc. As introduced earlier, the most important

part of the class Device is a list of commands that the device can performs. The

111

commands are of type Command which includes the name, type of command,

types and size of its input and output data. Using this contract information,

services are possible to dispatch a command and handle its feedbacks

properly.

Figure 5-8 Class diagram of the class GenericDeviceState.

Table 5-1 Members of the class GenericDeviceState

Member Type Description

DeviceInfo Device Information about the device that the service represents.

Partners Device [] List of the service’s partners.

5.2.2.2 The generic interface

The class GenericDeviceOperations and its associations are depicted in Figure

5-9. It contains standard operations, listed in Table 5-2, designed for the

communication of PnP services in the framework.

Among these operations, the first five are default to every DSS service

providing their basic functionality. The definitions and implementations of these

operations can be found in RDS documentations (Microsoft, 2008). For

example, a service can invoke the method Get to retrieve the whole state of

another service. The last five operations involve interactions between the

service with others in publish/subscribe manner: the CreateProcess is the

request (input) message the subscribers send to the service whereas the

112

ProcessUpdate, StateUpdate, ConnectionUpdate and Shutdown are notification

(output) messages the service sends to its subscribers. The input and return

parameters of these messages, encapsulated in the classes Process,

ProcessUpdateNotification, StateUpdateNotification, ConnectionUpdateNotifica-

tion and ShutdownNotification are described in further details in Appendix E9-

12.

Figure 5-9 Class diagram of the class GenericDeviceOperations

Table 5-2 Standard methods of the class GenericDeviceOperations

Method Description

DsspDefaultLookup

Default operations of DSS services.

DsspDefaultDrop

Get

Subscribe

Replace

CreateProcess Allow service subscribers to generate a process at the service.

ProcessUpdate Notify service subscribers that the executed process has updated new

status or data.

StateUpdate Notify service subscribers that the device the service represents has

changed status.

ConnectionUpdate Notify service subscribers that the connection between the service and

its device has changed its status.

Shutdown Notify service subscribers that the service has been shutdown

113

5.2.3 Service implementation

As introduced earlier, the service GenericDevice does not have an

implementation (i.e., the class GenericDeviceService). A design template for it,

however, will be provided via the class CameraService. Any service

representing a physical device can reuse the template to shorten the

development time because they have the same structure.

Figure 5-10 displays the functional block diagram for the class CameraService.

Conceptually, it consists of two layers: the DSS layer operating on top of the

Camera Interface layer as follows.

 The DSS layer is responsible for processing inbound and sending outbound

messages. It defines a bunch of CCR’s Ports, including a FIFO task queue

for sequential processing (see section 4.1.4 of Chapter 4), and their

corresponding receivers (handlers). Descriptions on these ports and

receivers will be introduced in sections 5.2.3.1 and 5.2.3.2, among which

the most important handler, the ProcessHandler, will be described in detail

in section 5.2.3.4. In addition to these components, the DSS layer also

contains a dynamic array of instances of the GenericDevice service (the

lists genericPort for sending outbound request and genericNotify for

receiving inbound notifications with service partners) as well as a

submgrPort through which the service sends notifications to its subscribers.

 The Camera Interface layer is responsible for the communication between

the DSS layer and the camera controller and is built upon the specific API

of the camera used. The layer is composed of two main modules, namely

the CommandDispatcher for dispatching commands and

FeedbackReceiver for receiving status/data feedbacks from the camera

controller. The feedbacks are classified and forwarded to corresponding

ports of the DSS layer, where they are processed by the receivers.

Services derived from the GenericDevice abstract service are only different

from each other by this layer.

114

Figure 5-10 Functional blocks of the class CameraService

The class diagram of the above components of the class CameraService is

depicted in Figure 5-11.

Figure 5-11 Class diagram of the class CameraService

5.2.3.1 The ports

The class CameraService defines six internal CCR’s Ports/PortSets (Appendix

E.1) listed in Table 5-3, among which the first five are for conveying feedback

Subscription Manager Port

Dynamic arrays of service partners

Ports for state transition updates

DSS’s default message
handlers

Ports’ receivers

CreateProcess message handler

FIFO process queue

Process receiver

115

information from the camera industrial controller to their corresponding

receivers and the last one serves as a FIFO process queue. Notice the

DataFeedBack is a PortSet instead of Port which accepts two types of

messages: measurement data and booleans. The reason will be explained in

section 5.2.3.4.

Table 5-3 Defined ports and receivers of the class CameraService

Port/Portset Data Type Receiver Receiver type

DeviceState DeviceStates DeviceStateHandler Persisted /

Exclusive

ConnectionState ConnectionStates ConnectionStateHandler Persisted /

Exclusive

CmdFeedback string CommandFeedbackHandler,

created by the ProcessHandler

Non-persisted/

Concurrent

DataFeedback object,

boolean

MeasurementsHandler, created

by the ProcessHandler

Non-persisted/

Concurrent

ProcessState Process ProcessFeedbackHandler Persisted /

Concurrent

ProcessQueue Process ProcessHandler Persisted /

Concurrent

5.2.3.2 The receivers

Registered to the ports are their receivers (Appendix E.2.1) that trigger actions

whenever there are data (messages) sent to the ports at run-time. Most of them

are used simply for updating the feedbacks from the camera controller to other

services. For example, a change in the device status will be sent to the

DeviceState port. As a result, the DeviceStateHandler function is triggered,

which firstly writes down the new status to the service state, then sends the

StateUpdate notification to the service’s subscribers as shown below.

public void DeviceStateHandler(DeviceStates state_upd)

{

// Update new status into the service state

state.DeviceInfo.State = state_upd;

// Send the notification to subscribers via the submgrPort

StateUpdate notification = new StateUpdate(state.DeviceInfo.Name,state_upd);

base.SendNotification(submgrPort, notification);

}

116

5.2.3.3 Service start-up

using submgr = Microsoft.Dss.Services.SubscriptionManager;

class CameraService : DsspServiceBase

{

// Declare the main service port

CameraOperations mainPort = new CameraOperations();

// Declare the service state

CameraState state = new CameraState();

// Declare the Camera Interface API

CameraInterface camera = new CameraInterface();

// Declare the Ports

Port<DeviceStates> DeviceState = camera.DeviceState;

Port<ConnectionStates> ConnectionState = camera.ConnectionState;

Port<string> CmdFeedback = camera.CmdFeedback;

PortSet<object, bool> DataFeedback = camera.DataFeedback;

Port<Process> ProcessState = new Port<Process>();

Port<Process> ProcessQueue = new Port<Process>();

// Declare the Subsciption Manager Port (for service subscribers)

[SubscriptionManagerPartner]

submgr.SubscriptionManagerPort submgrPort = new submgr.SubscriptionManagerPort();

// Declare the dynamic arrays of GenericDevice service instances (for service

partners)

List<GenericDeviceOperations> genericPort = new List<GenericDeviceOperations>();

List<GenericDeviceOperations> genericNotify = new List<GenericDeviceOperations>();

protected override void Start()

{

base.Start();

// Setup the Interleave

MainPortInterleave.CombineWith (

new TeardownReceiverGroup(

Arbiter.Receive <DsspDefaultDrop> (false, mainPort, DropHandler)

),

new ExclusiveReceiverGroup(

Arbiter.Receive <Subscribe> (true, mainPort, SubscribeHandler),

Arbiter.Receive <Replace> (true, mainPort, ReplaceHandler),

Arbiter.Receive <DeviceStates>(true, DeviceState, DeviceStateHandler),

Arbiter.Receive <ConnectionStates> (true, ConnectionState,

ConnectionStateHandler),

),

new ConcurrentReceiverGroup(

Arbiter.Receive <Get> (true, mainPort, GetHandler),

Arbiter.Receive <DsspDefaultLookup> (true, mainPort, LookupHandler),

Arbiter.Receive <CreateProcess> (true, mainPort, CreateProcessHandler),

Arbiter.Receive <ProcessStates>(true, ProcessState, ProcessStateHandler)

)

);

StateInitialize(); // Initialize the state

SpawnIterator(ProcessHandler); // Activate the ProcessHandler that monitors the ProcessQueue
}

…

}

(continue on next page…)

117

At start-up, the service instantiates the following components:

- The main service port (the instance mainPort of class

CameraOperations),

- The state (the instance state of class CameraState),

- The camera interface (the instance camera of class CameraInterface),

- The Ports listed in Table 5-3,

- The Subscription Manager Port (the instance submgrPort of class

SubscriptionManagerPort),

- The dynamic arrays of GenericDevice interface (the arrays genericPort

and genericNotify of class GenericDeviceOperations).

In the main entry of the class (the function Start), an Interleave arbiter

(Appendix E.2) is defined to categorize persistent receivers of the main service

port and those of the Ports listed in Table 5-3 into corresponding concurrent and

exclusive groups. Finally, the function invokes another function StateInitialize,

shown below, to initialize the list of commands that the service supports then

activates the ProcessHandler, the main receiver that monitors and processes

the task queue.

private void StateInitialize()

{

// Initialize the DeviceInfo structure

state.DeviceInfo = new Device();
state.DeviceInfo.Name = "CAMERA";
state.DeviceInfo.Info = "Specs: 640x480, 8bit Grayscale, Framerate: 80fps";
state.DeviceInfo.Vendor = "Cognex";

// Initialize the list of supported commands

state.DeviceInfo.Commands = new List<Command>();

 // Command 1 – SNAPSHOT

Command command = new Command();
command.Name = "SnapShot";
command.Option = "";

command.SuccessCode = "S";

command.Type = CommandTypes.SingleData; // Single output data

command.InputDataType = DataTypes.Integer; // Input data is an integer

command.InputDataSize = new Int32[1] { 1 }; // which is the exposure time in msec

command.OutputDataType = DataTypes.Byte; // Output data is an image
command.OutputDataSize = new Int32[2] { 640, 480 }; // which is a 2D-array of byte

state.DeviceInfo.Commands.Add(command); // Add the command to the list

// Command 2 – MOVIE SHOT
…

 }

118

The function StateInitialize firstly initializes the DeviceInfo structure of the

service state then the list of supported commands by the camera. The first

command is the SnapShot which is of type SingleData, accepts one input

parameter of type Integer (the exposure time) and outputs a gray-scale (8-bit)

image having resolution of 640 pixels in width, 480 pixels in height. Other

commands are also declared in the same manner and added to the list.

5.2.3.4 Inbound message handling

The main responsibility of the camera service is processing the CreateProcess

messages requested by service subscribers and respond to them feedback

information (status, data) from the camera controller. This activity is performed

by the receiver ProcessHandler which constantly monitors the availability of

processes at the port ProcessQueue. This is the most important function in the

class CameraService and will be described in the following.

Suppose the camera service receives a CreateProcess message requested by

another service. When the message arrives at the main service port, it is

intercepted by the CreateProcessHandler function, which retrieves the Process

instance embodied in the message and en-queues it to the port ProcessQueue

as shown below (Figure 5-10).

Normally, when the port ProcessQueue has no item, the receiver

ProcessHandler is halted by the CCR’s command yield return (Appendix E.3).

When there is a process available and no other process is being executed,

ProcessHandler resumes its execution immediately and retrieves the new

process out of the port.

public void CreateProcessHandler(CreateProcess request)

{

// Post the received process into the ProcessQueue port

ProcessQueue.Post(request.Body);

// Send a acknowledgement receipt to the sender

request.ResponsePort.Post(DefaultUpdateResponseType.Instance);

}

119

The execution of the function ProcessHandler will continue as follows.

1. If the command attached in the process involves measurement, the function

sets up the MeasurementsHandler for measurement data arriving at the

DataFeedback port (from the camera controller).

public IEnumerator<ITask> ProcessHandler()

{

Process process = null;

while (true)

{

// Apply a receiver at the port ProcessQueue for a process arrived at the port

 yield return Arbiter.Receive(false, ProcessQueue,

delegate(Process pr)

{

// Re-scheduling: if the previous process involves multiple
// measurements, the received process should be the one
// that terminates it

if (process.Command.Type == CommandTypes.MultipleData)

if (pr.Command.Type == CommandTypes.StopData &&

process.Tag.Sender == pr.Tag.Sender)

 process = pr;

else

{

 // Othewise, it will be posted back to the ProcessQueue

 ProcessQueue.Post(pr);

 continue;

}

 else process = pr;

});

// If the process involves measurement, set up the Measurement Handler
// for incomming data from the camera controller

if (process.Command.Type == CommandTypes.SingleData ||

process.Command.Type == CommandTypes.MultipleData)

{

SpawnIterator<Process>(process, MeasurementsHandler);

}

// Send the command embodied in the process to the camera controller for
// execution

camera.CommandDispatcher(process.Command.Name, process.Command.Option,

process.Data);

// Set the process state as Running and post to the port ProcessState

 process.State = ProcessStates.Running;

ProcessState.Post(process);

// Set the device state as Busy and post to the port DeviceState

DeviceState.Post(DeviceStates.Busy);

 (continue on next page…)

120

2. The command is forwarded to the function CommandDispatcher of the class

CameraInterface for dispatching to the camera controller. The process

status is then set as Running and the sensor status is set as Busy and

posted to their ports.

3. The function creates the CommandFeedbackHandler receiver at the

CmdFeedBack port for command feedback from the camera controller.

 (continued from last page…)

// Set up the CommandFeedBack handler for command feedback from the
controller

yield return Arbiter.Receive(false, CmdFeedback,

delegate(string feedback)

{

 // When the feedback arrives:
// If the command has been successfully completed,
if (feedback == process.Command.SuccessCode)

{

// Set the process state as Completed and post to the port

process.State = ProcessStates.Completed;

ProcessState.Post(process);

// Set the device state as Ready and post to the port

if (process.Command.Type != CommandTypes.MultipleData)

{

DeviceState.Post(DeviceStates.Ready);

}

// If the process is to stop multiple measurements and it has been
// completed, dispose the Measurements Handler

if (process.Command.Type == CommandTypes.StopData)

{

DataFeedBack.Post(false);

}

}

// If the command has failed to completed,

else

{

// Set the process state as Failed and post to the port

process.State = ProcessStates.Failed;

ProcessState.Post(process);

// Dispose the Measurements Handler, if any

DataFeedBack.Post(true);

}

});

}

}

(end)

121

When the feedback message arrives, the service updates the process and

sensor states accordingly.

4. If the command has been terminated with either Completed or Failed status,

the function ProcessHandler is looped back to its start waiting for the next

process.

 Notes:

1. Although the execution of the ProcessHandler looks sequential, it is actually

segmented into multi-threads running concurrently. By posting the device

and process statuses to their ports, the ProcessHandler leaves the tasks of

updating the information to the ports’ receivers and continues its execution

without having to wait until the updates complete. In the same manner, the

two receivers for measurement and command feedbacks were created and

run side by side. Therefore, it does not restrict which one must arrive first at

their ports.

2. The purpose of defining DataFeedBack as a PortSet instead of a Port is for

disposing the MeasurementsHandler, shown below, when it is no longer

needed. Without disposal, many instances of the MeasurementsHandler

might listen to the DataFeedBack port at the same time and incoming

measurement data could be assigned to a wrong process. Thanks to CCR’s

Arbiter.Choice, various conditions for deletion can be simply handled:

a. If the command involves single data measurement (i.e., SnapShot), the

receiver is dismissed automatically after the first data arrives at the port

DataFeedBack.

b. If the command involves multiple measurements (i.e., MovieShot), the

receiver remains until receiving a boolean false sent by the code

DataFeedBack.Post(false) which is in turn triggered by the command that

stops the measurement (i.e., StopMovie) from the ProcessHandler.

c. If the command has failed to complete (due to improper parameter

settings, for example), the receiver is dismissed after receiving a boolean

true sent by the code DataFeedBack.Post(true) from the

ProcessHandler.

122

3. Finally, the receiver at the ProcessState port, the ProcessStateHandler, will

send the ProcessUpdate notification to the subscribers whenever it receives

an update forwarded from the ProcessHandler and MeasurementsHandler

as shown in the code snippet below.

The activities of the ProcessHandler and MeasurementsHandler are

summarized in Figure 5-12.

public void ProcessStateHandler(Process process)

{

// Send the notification to subscribers via the submgrPort

ProcessUpdate notification = new ProcessUpdate (process.Identifer,

 process.Tag,

 process.State,

 process.Data);

base.SendNotification(submgrPort, notification);
}

private IEnumerator<ITask> MeasurementsHandler(Process process)

{

bool bContinue = true;

while (bContinue == true)

{

// Apply a Choice at the portset DataFeedback

yield return Arbiter.Choice(DataFeedback,

delegate(object data) // <---- If the data is received
{

// Update it to the the process’s Data field and post to the port

process.Data = data;

_ProcessState.Post(process);

// If the process involves a single measurement, the handler will be

terminated

if (process.Command.Type == CommandTypes.SingleData)

bContinue = false;

},

delegate (bool running) // <---- If a boolean is received
{

// Depends on the boolean value and process state, the handler will be

terminated

bContinue = running;

if (process.State == ProcessStates.Failed)

bContinue = false;

}

);

 }

 }

123

Figure 5-12 Activity diagram of the function ProcessHandler of the service

CameraService

5.2.3.5 Task re-scheduling

Assuming at a specific time, the Camera service may receive simultaneous

CreateProcess requests from other services, the default processing order of

these requests (first in first served) may cause logical failures. Let’s take an

example when there are three services, robotA, robotB and robotC, subscribing

to the Camera service. If all the services only request commands involving no

data or single data feedback, the order that Camera dispatches these

commands is not critical because they are self-terminated processes. However,

when one of the services requests a command involving multiple data feedback

(e.g., the MovieShot command), failures might happen if the next command is

not the one that terminates it (e.g., the StopMovie command that sent by the

same robot service). In such a case, items in the port ProcessQueue will be

reordered until properly sequenced as depicted in Figure 5-13. Process re-

scheduling is handled in the first delegate of the function ProcessHandler.

124

Figure 5-13 Scheduling method for the process queue

5.2.3.6 Outbound message handling

Section 5.2.3.4 has described how the camera service handles the

CreateProcess request from other services and sends the ProcessUpdate

notifications to them. On the other hand, a robot service must also know how to

generate the request to other services and handle their notifications. The

following procedure takes place automatically by the robot service to connect

and communicate with an arbitrary service (e.g., the camera service) at runtime:

 When the robot service subscribes to the camera service, it retrieves the

DeviceInfo structure of the camera (by using the request Get) and adds this

information structure to the list state.Partners. Its dynamic arrays

genericPort and genericNotify are also increased one instance, which is the

client stub of the remote camera service. It also creates an Interleave that

categorizes the receivers of the camera’s notifications messages that it is

interested in.

 When the robot service receives a string (e.g., “ACTIVATE CAMERA

#SnapShot##, 500“) from the robot program, it searches in the list

state.Partners for the device given the name (e.g., “CAMERA”) then

searches in the list DeviceInfo.Commands of the corresponding device for

the command given the name (e.g., “SnapShot”). The index number of the

device in the list state.Partners is obtained and through the corresponding

instance in the list genericPort, the CreateProcess message will be sent to

the camera service on the network. The subsequent process will then be

carried out as depicted in Figure 5-14 in a similar manner as what has been

Multiple DataMultiple DataStop DataStop Data

Multiple DataMultiple DataStop DataStop Data

Multiple DataMultiple DataStop Data Stop Data

Robot B’s requestRobot A’s request

Re-arranging the queue

Failure

case1

Failure

case 2

5 4 2 1

Resolved

Single Data

Single Data

Robot C’s request

Single Data

3

…

125

previously done in the method ProcessHandler shown Figure 5-12, thanks to

the concise structure of the classes Process and Command. Therefore, the

programmer can benefit from duplicating the code of the ProcessHandler for

creating the method ExternalProcessHandler of the class RobotService

without much effort.

 When the robot service receives a Shutdown notification notifying that the

camera service has left the network, it deletes the corresponding entries in

the list state.Partner, the arrays genericPort and genericNotify as well as

disposes the Interleave for this camera.

Figure 5-14 Activity diagram of the function ExternalProcessHandler of

the service RobotService.

Figure 5-15 summarizes interactions between a robot and a sensor (e.g., a

camera) on the exchange of the four command types listed in section 5.2.1.

From what has been discussed thus far, it can be seen that services in the

framework are able to connect/disconnect and establish communication

channels with other services automatically without knowing their interfaces in

advance. The interconnection of services, therefore, can be reconfigured

without having to modify manually following the procedure described in section

5.1.1.3 at compile-time.

126

a. Commands involve no measurement

b. Commands involve a single measurement

c. Commands involve multiple measurements

Figure 5-15 Interactions between a robot and a camera through their

services on the exchange of different command types

127

5.3 Performance evaluation

5.3.1 Experiments

Performances of the framework in terms of message exchange rate

(throughput) and latency have been assessed in order to validate the

communication rate at which the framework can be used for dynamic correction.

The exchange of messages is performed between two services developed

using the design template in the previous section: one is the publisher (e.g., a

camera service) and the other is the consumer (e.g., a robot service).

In the test of message exchange rate, the publisher pushes 10000

ProcessUpdate notifications as fast as possible toward the consumer. The test

was carried out with different payloads (the amount of data attached in the

ProcessUpdateNotification.Data) (Table 5-4). The message throughput r

(msg/s) is calculated as the average number of the messages sent within 1

second:

total
t

r
10000

(5.1)

where ttotal (s) is the time for the consumer to receive the total 10000

ProcessUpdate messages.

In the test of message exchange latency, the consumer sends a CreateProcess

message with attached data (in the field Process.Data) to the publisher,

followed by a ProcessUpdate notification with the same data (in the field

ProcessUpdateNotification.Data) returned by the publisher. Since there are two

messages (round-trip) exchanged in each cycle, the latency tl (ms) is calculated

as half of the difference between the time the CreateProcess message is sent

and the time the ProcessUpdate message is received by the consumer. The

process was repeated for 2000 messages and tested with various amounts of

data as in the first test. Average, maximum, minimum and standard deviation

(jitter) values of the latency are evaluated.

128

Table 5-4 Tested payloads

Data 1 2 3 4 5 6 7

Payload

(Byte)

4
(1-Double)

32
(6-Doubles)

1K
(256-Doubles)

4K 64K
0.3M

(640x480)
0.9M

(640x480x3)

Typical

sensor

1D

point laser

6D

force sensor

laser tracker

1D

line scan laser

8-bit

grayscale

640x480

camera

24-bit colour

640x480

camera

Each test above was implemented in two cases: when the services were

running on the same computer and on two separate computers connected over

a 100MBit Ethernet through a network switch (Figure 5-16). The computers

used are Intel Core 2 Duo 2.4GHz on Windows XP. Timing is measured using a

Windows OS’ multimedia timer having resolution in the order of microseconds.

Figure 5-16 The ProcessUpdate notification message’s flow in the tests

5.3.2 Results and discussions

The results of the message exchange between the two services running on the

same computer and networked computers are given in Table 5-5 and

Table 5-6, respectively. The results are summarized in the following sections.

129

Table 5-5 Message throughput and latency between two local services

Data Payload

(Byte)

Throughput

r (msg/s)

Latency tl (ms)

Avg. Max. Min. Std.Dev.

1 4 >10000 0.23 3.09 0.21 0.05

2 32 >10000 0.30 3.33 0.22 0.06

3 1K 8333 0.32 3.45 0.26 0.31

4 4K 6250 2.01 5.51 1.26 0.91

5 64K 725 4.23 8.82 3.00 1.34

6 0.3M 80 8.80 11.39 5.38 1.57

7 0.9M 46 23.69 28.31 18.33 1.90

Table 5-6 Message throughput and latency between two networked

services

Data Payload

(Byte)

Throughput

r (msg/s)

Latency tl (ms)

Avg. Max. Min. Std.Dev.

1 4 >5000 0.62 6.46 0.42 0.60

2 32 >5000 0.54 1.75 0.42 0.14

3 1K 3500 0.84 2.24 0.67 0.15

4 4K 1385 1.36 4.36 1.21 0.42

5 64K 90 13.53 17.18 12.67 1.32

6 0.3M 19 60.62 63.07 57.26 1.33

7 0.9M 6 178.34 184.12 174.07 2.10

5.3.2.1 Throughput

It can be seen from the tables that the framework is able to transmit more than

1000 msg/s when the payload size is smaller than 64KB. This is considerably

sufficient for most dynamic correction applications which are usually

implemented at update rates smaller than 1KHz (typically at 250Hz) and with

small sensor data (e.g., those of force sensors, laser trackers). However, the

framework is not entirely suitable for the transmission of large data, e.g.,

camera images, especially via the network. To handle such a situation in

practice, the camera service might need to perform image processing locally

130

then transfer only the results via the network to the robot service rather than the

raw image (in a similar way to a seam-tracking sensor).

5.3.2.2 Latency

As depicted in Figure 5-16, the latency tl in the arrival of one message is the

combination of:

 the time for serializing the data into SOAP message by the DSS

middleware and packaging the message into TCP’s segments.

 the time for transmitting the message using TCP (when the services

reside on one computer) and TCP/IP (when the services reside on

networked computers).

 the time for unpacking the TCP’s segments to the SOAP message and

de-serializing the message by the DSS middleware.

Among them, the times used for serializing/de-serializing and transmitting the

data over the Ethernet (through the network switch) are the dominating sources

of latency when the payload size is large.

The average latency of the framework is less than 1ms when the payload size is

smaller than 4KB. This might also be sufficient for dynamic correction as long

as the force or position control algorithms can be calculated within the

remaining 3ms for the 250Hz update rate. However, it is not sufficient under the

worst case latency. The maximum latency in both test cases is sometimes a lot

higher than the averages plus 3 times the standard deviations, meaning that

these outliers are originated by some abnormal activities in the infrastructure.

Indeed, when the services reside on one computer, the peak latency might be

caused by a Windows’ system process having higher priority or when the

computer CPU is under high stress (because it must perform both the queuing

and de-queuing of messages of the two services). When the services reside on

networked computers, the peak latency might also be caused by the TCP’s

error correction mechanism (retransmission of lost segments); however, these

late data might be as bad as the lost ones in the control point of view.

131

The latency may affect the throughput drastically since the TCP utilizes a flow

control algorithm that adjusts the network bandwidth based on detected latency

in order to guarantee the delivery of their transmitted segments. The UDP, on

the other hand, is relatively immune to latency; however, it does not detect

message losses (Parziale et.al., 2006).

From what has been discussed in this part, it can be concluded that the safe

update frequency of the framework for dynamic correction considering the worst

case latency (6ms) and data smaller than 4KB is around 100Hz. This is

apparently not sufficient for force control applications, but is for visual servoing

and seam-tracking applications whose vision systems used usually have less

communicate rates. A higher update rate might also be possible; however, it

must be provided with some sort of error correction strategy (e.g., extrapolation

of the sensor data) when the data are not delivered within the determined time

frame. The reasons that limit the communication rate of the framework are

originated from both the non real-time characteristics of Windows OS and

features of the TCP communication.

133

6 CALIBRATION AND ERROR COMPENSATION FOR

SERIAL ROBOTS HAVING A PARALELLOGRAM

LINKAGE

This chapter presents the theoretical work on calibration and error

compensation for serial robots having closed-chain mechanisms, particularly

ones with a parallelogram linkage. The robot examined is a Comau Smart H4,

a long reach and heavy duty industrial manipulator. However, the same

approach could be applied to other robots with a similar structure. Error

modelling for geometric parameters and non-geometric parameters, specifically,

joint deflection, is introduced in sections 6.2 and 6.3. Algorithms for

identification and compensation for errors in the robot structure will be

presented in sections 6.4 and 6.5.

6.1 Robot forward kinematic model

Figure 6-1 The Comau Smart H4 robot (Comau Robotics, 1998)

134

The Comau Smart H4 is a 6dof parallelogram linkage type manipulator with a

load capacity of 200kg, maximum horizontal and vertical reaches of 2.318 and

2.720 meters, respectively. Joint 2 of the robot is a double revolute joint

actuated by two co-axial motors, one for driving the upper arm and another for

the forearm via the parallelogram structure (Figure 6-1). The repeatability of the

robot quoted by Comau is ±0.3mm.

The nominal forward kinematic model of the Smart H4 manipulator is computed

following the method described in (Siciliano et.al, 2007). Joint 3 of the robot is

virtually cut open, allowing link frames to be assigned with the DH convention

(Figure 6-2). Joint 3’, 4’ are passive joints driven by actuated joints 2 and 2’ via

the parallelogram structure formed by links 2’, 3’, 4’ and 2. Notice there are two

frames at the cut joint 3: frame F2 describes the relation between links 2 and 3

whereas frame F4’ between links 4’ and link 3. Nominal DH parameters of the

robot are given in Table 6-1.

Figure 6-2 Schematic diagram of the Smart H4 robot with DH frame

assignments (passive joints are marked in gray colour).

x3

’

z5,6

x2’

x6

y5

y4
z4

x3

z3

x1

x2

z0

x0

3=-83

2

2’

3’

4’

4

5

x4’

1

6

Parallelogram

structure
Link 3’

Link 2’

Link 2

Link 4’

135

Location of the end frame F6 with respect to (w.r.t.) the base frame F0 is

represented as:

5

6

4

5

3

4

1

3

0

1

0

6
TTTTTT (6.1)

where 1

3T can be expressed either with the branch (12’3’4’3) :

 '4

3

'3

'4

'2

'3

1

'2

1

3
... TTTTT (6.2)

or equivalently, with the branch (123):

 2

3

1

2

1

3
.TTT (6.3)

Table 6-1 Nominal DH parameters of the Smart H4 robot

Link i

()

di

(m)

ai

(m)
i

()

l1 1 1 0.2 -90

l2
*
 2 0 1.05 0

l2’ 2’ 0 0.45 0

l3’ 3’ 0 1.05 0

l4’ 4’ 0 0.45 0

l3 -83 0 0.25 -90

l4 4 1.1395 0 -60

l5 5 1.1588 0 60

l6 6 0.2176 0 0

(* : link does not belong to the chain 12’…6)

In this work, equation (6.1) was computed using (6.2) in order to account for

parameters in the parallelogram mechanism. The transformation matrices

'4

3

'3

'4

'2

'3

1

'2
,,, TTTT in equation (6.2) are with joint angles (2’, 3’, 4’, 3=-83) where

the passive joint variables 3’, 4’ must be computed w.r.t. 2 and 2’ via

resolutions of the closure constraints in the position and orientation between

frame 4’ and frame 2. As illustrated in Figure 6-3, z4’ must align with z2 and the

origin O4’ must align with O2 (d4’2=0), thus these constraints are:

 Orientation constraint :)()'(1

2

1

'4
qzqz (6.4)

136

 Position constraint :

0

0

0

)()'(1

2

1

'4
qpqp

(6.5)

In order to solve the constraints, the position and orientation of frame F4’ and F2

w.r.t. the common frame F1 are firstly expressed as:

1000

0100

0

0

)'('4'3'2'4'3'2'3'2'2'4'3'2'4'3'2

'4'3'2'4'3'2'3'2'2'4'3'2'4'3'2

'3

'4

'2

'3

1

'2

1

'4

sasasacs

cacacasc

TTTqT

where
'4'3'2 ,,' q

and

(6.6)

1000

0100

0

0

)(
2222

2222

1

2

sacs

casc

qT

where 2
q .

(6.7)

Figure 6-3 The closure constraints between frame 4’ and frame 2 at cut

joint 3

x1

z1

x2

x4’

z4’

z2

1

'4
p

1

2
p

d4’2=0

O4’

O2

137

One might see that the orientation constraint (6.4) is satisfied regardless of q

and q’. The position constraint (6.5) is extracted as:

where ci , si and ij short for cosi , sini and i+j, respectively.

Since a4’=a2’ and a3’=a2, (6.8) becomes:

 0)()(
2'3'22'4'3'2'2'2
 ccacca

 0)()(
2'3'22'4'3'2'2'2
 ssassa

(6.9)

which leads to the following solutions, given arbitrary choice of a2 and a2’:

 '22'3

 '22'4

(6.10)

The forward kinematic model of open chain (12’…3…6) is thus solved.

6.2 Modelling of geometric errors

6.2.1 Modelling of errors in the robot’s internal parameters

Firstly, assuming the open chain (12’...3…6) composed of 8 links is driven by all

actuated revolute joints. As introduced in section 4.2.1.1 of Chapter 4, the initial

error model of the manipulator is:

 ggHx)((6.11)

In the above equation,),,,,,(
zyxzyx

pppx is a (61) - vector

made up three differential positions and three differential orientations of the

end-effector, g is a (321) - concatenated vector of geometric errors:

 ,,,, adg in which ,, a are (8 1) - vectors such that

 6'21 ,...,,

and so forth,

 631 ,...,, dddd is a (51) - vector and

 '4'3'2 ,,

is a (31) - vector. Recall that is the additional Hayati

parameters to handle consecutively parallel axes between joints 2’, 3’ and 4’

(section 4.2.1.4).)(gH is the (632) – identification Jacobian matrix relating

 0
22'4'3'2'4'3'2'3'2'2
 cacacaca

 0
22'4'3'2'4'3'2'3'2'2
 sasasasa

(6.8)

138

x and g . The columns
iiaidii

JJJJJ ,,,, , i=1…n, for a n - link serial

manipulator are given as:

1

11

i

ii

i
z

pz
H ,

0

1i

di

z
H ,

0

i

ai

x
H ,

i

ii

i
x

px
H ,

i

ii

i
y

py
H

(6.12)

where xi, yi, zi are directional vectors and pi is the position of frame Fi in the

base frame F0. Clearly, this model is not yet complete since the passive joint

angles
'4'3

,

are not independent and thus, an internal relationship between

them

with errors in the parallelogram linkage’s parameters must be derived.

Considering when the parallelogram structure has errors in its parameters

(Figure 6-4), it degenerates into a four bar linkage. As a result, actual passive

joint angles '3
 , '4

 deviate from their nominal values
'3

,
'4

 computed in (6.10)

as:

'3'3'3

'4'4'4

(6.13)

Indeed, they relate to other parameters of the linkage as:

),(
'3

af

),(
'4

ah

(6.14)

where),(
'22

 ;),,,(
'4'3'22

aaaaa ; f and h are position functions of a

general four bar linkage (Appendix C).

Assuming and a are small, errors in passive joint angles '3
 , '4

 can

be derived from the linearization of (6.14):

a
a

ff

a

 00

'3

a
a

hh

a

 00

'4

(6.15)

139

Figure 6-4 A degenerated parallelogram with uneven link lengths.

This approach, however, result in highly nonlinear and complicated equations.

In this work, the results of equation (6.15) can be obtained without actually

linearizing f and h .

The first items on the right hand side of (6.15) are passive joint angle errors due

to joint offsets
'22

, only and thus can be obtained from derivatives of

equation (6.10):

 '22'3

 '22'4

(6.16)

Likewise, the second items on the right hand side of (6.15) are passive joint

angle errors due to deviations of parallelogram link lengths only. Considering

when iii
aaa

, the position constraint (6.9) becomes:

'4'3'4'3'2'4'4'3'3'2'3'3'2'2'2

)(

caacaacaa

 0
222

caa

'4'3'4'3'2'4'4'3'3'2'3'3'2'2'2

)(

saasaasaa

 0
222

saa

(6.17)

where:

 2'4'3'2
, aaaa

2'22'2'3'2

)(

'2'3'3'2'4'3'2

2

2’

a2’

a3’
a2

a4’

4’

3’

x2’

'3

x4’

x1

'4

140

Simplifying (6.17) by ignoring high order terms and using the linearization forms

of cosine and sine functions:

iiiii

scc

)(

iiiii

css

)(

one finally obtains:

)()(
'2'4122'311'3

aamaam

)()(
'2'4222'321'4

aamaam

(6.18)

where:

)(

)(
.

1

'22

'22

2

11

s

c

a
m ,

)(

1
.

1

'222

12

sa
m

11

'22'2

21
)(

1
.

1
m

sa
m

 ,

12

'22

'22

'2

22
)(

)(
.

1
m

s

c

a
m

(6.19)

Combining equations (6.16) and (6.18) yields:

)()(
'2'4122'311'22'3

aamaam

)()(
'2'4222'3212'2'4

aamaam

(6.20)

with mij given in (6.19). This is the internal error model of the parallelogram

structure to be merged with the existing open chain error model. Indeed,

equation (6.11) can be written as:

 HHaHdHHx
ad

......
'4'4'3'3'2'2'4'4'3'3'2'2
 aHaHaHHHH

aaa

(6.21)

By replacing '3
 , '4

 in (6.21) by (6.20) then re-arranging the resulting matrix

equation, we obtained the desirable kinematic error model for serial

manipulators having the parallelogram mechanism. One might realize the

existences of
22

, a in the resulting vector g to be identified even though

link 2 is not part of the kinematic chain (12’…3…6). New Jacobian coefficients

for the parameters in (6.20) are obtained as:

141

 '4'32 HHH

 '4'3'2'2 HHHH

 '422'312'2'2 HmHmHH
aa

 '422'312'4'4 HmHmHH
aa

 '421'311'3'3 HmHmHH
aa

 '421'3112 HmHmH
a

(6.22)

where the formulation of
gi

H on the right hand side was given in (6.12).

6.2.2 Modelling of errors in the base and tool transformations

In order to solve the error model, measurements of the robot poses using an

external sensor (e.g., a laser tracker) are usually required. However, it is

usually not possible to measure directly the (virtual) robot’s end frame F6 but a

target (e.g., the TMAC) relatively fixed in it. Furthermore, the measurements are

usually expressed in the sensor’s predefined frame instead of the robot base

frame. In such case, equation (6.1) must be pre-multiplied and post-multiplied

by two additional transformations to form the measurement as:

PROBETBASET 0

6
 (6.23)

where BASE , PROBE are the transformations defining the robot base frame

F0 w.r.t. the metrology frame Fm and the target frame Ft w.r.t. the flange frame

F6, respectively (Figure 6-5). Parameters of these two constant transformations

are usually determined beforehand (see Appendix D) and will be identified to a

higher degree of accuracy. Of the 12 parameters required to model

inaccuracies in the BASE and PROBE (3 positions and 3 orientations for

each), only 6 are identifiable (section 4.2.1.4) and thus, these two

transformations require proper coordinate arrangements.

The BASE transformation can be set up as:

),(),(),(),(),(),(
000000

dzTranzRotyRotxRotbyTranaxTranBASE (6.24)

142

Figure 6-5 Transformations between robot and metrology systems

With reference to the first DH frame F1 of the robot described in equation (A.2)

in Appendix A, one might see that of the six parameters

000000
,,,,, dba that model errors in the BASE , only the first four

are independent while 00
, d are grouped into 11

, d . Their Jacobians

were derived by symbolic programming in Matlab and are given in Appendix D.

To account for errors in PROBE , a virtual DH - based frame F7 is inserted after

frame F6 such that 6 =-90, 7 =90, a7=d7=0, following the suggestion in

(Veitsschegger et.al., 1988). As depicted in Figure 6-6, errors in PROBE can

be modelled by 3 positions 766
,, aad and 3 orientations 766

,, , of

which only 77
, a need to be identified. Therefore, errors in BASE and

PROBE are successfully represented by 6 parameters: 0000
,,, ba and

77
, a .

O0

z0

y0

x0

z6x6

y6

zt

xt

yt

Om

zm

ym

xm

BASE

Ot

PROBE
T6

0

Frame F0

(robot base)

T

Frame Fm

(metrology)

Frame F6

(flange)

Frame Ft

(measured target)

143

Figure 6-6 Errors in the PROBE transformation are modelled by

0000
,,, ba and 77

, a

6.2.3 Elimination of redundant parameters

Table 6-2 Identifiable geometric error parameters

Link i gi Link i gi

 l0
*
 a0, b0, 0, 0 l3 d3, a3, 3

 l1 1, d1, a1, 1 l4 4, d4, a4, 4

l2
**

 2, a2 l5 5, d5, a5, 5

l2’
**

 2’, a2’, 2’, 2’ l6 6, d6, a6, 6

l3’
**

 a3’, 3’, 3’ l7
*

7, d7

l4’
**

 (none) Total 34

(* : BASE and PROBE transformations, **: parallelogram linkage).

Parameter redundancy exists due to the design of the parallelogram structure

whose opposite links are nominally parallel (link 2’ // link 4’, link 3’// link 2).

Thanks to the simple analytic form of the Jacobian matrix, redundant error

parameters of the loop can be simply determined without the need to use the

trivial technique presented in section 4.2.1.2 as follows:

 Since link 4’ and 2’ are designed to be parallel: x4’=-x2’, it can be seen

from (6.22) that Ha4’ = -Ha2’, thus '4
a and

'2
a are linearly dependent.

Therefore, only one is identifiable, say
'2

a . In contrast, despite link 3’

being parallel to link 2, '3
a and 2

a are independent and thus both of

them are identifiable because Ha3’ ≠ Ha2.

7

6

6

a6 d7

d6

x5 z6, y7

z7, z5

x6,x7

y5

144

 Similarly, 3
 and

'2
 are dependent terms; '4

 and '4

are

dependent on (43
,).

The redundant parameters must be omitted from the error vector g and their

corresponding columns must be discarded from the identification Jacobian

matrix)(gH . The final 34 identifiable parameters are given in Table 6-2.

6.3 Modelling of joint deflections

6.3.1 Joint deflections due to structural loading

It is straightforward that joint deflections due to structural loading occur mostly

at joint 2 and 2’ due to the masses of the upper arm (link 2), the forearm (link 4)

and the counterweight mounted at the end of link 2’. In order to calculate s

2

and s

'2

in equation (4.16) in Chapter 4, it is necessary to formulate the

torques 2 and 2’ generated at these joints to counteract the gravitational

forces. These torques are calculated from the static equilibrium condition at

these joints.

Figure 6-7 displays the free body diagram of the forces acting on the links and

joints of the robot; P2, P4, Pw denote the masses of link 2, 4 and the

counterweight. Pins B, C, D are cut open to examine reaction forces at the pins.

Because these pins do not transmit moment (MB=MC=MD=0), internal forces

acting at point B and C, RB and RC, must be in the same direction of link 3’.

Furthermore, it can be seen that:

)()(
BACD

RMRM (6.25)

where the notation)(
CD

RM denotes the moment created at point D by the

force RC applied at point C and so forth.

145

Figure 6-7 Free body diagram of forces in the x1y1 plane of frame 1

At point D, since 0
D

F :

CD
RPR

4
 (6.26)

At joint 2, since 0
A

M :

)()(
22 DAA

RMPM (6.27)

Substituting (6.26) to (6.27) gives:

)()()(

422 CAAA
RMPMPM

)()(
42

PMPM
AA

since 0)(

CA
RM

22422

)(caPlP

(6.28)

Likewise, at joint 2’, since 0 A
M :

)()(
'2 wABA

PMRM (6.29)

Substituting (6.25) to (6.29) gives:

)()(
4'2 wAD

PMPM

)())()((

'2'2'244'244
 saPclPsaPclP

wwww

'244'244

)()(saPaPclPlP
wwww

(6.30)

2

2’

Pw

P2

P4

l2
lw 2

2’

A B

C

D RC

RB

a4

l4

aw

x1

2’+

RD

link 4
link 2

link 2’

146

By combining equation (4.15) in Chapter 4 with (6.28) and (6.30), the

deflections of joint 2 and 2’ due to structural loading are obtained as:

212

 cGs

'23'22'2

 sGcGs

(6.31)

where:

)(
242221

aPlPcG

)(
44'22

lPlPcG
ww

)(
44'23

aPaPcG
ww

are dimensionless constants formed by joint compliances c2, c2’, link weights

and distances from joint axes to mass centres. Although these parameters are

unknown, G1, G2, G3 are identifiable by merging equations (6.31) and (4.16) of

Chapter 4 to the existing error model (6.11). The columns HG1, HG2, HG3 in the

identification Jacobian matrix)(gH are:

)(
'4'321 HHcH

G

)(
'4'3'3'22 HHHcH

G

)(
'4'3'3'23 HHHsH

G

(6.32)

where Hi is calculated from (6.12).

6.3.2 Joint deflections due to payload

Considering the robot carries a payload with mass m (kg) and center of gravity

M located at constant position TMMM

n

M zyxp ,,

(m) in the flange frame Fn

(Figure 6-8). The wrench (force and moment) applied at On by the gravitational

force P of the weight is:

PpR

P

Pp

P
W

n

MnM
)(00

(6.33)

where the operator denotes the cross vector product. Notice that the wrench

W in (6.33) is expressed in the base frame F0 with z0//P. With TmgP ,0,0 , g=-

147

9.81(m/s2) and recall equation (A.3) in Appendix A that the rotation matrix
0

n
R

describing the orientation of frame Fn w.r.t. frame F0 has the general form of:

zzz

yyy

xxx

n

asn

asn

asn

R0

where),,(0

zyxn
nnnn ,),,(0

zyxn
ssss ,),,(0

zyxn
aaaa

are the directional

cosine vectors of the xn, yn , zn axes of the flange frame Fn in frame F0,

equation (6.33) yields:

T

MxMxMxMyMyMy
mgzaysxnmgzaysxnmgW)0)()(00(

(6.34)

Figure 6-8 The robot carrying a deadweight.

The above wrench W is related with the torques at actuated joints of the robot

as:

WqJ T)((6.35)

In the above equation,
n21
 ,,,

'

is the (1n) – vector of torque

generated at n actuated joints to counteract with W (n=6 in this case),)(qJ

is

the (n6) – manipulator Jacobian matrix. For convenience, denote the

transpose of)(qJ

as K:

P=mg

frame Fn

y0
x0

z0

frame F0

zn

M

xM

yM
zM

xn

yn

On

148

TqJK)(

K is thus a (6n) – matrix.

Equation (6.35) can be written for actuated joint i as:

WK
ii

 (6.36)

where
i

K

is the i

th
 row of matrix K corresponding to joint i. For actuated rotary

joints 1, 4, 5 and 6 of the Smart H4 robot which belong only to the open chain,

i
K has the form (Spong et.al., 2004 – eq. (5.1.27)):

T

i

ini

i
z

ppz
K

1

11
)(

(6.37)

For joints 2 and 2’, the torques 2 and 2’ must also account for 3’ and 4’ (those

at the passive joints). From [(Siciliano et.al., 2007) - eq. (3.121)], 2 and 2’ are

given as:

 WKK)(
'4'3'4'322

WKKK)(
'4'3'2'4'3'2'2

(6.38)

Therefore:

 '4'32
KKK

'4'3'2'2
KKKK

(6.39)

where Ki on the right hand side is calculated following (6.37).

Combining equation (4.15) in Chapter 4 with (6.34) and (6.36), the deflections of

joint i e

i
 due to the deadweight can be obtained as:

0

)()()(

)()()(

0

0

mgczamgcysmgcxn

mgczamgcysmgcxn

mgc
K

iMxiMxiMx

iMyiMyiMy

i

i

e

i

149

0

0

0

ixixix

iyiyiy

i

i

DaCsBn

DaCsBn

A
K

(6.40)

where the constants mgcA
ii

 , mgcxB
iMi

 , mgcyC
iMi

 , mgczD
iMi

 are

formed by the joint compliance, the deadweight’s mass and position of its mass

center and Ki is given in (6.37) for i=1,4,5,6 and in (6.39) for i=2,2’. Equation

(6.40) can also be written as:

i

i

i

i

xiyixiyixiyii

e

i

D

C

B

A

aKaKsKsKnKnKK)(
)5,()4,()5,()4,()5,()4,()3,(

(6.41)

where K(i,j) denotes the j
th
 element of Ki.

From this point, one might see that the four parameters Ai, Bi, Ci, Di for joint i

can be identified via the existing error model of the robot. By merging equations

(6.41) and (4.16) in Chapter 4 with (6.11), the corresponding columns HAi, HBi,

HCi, HDi in the identification Jacobian matrix)(gH are obtained as:

)3,(iiAi
KHH

)(

)5,()4,(xiyiiBi
nKnKHH

)(
)5,()4,(xiyiiCi
sKsKHH

)(
)5,()4,(xiyiiDi
aKaKHH

(6.42)

where Hi, Ki on the right hand side are calculated in (6.12), (6.37) for i=1,4,5,6

and (6.22), (6.39) for i=2,2’. Notice that among the maximum of 2464

parameters to be identified, some are unidentifiable, meaning that they have no

effects on the corresponding joint deformation e

i
 . Identifiable parameters are

listed in Table 6-3.

150

Table 6-3 Identifiable compliance parameters due to payload

Joint Identifiable Unidentifiable Explanations of un-identifiablity

1 (none) A1, B1, C1, D1 Force P // z0: joint 1’s axis

2 A2, B2, C2, D2 K(3’,4) = K(4’,4) and K(3’,5) = K(4’,4),

thus HB2=HC2=HD2=0

2’ A2’, B2’, C2’, D2’ (none)

4 A4, B4, C4, D4 (none)

5 A5, B5, C5, D5 (none)

6 B6, C6 A6

D6

K(6,3)=0, thus HA6=0

K(6,4)=ax and K(6,5)=ay, thus HD6=0

Total 15 9

6.4 Error identification

The total 52 parameters, including 34 for modelling geometric errors (section

6.2), 3 for modelling structural loading effect (section 6.3.1) and 15 for modelling

external loading effect (section 6.3.2), are concatenated into vector g in

equation (6.11) for identification. The columns of the (652) - identification

Jacobian matrix H(g) are calculated using:

 Equation (6.12) for geometric parameters of the main open loop,

including those of the PROBE transformation,

 Equation (D.6) in Appendix D for parameters of the BASE

transformation,

 Equation (6.22) for geometric parameters of the parallelogram linkage,

 Equation (6.32) for the parameters G1, G2, G3 that model the effect of link

masses,

 Equation (6.42) for the parameters Ai, Bi, Ci, Di that model the effect of

the carrying deadweight.

In this work, tool poses are measured by a laser tracker providing both position

and orientation components (6dof), thus the error x is a (16) – vector.

Therefore, at least 9 measurements are required to solve the error model (6.11)

for g in least square sense. The identification process is then carried out as

illustrated in Figure 6-9.

151

Figure 6-9 The error parameters identification algorithm

6.5 Error compensation

As introduced in Chapter 4, a two-stage error compensation scheme is adopted

to improve robot positioning accuracy: firstly, tool pose errors will be

compensated using the model developed thus far and secondly, the residuals

will be corrected using a global metrology system.

6.5.1 Model-based error compensation

At the first stage, tool errors are compensated using the developed error model

as follows:

a. From the desired position x
d
, calculate the joint solution = (1, 2, 2’,

4, 5, 6) using the nominal inverse kinematics. Calculate the

manipulator Jacobian matrix J() using equation (6.37) and (6.39).

START

Initialize parameter g (from Table 6.1 & eq.(D.6))

Calculate the identification Jacobian matrix H
using eq. (6.12, 22, 32, 42) and (D.5)

x = xM - f(,g)
using (B.15)

Solve linear least-square for g

g=(H(g)TH(g))-1H(g)T x

gk+1-gk<

Update constant parameters

g =g+g

Update position-dependent i :

- Gravitational loading:

2, 2’ using eq. (6.31)

- External loading:

i using eq. (6.41)

- Parallelogram linkage error:

3’ , 4’ using eq. (6.20)

STOP

xM

N

Y

152

b. Calculate actual joint values taking into account the errors as the

results of joint offset, structural loading using equations (6.31), external

loading using equations (6.41) and parallelogram errors using equations

(6.20).

c. With the actual joint values , estimate the actual position x
a
 using the

forward kinematics with other identified constant DH parameters in g

(section 6.3.1).

d. Calculate the differential translation and orientation vector
ad xxx

using equation (B.15).

e. Calculate the infinitesimal joint increment xJ 1)(to compensate

for x . Update joint values .

f. Repeat from the step (b) until x is sufficiently small (in this work,

)10 6x .

g. Download the final joint values to the robot controller for execution.

The above correction process is depicted in Figure 6-10.

Figure 6-10 Flowchart of the model-based error compensation

6.5.2 Sensor-based error compensation

At the second stage, the global metrology system is utilised to correct residual

errors of the end-effector (static correction). Two methods of correction are

developed depending on whether the (generic) metrology system is able to

measure full pose (6dof) or just the position components (3dof).

If 6dof measurements are provided:

Nominal inverse

kinematics

=f -1(x)

Identified forward

kinematics

x=f(,g)

xd xa x
+

-

+
+

=J () -1x

g=g+g

+
+

153

a. Calculate the differential translation and orientation vector
md xxx

between the desired pose x
d and the measured pose x

m
 using equation

(B.15) in Appendix B.

b. Calculate the infinitesimal joint xJ 1)(to correct x and

download the modified joint solution to the robot controller for motion

execution.

c. Repeat from step (a) until x is sufficiently small.

The sensor based correction process is depicted in Figure 6-11.

Figure 6-11 Error correction using a 6dof measuring device

If only 3dof positional measurements are provided, error vector
md ppp

between the programmed p
d
 and measured position p

m
 is calculated and

downloaded to the robot controller to execute a relative movement along this

vector from the robot’s current position (Figure 6-12). The iterative correction

process continues until p is sufficiently small. Since it is only possible to

correct the position components of the end-effector, this simple method is only

feasible as long as errors in orientation have been compensated by the model

in the first step to acceptable tolerance. Notice in both cases, measurements

from the global metrology system are expressed in the robot base frame, thanks

to the BASE and PROBE transformations already identified in the calibration

process (section 6.2.2).

=J()-1x
xd

xm (6dof)

+

- +

+

+

Servo

Control

Industrial Robot Controller

 Trajectory

Generation

154

Figure 6-12 Error correction using 3dof measuring device

The thresholds that terminate the iterative sensor based correction process

were determined experimentally based on the resolution of the robot used. In

this work, the threshold for the position components p and orientation

components

of the representative Smart H4 robot were chosen as

0.08mm and 0.05, where .

denotes the 2-norm of the corresponding vector.

xd

pm (3dof)

+

- +
Servo

Control

Industrial Robot Controller

Trajectory

Generation

pd p

155

7 EXPERIMENTAL SETUP

This chapter describes the experimental setup developed to demonstrate the

application of the proposed framework for the purpose of robot calibration and

error compensation.

7.1 Overview

A distributed, service-based control system for the laboratory facilities used in

this work is developed using the design template presented in Chapter 5. The

facilities include a Comau Smart H4 robot, a Leica AT901-MR laser tracker that

measures the position of the robot via the TMAC reflector (Figure 7-1) and

Matlab computing software used to implement the calibration and error

compensation models presented in Chapter 6.

Figure 7-1 The hardware setup

The network architecture of the hardware and software components is depicted

in Figure 7-2. The software components (services) include:

Laser Tracker

Robot

z

y

x

Main working volume

156

 The Smart H4 robot service, which communicates with the C3G

controller of the robot via RS-232 serial interface;

 Two laser tracker services, one for automatic control and another for

visualization of the measurements of the AT901-MR laser tracker. They

communicate with the laser tracker’s AT controller via the common

Ethernet (TCP/IP);

 Matlab computing service, which interfaces with the Matlab (version 7.4)

software via Windows’s DDE (Dynamic Data Exchange) technology.

 Cell controller service, which performs overall management of other

services.

Figure 7-2 Network architecture

All the services are programmed in Visual C#, except the laser tracker

visualization service which is programmed in Visual C++. The interconnections

between these PnP services are established at run-time: the cell controller

service subscribes to all other services and assists the robot service to

subscribe to the laser tracker and Matlab services (Figure 7-3). After the

connections has been set up, the cell controller dispatches robot programs to

AT Controller

C3G Controller

Ethernet (100MBits/s)

Smart H4
Robot

service

AT901
Laser Tracker

service

Matlab
service

Cell controller
service

Laser Tracker
Visualisation

service

AT 901
Laser TrackerSmart H4 Robot

Matlab 7.4

RS232 DDE (Dynamic Data Exchange)

157

the robot services and monitors all activities in the work-cell during the

execution of these programs whilst the robot service is able to actively control

its associated resources. The following sections will describe the developed

services and their operations in more details.

Figure 7-3 The software (service) setup.

7.2 Robot service

Figure 7-4 The robot service

The main responsibility of the Smart H4 robot service is activating robot

programs dispatched from the cell controller in the C3G controller. When these

programs are being executed, they might send control commands to other

peripheral devices; in such cases, the robot service will setup the

communication channels between them. Since the robot service is automatically

controlled from the robot program, its Graphical User Interface (GUI) is

AT901
Laser Tracker

service

Smart H4
Robot

service

Matlab
service

Cell controller
service

Subscription to

Peripheral devices used

Target coordinates

(position and orientation)

Deviation between the

target and current

location, measured by

the laser tracker

(green: within tolerance)

Current activated command

Connection status with the controller (online)Robot status (busy)

158

designed in a simple way to avoid unnecessary complication to the user (Figure

7-4). Control commands provided by the service are listed in Table 7-1.

Table 7-1 Control commands of the robot service

Command Input Data Output Data Type Comment

ACTIVATE name: String n/a NoData Run a robot program

DEACTIVATE name: String n/a NoData Stop a robot program

ARM_POS n/a pos: Double [6] SingleData Get current robot

position

ARM_JNTP n/a joint: Double [6] SingleData Get current joint

angles

JNTP_TO_POS joint: Double [6] pos: Double [6] SingleData Nominal forward

kinematics

POS_TO_JNTP pos: Double [6] joint: Double [6] SingleData Nominal inverse

kinematics

7.3 Matlab service

The Matlab service (Figure 7-5) serves as the interface for Matlab software in

order that the robot service can invoke Matlab commands at run-time. The

service’s control commands are listed in Table 7-2.

Figure 7-5 The Matlab service

The command Set Matrix is for setting a matrix given the name matrix_name

and the data matrix into the Matlab workspace. These parameters are provided

in the fields Option and InputData of the class Command, respectively.

Likewise, the command Get Matrix is for retrieving data from a matrix named

159

matrix_name from Matlab workspace. The command Evaluate is for evaluating

an expression, which could be a Matlab internal command or a user-defined

function written in the language. By using these three basic commands, the

robot can delegate complex numerical computations to Matlab and retrieve the

final result. For example, the error identification and compensation algorithms

presented in sections 6.4, 6.5.1 are programmed in separate Matlab functions

that will be called by the robot to perform the relevant processes.

Table 7-2 Control commands of the Matlab service

Command Option Input Data Output Data Type

Set Matrix matrix_name matrix: Double [m,n] n/a NoData

Get Matrix matrix_name n/a matrix: Double [m,n] SingleData

Evaluate n/a expression: String n/a NoData

7.4 Laser tracker service

The laser tracker service (Figure 7-6) is the control application for Leica laser

trackers. The service’s control commands are listed in Table 7-3.

Figure 7-6 The laser tracker service

The control commands are designed in such a way that multiple robots (if

available) are able to control the laser tracker and make use of its

measurements directly. Recall equation (6.23) that the relationship between the

laser tracker’s measurement T and the position 0

n
T of a robot to be measured is:

160

PROBETBASET
n
 0 (7.1)

where BASE , PROBE are the transformations defining the robot base frame

F0 w.r.t. the laser tracker frame and the TMAC frame w.r.t. the robot flange

frame Fn, respectively (see Figure 6.5). Therefore, in order that the

measurement can be used by the robot (for positioning), it must be transformed

into the right frame as:

110 PROBETBASET
n

 (7.2)

In addition, the result of equation (7.2) in matrix form must be converted into the

data types that the robot can understand. They are usually in the form of a 6-

vector of position and orientation components in which the latter can either be

represented as Euler, Roll-Pitch-Yaw or projective angles (Spong et.al., 2004),

depending on the robot brand. Comau robots use Euler (Z-Y-Z) angles to

represent the orientation.

Table 7-3 Control commands of the laser tracker service

Command Option Input Data Output Data Type

Set Base rpy2tr/euler2tr/prj2tr base: Double [6] n/a NoData

Set Probe rpy2tr/euler2tr/prj2tr probe: Double [6] n/a NoData

Move n/a point: Double [6] n/a NoData

Single

Measurement

 tr2rpy/tr2euler/tr2prj duration: Integer data: Double [6] SingleData

Continuous

Measurement

tr2rpy/tr2euler/tr2prj interval: Integer data: Double [6] MultipleData

Stop

Measurement

n/a n/a n/a StopData

The laser tracker service will perform the data transformation and conversion

mentioned above for each measurement automatically. Once the BASE and

PROBE have been determined via the robot calibration process, the robot can

assign these two transformations in the laser tracker service by using the

commands Set Base and Set Probe, respectively. When calling the measuring

commands (Single Measurement and Continuous Measurement), the robot also

provides them with the optional data types that the measurements are

161

converted into (Figure 7-7). The command Continuous Measurement is of type

MultipleData, thereby, the robot must send a command Stop Measurement to

terminate the process. Multiple robots sharing the laser tracker must call the

command Move provided with their instant positions before any measurement

can take place. When receiving this command, the laser tracker calculates

equation (7.1) to find out the position of the TMAC that the laser beam will be

pointed toward then uses the ADM (section 2.3.1.1) to re-establish the

connection.

Figure 7-7 Measurements of the laser tracker are transformed and

converted to proper robot data types.

7.5 Laser tracker visualization service

The laser tracker visualization service was originally developed as a stand-

alone control application for the laser tracker and has been used by laboratory

members in other research projects. In this work, it is mainly used for the

visualization of the laser tracker’s measurements using OpenGL engine (Figure

7-8). The software also contains built-in functions for calculating best-fit

geometries (e.g. lines, circles, planes…) of the measurements, based on which

initial estimates of the BASE and PROBE transformations between the tracker

and the robot can be determined and input to the calibration process. Details on

the procedures developed in this work to determine these two transformations

using the software are described in Appendix D.

Robot 1 Robot 2

(X, Y, Z, R, P, Y)(X, Y, Z, Z, Y, Z)

162

Figure 7-8 The laser tracker visualization service

7.6 Cell controller service

The cell controller service is responsible for the overall management of services

in the work-cell. It allows the system operator to:

Figure 7-9 Discovery and setting up the integration of services

 Discover the availability of services and assign the interconnection

between them in a PnP manner. To establish the connection

configuration given in Figure 7-3, the operator firstly scans for the

services available on the network then subscribes the cell controller to

6D measurements

Control Panel

Scan for available

services on the
network

Subscribe the Cell

Controller service to
the services found

Select the robot

Select the robot’s

peripheral devices

Subscribe the robot

service to the peripheral
devices’ services

Save/ Load the setup

configuration

1

3

4

2

5

6

163

these services. By doing this, the cell controller is able to monitor all the

activities of the services in the work-cell. Next, the operator subscribes

the robot service to those of the peripheral devices that it will use for the

current manufacturing process (i.e., the laser tracker and the Matlab

services). The result of this service integration can be saved and loaded

for the next run (Figure 7-9). As can be seen, the integration of services

can be performed in a simple way without having to follow the procedure

previously described in section 5.1.1.3 (or in order words, re-

programming of services).

 Assign the tasks to the services. Figure 7-10 demonstrates the

procedure. The operator firstly selects a service in the list of available

services on the top left panel. All the commands provided by the

selected service to control its device will be displayed on the bottom left

panel. Selected commands will be displayed on the right panel, from

which the operator provides necessary optional parameters and input

data before activating them. Although it is possible to create the tasks to

all of the services to which the cell controller has subscribed, the main

purpose is assigning and activating a robot program in the robot service.

If the work cell contains several robots, the operator can also specify the

synchronization between them: whether they will run sequentially or

concurrently to each other.

Figure 7-10 Assigning the tasks to services

Select a device in

the list of available
devices

1

2

Select a command

in the command list
of the device

3

Provide parameters

to the selected
commands

Select how the

commands of
multiple devices are
executed

4

Execute the commands

5

164

 Monitor activities of the services. When the robot execute the given

robot program, it will generate and send multiple processes to its

peripheral devices. The cell controller monitors and visualizes the

evolution of the generated processes, including their statuses and data

(Figure 7-11).

Figure 7-11 Monitoring service activities at run-time

The distributed control system is depicted in Figure 7-12. The services run on

four Intel Core 2 PCs and Windows XP OS. To activate a service, the operator

only needs to double click the icon on the desktop screen then uses the cell

controller to wire it up with the others as presented in this section. When the

service is closed, it sends the Shutdown notifications to the subscribers to

delete its corresponding instance in these services as presented in section

5.2.3.6.

Figure 7-12 The system of developed services

Robot Service Matlab Service Laser Tracker Services Cell Controller Service

165

8 SIMULATION, EXPERIMENT RESULTS AND ANALYSIS

This chapter presents the simulation and experiments undertaken in order to:

 Validate the work on error modelling and identification proposed in

Chapter 6 for serial manipulators having a parallelogram linkage,

 Demonstrate the use of the distributed control system in Chapter 7

developed by using the design template given in Chapter 5 for the

automation of the calibration and error compensation processes.

8.1 Simulation

A simulation was conducted to validate the developed error model in Chapter 6

and prove its novelty when compared with existing methods introduced in

Chapter 4. To begin with, simulated dimensional and angular errors of in the

range of 4×10-3 m and 4×10-3 radians were added to the nominal parameters

of the Smart H4 robot given in Table 6-1. In this case, the parallelogram

mechanism degenerated into a four bar linkage (since '4'2'32
, aaaa) and

thus, passive joint angles '3
 , '4

 were computed from the simulated
2

 ,
'2

 and

link lengths '4'3'22
,,, aaaa following the position equations of a four bar linkage

provided in Appendix C. As a result of the artificial errors, “actual” tool positions

deviated from the ones computed by the nominal kinematic model about 11mm.

If the proposed error model in section 6.2.1 is correct, identified error

parameters will be identical with the simulated and tool pose errors will be

significantly reduced. The calibration result of this model, denoted as model 1,

will be compared with result of a competitive model, namely model 2,

implemented based on the method given in (Marie et.al., 2008). In this model,

the equations (C.2) were differentiated directly to obtain an error model of the

parallelogram structure somewhat similar to equation (6.20). Twenty eight

simulated geometric error parameters were solved by the identification

algorithm presented in section 6.4, except for non-geometric errors, which are

not considered in this simulation. The threshold that terminates this Gauss-

Newton identification process is selected as 10-6. The condition number of the

166

regression matrices of the two identification systems, defined in equation (4.11),

is 92.04<100 indicating both of them are well-conditioned. The simulations were

carried out with different set of simulated data.

Figure 8-1 Accuracy of the proposed calibration model (Model 1) and a

competitive model (Model 2) from (Marie et.al., 2008) after the 2nd iteration

Figure 8-1 shows the results of the calibration models versus the iterations

produced from one set of simulated data. Model 1 converged quickly after 4

iterations and the mean residual error is 3.4×10-5 mm. Model 2 converged much

slower, taking more than 450 iterations to obtain a comparable result. This can

be explained as the linearization error of model 1 is mild since it is only due to

sine and cosine functions in equations (6.17-18) while that of model 2 is much

more severe. In addition to the speed of convergence, model 1 offers the

advantage of simplicity whereas the derivation of model 2 is a tedious work,

even with the aid of symbolic Matlab programming. Apart from these, error

parameters identified by model 1 and model 2 (after 450 iterations) are almost

identical, as depicted in Table 8-1.

It can be seen from the table that dimensional and angular parameters of the

parallelogram linkage (links 2’3’4’3) were identified with an accuracy better than

10-5 m and 10-5 rad while those of the open chain were identified with higher

accuracy (10-7 m and 10-7 rad, respectively). The simulation results have proved

that the proposed model is accurate and computationally efficient.

2 4 6 8 10 12 14 16 18 20
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

R
e

s
id

u
a

l
p

o
s
it
io

n
 e

rr
o

rs
 (

m
m

)

Iterations

Model 1

Model 2

167

Table 8-1 Identified errors parameters from the simulation

Link Input

Model 1
(after 7 iterations)

Model 2
(after 450 iterations)

Note about
identified values

Identified Error Identified Error

1 1 -1 -0.9999 5.72e
-6

 -0.9999 3.90e
-6

d1 -4 -4.0000 -2.67e
-5

 -4.0000 1.64e
-5

a1 -1 -1.0000 -1.04e
-5

 -0.9999 1.58e
-5

α1 4 4.0000 -2.33e
-6

 4.0000 9.26e
-6

2 2 3 2.9905 -9.54e
-3

 2.9905 -9.54e
-3

a2 -1 -1.0000 -1.61e
-5

 -1.0001 -8.50e
-4

2’

2’ -2 -1.9992 8.38e
-4

 -1.9992 8.43e
-4

 2’+3

d2’ -3 Dependent parameter, identified via d3

a2’ -2 2.0089 8.91e
-3

 2.0089 8.91
-3

 a2’-a4’

α2’ 3 2.9962 -3.77e
-3

 2.9962 -3.77e
-3

β2’ 0 -4.6e
-6

 0 -1.61e
-6

 0

3’

3’ Position dependent error

d3’ -2 Dependent parameter, identified via d3

a3’ -3 -3.0089 -8.88e
-3

 -3.0089 -8.98e
-3

α3’ 2 2.0000 -2.05e
-5

 2.0000 -1.96e
-5

β3’ 0 -2.16e
-5

 0 -1.48e
-5

 0

4’

4’ Position dependent error

d4’ -1 Dependent parameter, identified via d3

a4’ -4 Dependent parameter, identified via a2’

α4’ 1 Dependent parameter, identified via α3 and 4

β4’ 0 Dependent parameter, identified via α3 and 4

3

3 0 Dependent parameter, identified via 2’

d3 4 -2.0024 -0.24e
-3

 -2.0024 -0.24e
-3

 d2’+d3’+d4’+

d3

a3 1 0.9949 -5.05e
-3

 0.9949 -5.00e
-3

α3 -1 -0.8785 -4.17e
-4

 -0.8785 -4.13e
-4

 α3+α4’cos(7)

4

4 3 3.9888 -3.73e
-3

 3.9888 -3.74e
-3

 4+α4’sin(7)

d4 3 3.0004 3.66e
-4

 3.0004 3.52e
-4

a4 2 2.0000 1.31e
-5

 2.0000 4.67e
-6

α4 -2 -2.0000 -1.01e
-6

 -2.0000 -9.05e
-6

5

5 2 2.0000 2.57e
-6

 2.0000 -8.22e
-7

d5 2 2.0000 -3.06e
-6

 2.0000 1.29e
-6

a5 3 3.0000 -9.90e
-6

 3.0000 -9.04e
-6

α5 -3 -3.0000 1.10e
-6

 -3.0000 7.94e
-6

6

6 1 1.0000 -9.67e
-7

 1.0000 1.10e
-6

d6 1 1.0000 4.53e
-6

 0.9999 -5.00e
-6

a6 4 4.0000 -2.31e
-6

 4.0000 -8.88e
-6

α6 -4 -4.0000 -1.63e
-6

 -4.0000 3.15e
-6

(Units: length: 10-3m, angles: 10-3 rad)

168

8.2 Calibration

8.2.1 Experiments

Figure 8-2 Calibration is performed in the main working volume of the

robot. From left to right: a. Location of the volume in the robot workspace;

b. Visualization of the laser tracker’s measurements in the volume.

Calibration experiments on the real Smart H4 robot were performed to further

verify the proposed calibration model. The robot is calibrated within its

designated working volume, which is a rectangular box (L: 2000W: 800H:

1400) dominating its workspace. Actual positions of the robot when moving in

this volume are measured by the AT901-MR laser tracker having accuracy

better than 5×10-2mm in position and 10-2 degree in orientation via the TMAC

reflector (Figure 8-2). Nominal positions of the robot are calculated from joint

angles and will be pre-multiplied and post-multiplied with the BASE and

PROBE transformations to form the nominal 6D position of the TMAC in the

laser tracker base (equation (6.23) in Chapter 6). Initial (nominal) estimates of

the BASE and PROBE transformations are determined following the

procedures given in Appendix D. Deviations between these nominal TMAC

positions and their measurements, calculated in equation (B.15), are used to

800
850

1
0

0
02

0
0

0

8
0

0

1
4

0
0

x

z

y

Laser Tracker ‘s 6D measurements

Robot base

169

identify intrinsic error parameters of the robot structure as well as those of the

BASEand PROBE above following the algorithm given in section 6.4.

The robot was tested in unloaded and loaded with 18kg (40lbs) and 36kg

(80lbs) cases (Figure 8-3). The deadweight simulates the mass of an end-

effector in practice and is mounted at an offset distance to the centre of the

flange surface in order that it will create moment to all the joints (except joint 1).

Figure 8-3 Applied loading at the robot TCP. From left to right:

a. No loading; b. 18kg (40lbs) loading; c. 36kg (80lbs) loading.

The accuracy measures of the robot before and after calibration are defined as

the mean of the deviations in position and orientation between the laser tracker

measurements and the kinematic models’ estimates. The orientation

components in this section are represented in Roll-Pitch-Yaw angles. Denote

the 6D laser tracker measurement of the TMAC),,,,,(
MzMyMxMzMyMxM

pppx

and the corresponding estimate provided by a kinematic model

),,,,,(
zyxzyx

pppx

then the means of the errors for an entire set of m data

points are:

 m

pppppp

m

p

p

m

i
izMziyMyixMx

m

i
i

 1

222

1

)()()(

mm

m

i
izMziyMyixMx

m

i
i

 1

222

1

)()()(

(8.1)

170

and the standard deviations of these parameters are:

1

)(
1

2

m

pp
m

i
i

p

1

)(
1

2

m

m

i
i

(8.2)

The same calculations are also applied for individual components

zyx
ppp ,, of ,p and zyx

 ,, of .

The standard deviations of the identified parameters g in the identification

system (4.7) of Chapter 4 are determined as in (Lange, 1999; Montgomery

et.al., 2003). Firstly, let 2
 be the variance of the residual error x of the model

(4.7):

rn

x
n

i

i

1

2

2

(8.3)

where n is the total number of observations in m TMAC measurements, n=6m

since one TMAC measurement provides 6 observations; r is the number of

identified parameters in g; n-r is called the statistical degrees of freedom. The

variances of the identified parameters in g are calculated as:

CHH
2122

)(g)(g)(

T

g
(8.4)

where C is a (r r) symmetric matrix and the standard deviation of a parameter

gj in g therefore is:

jj
C

 jg
(8.5)

8.2.2 Implementation

Using the control system presented in Chapter 7, the calibration process was

automated as illustrated in Figure 8-4. A robot program was developed in

Comau PDL language to generate the desired robot configurations and send

commands to the laser tracker and Matlab software. When the robot has moved

171

to a position, it requests the laser tracker to take single measurement in one

second then adds the result to a matrix named mT in Matlab. It also records the

joint position reading corresponding to this instant position (by using the internal

PDL statement ARM_JNTP) then adds it to a Matlab matrix named mJ. The

process is then repeated for all the points in the volume. At the end of the

program, the robot activates a developed Matlab function named

“H4Calibration”. The function accepts the mJ and mT as its inputs, performs the

identification for error parameters then displays the calibration results to the

user and saves the identified parameters onto hard disk.

Figure 8-4 Implementation of the calibration process

8.2.3 Results and analysis

To verify whether the proposed error model is accurate, the calibration was

performed using several models. When the robot was unloaded, four models

were used to identify parameter errors from a set of 90 measurements. In the

first model, the robot is regarded as a simple serial-link manipulator (by

computing equation (6.1) with (6.3), thus neglecting the parallelogram

structure). This “standardized” model uses the 6×4+6=30 parameters (Schröer

et.al., 1997). The second is the proposed model using 34 geometric parameters

described in sections 6.2.1, 6.2.2. The third and fourth models are extended

from the first and second with the inclusion of the compliance parameters G1,

172

G2, G3 presented in section 6.3.1. The calibration results are summarized in

Table 8-2.

Table 8-2 Residual errors in position and orientation of the models

Models

Errors in position

(10
-3

m)

Errors in orientation

()

p p

x

x

y
 y

z

z

Nominal 4.03 0.66 0.380 1.283 0.079 0.571 0.530 0.917

Model 1 1.14 0.60 0.015 0.013 0.026 0.020 0.021 0.016

Model 2 1.08 0.38 0.015 0.011 0.020 0.014 0.020 0.015

Model 3 0.78 0.35 0.015 0.010 0.020 0.010 0.020 0.010

Model 4 0.40 0.21 0.008 0.007 0.008 0.005 0.010 0.007

It can be seen from Table 8-2 that all the models were able to predict the

orientation components accurately. This can be explained as parameters of the

last three links which affect the TCP orientation are identical in the four models.

On the other hand, differences between the models: the parallelogram and

compliance parameters of joints 2, 2’ mostly affect the positional accuracy of the

TCP. The mean values of residual errors in position initially were 4.03mm

(before calibration) then reduced to 1.14mm, 1.08mm, 0.78mm and 0.40mm

with the four models. There was only a slight improvement in the result of the

proposed model 2 over the model 1’s because they were both deteriorated by

the deflections caused by link weights (Figure 8-5a). When this non-geometric

error was eliminated, the difference became much clearer (Figure 8-5b):

 Model 4 outperformed model 2 by more than 250%, proving that the

work on modelling of joint deflections due to structural loading is

accurate.

 Model 4 outperformed model 3 by almost 100% even though they

utilized the same deflection error model. Since the joint deflections s

2
 ,

s

'2
 which contribute to the accuracy improvements of these models

over the formers are functions of joint angles 2 and 2’ (equation (6.31)),

it can be inferred that 2 and 2’ were better estimated by model 4, as

the result of the developed error model of the parallelogram linkage.

173

Therefore, the proposed error modelling for serial manipulators having

the parallelogram structure does improve calibration accuracy.

Figure 8-5 Experimental evaluation of the standardized serial link model

and the proposed calibration model when the robot is unloaded

Next, the robot was tested in the 18kg and 36kg loaded cases. The deflections

of the robot structure due to the payloads, measured as the deviations between

the positions of the robot before and after being loaded, are shown in Figure

8-6. In order to verify the work on modelling of the deflections, the robot was

firstly calibrated by using the model 4 above then by using the complete model,

namely model 5, which includes 52 geometric and compliance parameters

described earlier in section 6.4 of Chapter 6. Figure 8-7 displays the position

errors of the robot before and after calibration using these models.

Figure 8-6 Elastic deflections caused by the deadweight, measured over

150 data points.

174

Table 8-3 Accuracy of the calibration models

Load case

Errors in position

(10
-3

m)

Errors in orientation

()

p p

x

x

y
 y

z

z

18

kg

Nominal 3.95 0.90 -0.519 2.098 -0.046 0.067 -0.360 2.090

Calibrated 0.50 0.29 -0.016 0.081 0.002 0.008 -0.016 0.083

36

kg

Nominal 4.08 1.00 -0.390 2.106 -0.055 0.066 -0.229 2.098

Calibrated 0.57 0.33 -0.027 0.100 0.002 0.009 -0.027 0.100

Figure 8-7 Experimental evaluations of the proposed calibration model

without/with compensation for external loading.

It is interesting to see from Figure 8-6 and Figure 8-7 that despite the payloads

having caused significant deflections (0.5mm and 1.0mm, respectively), the

average deviations between nominal and “actual” robot positions before

calibration remain almost unchanged at 4mm. This might be explained as the

errors induced by inaccurate geometric parameters and the deflections are not

always in the same directions: the latter might augment or suppress the former,

depending on the configurations of the robot. Model 4, though it was able to

reduce the initial errors by more than 300% (from 4.0mm to 1.22mm), lost its

accuracy by more than 300%, compared with the unloaded case (from 0.4mm

to 1.22mm). Model 5, having parameters modelling joint compliances induced

by the payloads, produced better results: its average accuracy is 0.50mm for

the 18kg and 0.57mm for the 36kg deadweight. Although there is a loss of

nearly 0.1mm in the accuracy of this model for every applied 18kg, the results

are considered acceptable, given that the deflections are 5 times higher

(0.5mm). This 20% of uncompensated deflections might be owed to the link

175

compliances and deformations of joint bearings that are unaccounted for in the

model (DeVlieg, 2010). The calibration results of model 5 for the two load cases

are summarized in Table 8-3.

Figure 8-8 Output of the Matlab function H4Calibration at the end of the

automated calibration process

From the experimental evaluations performed, it can be concluded that the

calibration model (model 5) is sufficiently accurate [<1mm as stated in the

research objective and comparable to respective research (Schröer et.al.,

1997)]. Figure 8-8 displays output to the user of the Matlab function

H4Calibration that implements the model at the end of the automated calibration

process. The result is of the calibration process of the 36kg loaded case, which

takes about 15 minutes to collect the 150 laser tracker’s measurements (in 10

line segments roughly parallel to the Y axis) and 5 seconds to complete the

parameter identification in Matlab. It can be seen from the probability

distributions shown in the figure that the calibration model was able to predict

individual error components zyx
ppp ,, of p and zyx

 ,, of

within the accuracy of 1.0mm and 0.4, respectively. The geometric and

compliance error parameters of the robot identified by the model are

summarized in Table 8-4.

176

Table 8-4 Identified parameters of the calibration model in the 36kg loaded

case

a. Geometric parameters

Li
nk

 () d (10
-3

m) a (10
-3

m) () ()

1 0.04 0.08 -1.05 0.39 0.10 0.04 0.06 0.009

2 0.02 0.06 1.48 0.10

2’ -0.14 0.02 0.24 0.03 0.03 0.02 -0.02 0.01

3’ 1.67 0.10 0.004 0.006 0.02 0.005

4’

3 -2.73 1.00 0.66 0.21 0.08 0.01

4 0.08 0.02 0.32 0.37 -1.74 0.58 -0.03 0.005

5 -0.05 0.006 -0.37 0.12 1.86 0.63 0.02 0.005

6 -0.25 0.08 0.06 0.51 0.15 0.49 -0.01 0.02

7 0.01 0.006 -1.26 0.46

Li

nk
a (10

-3
m) b (10

-3
m) () ()

0 -0.54 0.17 0.48 0.23 -0.03 0.01 0.025 0.005

b. Compliance parameters

Li

nk

Ai (rad/m) Bi (rad) Ci (rad) Di (rad)

2 -3.7.10
-4

 6.1.10
-4

2’ -6.8.10
-3

 9.0.10
-4

 4.6.10
-4

 2.7.10
-4

 -2.1.10
-4

 2.4.10
-4

 -1.4.10
-3

 2.7.10
-4

4 -1.8.10
-2

 1.0.10
-3

 1.9.10
-4

 2.5.10
-4

 -2.2.10
-3

 2.0.10
-4

 -5.0.10
-3

 2.7.10
-4

5 -8.0.10
-3

 2.4.10
-4

 1.7.10
-4

 2.0.10
-4

 -3.9.10
-4

 1.9.10
-4

 -2.5.10
-3

 3.2.10
-4

6 1.6.10
-4

 3.3.10
-4

 -4.3.10
-3

 1.0.10
-3

Li

nk
G1 G2 G3

2 7.7.10
-3

 1.1.10
-3

2’ 4.9.10
-5

 1.5.10
-3

 -3.6.10
-3

 1.0.10
-3

8.3 Error compensation

8.3.1 Experiments

Other experimental evaluations were performed to validate the two stage error

compensation method proposed in this work. The robot was programmed to

177

travel along 6 straight lines parallel to the Y axis within its main working volume;

each line contains 13 coordinate locations at an equal distance of 150mm

(Figure 8-9). The robot was firstly positioned by the error compensation model

whose parameters were determined from the calibration above and then was

guided by the laser tracker to the target positions.

Figure 8-9 The test points for error compensation

The positions of the robot before and after each error compensation stage were

measured by the laser tracker. These measurements are used to calculate the

following accuracy measures, with reference to (ISO 9283, 1998) and (Young

et.al., 2000):

 Absolute accuracy of the robot, measured as the deviation between

“actual” position xM and the programmed position x following equations

(8.1-2).

 The straightness of the Y axis, measured as the deviations in Z-axis and

X-axis of the position xM to the datum line that best fits through the 13

positions of the robot when travelling along the Y axis.

8.3.2 Implementations

Using the developed control system, the tests were automated by a developed

PDL robot program as follows. At the start of the program, the robot activates a

developed Matlab function named LoadParams which loads the identified

178

calibration parameters from the hard disk into Matlab workspace memory.

These include the two BASE and PROBE transformations which will be set to

the laser tracker service (part 7.4). This process is programmed in a PDL

routine named INITIALIZE (Figure 8-10).

Figure 8-10 Loading identified calibration parameters into memory

For each target position, the robot firstly moves on its own nominal kinematic

model then performs the two stage error compensation process as depicted in

Figure 8-11.

 Model-based error compensation: The robot firstly calls the internal PDL

statement POS_TO_JNTP to transform the target position from

Cartesian to joint coordinates (the inverse kinematics). The joint angles

are input to a developed Matlab function named “H4Compensation”

which implements the error compensation algorithm in section 6.5.1.

This function uses the identified parameters loaded by the Matlab

function LoadParams above to calculate the joint solutions that

compensate for the errors. The robot retrieves the modified joint solution

calculated by the function then advances to the target position

corresponding to these joint coordinates.

 Sensor-based error compensation: is implemented as a static (“move

then measure”) correction since the Smart H4 robot does not have a

necessary low level interface to its C3G controller. The robot firstly

requests the laser tracker to take multiple measurements, each of which

is within 50ms. The measured current robot position and the target

position are input to a developed PDL routine CALC that calculates the

Routine INITIALIZE:

Loading the identified

parameters

179

corrective joint increment. Since it is not possible to calculate the inverse

Jacobian matrix (section 6.5.2) in the PDL language, this routine actually

delegates the work to the robot service and retrieves the result. The

robot makes a differential move corresponding to the provided joint

increment then calculates the residual errors in position and orientation.

This process is repeated until the errors are smaller than 0.08mm and

0.05, respectively. These tolerances are defined on the basis of the

resolution of the robot, measured as around 0.05mm in translation and

0.02 in orientation by the laser tracker when the robot moves in

infinitesimal joints increments (0.0005).

The model-based and sensor-based error compensations are programmed into

two separate PDL routines, MODEL_COM and SENSOR_COM. Other robot

programs can reuse these shared routines as will be shown later in section 8.4.

If another sensor is used instead of the laser tracker, the technician only has to

modify the relevant commands in the SENSOR_COM routine whereas

computer programs (services) remain unchanged.

Figure 8-11 Implementation of the two-stage error compensation

Routine MODEL_COM:

Model-based

error compensation

Routine SENSOR_COM:

Sensor-guided

error correction

180

8.3.3 Results and analysis

Initial position errors of the robot in the 36kg loaded case are shown in Figure

8-12. It can be seen from the figure that the deviations in the X and Z axes are

biased toward positive and negative directions, respectively. These could be

attributed to constant offsets at joint 2 and 2’ as well as the deflections induced

by the masses of the forearm and upper arm and the applied deadweight. When

the robot moves from/to the two ends of the Y axis, the deflections cause errors

not only in the X and Z axes but the Y axis as well. The 3 absolute positional

accuracy of the robot before correction is 6.50mm.

Figure 8-12 Initial position errors of the robot in the 36kg loaded case

Figure 8-13 depicts the positional accuracy of the robot after the model - based

and sensor - guided error compensations. From the figure, it can be seen that

the error compensation model reduced the deviations in the X, Y and Z axes to

less than 0.7mm while the laser tracker was able to reduce these errors within

the range 0.1mm. The 3 absolute accuracies in the positions (the square root

of these components) of the robot in each correction stage are achieved as

0.87mm and 0.12mm. The 3 accuracies in the orientations of the robot,

181

calculated in a similar manner, are obtained as 0.44 and 0.05. The results are

summarized in Table 8-5.

Figure 8-13 Residual position errors of the robot in the 36kg load case

Table 8-5 Absolute accuracy of the robot before and after the two stage

error compensation

Models

Errors in position

(10
-3

m)

Errors in orientation

()

p p

x

x

y
 y

z

z

(0) 4.04 0.82 0.665 0.468 -0.051 0.018 0.729 0.465

(1) 0.39 0.16 0.041 0.104 0.004 0.008 0.047 0.105

(2) 0.06 0.02 0.003 0.011 -0.005 0.009 0.003 0.013

(0): initial, (1): model-based compensation, (2): sensor-based correction.

Details on the sensor-based correction process for the robot’s position and

orientation components are illustrated in Figure 8-14 and Figure 8-15. During

t=0,..,5s, measurements of the laser tracker, taken within 50ms, are used to

adjust the robot’s joint angles whereas at t= -2, -1 and 6s, the measurements

are taken within 1s to verify the robot’s locations at each stage and are used to

calculate the results in Table 8-5. Deviations between the measurements at

t=5s when the iterative correction process completes and t=6s are 0.02mm in

182

p and 0.015 in . The deviations are due to the uncertainty of the

measurement at t=5s, which is taken in much shorter time and when the robot

still oscillates a small amount from a full stop. This explains why the overall 3

accuracy obtained (0.12mm) is slightly worse than the tolerance for stopping the

process (0.08mm). These variations can be eliminated by increasing the

measuring time of the laser tracker and decreasing the velocity and

deceleration of the robot at the cost of a longer cycle time for correction.

Figure 8-14 Correcting the robot position to 0.08mm using the laser

tracker

Figure 8-15 Correcting the robot orientation to 0.05º using the laser

tracker

The average time for correcting one robot position is 6 seconds for 6 iterations

(or 1 iteration/sec). This includes the time for measuring and transferring the

data by the laser tracker to the robot controller, computing the joint increment

183

solution by the robot service, data conversion, robot motion and computing the

iterative condition by the C3G robot controller. Even though the performance is

comparable to the work of (Kihlman, 2005), it is longer than expected. Slow

computing performance originates from the C3G controller side: while modern

robot controllers utilize Gigahertz PC for computing and 100MB/s Ethernet for

communication, the old-fashioned C3G controller, manufactured in 1998, uses a

12MHz Motorola 68020 microcontroller and RS-232 at 19.2KB/s baud rate,

respectively. Nevertheless, the model-based error compensation does reduce

the time for sensor-based correction: when the call to the routine MODEL_COM

was turned off in the PDL robot program, it usually took more than 11 seconds

for the laser tracker to correct a robot position. The proposed two-stage error

compensation, therefore, reduces nearly half of the time supposedly spent for

robot positional correction.

Figure 8-16 Straightness showing the deviation in the Z-axis when the

robot travels along the Y axis. From top to bottom: a. Initial; b. After

model-based compensation; c. After sensor-based correction.

Finally, the results of the straightness of Y axis calculated from the 6 trial runs

are shown in Figure 8-16 and Figure 8-17. It can be seen from Figure 8-16a and

Figure 8-17a that the deviations in the Z-axis and X-axis before calibration

gradually increased when the robot moved toward the two ends of the Y axis

184

(when it extended the upper arm and forearm). Since the deviations calculated

in this manner are independent of the coordinate system, this observation

confirms the statement made earlier that the robot undergoes significant joint

offsets and deflections at joint 2 and 2’. These errors cause large errors on the

end-effector when joint 2 and 2’ angles are large (see equations (6.12) and

(6.31) of Chapter 6). This effect was, however, suppressed by the error

compensation model as shown in Figure 8-16b and Figure 8-17b, proving the

errors at these joints have been modelled properly. The deviations in the Z and

X axes initially were within error bands of 1.32mm and 0.67mm then 0.43mm

and 0.44mm after the model-based compensation and finally reduced to

0.16mm and 0.13mm after the sensor-based correction.

Figure 8-17 Straightness showing the deviation in the X-axis when the

robot travels along the Y axis. From top to bottom: a. Initial; b. After

model-based compensation; c. After sensor-based correction

8.4 Demonstration

8.4.1 Description

The final experiment was conducted to demonstrate the main ideas presented

in this thesis, i.e., PnP system integration, the combination of model-based and

185

sensor-based error compensation for improving robot accuracy and the use of

one metrology system for multiple robots. In the experiment, the Comau Smart

H4 robot is commanded to carry an aluminium bracket to twenty four

designated target locations on a real aircraft stabilizer structure. Precision holes

were made on the centre of the bracket surface and four steel bars attached on

the stabilizer to define the TCP frame and the target frames to be aligned with

(Figure 8-18). A webcam placed behind the bracket is used to visualize the

alignment of these holes.

Figure 8-18 In the demonstration, the robot must align the tool frame with

24 target frames located on a stabilizer structure

The process is simulated in DELMIA using rough estimates of the target frames

to generate the desired robot motions (Figure 8-19a). Precise coordinates of the

target frames are determined from the laser tracker’s measurements of the

holes as follows:

 Each bar contains six target holes in the middle. Measured positions of

a SMR put into these holes provide the origins of the target frames.

 The common z-axis of these target frames is the normal vector of the

best-fit plane passing through the four holes at the corners of the bars.

 The common y-axis of these target frames is the directional vector of

the best-fit line passing through the six holes; the last x-axis is

determined from the right hand rule: x =y z (where denotes the cross

product). The origins and the x, y and z axes constitute fully the position

and orientation components of these target frames.

Oi

x
z

y

24 target framesz

x

yO

Tool frame

webcam

186

 The 24 target frames, calculated in the laser tracker frame, are

transformed into the robot base frame (Figure 8-19b).

The intention of these calculations is to simulate the part localization process

(sections 2.3.3.2 and 3.2.1) where a robot usually employs a local sensor to

measure features on the part and applies similar best-fit algorithms to determine

the actual location of the part before performing an assembly task. The robot

used in this work is not equipped with such a local sensor and thus, the holes

are measured manually and the measurements are stored in a developed

Matlab function named CalcTarget which calculates the target frames for later

retrieval.

Figure 8-19 Robot motions are generated in DELMIA whereas actual target

coordinates are constructed from the best-fit geometries on the

measurements of the laser tracker

8.4.2 Implementation

The robot operation is carried out as depicted in Figure 8-20. At the start of the

robot program, the routine INITIALIZE is called to load the identified parameters

into Matlab workspace memory. Next, the robot invokes the Matlab function

CalcTarget to calculate the 24 target frames and transform them into robot

coordinates with the given matrix BASE. The robot retrieves the targets

sequentially, advances to them in the motion profile programmed in DELMIA

then calls the MODEL_COM and SENSOR_COM routines that initiate the

model-based and sensor-based error compensations. The calls to the above

z

y
Oi

reflector

Best-fit plane through 4 holes

at corners

Best-fit line through 6

hoes in the middlex

187

routines are inserted at every name tag in the offline robot program created by

DELMIA.

Figure 8-20 The process of hole alignment performed by the Smart H4

robot

During the process, another service representing a virtual Kuka robot is

activated. This service, developed using the design template in Chapter 5, is

wired with the laser tracker service by the cell controller and commands the

laser tracker to take a single measurement of a SMR fixed in space periodically.

The laser tracker, therefore, must serve two robots, the Comau and the (virtual)

Kuka robots (Figure 8-21). Each robot must send a command Move to laser

tracker service to rotate the laser head toward the current location of its reflector

before the measurement takes place.

Figure 8-21 The laser tracker serving the Comau and virtual Kuka robots

Kuka robot

(virtual)

Comau robot

188

Figure 8-22 Accuracy in the position of the robot.

From left to right: a. Before correction; b. After model-based compensation; c. After sensor-based correction

(note: the scales of colour maps are different)

1

2

3 4

189

Figure 8-23 Accuracy in the orientation of the robot.

From left to right: a. Before correction; b. After model-based compensation; c. After sensor-based correction

(note: the scales of colour maps are different)

190

8.4.3 Results and analysis

Figure 8-22 and Figure 8-23 show the positional and angular accuracies of the

robot before and after the two stage error compensation versus its coordinate

locations. The mean values of the errors in positions and orientations of the

robot before and after corrections are (4.91mm, 0.45mm, 0.06mm) and (1.08,

0.23, 0.03), respectively. It can be seen from Figure 8-22a that the robot

positional accuracy before correction is worst at bars 3 and 4. Details on the

errors in individual X, Y, Z components of these measurements reveal that

those in the Y and Z axes at bars 3 and 4 are dominant at these locations.

Figure 8-24 . Robot configurations during the process. From left to right:

a. At bar 1, where the initial accuracy is highest; b. At bar 3, where the

initial accuracy is lowest.

The above results are consistent with those obtained in sections 8.2.3, 8.3.3

and can be explained from the configurations of the robot during the alignment

process depicted in Figure 8-24. At bars 1 and 2 positions, the upper arm is

almost vertical and thus, the deflection at joint 2 induced by the link masses is

small while at bar 3 positions, the arms are extended and thus, the deflections

are larger. Deflection at joint 2’, on the other hand, might be less severe due to

the counterweight that balances the structure. These deflections result in the

deviations in the Y and Z axes. The errors, however, have been compensated

during the two stage correction process, as shown in Figure 8-22b,c. Figure

8-25 shows some images taken by the webcam during the alignment process.

191

In the figure, the complete circle seen is the hole on the bracket manipulated by

the robot (the TCP). The dark circle seen through the bracket is a hole on the

bars attached on the stabiliser (the target). One might see that these holes are

overlapped after the sensor-based compensation.

 Before compensation Model-based compensation Sensor-based compensation

At
bar 1

At
bar 3

Figure 8-25 Visualisation of the alignment process

The utilization of one laser tracker for two robots is illustrated in Figure 8-26.

Thanks to the error compensation model that narrows down the error band of

the Comau robot to less than 1mm, the laser beam, rotated by the command

Move, always finds the TMAC prism having diameter of 10mm in space. At a

specific time when the laser tracker is busy correcting the position of the Comau

robot, a command sent from the virtual Kuka robot will be queued and re-

scheduled. This command will be processed after the laser tracker has been

released (i.e., when it receives a Stop Measurement command sent by the

Comau robot within the SENSOR_COM routine). The experiment has proved

that it is possible to deploy one laser tracker for more than one robot.

Figure 8-26 Two robots sharing one laser tracker

193

9 CONCLUSSIONS

9.1 Summary

Insufficient accuracy has been one of the main barriers to a wide adoption of

robotics in airframe assembly. To overcome this, the robot must have improved

accuracy delivered through some forms of error compensation from a global

metrology system and other local sensors. Adding this equipment to a robot,

however, raises issues on the flexibility and cost of such a system. The work

presented within this thesis attempts to provide technical solutions to these

problems.

9.1.1 A framework for flexible system integration

To improve the flexibility of a metrology-integrated robot system, a software

framework which enables reconfigurable system integration was developed.

Background research and literature review on the middleware technology and

component-based software engineering that promotes flexibility have been

performed. The framework provides a design template to develop distributed

software components, namely services, each of which controls one or a subset

of automation equipment (e.g., robots, actuators, sensors). These services can

be integrated in a “Plug and Produce” (PnP) manner, that is, the connectivity

between them can be established at runtime, instead of compile time. This

allows for the robot system or, in a larger scale, a multi-robot work-cell to be

assembled on demand for various assembly applications.

In order to achieve the PnP integration capability, the services are provided with

a common interface inherited from an abstract service. They also share a

comprehensive set of predefined data structures that facilitates the exchange of

various command types, data sizes and formats among the represented

equipment. As a result, all the services in the framework appear to be identical

from their viewpoints and thus, they can be hot-plugged together at runtime.

After the control system has been setup in this manner, it is possible to use

robot programming language to program a new application for the robot and its

194

peripheral devices. This is a relatively simple job compared with programming

new control software, and thus, can be done by technicians on the floor with

aids of OLP software.

Internally, each service utilizes a task queue guarded by a rescheduling

algorithm to sequence simultaneous requests that it might receive from other

services. This is necessitated by the fact that the work-cell might contain some

shared equipments supposedly used by several robots, such as a global

metrology system (e.g., a laser tracker).

The middleware used by the framework for the communication between its

services is the Robotics Developer Studio from Microsoft, selected on the basis

of its support for concurrent programming and asynchronous communication.

The shortcoming of this middleware platform is its limited communication rate,

which is mainly due to the non real-time characteristics of the Windows OS.

Assessments on the performance of the developed framework in terms of

communication throughput and latency have verified that the safe update

frequency of the framework is 100Hz. This update rate is not problematic for

static correction, such as robot positioning and part localisation techniques

performed in this work but might be insufficient for other dynamic correction

activities that demand for particularly high rate and low latency communication,

such as force control. This suggests future work to be done to improve the

framework performance in this regard.

9.1.2 Error modelling and compensation for robots

In order to reduce the investment cost, a two-stage (model-based and sensor-

based) error compensation scheme that promotes one expensive piece of

metrology system for several robots was developed. The main purpose of the

model-based compensation in the first stage is to narrow down the initial error

band of the robot and thereby, reducing the time needed for sensor-based

correction in the second stage. As a result, the metrology system does not have

to service one robot all the time and thus, is able to support a number of robots

simultaneously.

195

The error compensation model that improves robot accuracy in the first

correction stage is obtained from a kinematic calibration procedure. The

literature review undertaken in this thesis has shown that robot calibration is a

well-established research topic and somewhat standardized for purely open-

loop serial robots (e.g., the elbow-type manipulators). Nevertheless, there has

been no simple calibration model for the ones having a closed kinematic chain

(e.g., a parallelogram linkage). In this thesis, a novel calibration model for this

type of industrial robot was presented. The error model of the parallelogram

linkage was derived from the linearization of the chain’s constraint equation and

merged with that of the main open-loop branch to form the global calibration

model of the manipulator. This model accounts for not only the errors of the

robot structure but those in the pre-calibrated transformations between the robot

and the global metrology system. The advantages of the proposed model are its

simplicity and computing efficiency, validated by a benchmarking simulation

study against another competitive model undertaken in this work. Then, the

model was further expanded to include the joint deflections induced by the robot

link masses and applied load (e.g., weight of the end-effector). Algorithms for

the robot calibration and the aforementioned two-stage error compensation

strategy are also provided.

9.1.3 Experimental evaluations

Experiments were conducted to evaluate the two pieces of work presented

above. The design template of the framework is adopted to develop a

distributed control system that performs the calibration and error compensation

for a real parallelogram linkage-type robot. The control system was formed at

runtime by “plugging” the control applications of the robot, laser tracker and

computing software that implements the calibration and model-based

compensation algorithms together. Thereafter, the calibration and the two-stage

error compensation processes were carried out by activating different robot

programs. The experimental results are summarized as follows:

196

 When the robot is unloaded, the proposed calibration model is able to

predict the tool pose errors with an average accuracy of 0.4mm, 100% better

than the conventional model that neglects errors in parallelogram linkage.

Therefore, taking these errors into calibration does improve the accuracy.

When the robot is loaded, the prediction accuracy degrades roughly 0.1mm

for every incremental 18kg, which is mainly due to the un-modelled

deformations of the robot links and joint bearings.

 The 3 positional accuracy of the robot before correction is 6.50mm. The

model-based error compensation is able to improve the accuracy of the

robot up to 0.87mm in position and 0.44º in orientation. This is a good result

compared with respective research in the literature and commercial

software. The accuracy achieved by the sensor-based correction method is

0.12mm in position and 0.05º in orientation, smaller than the 0.2mm

tolerance required in airframe assembly.

 The straightness of the Y axis of the robot, measured as the deviations in

the Z and X directions when moving along the Y axis, initially were 1.32mm

and 0.67mm. The model-based compensation reduces these deviations to

0.43mm and 0.44mm whereas the sensor-based correction further

suppresses them to 0.16mm and 0.13mm, respectively.

 The model-based correction helps to reduce nearly half of the time for the

iterative sensor-based correction. The average time for correcting one robot

position by using this two-stage error compensation technique is 6s.

 The performance of the sensor-based correction stage in terms of accuracy

and time is not entirely satisfactory and is mainly due to limitations in the

motion resolution of the robot and the computing capability of its industrial

controller. The author believes that newer robots will deliver higher

performances than the one used in this work.

 The experiment also demonstrates successfully a part localisation algorithm

and the use of one laser tracker for two robots.

197

9.2 Contributions

In summary, the major contributions of the thesis are as follows:

 Development and implementation of a framework for PnP system

integration. Services adopted the design template provided by the

framework are able to integrate dynamically at runtime, making it possible

for the robot work-cell to be assembled on demand for various applications.

Once the services have been connected, it is possible to use a robot’s

programming language to control the peripheral devices as if they were local

resources of the robot.

 Demonstration of a two-stage error compensation strategy for industrial

robots in airframe assembly that promotes the use of one expensive

metrology system for several off-the-shelf robots.

 Development of a new calibration model for serial robots having a

parallelogram linkage that takes into account geometric errors and joint

deflections. The model has proved to be simple and computing-efficient.

The work presented in this thesis envisages a highly dynamic robot work-cell

which might be suitable not only for the aerospace industry but other small and

medium enterprises that also have to deal with the small batch, product

diversity and cost issues (Brogårdh, 2007). In this work-cell, the number of the

robots, metrology and their locations can be altered to adapt to various part

sizes and shapes whereas the robots are also able to use different end-

effectors to perform various operations, e.g., machining, measuring or part

handling. Under these circumstances, the proposed framework helps to realize

a customized control system in which generated OLP robot programs for the

new manufacturing process can be streamlined directly to the robot controllers

for execution without the need for translation. The calibration technique helps to

determine accurately the new locations of the robots in the work-cell area as

well as develop models for the robots that compensate for their inherent errors

and deflections induced by the weights of the new end-effectors or the parts

they handle. The distributed control system and the two-stage error

198

compensation scheme allow for a number of robots to share one metrology

system whenever it is possible. These technical solutions eventually help to

reduce the lead time and cost and increase the responsiveness of such a

robotic manufacturing system compared with a conventional one that utilizes

strongly-coupled hardware and proprietary control/calibration software

applications.

9.3 Future works

It is suggested that the following research activities should be performed in the

future to address remaining limitations of this work:

 Improving the communication rate of the framework in terms of latency so

that it is potentially used for a wider range of dynamic correction

applications. A viable solution is porting the services of the equipments

supposedly used for this purpose to the Windows Embedded CE, a real-time

operating system (RTOS) for embedded automation devices including Intel

PCs. Critical assessment on the performance of the services on this RTOS

needs to be performed.

 Improving the data structures of the framework to support redirection of

sensory information. In the calibration process presented in Chapter 8,

measurement data from the laser tracker must be sent to the robot first then

forwarded to the Matlab software. A better Command structure will allow for

the data to be transferred directly to the terminal device, provided their

services are connected (as in Figure 4-4). This will save unnecessary time

for data delivery/conversion and memory space for the robot controller.

 Developing calibration and compensation models and procedures for robots

located on linear rails or mobile platforms. The accuracy of such a robot

system is further degraded by the straightness and orthogonality of the

augmenting axes.

199

 Improving the accuracy and time-efficiency of the iterative sensor-based

positional correction. This can be achieved through an optimized selection of

the measuring time of the laser tracker and velocity of the robot in order to

reduce the measurement uncertainty.

 Implementing more realistic assembly applications. For example, the robot

performs a machining application then the positional accuracy and surface

quality of the drilled holes will be verified by an independent CMM. Next, the

robot replaces its end-effector to perform a different application, e.g., part

handling, to demonstrate the versatility of the system. For each application,

a new distributed control application of the robot system is formed by

connecting the robot service with those of the corresponding end-effectors

and metrology together.

201

REFERENCES

ABB, Absolute Accuracy - Industrial Robot Option, ABB Robotics, 2010.

ABB, ABB Review – The Corporate Technical Journal of the ABB Group, ABB
Robotics, http://www.abb.com/abbreview, 2010.

Ahn, S.C., Lee, J.W., Lim, K.W., Ko, H., Kwon, Y.M and Kim, H.G., Requirements to
UPnP for Robot Middleware, IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
Beijing, China, Oct 9-15 2006.

Airbus, How an aircraft is built, www.airbus.com, visited on Jan 04 2012.

ALCAS Project, Advanced Low Cost Aircraft Structures,
http://ec.europa.eu/research/transport-/projects/items/alcast_en.htm, visited on Jan 04
2012.

Alici, G., A systematic approach to develop a force control system for robotic
drilling, Industrial Robot, Vol. 25, No. 5, pp. 289-397, 1999.

Alici, G., Shirinzadeh, B., A systematic technique to estimate positioning errors for
robot accuracy improvement using laser interferometry based sensing,
Mechanism and Machine Theory, Vol. 40, pp. 879–906 , 2005.

Amoretti, M., Caselli S., and Reggiani, M., Designing Distributed, Component-
Based Systems for Industrial Robotic Applications, Industrial Robotics:
Programming, Simulation and Applications, InTech, Dec 2006.

Ananthananyanan, S.P., Szymczyk, C., Goldenberg, A.A., Identification of Kinematic
Parameters of Multiple Closed Chain Robotic Manipulators Working in
Coordination, IEEE Int. Conf. on Robotics Automation, Nice, France 1992.

Angeles, J., Fundamental of Robotic Mechanical Systems: Theory, Methods and
Algorithms 2nd edition, Springer, 2003.

Antonelli, G., Chiavellini, S., Perna, V., Romanelli, F., A Modular and Task-oriented
Architecture for Open Control System: the Evolution of C5G Open towards High
Level Programming, The ICRA 2010 Workshop on Innovative Robot Control
Architectures for Demanding (Research) Applications, Lund University, Sweden, Nov
2010.

ARFLEX Project, Adaptive Robots for Flexible Manufacturing System project
summary, http://www.arflexproject.eu, visited on Jan 2012.

Arnone, J., Bombardier to Combine Efficiency and Quality in Manufacturing of
CSeries Aircraft, Bombardier Press Release, May 31 2011.

Atkinson, J., Hartman, J., Jones, S., Gleeson, P., Robotic Drilling System for 737
Aileron, SAE AeroTech Congress & Exhibition, Los Angeles, CA, USA, Sep 2007.

202

Axelsson, S., Offline Programming of Robots at Volvo Cars – shop floor
preparation, 33rd Int. Symp. On Robotics, 7 Oct 2002 Cited in: Kihlman, H.,
Affordable Automation for Airframe Assembly, PhD Dissertation at Linköping
University, 2005.

Bai, Y., Wang, D., Improve the Robot Calibration Accuracy Using a Dynamic
Online Fuzzy Error Mapping System, IEEE Trans. Systems, Man, and Cybernetics
— Part B: Cybernetics, Vol. 34, No. 2, 2004.

Bai, Y., Zhuang, H., On the Comparison of Bilinear, Cubic Spline, and Fuzzy
Interpolation Techniques for Robotic Position Measurements, IEEE Trans.
Instrumentation Mea. , Vol. 54, No. 6, 2005.

Bäuml, B., Hirzinger, G., When hard realtime matters: Software for complex
mechatronic systems, Robotics and Autonomous Systems, Vol.56, pp.5–13, 2008.

Bennett, D.J., Hollerbach, J., Autonomous calibration of single-loop closed
kinematic chains formed by manipulators with passive endpoint constraints,
IEEE J. Robot. Autom. 11(5), 597–606, 1995.

Bernhardt, R., Albright, S.L., Robot Calibration, Chapman & Hall 1993.

Blomdell, A., Bolmsjö, G., Brogårdh, T., Cederberg, P., Isaksson, M., Johansson, R.,
Haage, M., Nilsson, K., Olsson, M., Olsson, T., Robersson, A., Wang, J., Extending an
Industrial Robot Controller, IEEE Robotics & Automation Magazine, Sep 2005.

Bone, G., Capson, D., Vision-guided fixtureless assembly of automotive
components, Robotics and Computer Integrated Manufacturing, Vol. 19, pp.79–87,
2003.

Brogårdh, T., Present and future robot control development – An industrial
perspective, Annual Reviews in Control, Vol. 31, pp. 69-79, 2007.

Brugali, D., Software Engineering for Experimental Robotics, Springer Tracts in
Advanced Robotics, Vol. 30, 2007.

Bruyninckx, H., Open Robot Control Software: the OROCOS project, Int. Conf.
Robotics & Automation, Seoul, Korea, May 21-26 2001.

COMET Project, COMET robot machining consortium meets at Fraunhofer,
http://www.cometproject.eu, visited in Jan 2012.

Calder, N., New dawns for robotics, Aerospace Manufacturing, Jan 07 2011.

Colon, E., Sahli,H., CoRoBA, an Open Framework for Multi-Sensor Robotic
System Integration, Proceedings of the IEEE International Symposium on
Computational Intelligence in Robotics and Automation, Espoo, Finland, June 27-30
2005.

Comau Robotics – Smart H4 robot manual – 1998

Costlow, T., Robots Improve Drilling Precision For F-35 Fuselage, SAE Aerospace
Engineering, Feb 12 2009.

203

Da Costa, S., A New Type of Robotic Cell for Assembly in Aeronautics, SAE
Aerospace Automated Fastening Conference & Exposition, Bellevue, Washington,
USA, Oct 1992.

Da Costa, S., Dassault Adaptive Cells, Industrial Robots, Vol.3, No. 1, pp.34 40,
1996.

Deitert, L., Orbital Drilling, SAE 2011 AeroTech Congress & Exhibition, Toulouse,
France, Oct 11.

Deter, S., Plug and participate for limited devices in the field of industrial
automation, 8th IEEE Int. Conf. on Emerging Technologies and Factory Automation,
Antibes-Juan les Pins, France, Oct 15-18 2001.

Dilts, D.M., Boyd, N.P., Whorms, H.H., The evolution of Control Architectures for
Automated Manufacturing Systems, Journal of Manufacturing Systems, Vol.10,
No.1, 1991.

Dombre, E., Khalil, W., Modeling, Performance Analysis and Control of Robot
Manipulators, ISTE, 2007.

Driels, M.R., Pathre, U.S., Generalized Joint Model for Robot Manipulator
Calibration and Compensation, J. Robotic Systems 4(1), 77-114, 1987.

Drouet, Ph., Dubowsky, S., Zeghloul, S., Mavroidis, C., Compensation of geometric
and elastic errors in large manipulators with an application to a high accuracy
medical system, Robotica, Vol. 20, pp. 341–352, 2002.

Duelen, G., Wendt, W., Research and Development of Industrial Robot Systems in
Europe, Robotics and Computer Integrated Manufacturing, Vol. 1, No.3/4, pp.339–348,
1984.

DeVlieg, R., Sitton, K., Freikert, E., Inman, J., ONCE (One Side Cell End-effector)
Robotic Drilling System, ElectroImpact Inc., 2002.

DeVlieg, R., Freikert, E., One-up Assembly with Robots, SAE Aerospace
Manufacturing and Automated Fastening Conf. & Ex., North Charleston, SC, USA, Sep
2008.

DeVlieg, Expanding the Use of Robotics in Airframe Assembly via Accurate
Robot Technology, SAE Int. J. Aerospace. Vol. 3, No. 1 pp. 198-203, 2010.

Eastwood, S.J., Webb, P., McKeown, C., The use of the TI2 manufacturing system
on a double-curvature aerospace panel, Proc. Instn Mech. Engrs Vol. 217 Part B: J.
Engineering Manufacture, 2003.

Eastwood, S.J., Webb, P., A gravitational deflection compensation strategy for
HPKMs, Robotics and Computer-Integrated Manufacturing, Vol. 26, Issue 6, pp. 694–
702, 2010.

Editor Staff, First sale of novel robot goes to Boeing, The Engineer at
www.theengineer.co.uk/news/first-sale-of-novel-robot-goes-to-boeing/288194.article,
Jan 15 2000.

204

Fayad, C., Chitiu, A., Webb, P., Control Of A Flexible Automatic Riveting System,
Proc. 8th Mechatronics Forum Int. Conf., Uni. Twente, Enschede, Netherlands, June
24-26 2000.

Garcia, J.G., Ortega, J.G., Garcia, A.S., Martinez, S.S., Robotic Software
Architecture for Multisensor Fusion System, IEEE Trans. Industrial Electronics, Vol.
56, No. 3, 2009.

Gooch, R., Optical metrology in manufacturing automation, Sensor Review, Vol.
18, No.2, pp. 81-87, 1998.

Goodrich, Robotic Cell Coming to Chula Vista for Testing before Transitioning to
its Permanent Home in Toulouse, Around Aerostructures, Vol.3, No.10, Oct. 2011.

Gong, C., Yuan, J., Ni, J., Nongeometric error identification and compensation for
robotic system by inverse calibration, International Journal of Machine Tools &
Manufacture, 40 2119–2137, 2000.

Grasson, M., Laser Trackers Integrate with Automated Systems, American
Manufacturing, Oct 2011.

Gupta, A.K., Arora, S.K., Industrial Automation and Robotics, Laxmi Publications,
2007.

Hayati, S.A., Mirmirani, M., Improving the absolute positioning accuracy of robot
manipulator, J. Robot. Syst. 2, 397–413, 1985.

Hanisch, H.M., Vyatkin, V., Achieving Reconfigurability of Automation Systems by
using the New International Standard IEC 61499: A Developer’s View, Chapter 8 in
Integration Technologies for Industrial Automated Systems, CRC Press, 2007.

Hochgurtel, B., Cross-Platform Web Services Using C# and Java, Charles River
Media, 2003.

Hemsteads, B., DeVlieg, R., Mistry, R., Sheridan, M., Drill and Drive End-Effector,
ElectroImpact Inc., 2001.

Holden, R., Lightowler, P., and Brady, N., Robot Integrated Metrology for Complex
Part Manufacturing, SAE Technical Paper 2010-01-1859, 2010.

Hong, K.S., Choi, K. H., Kim, J.G., Lee, S., A PC-based open robot control system:
PC-ORC, Robotics and Computer Integrated Manufacturing 17 (2001) 355–365.

Hsu, T.W., Everett, J.L., Identification of the kinematic parameters of a robot
manipulator for positional accuracy improvement, Proceedings of the International
Computers in Engineering Conference and Exhibition, 263-267, 1985.

Hu, Z., Kruse, E., Web Services for Integrated Automation Systems — Challenges,
Solutions, and Future, Chap. 4 in Integration Technologies for Industrial Automated
Systems, CRC Press, 2007.

205

Hung, M.H., WeiWu, S., LiWang, T., TienCheng, F., YunFeng, Y., An Efficient Data
Exchange Scheme for Semiconductor Engineering Chain Management System,
Robotics and Computer-Integrated Manufacturing 26, pp. 507–516, 2010.

IEEE Standard, A Compilation of IEEE Standard Computer Glossaries, Institute of
Electrical and Electronics Engineers. New York, NY, 1990.

INS-NEWS, Swedish robot manufacturer flexes its muscles in the USA, Industrial
News Services, May 22 1998.

Integration Engineering Lab. at University of California, Four Bar Linkage,
http://iel.ucdavis.edu/chhtml/toolkit/mechanism/fourbar/fourbarpos.html, visited in Dec
2011.

Jackson, J., Robotic Studio: A Technical Introduction, IEEE Robotics & Automation
Magazine, 2007.

Jamshidi, J., Kayani, A., Iravani, P., Maropoulos, P., Summers, M., Manufacturing
and Assembly Automation by Integrated Metrology Systems for Aircraft Wing
Fabrication, Proc. IMechE Vol. 224 Part B: J. Engineering Manufacture, 2010.

Jayaweera, N., Webb, P., Adaptive assembly of compliant aero-structure
components, Robotics and Computer Integrated Manufacturing, Vol. 23, pp. 180-194,
2007.

Johns, K., Taylor. T., Professional Microsoft Robotics Studio, Wiley Publishing,
2008.

Judd, R.P., Knasinski, A.B., Technique to Calibrate Industrial Robots with
Experimental Verification, IEEE J. Robotics Automation Vol. 6. No. 1, 1990

Karan, B., Vukobratovic, M., Calibration and accuracy of manipulation robot
models-An overview, Mech. Mach. Theory Vol.29, No.3. pp.479-500,1994.

Kayani, A., Jamshidi, J., Measurement Assisted Assembly for Large Volume
Aircraft Wing Structure, Large Volume Metrology Conference, Liverpool, UK, Nov 4
2008.

Khalil, W., Modeling, Identification and Control of Robots, Elsevier, 2004.

Kihlman, H., Affordable Automation for Airframe Assembly, PhD Dissertation at
Linköping University, 2005.

Kochan, A., New Production Technology For The New Generation of Airbus,
Industrial Robots, Vol. 11, No. 2, 1991.

Kröger, T. and Wahl, F.M., Multi-Sensor Integration and Sensor Fusion in
Industrial Manipulation: Hybrid Switched Control, Trajectory Generation, and
Software Development, IEEE International Conference on Multisensor Fusion and
Integration for Intelligent Systems, Seoul, Korea, Aug 20 - 22, 2008.

Kubus, D., Sommerkorn, A., Kröger, T., Maaß, J., and Wahl, F.M., Low-Level Control
of Robot Manipulators: Distributed Open Real-Time Control Architectures for

206

Stäubli RX and TX Manipulators, The ICRA 2010 Workshop on Innovative Robot
Control Architectures for Demanding (Research) Applications, Lund University,
Sweden, Nov 2010.

KUKA, KMC – Kuka Motion Control, Kuka Roboter, www.kuka-robotics.com, 2008.

Kurfess, T.R., Robotics and Automation Handbook, CRC Press, 2005.

Lange, K., Numerical Analysis for Statisticians, Springer, 1999.

Lee, K., A Smart Transducer Interface Standard for Sensors and Actuators, Chap.
10 in Integration Technologies for Industrial Automated Systems, CRC Press, 2007.

Leica Geosystems – Absolute Interferometer Whitepaper and Laser tracker
manuals – 2008.

Leitão, P., Agent-based distributed manufacturing control: A state-of-the-art
survey, Engineering Applications of Artificial Intelligence Vol. 22, pp 979-991, 2009.

Lott, S., A robotic revolution, Aerospace Manufacturing Magazine, June 2011.

Lu, W., Gunarathne, T., Gannon, D., Developing a Concurrent Service
Orchestration Engine in CCR, Proceedings of the 1st international workshop on
Multi-core software engineering, ACM New York, USA, 2008.

Marie, S., Maurine, P., Elasto-Geometrical Modelling of Closed-Loop Industrial
Robots Used For Machining Applications, IEEE Int. Conf. on Robotics and
Automations, Pasadena, CA, USA, May 19-23 2008.

Microsoft, Microsoft Robotics Developer Studio R3 Documentation, 2008.

Minhas, S. H., Lehmann, C., Staedter, J. P., Berger, U., Reconfigurable Strategies
for Manufacturing Setups to confront Mass Customization Challenges,
Proceedings of the 21st International Conference on Production Research (ICPR 21),
Stuttgart, Germany, July 31 – August 4, 2011.

Mizukawa, M., Sakakibara, S., Otera, N., Implementation and Applications of Open
Data Network Interface ‘ORiN’, SICE Annual Conference in Sapporo, Aug 4-6 2004.

Montgomery, D., Runger, G., Applied Statistics and Probability for Engineers, John
Wiley & Sons, 2003.

Mooring, B.W., Tang, G.R., An improved method for identifying the kinematic
parameters in a six axis robot, Proceedings of the International Computers in
Engineering Conference and Exhibition, 1, pp.79-84, 1984.

Morey, B., Robotics seeks its role in aerospace, Manufacturing Engineering
Magazine, Vol.139 No. 4, Oct. 2007.

MRDS, Microsoft Robotics Forums, http://social.msdn.microsoft.com/Forums/en-
US/category/robotics/, visited on Jan 2012.

207

Namoshe, M., Tlalel, N.S., Kumile, C.M., Bright, G., Open middleware for robotics,
15th Int. Conf. on Mechatronics and Machine Vision in Practice (M2VIP08), Auckland,
New-Zealand, Dec 2-4 2008.

Naumann, M., Wegener, K., Schraft, R.D. Control Architecture for Robot Cells to
Enable Plug’n’Produce, IEEE International Conference on Robotics and Automation
Roma, Italy, April 10-14 2007.

Neumann, P., Communication in industrial automation: What is going on?, Control
Engineering Practice, Vol.15, pp. 1333-1347, 2007.

Nikon Metrology Inc., Transforming Industrial Robots into Precision Machine
Tools, Aug 30 2011.

Olsson, T., Haage, M., Kihlman, H., Johansson, R., Nilsson, K., Robertsson, A.,
Björkman. M., Isaksson, R., Ossbahr, G., Brogårdh, T., Cost-efficient drilling using
industrial robots with high-bandwidth force feedback, Robotics and Computer-
Integrated Manufacturing, Vol. 26, pp. 24–38, 2010.

OMG, Documents Associated with CORBA 3.2, http://www.omg.org/spec/ CORBA,
Nov 2011.

OROCOS Project, Open Robot Control Software, www.orocos.org. visited in Dec
2011.

Pan, Z., Polden, J., Larkin, N., Van Duin, S., Norrish, J., Recent progress on
programming methods for industrial robots, Robotics and Computer Integrated
Manufacturing, Vol. 28, pp.87–94, 2012.

Pan, M., Real time communications over UDP protocol, article on the Code Project
developers’ forum (www.codeproject.com), Nov 16 2011.

Paul, R.P, Robot Manipulators: Mathematics, Programming and Control, MIT
Press, Cambridge, 1981.

Paolini, C., Vuskovic, M., Integration of Robotic Laboratory using COBRA, IEEE
International Conference on Systems, Man, and Cybernetics, Florida, US, Oct 12-15
1997.

Parziale, L., Britt, D.T., Davis, C., Forrester, J., Liu, W., Matthews, C., Rosselot, N.,
TCP/IP Tutorial and Technical Overview, IBM Redbooks, Dec. 2006.

Pereira, C., Carro, L., Distributed real-time embedded systems: Recent advances,
future trends and their impact on manufacturing plant control, Annual Reviews in
Control, Vol.31, pp.81–92, 2007.

Pedrocchi, N., Malosio, M., Vicentini, F., Molinari Tosatti, L., and Legnani, G.,
Commercial Controllers enhancements and Open Source Robot Control
Software: addressed solutions for demanding applications, The ICRA 2010
Workshop on Innovative Robot Control Architectures for Demanding (Research)
Applications, Lund University, Sweden, Nov 2010.

http://www.omg.org/spec/

208

Pires, J.R., Sa da Costa, J.M.G., Object-oriented and distributed approach for
programming robotic manufacturing cells, Robotics and Computer Integrated
Manufacturing 16, pp.29-42, 2000.

Pires, J.N., Ramming, J., Rauch, S., Araujo, R., Force/Torque Sensing Applied to
Industrial Robotic Deburring, Sensor Review, Vol. 22 No. 3, pp.232 – 241.

Pitzek, S., Elmenreich, W., Configuration and Management of Fieldbus Systems,
Chapter 16 in Integration Technologies for Industrial Automated Systems, CRC Press,
2007.

Ple, P. , Gabory, J.F., Charles, F. , Force Controlled Robotic System for Drilling
and Riveting One Way Assembly, SAE 2011 AeroTech Congress & Exhibition, Oct
2011.

POPJIM Project, Plug and Produce Joint Interface Modules,
http://cordis.europa.eu/search/index.cfm?fuseaction=proj.document&PJ_RCN=114672
57, visited in Jan 2012.

Renders, J., Rossignol, E., Becquet, M., Hanus, R., Kinematic Calibration and
Geometrical Parameter Identification for Robots, IEEE J. Robotics Automation, Vol.
7, No. 6, 1991.

Richards, M., KUKA’s flexible solution for wing manufacture, Article news on the
Machinery at www.machinery.co.uk/machinery-news/kuka-s-flexible-robotic-solution-
for-wing-manufacture/, May 17 2010.

Rubin, W., Brain, M., Understanding DCOM, Prentice Hall, 1999.

Saadat, M., Cretin, L., Measurement systems for large aerospace components,
Sensor Review, Vol. 22, No.3, 2002.

Saadat, M., Cretin, L., Sim, R., Najafi, F., Deformation analysis of large aerospace
components during assembly, Int. J. Adv. Manuf. Technol., Vol. 41, pp. 145-155,
2009.

Sanz., R. and Alonso, M., COBRA for Control Systems, Annual Reviews on Control
Vol. 25, pp.161-181, 2001.

Siciliano, B., Sciavicco, L, Villani, L., Oriolo, G., Robotics: Modelling, Planning and
Control, Springer, 2007.

Siciliano, B., Khatib, O., Handbook of Robotics, Springer, 2008.

Schmelzer, R., Vandersypen, T., Bloomberg, A., Siddalingaiah, M., Hunting, S.,
Qualls, M., Houlding, D., Darby, C., Kennedy, D., XML and Web Services Unleashed,
SAMS Publishing, 2002.

Schmidt, D.C, Real-time COBRA with TAO (The ACE ORB), www.cs.wustl.edu-
/~schmidt/TAO.html, 2010.

http://www.cs.wustl.edu-/~schmidt/TAO.html
http://www.cs.wustl.edu-/~schmidt/TAO.html

209

Schröer, K., Albright, S.L., Grethlein. M., Complete, minimal and model-continuous
kinematic models for robot calibration, Robotics & Computer Integrated
Manufacturing, Vol. 13, No. 1, pp.73-85, 1997.

Schröer K., Albright, S.L., Lisounkin, A., Modeling Closed-Loop Mechanisms in
Robots for Purposes of Calibration, IEEE J. Robotics Automation, Vol. 13, No. 2,
1997.

Short, M., Burn, K., A Generic Controller Architecture for Intelligent Robotic
Systems, Robotics and Computer-Integrated Manufacturing Vol.27, pp. 292-305,
2011.

SMERobot Project, The European Robotics Initiative for Strengthening the
Competitiveness of SMEs in Manufacturing, www.smerobot.org, 2009.

Song. H., Li, Y., Zhou., F., Jia, L., The Research and Application of Real Time
CORBA in Software Framework for Industrial Robot, Int. Conf. Integration
Technology, Shenzhen, China, March 20 - 24, 2007.

Song, I., Karray, F., Gueda, F., A Distributed Real-time System Framework Design
for Multi-Robot Cooperative Systems using Real-Time CORBA, Proceedings of the
2003 IEEE International Symposium on Intelligent Control Houston. Texas, Oct 5-8
2003.

Spong, M.W., Vidyasagar, M., Robot dynamics and control, John Wiley & Sons,
2004.

Stone, H.W., Sanderson, A.C., A prototype arm signature identification system,
Proceedings of IEEE International Conference on Robotics and Automation, pp.175-
182, 1987.

Summers, M., Robot Capability Test and Development of Industrial Robot
Positioning System for the Aerospace Industry, SAE Technical Paper, Oct 03 2005.

To, M., Webb, P., An improved kinematic model for calibration of robots having
closed-chain mechanisms, Robotica, Vol.30, Issue 6, pp. 963-971, 2012.

Tu, H.T., Chen, M.S. and Kao, Y.C., A Web-Based Remote Machining Cell,
Proceedings of the IEEE International Conference on Mechatronics, Taipei, Taiwan,
July 10-12 2005.

UPnP Forum, UPnP Specification, http://upnp.org, visited in Jan 2012.

Veitschegger, W.K., Wu, C.H., Robot Accuracy Based on Kinematics, IEEE J.
Robotics Automation, Vol.RA-2, No.3, 1986.

Veitsschegger, W.K., Wu, C.H., Robot Calibration and Compensation, IEEE J.
Robotics Automation, Vol. 4, No. 6, 1988.

Vitturi, S., On the use of Ethernet at low level of factory communication systems,
Computer Standards & Interfaces, Vol.23, pp.257-277, 2001.

210

Vyatkin, V., The IEC 61499 Standard and Its Semantics, IEEE Industrial Electronics
Magazine, Dec. 2009.

Wang, Z., Mastrogiacomo, L., Franceschini, F., Maropoulos, P., Experimental
comparison of dynamic tracking performance of iGPS and laser tracker, Int. J.
Adv. Manuf. Technol., 2011.

Warhburg, J., Integrating multiple sensors and industrial robots: System
architecture and control aspects, IEEE Int. Sym. Intelligent Control, Arlington, VA,
USA, Aug 24-26 1988.

Warwick, G., Airbus UK Using Automotive Robots in Wing Manufacture, Flight
International, Jun 05 2007.

Webb, P., Eastwood, S., An evaluation of the TI2 manufacturing system for the
machining of airframe subassemblies, Proc. Instn Mech. Engrs Vol. 218 Part B: J.
Engineering Manufacture, 2004.

Webb, P., Eastwood, S., Jayaweera, N., Ye, C., Automated aero-structure
assembly, Industrial Robots, Vol. 32, No.5, pp. 383-387, 2005.

Weber, A., High Flying Robotics, Assembly Magazine, Apr 29 2009.

Young, K., Pickin, C., Accuracy assessment of the modern industrial robots,
Industrial Robots, Vol.2, No.6, 2000.

Zhuang, H., Wang, K., Roth, Z.S., Error-model-based robot calibration using a
modified CPC model, Int. J. Robotics and Computer-Integrated Manufacturing 10(4),
pp. 287-299, 1993.OR COL SYSTEMS

211

APPENDICES

Appendix A Forward kinematic model

The position and orientation of a robot’s end-effector in a reference frame are

determined by the forward kinematic model. Suppose a serial manipulator has

n+1 links numbered from 0 to n serially connected together via n actuated joints,

numbered from 1 to n. The forward kinematic analysis of the robot starts out by

assigning reference frames to the corresponding links following the popular

Denavit - Hartenberg (DH) convention (Spong et.al., 2004) (Figure A-1).

Figure A-1 The 6dof articulated robot (left) can be represented by a series

of links and joints (right) with attached reference frames based on DH

convention (n=6)

Position and orientation of the robot end-effector (the mobile frame Fn) w.r.t. the

robot base (the fixed frame F0) is represented by the homogeneous

transformation matrix 0

n
T as:

111

2

0

1

0 n

n

i

in
TTTTT (A.1)

Link 0

(base)

Link 1

Link 2

Link 3

Link 4

Link 5

Link 6

End-effector

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

212

in which, each 1i

i
T describes the relative position and orientation of link frame

Fi w.r.t. link frame Fi-1 as:

),(),(),(),(1

iiii

i

i
xrotaxtrandztranzrotT

1000

0
iii

iiiiii

iiiiiii

dcs

sascccs

cacscsc

(A.2)

where ci = cosi , si = sini and the four quantities i, di, ai, i are DH

parameters associated with link i and joint i (Figure A-2). They are generally

given the names joint angle, link offset, link length and twist angle, respectively.

Three of the above four parameters are constant while the fourth parameter, i

for a rotary joint and di for a prismatic joint, is the joint variable.

Figure A-2 Description of Denavit-Hartenberg parameters

The homogeneous transformation j

i
T

(i, j = 0…n) in equations (A.1-2) has the

general form of:

Joint i-1

Joint i

Joint i+1

yi

xi

zi

αi

Oi-1

Oi

yi-1

xi-1

zi-1

di

 i

213

101000

1000

jj

i

j

i

j

i

j

i

j

i

yzzz

yyyy

xxxx

j

i
i

pRpasn

pasn

pasn

pasn

T

(A.3)

where),,(
zyx

j

i
nnnn ,),,(

zyx

j

i
ssss ,),,(

zyx

j

i
aaaa

are directional cosine

vectors of the xi, yi , zi axes of frame Fi in a reference frame Fj. The vectors

j

i

j

i

j

i
asn ,,

can be grouped into the)33(- matrix j

i
R , namely the rotation matrix,

representing the orientation of frame Fi w.r.t. the frame Fj. Vector

),,(
zyx

j

i
pppp

represents the position of the origin Oi of frame Fi in the frame

Fj. It can be seen from (A.1-3) that the position and orientation of the end-

effector, 0

n
p and 0

n
R , are functions of joint variables and other constant DH

parameters.

For Comau robots, the position and orientation of the robot end-effector is

represented as a vector),,,,,(CBAzyxx , where the A, B, C are the Euler

ZYZ angles. These components can be converted from the given 0

n
p and 0

n
R

as (Siciliano et.al., 2007):

))13()23(atan2(

))33()32()31(atan2(

))31()32(atan2(

)3(

)2(y

)1(

00

02020

00

0

0

0

,R, ,RC

,, R,R,RB

,, R,RA

pz

p

px

nn

nnn

nn

n

n

n

(A.4)

214

Appendix B Derivation of Kinematic Error Model using

Differential Homogeneous Transformation

In terms of kinematic error modelling, the transformation 1i

i
T describing the

relative position and orientation of link frame Fi w.r.t. link frame Fi-1 has the

general form as:

),(),(),(),(),(

iiiii

1i

i
yrotxrotaxtrandztranzrotT

1000

iiiiii

iiiiiiiiiiiiii

iiiiiiiiiiiiii

dccssc

sacscssccssccs

cacsssccsssscc

(B.1)

where i is the additional Hayati parameter for handling the case zi-1//zi . From

this point onward, 1i

i
T

is simply denoted as

i
T .

The derivative of
i

T

due to small variations (

iiiii
ad ,,,,) is:

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

i

TT
a

a

T
d

d

TT
dT

(B.2)

Defining the differential homogenous transformation
i

T such as:

iii
TTdT . (B.3)

or:

1
.

iii
TdTT (B.4)

According to (Paul, 1980), such
i

T has the form:

0000

0

0

0

ixxiyi

ixxiiz

ixyiiz

i
p

p

p

T

(B.5)

where
T

ziyixii
pppp),,(

and

T

ziyixii
),,(are equivalent

differential translations and rotations of frame Fi about the axes of frame Fi-1 .

Indeed, expanding (B.4) gives:

215

0000

0

0

0

iiiii

iiiiiiii

iiiiiiii

i
dcs

cdasc

sdacs

T

0000

0

)(0

)(0

iiiiiiiii

iiiiiiiiiiii

iiiiiiiiiiii

cacscc

csdscacss

ccdssaccs

(B.6)

One can see that (B.6) has the same form as (B.5). From (B.6), extracting the

differential translation pi and orientation i vectors gives:

i

ii

iiiii

iiiiii

iii

ii

ii

i

ii

ca

csdsca

ccdssa

dcd

sd

as

c

dp

001

0

0

 i

i

ii

ii

ii

i

ii

s

cc

cs

s

c

01

0

0

(B.7)

Notice that di and i are expressed in frame Fi-1. When expressed in the base

frame F0, they are:

iiiii
ppRp

 11

0 .

iii

R

.
1

0

(B.8)

where
1i

R and
1i

p the rotation matrix and position of frame Fi-1 in F0.

With reference to equations (A.2, A.3), substituting (B.7) into (B.8) yields:

iiiiiiiiiiiiii

pypxaxdzpzp
 111

0

iiiiiiiii

yaxadz

][][]0[]0[
1

0

(B.9)

In the above equation xi, yi, zi are directional vectors and pi is the position of

frame Fi in the base frame. Equation (B.9) can be written in matrix form as:

i

i

ii

i

iiii

i

ii

i
g

y

py

x

pxxz

z

pz
x

00

1

1

110

(B.10)

216

where T

iii
px),(000 and T

iiiiii
adg),,,,(.

The differential translation and orientation vector of the end-effector are the

linear summation of those of link frames, provided they are expressed in the

same base frame:

n

i
i

xx
1

0

(B.11)

Substituting (B.10) into (B.11) and one may obtain the following equation:

 ggx)((B.12)

where
Tpx),(, T

n
ggg)...(

1
 and H(g) is the)46(n identification

Jacobian matrix:

...

00
)(

1

1

11

i

ii

i

iiii

i

ii

y

py

x

pxxz

z

pz
g

(B.13)

Equation (B.12) is the error model relating errors of the end-effector,

represented as vector of differential translation and orientation, with errors in

DH parameters for open-chained manipulators.

In order to solve (B.12), measurements of x from a sensor are needed. Denote

the tool pose with nominal link parameters as TN and the measured tool pose as

TM. The difference dTN between TM and TN is:

NMN
TTdT (B.14)

With reference to (B.4), the differential transformation T can be obtained from

(B.14) as:

ITTTTTT
NMNNM

 11

.).((B.15)

from which the differential translation and orientation vector x can be

extracted. This is the measurement of x in equation (B.12).

In this work, the measurement TM is provided by a laser tracker capable of

measuring 6dof whilst the nominal TN representing the kinematic chain from the

laser tracker reflector to its base frame is given in equation (D.1).

217

Appendix C Position equations of a four bar linkage

A parallelogram structure with unequal opposite links can be considered a four

bar linkage. Its position angles
'4'3

, (Figure C-1) are computed based on the

method given in (Integration Engineering Lab, 2011) as follows.

Define:

22'2'2
 cacax

22'2'2
 sasay

)2/)acos((,atan2 22

'3

2

'3

222

42
yxaayxax)(y

'

)/)(,/)atan2((
'42'3'42'31

acaxasay

(C.1)

then:

 '' 223

 214 '

(C.2)

Figure C-1 A four bar linkage

2

2’

a2’

a3’

a2

a4’ 4’

3’

X

Y

2

1

218

Appendix D Determining the metrology and robot

frames’ transformations

The relationship between the laser tracker’s measurement T and the position

0

n
T of a robot to be measured is:

 PROBETBASET
n
 0 (D.1)

where BASE , PROBE are the transformations representing the robot base

frame F0 w.r.t. the laser tracker frame FLT and the TMAC frame FTMAC w.r.t. the

robot flange frame Fn, respectively (Figure D-1).

Figure D-1 Definitions of the BASE and PROBE transformations

Before the calibration process takes place, initial estimates of the BASE and

PROBE transformations must be known. This section presents the procedures

to determine the initial estimates of these two transformations.

D.1 Calibration of the PROBE transformation

Before the TMAC is mounted onto the flange surface, determine the instant

position of frame Fn w.r.t. the laser tracker frame FLT as follows:

- Firstly, fix a SMR reflector in a dowel hole on the flange surface and rotate

the last joint (joint n) of the robot full round. Measured positions of the

reflector during the rotation form a circle. By calculating a best-fit circle

219

through the measurements, position of the circle origin On (px,py,pz) and

normal vector zn (ax,ay,az) of the plane containing it are obtained.

- Secondly, measure two dowel holes on the flange surface which define the y

axis of the Fn frame then calculating the best-fit line passing the

measurements, thus yn (ox,oy,oz) is known. The last axis xn is then solved by

using the right hand rule: xn (nx,ny,nz)=yn zn (vector cross product).

- Thirdly, the transformation LT

n
T describing the instant Fn w.r.t. the laser

tracker frame FLT has the form:

1000

zzzz

yyyy

xxxx

LT

n
paon

paon

paon

T

(D.2)

- Finally, without moving the robot, mount the TMAC onto the flange surface,

make one measurement of the TMAC frame FTMAC. Denote the

measurement as LT

TMAC
T . Since n

TMAC

LT

n

LT

TMAC
TTT . , the constant PROBE

transformation, n

TMAC
T , is found as:

LT

TMAC

LT

n

n

TMAC
TTTPROBE .)(1 (D.3)

The procedure is depicted in

Figure D-2.

Figure D-2 Procedure to determine the PROBE transformation

The laser tracker visualization service developed in this work contains a wizard

of the process and performs the above calculations automatically (Figure D-3).

zn

yn

On

reflector

FTMAC

Fn

220

Figure D-3 The wizard for determining the PROBE transformation

D.2 Calibration of the BASE transformation

The procedure of calibration the BASE transformation is carried out in a similar

way to that of the PROBE above:

- Firstly, fix the reflector on the outer surface of joint 1 of the robot. The

reflector positions measured during the rotation of this joint form a circle. By

fitting a best-fit circle through the measurements, the offset position O0 and

z0 axis of frame F0 are obtained.

- Secondly, fix the reflector on the base surface of the robot. Measure some

positions to find the base plane (z=0) of frame F0.

- Thirdly, move the robot along its x axis, and measure TMAC positions. The

axis x0 of frame F0 is found by fitting a best-fit line through the

measurements; its y0 is solved by the right hand rule.

The frame F0 determined via this procedure is expressed w.r.t. to the FLT frame.

Therefore, it is also the BASE transformation.

The procedure is depicted in

Figure D-4.

TMAC

measurement

reflector

measurements

221

Figure D-4 Procedure to determine the BASE transformation

The laser tracker visualization service developed in this work contains a wizard

of the process and performs the above calculations automatically (Figure D-5).

Figure D-5 The wizard for determining the BASE transformation

The manual calibration processes presented in sections D1-2 are only carried

out when the relative positions between the laser tracker and the robot and

between the TMAC and the flange have been altered completely from their

original ones. When they are only slightly deviate, e.g., when the laser tracker

is used for another activity then brought back to the place, re-calibration is not

necessary because they will be automatically corrected by the error models

presented in Chapter 6.

z0

O0

reflector

x0

reflector measurements of

the base frame

TMAC measurements when the

robot moves along the x axis

222

D.3 Jacobians of the BASE parameters

Recall equation (6.24) that the BASE transformation is defined as:

),(),(),(),(),(),(
000000

dzTranzRotyRotxRotbyTranaxTranBASE (D.4)

of which the parameters
0000

,,, ba are identified to a higher degree of

accuracy whilst
00

,d

are identified through

11
,d of the robot (section 6.2.2).

The Jacobians of these parameters are obtained by using symbolic Matlab as

follows:

0

0

00

00

00

0

0

000
0

,

0

0

1

0

0

,

0

0

0

0

1

0

,

0

0

0

0

0

1

s

c

ca

sa

sb

J
b

JJJ
ba

(D.5)

In order to calculate these Jacobians, the initial values of
000

,, ba must be

known in advance. When the matrix BASE is determined from the procedure

described in section D.2, the initial values of
000000

,,,,, dba

can be obtained

as:

0000

000

000

0

000

0

)4,2(

)4,1(

)/()4,3(

))1,1(),2,1(2(atan

))3,3()3,2(),3,1(2(atan

))3,3(),3,2(2(atan

csdBASEb

sdBASEa

ccBASEd

BASEBASE

BASEcBASEsBASE

BASEBASE

(D.6)

223

Appendix E Main components of the CCR

E.1 Port and PortSet

Port and PortSet are just FIFO message queues. Messages simply are data of

a specific type. A Port<T0> can process only a single message type T0 while a

PortSet<T0,T1,…,Tn> aggregates several (max. 20) different types of

messages. In fact, a PortSet is just a bunch of ports that can all be treated as a

single entity. The main port of a service actually is a PortSet that accepts

different messages defined in the service interface.

Messages can be sent to a local Port (or PortSet) of a service by the command

Post or to the main port of another service by function calls described in section

5.1.1.2.

In the above code snippet, a Port object intPort is created. Its data type is

integer numbers. Two integer values, 5 and 12, are sent to the port and remain

in the queue in that order until they are read by receivers.

E.2 Arbiter

The Arbiter static class provides a bunch of methods for creating receivers and

other coordination models, such as the Join, Choice and the likes.

E.2.1 Receiver

Port and PortSet were just memory stacks if CCR did not implement receivers.

These receivers register callback functions that are automatically activated on

the arrival of messages at the ports. A receiver must be constructed and

attached to a port as follows:

Arbiter.Receive<T0>(persist, port, Handler(T0));

Port<int> intPort = new Port<int>();

intPort.Post(5);

intPort.Post(12);

224

where the persist flag indicates whether the receiver is persistent (a non-

persistent receiver will be dismissed after processing the first message) and

Handler is the callback function that will be executed when the port contains a

value of type T0.

For example, a non-persistent receiver for the intPort created in the preceding

example can be constructed as follows:

In this example, the output will be 5. The value 12 still remains in the port until

de-queued by another receiver. If the receiver were persistent, the output would

be in the same order that the messages are queued in the port, 5 and 12. The

Handler in this example is an anonymous method, which is a block of code

passed to the C# delegate. Anonymous methods are normally used when the

code block is relatively short. The Activate method is use to queue the delegate

into the default DispatcherQueue of the service for execution.

Persistent receivers are vital to service-oriented architectures. Service handlers

are simply persistent receivers on the main service port waiting for messages

sent from other services. Therefore from this from onward, the terms receiver

and handler will be used interchangeably without creating any confusion.

E.2.2 Choice arbiter

The Choice arbiter is effectively a logical OR. It waits on two ports until one of

them receives a message, then shuts down the unused receiver.

For example:

Arbiter.Choice<T0,T1>(portset, Handler1(T0), Handler2(T1));

// Create a receiver and activate it
Activate(

 Arbiter.Receive(false, intPort,

 delegate(int n)

 {

// Processing the received integer
…

 })

);

225

When this code is executed, the Choice arbiter is registered with the port ps.

The usual output is 1000, but it’s also possible for a value of 3.14 to be

displayed depending on subtle timing variations in the CCR. Choice does not

guarantee which port in a PortSet it will choose if both messages are already

available.

The Choice is commonly used to handle response from service. The response

can either be the successful data or an SOAP Fault, based on which the service

can take appropriate actions (e.g. fault handling). An example of using Choice

was shown in section 5.1.1.2.

E.2.3 Join arbiter

The Join arbiter is similar to a logical AND. It waits until messages arrive at both

ports.

For example:

Arbiter.JoinedReceive(persist, port1, port2, Handler);

void Choice()

{

PortSet<int, double> ps = new PortSet<int, double>();

// Create the Choice and activate it

Activate(

 Arbiter.Choice (ps,

 delegate(int n)

 {

 Console.WriteLine(“Integer value: “ + n.ToString());

 },

 delegate(double d)

 {

 Console.WriteLine(“Double value: “ + d.ToString());

 })

);

ps.Post(1000);

ps.Post(3.14);

}

226

When the function Join given above is executed, two JoinedReceive are

activated immediately in two independent threads. The ports p1, p2 and p3 are

then posted with their corresponding message types. Because the three

messages arrive almost simultaneously at the ports, which are monitored by

two concurrent receivers, the output could either be:

or

E.2.4 Interleave arbiter

Interleave is CCR’s mechanism for multi-task synchronization. The Interleave

consists of three groups of receivers: ConcurrentReceiverGroup,

ExclusiveReceiverGroup and TeardownReceiverGroup. The Concurrent-

Join 1: True 99

Join 2: 100 Hello

Join 2: 99 Hello

Join 1: True 98

void Join()

{

// Declare the Ports
Port<bool> p1 = new Port<bool>();

Port<int> p2 = new Port<int>();

Port<string> p3 = new Port<string>();

// Create a Join on port 1 and 2
Activate(

 Arbiter.JoinedReceive (false, p1, p2,

 delegate(bool b, int n)

 {

 Console.WriteLine("Join 1: {0} {1}", b, n);

 p2.Post(n+1);

 })

);

// Create a Join on port 2 and 3
Activate(

 Arbiter.JoinedReceive (false, p2, p3,

 delegate(int n, string s)

 {

 Console.WriteLine("Join 2: {0} {1}", n, s);

 p2.Post(n-1);

 })

);

// Post values to the ports

p1.Post(true);

p3.Post("Hello");

p2.Post(99);

}

227

ReceiverGroup contains the receivers (handlers) that can run concurrently. The

ExclusiveReceiverGroup only allows one receiver running at a time. If more

exclusive receivers are triggered before the first one finished, they will be

queued and executed one after another. The working mechanism of concurrent

and exclusive groups of receivers is conceptually similar to the classical

reader/writer lock paradigm in thread-based programming but is more elegant

and less error-prone. Finally, the TeardownReceiverGroup contains the

receivers that should be called before the whole Interleave is supposed to be

shutdown, disposing other groups. Teardown receivers take the highest priority.

In the example given above, the robot service creates an Interleave for handlers

of notifications from the camera service. The MovideUpdateHandler function is

placed in the ExclusiveReceiverGroup, meaning that if the function spends

more time for processing the image than the movie frame rate, the next

triggered function will be queued. This Interleave will be disposed if the camera

service is terminated (when the Shutdown notification is received).

E.3 Iterators

Another key concept is the iterator, a C# 2.0 feature that is used in a novel way

by the CCR. When it is required to perform a sequence of asynchronous

operations, the iterator allows the writing of code in a sequential fashion instead

of having to use nested arbiters. An iterator is just a function (handler) declared

with type IEnumerator <ITask>, meaning it will iterate over tasks. The compiler

protected override void Start()

{

base.Start();

camPort.Subscribe(camNotify);

camPort.Connect();

// Create an Interleave for handlers of notifications from the camera service
Activate(

Arbiter.Interleave(

new TeardownReceiverGroup(

Arbiter.Receive <camera.Shutdown> (false, camNotify,

CameraShutdownHandler)),

new ExclusiveReceiverGroup(

Arbiter.Receive <camera.MovieUpdate> (true, camNotify,

MovieUpdateHandler)),

new ConcurrentReceiverGroup()

);

…

}

228

will recognize that this type of function can contain yield return and yield break

statements, which are not valid in a normal handler. The following code snippet

will demonstrate the use of these statements.

In the JoinIterator given above, the JoinedReceiver on p1 and p2 ports is

created first then depending on the boolean value posted to the p1, the second

JoinedReceiver on p2 and p3 ports will be created later. Without using the

iterators, the whole if…else branch must be placed inside the delegate function

of the first receiver, making the code less readily. By using iterators, the code

can be suspended each time the yield return in the code snippet is executed

and resumed at some point later when the messages arrive. This effect is

referred as continuation, which is very complex to achieve in ordinary event-

based or thread-based programming (Lu et.al., 2008). Therefore, the iterators in

CCR provide outstanding advantages over the conventional asynchronous

programming models.

private IEnumerator<ITask> JoinIterator(bool b, string s, int n)

{

Port<bool> p1 = new Port<bool>();

Port<int> p2 = new Port<int>();

Port<string> p3 = new Port<string>();

 bool continue = false;

p1.Post(b);

p3.Post(s);

p2.Post(n);

// Create the first Join on port 1 and 2
yield return

 Arbiter.JoinedReceive (false, p1, p2,

 delegate(bool b, int n)

 {

 Console.WriteLine("Join 1: {0} {1}", b, n);

continue = b;

 });

if (continue == true)

{

p2.Post(n+1);

// Create the second Join on port 2 and 3
yield return

Arbiter.JoinedReceive (false, p2, p3,

delegate(int n, string s)

{

 Console.WriteLine("Join 2: {0} {1}", n, s);

 p2.Post(n-1);

 });

}

else

yield break;

}

229

Finally, to launch an iterator, e.g. the above JoinIterator routine, one can use

the CCR’s method SpawnIterator:

 which passes the parameters (true, Hello, 99) to the JoinIterator routine and

execute it in an independent thread along with the main thread that executes

the command SpawnIterator itself.

The output on the screen of the above code snippet is:

Join 1: True 99

Join 2: 100 Hello

SpawnIterator<bool, int, string>(true, "Hello", 99, JoinIterator);

230

Appendix F Predefined classes and enumerators

F.1 Device States

The enumeration DeviceStates represents the status of the device. It may have

one of the following values:

Table F-1 The enumeration DeviceStates

Value Descriptions

Ready The device is ready to perform a task.

Busy The device is busy executing a task.

Error The device has some failures and cannot perform a task.

F.2 Connection States

The enumeration ConnectionStates represents the status of the connection

between the service and the device controller. It may have one of the following

values:

Table F-2 The enumeration ConnectionStates

Value Descriptions

Online The service is connected with its controller.

Offline The service is disconnected or unable to connect with its device.

Error The connection has some failures.

F.3 Command Types

The enumeration CommandTypes represents the type of a command. It may

have one of the following values:

Table F-3 The enumeration CommandTypes

Value Descriptions

NoData The command does not return any data.

SingleData The command returns single data. The data may be an array of items but

are returned at once.

MultipleData The command returns multiple data.

StopData The command stops the one that sends multiple data.

231

F.4 Data Types

The enumeration DataTypes indicates the type of data that the command

returns. It may have one of the following values:

Table F-4 The enumeration DataTypes

Value Descriptions Type conversion

Boolean Boolean, Binary C# type: boolean, .NET type: System.Boolean

Byte 8-bit unsigned integer C# type: byte, .NET type: System.Byte

Integer 32-bit signed integer C# type: int, .NET type: System.Int32

Double 64-bit floating point C# type: double, .NET type: System.Double

String Array of characters C# type: string, .NET type: System.String

F.5 Command

The class Command contains information about the command that will be sent

to the device controller for execution.

Table F-5 The class Command

Properties Type Descriptions

Name string Command name

Option string Optional parameter

SuccessCode string The feedback code of the device API indicating the

command has finished without any errors from the

controller side. Any other feedback means failure.

Type CommandTypes The type of the command.

InputDataType DataTypes The type of input data to the command, if any.

InputDataSize int [] The length of input data, if any.

OutputDataType DataTypes The type of output data from the command, if any

(when the field Type is SingleData or MultipleData).

OutputDataSize int [] The length of output data, if any.

The class Command supports most common data types exchanged between

electronic and software devices. Moreover, the length of data, represented by

the fields InputDataSize and OutputDataSize, are not restricted. Data can be a

scalar, a vector or a matrix of n-dimensions of type DataTypes:

(a) If no data, DataSize is an array of one value: 0

232

(b) If the data is a scalar, DataSize is an array of one value: 1.

(c) If data is a vector, DataSize is an array of one value: n, which is the

length of the vector.

(d) If data is a 2D matrix, DataSize is an array of two values: m and n, in

which m is the number of rows, n is the number of columns of the matrix.

(e) If data is an n-D matrix, DataSize is an array of n values: m1…mn, in

which mi is the number of items in an i dimension.

F.6 Device

The class Device contains information about the represented device. It consists

of the following members:

Table F-6 The class Device

Attribute Type Descriptions

Name string The unique name of the device.

Vendor string The manufacturer of the device

Info string Description on the device’s functionality, model,

accuracy etc.

Connection ConnectionStates The connection status between the service and the

device controller

State DeviceStates The status of the device

Commands Command [] List of the commands that the device can perform

LastUpdated DateTime Time stamp of the latest update

F.7 Tag

The class Tag contains names of the sender and recipient of the request.

Table F-7 The class Tag

Value Descriptions

Sender Name of the service that sends the request

Recipient Name of the service that receives the request

F.8 Process States

The enumeration ProcessStates represents the status of a process. It may have

one of the following values:

233

Table F-8 The enumeration ProcessStates

Value Descriptions

Queued The process has been scheduled for execution.

Running The process is being executed.

Completed The process has completed without failures

Failed The process has failed to complete

F.9 Process

The class Process contains information about the process one service

generates at a remote service in order to invoke a command on this service. It

has the following members:

Table F-9 The class Process

Member Type Explanation

Command Command The request command.

Tag Tag The sender and recipient.

Identifier uint The process’s unique identifier.

State ProcessStates The process status.

Data Object The input data of the command, if required

F.10 ProcessUpdateNotification

The class ProcessUpdateNotification is the return data type of the notification

ProcessUpdate. It has the following members:

Table F-10 The class ProcessUpdateNotification

Member Type Explanation

Tag Tag The sender and recipient.

Identifier uint The process’s unique identifier.

State ProcessStates The process status (as in Process.State).

Data Object The output data of the process, if any

F.11 ConnectionUpdateNotification

The class ConnectionUpdateNotification is the return data type of the

notification ConnectionUpdate. It has the following members:

234

Table F-11 The class ConnectionUpdateNotification

Member Type Explanation

Name string Name of the device (as in Device.Name)

Connection ConnectionStates Connection status (as in Device.Connection).

F.12 StateUpdateNotification

The class StateUpdateNotification is the return data type of the notification

StateUpdate. It has the following members:

Table F-12 The class StateUpdateNotification

Member Type Explanation

Name string Name of the device (as in Device.Name)

State DeviceStates Device status (as in Device.State).

F.13 ShutdownNotification

The class ShutdownNotification is the return data type of the notification

Shutdown. It has the following members:

Table F-13 The class ShutdownNotification

Member Type Explanation
Name string Name of the device (as in Device.Name)

	ABSTRACT
	ACKNOWLEDGEMENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ABBREVIATIONS
	1 INTRODUCTION
	1.1 Context
	1.2 Motivation
	1.3 Research Objectives
	1.4 Thesis overview

	2 BACKGROUND
	2.1 Aircraft Assembly
	2.1.1 Basic aircraft structure
	2.1.2 Assembly process
	2.1.3 Automation in aircraft assembly

	2.2 Industrial robots
	2.2.1 Mechanical structures
	2.2.2 Control architecture
	2.2.3 End-effector
	2.2.4 Programming
	2.2.5 Robot accuracy and the challenge in airframe assembly

	2.3 Metrology for robotics
	2.3.1 Global sensors
	2.3.1.1 Laser tracking system
	2.3.1.2 Other technologies

	2.3.2 Local sensors
	2.3.3 The use of sensors in robotics
	2.3.3.1 Process control
	2.3.3.2 Robot control

	2.4 System integration
	2.4.1 Communication architectures
	2.4.2 Control applications
	2.4.2.1 Control applications with centralized processing
	2.4.2.2 Control applications with distributed processing

	3 LITERATURE REVIEW
	3.1 Applications of robotics in airframe assembly
	3.2 Error compensation techniques
	3.2.1 Part localization
	3.2.2 Robot positioning accuracy
	3.2.2.1 Robot calibration
	3.2.2.2 Sensor-based correction

	3.2.3 Deflections in drilling

	3.3 System integration
	3.3.1 Direct communication and centralized control for dynamic correction
	3.3.2 Distributed control
	3.3.2.1 Communication middleware
	3.3.2.2 Robotic middleware
	3.3.2.3 Existing distributed control frameworks/systems and their features

	3.4 Discussions

	4 METHODOLOGY
	4.1 The application framework for flexible system integration in robotics
	4.1.1 Features of the framework
	4.1.2 Selecting the middleware
	4.1.3 Approach to PnP integration
	4.1.3.1 The “pluggable” Generic Device abstract service
	4.1.3.2 The “playable” robots

	4.1.4 Approach to lock-free task synchronization

	4.2 Robot calibration and error compensation
	4.2.1 Kinematic calibration for open-loop serial manipulators
	4.2.1.1 Error modelling
	4.2.1.2 Identification
	4.2.1.3 Error compensation
	4.2.1.4 The “standardized” modified DH model

	4.2.2 Kinematic calibration for serial manipulators having a parallelogram linkage
	4.2.2.1 Geometric error modelling
	4.2.2.2 Non-geometric error modelling

	5 DEVELOPMENT OF THE FRAMEWORK
	5.1 Robotics Developer Studio: the middleware
	5.1.1 Decentralized Software Service Protocol
	5.1.1.1 DSS service
	5.1.1.2 Message exchange patterns
	5.1.1.3 Procedure of service integration
	5.1.1.4 Abstract service

	5.1.2 Concurrency and Coordination Runtime

	5.2 The framework
	5.2.1 Predefined data structures
	5.2.1.1 Command
	5.2.1.2 Process
	5.2.1.3 ProcessUpdateNotification

	5.2.2 Service architecture
	5.2.2.1 The generic state
	5.2.2.2 The generic interface

	5.2.3 Service implementation
	5.2.3.1 The ports
	5.2.3.2 The receivers
	5.2.3.3 Service start-up
	5.2.3.4 Inbound message handling
	5.2.3.5 Task re-scheduling
	5.2.3.6 Outbound message handling

	5.3 Performance evaluation
	5.3.1 Experiments
	5.3.2 Results and discussions
	5.3.2.1 Throughput
	5.3.2.2 Latency

	6 CALIBRATION AND ERROR COMPENSATION FOR SERIAL ROBOTS HAVING A PARALELLOGRAM LINKAGE
	6.1 Robot forward kinematic model
	6.2 Modelling of geometric errors
	6.2.1 Modelling of errors in the robot’s internal parameters
	6.2.2 Modelling of errors in the base and tool transformations
	6.2.3 Elimination of redundant parameters

	6.3 Modelling of joint deflections
	6.3.1 Joint deflections due to structural loading
	6.3.2 Joint deflections due to payload

	6.4 Error identification
	6.5 Error compensation
	6.5.1 Model-based error compensation
	6.5.2 Sensor-based error compensation

	7 EXPERIMENTAL SETUP
	7.1 Overview
	7.2 Robot service
	7.3 Matlab service
	7.4 Laser tracker service
	7.5 Laser tracker visualization service
	7.6 Cell controller service

	8 SIMULATION, EXPERIMENT RESULTS AND ANALYSIS
	8.1 Simulation
	8.2 Calibration
	8.2.1 Experiments
	8.2.2 Implementation
	8.2.3 Results and analysis

	8.3 Error compensation
	8.3.1 Experiments
	8.3.2 Implementations
	8.3.3 Results and analysis

	8.4 Demonstration
	8.4.1 Description
	8.4.2 Implementation
	8.4.3 Results and analysis

	9 CONCLUSSIONS
	9.1 Summary
	9.1.1 A framework for flexible system integration
	9.1.2 Error modelling and compensation for robots
	9.1.3 Experimental evaluations

	9.2 Contributions
	9.3 Future works

	REFERENCES
	APPENDICES
	Appendix A Forward kinematic model
	Appendix B Derivation of Kinematic Error Model using Differential Homogeneous Transformation
	Appendix C Position equations of a four bar linkage
	Appendix D Determining the metrology and robot frames’ transformations
	D.1 Calibration of the PROBE transformation
	D.2 Calibration of the BASE transformation
	D.3 Jacobians of the BASE parameters

	Appendix E Main components of the CCR
	E.1 Port and PortSet
	E.2 Arbiter
	E.2.1 Receiver
	E.2.2 Choice arbiter
	E.2.3 Join arbiter
	E.2.4 Interleave arbiter

	E.3 Iterators

	Appendix F Predefined classes and enumerators
	F.1 Device States
	F.2 Connection States
	F.3 Command Types
	F.4 Data Types
	F.5 Command
	F.6 Device
	F.7 Tag
	F.8 Process States
	F.9 Process
	F.10 ProcessUpdateNotification
	F.11 ConnectionUpdateNotification
	F.12 StateUpdateNotification
	F.13 ShutdownNotification

