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Highlights

• Multi-dimensional space-dependent sources are reconstructed from boundary data.

• Iterative regularization methods are developed.

• Convergence and stability of numerical results are thoroughly investigated.
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Abstract
We investigate the linear but ill-posed inverse problem of determining a multi-dimensional
space-dependent heat source in the parabolic heat equation from Cauchy boundary data.
This model is important in practical applications where the distribution of internal sources
is to be monitored and controlled with care and accuracy from non-invasive and non-
intrusive boundary measurements only. The mathematical formulation ensures that a
solution of the inverse problem is unique but the existence and stability are still issues
to be dealt with. Even if a solution exists it is not stable with respect to small noise in
the measured boundary data hence the inverse problem is still ill-posed. The Landwe-
ber method is developed in order to restore stability through iterative regularization.
Furthermore, the conjugate gradient method is also developed in order to speed up the
convergence. An alternating direction explicit finite-difference method is employed for
discretising the well-posed problems resulting from these iterative procedures. Numerical
results in two-dimensions are illustrated and discussed.

Keywords: Heat equation; inverse source problem; iterative regularization

1 Introduction

The inverse problem of determining an unknown space-dependent heat source function
in the heat equation has been the point of interest of many recent studies, e.g. [1–9]. In
these studies, in addition to being mostly restricted to one-dimensional computations, the
supplementary information required to compensate for the lack of knowledge of the space-
dependent heat source is a final time upper-base, space-dependent internal measurement
of the temperature or a time-average of it. However, these measurements are intrusive
and may also be difficult to take simultaneously at many space locations at the same fixed
specified instant of time. In order to overcome such a situation, one may be able instead
to measure non-invasively (the unspecified) boundary data.

The uniqueness of solution of this space-dependent heat source problem was estab-
lished in related theoretical studies by Cannon [10], Yamamoto [11] and Dinh Nho
Hao [12, Subsection 4.3.1]. It is also worth mentioning the extension to two space-
dependent additive components heat source identification from Cauchy data investigated
theoretically in [13].

The existence of solution is a delicate matter when solving Cauchy problems based
on analytic continuation, but anyway, even if the solution does exist it will not depend
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continuously on the input data. Thus, the problem is ill-posed and it is the purpose of
this study to develop a stable algorithm for solving the inverse space-dependent source
problem with Cauchy data and implement this algorithm numerically in two-dimensions.

The plan of the paper is as follows. The two-dimensional inverse space-dependent
source problem for the heat equation is formulated in Section 2. The additional boundary
measurement is prescribed as an overdetermination condition to ensure the uniqueness
of the solution. The Landweber iterative method for solving the linear but ill-posed
inverse source problem is described in Section 3. It consists of solving a sequence of direct
and adjoint problems until a prescribed stopping criterion is satisfied. In Section 4, an
alternating direction explicit finite-difference method is described and numerical results
are presented and discussed. In Section 5, the conjugate gradient method is developed
in order to speed up the convergence. Section 6 investigates numerically a test example
mimicking a point source. Finally, Section 7 presents the conclusions of the paper and
possible future work.

2 Mathematical formulation

Let T > 0 and Ω be a bounded domain with piecewise sufficiently smooth boundary ∂Ω.
Consider the inverse source problem of finding the pair (u(x, t), f(x)) satisfying

ut = ∇2u+ r(t)f(x), (x, t) ∈ QT := Ω× (0, T ), (1)

u(x, 0) = φ(x), x ∈ Ω, (2)

u(x, t) = β(x, t) on ∂Ω× (0, T ), (3)

∂nu(x, t) = ν(x, t) on Γ× (0, T ), (4)

where n is the outward unit normal to the boundary ∂Ω, r, φ, β and ν are given functions
and Γ ⊆ ∂Ω is a subportion of the boundary ∂Ω on which the measurement of the flux is
performed. We can interchange (3) and (4) to specify instead

u(x, t) = β(x, t) on Γ× (0, T ), (5)

∂nu(x, t) = ν(x, t) on ∂Ω× (0, T ). (6)

Obviously, when Γ = ∂Ω then the Cauchy data (3), (4) and (5), (6) coincide, but of
practical interest is also to analyse the partial Cauchy data information on the subportion
Γ of ∂Ω as well. We mention that instead of the overspecified data (4) or (5) we can
measure the ’upper-base’ final temperature

u(x, T ) = g(x), x ∈ Ω (7)

but this inverse formulation will not be investigated herein; instead we refer to Wang et
al. [8] and the references therein.

The uniqueness of a solution (u(x, t),f(x)) of the inverse problem (1)–(4) when r(t)
is a constant function (and taken for simplicity to be −1), in which case equation (1)
simplifies to

ut = ∇2u− f(x), (x, t) ∈ QT (8)

was established by Cannon [10] using the method of separation of variables. However,
when r(t) is not a constant function (or when r(t) is not analytic in time) the proof of
uniqueness of a solution is more sophisticated, as provided by Yamamoto [11] for the
inverse problem (1), (2), (5) and (6) in the following theorem.
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Theorem 1. Let Ω = (0, 1)× (0, 1), Γ = (0, 1)×{0} and r ∈ C1[0, T ] with r(0) 6= 0. Let
(f1(x, y), u1(x, y, t)) and (f2(x, y), u2(x, y, t)) be two solutions of the inverse source problem
(1), (2), (5) and (6) which, in terms of the differences f := f1 − f2 and u := u1 − u2,
satisfy

ut = ∇2u+ r(t)f(x, y), (x, y, t) ∈ QT , (9)

u(x, y, 0) = 0, (x, y) ∈ Ω, (10)

∂nu(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ), (11)

u(x, 0, t) = 0, (x, 0, t) ∈ Γ× (0, T ). (12)

Then, if f ∈ L2(Ω) it follows that f = 0 almost everywhere in Ω.

Both Cannon [10] and Yamamoto [11] went on and provided conditional stability
estimates for the space-dependent source term in the heat equation in a rectangular
domain. However, the admissible sets of sources imposed in those papers are seldom
satisfied in practice. Consequently, the inverse problems (1)–(4) or (1), (2), (5), (6) are
still ill-posed and small errors in the input data (4) or (5) lead to large errors in the output
heat source function f(x). This can easily be realised from the following example, which
is a two-dimensional version of the one-dimensional example given in [10].

Example of instability.

Consider the inverse source problem (1)–(4) for Ω = (0, 1) × (0, 1), T = 1, r(t) = −1,
Γ = (0, 1)× {0}, β = φ = 0 and

−∂u
∂y

(x, 0, t) = ν(x, 0, t) = −
(

1− e−2m2π2t

√
mπ

)
sin(mπx), (x, t) ∈ (0, 1)× (0, 1), (13)

where m ∈ N∗. With this data one can easily check (by direct substitution for example)
that the exact solution of the problem (1)–(4) is given by

fm(x, y) = 2
√
m sin(mπx) sin(mπy), (14)

um(x, y, t) =

(
1− e−2m2π2t

m3/2π2

)
sin(mπx) sin(mπy). (15)

It can be seen that, as m→∞, the input flux data (13) tends to zero, whilst the source
function (14) becomes unbounded.

Clearly, in order to restore stability a regularization procedure should be employed and
in Section 3 we describe the Landweber method for solving the inverse problems (1)–(4)
and (1), (2), (5), (6).

2.1 Direct problem

Consider, for example, the Dirichlet (direct) problem, when f is known, given by equa-
tions (1)–(3). This is a well-studied problem that has been shown to have a unique
solution in a variety of spaces for different levels of smoothness on the data and do-
main. For our purpose, we only need well-posedness of (1)–(3) for a class of func-
tions such that the restriction of the normal derivative to the boundary makes sense.
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For example, using standard notation, the problem (1)–(3) has a unique solution u ∈
L2(0, T ;H2(Ω)), ut ∈ L2(0, T ;L2(Ω)), provided that r ∈ C1[0, T ], f ∈ L2(Ω), β ∈
L2(0, T ;H3/2(∂Ω))∩H3/4(0, T ;L2(∂Ω)), φ ∈ H1(Ω) with compatibility condition β(x, 0) =
φ(x) for x ∈ ∂Ω. This is shown, for example, in Theorem 9.1, Chapter IV of [14]; note
though that an alternative notation is used there with, for example, W 2,1(QT ) meaning
L2(0, T ;H2(Ω)) ∩H1(0, T ;L2(Ω)).

For an element u ∈ L2(0, T ;H2(Ω)), ut ∈ L2(0, T ;L2(Ω)), by solving the problem (1)–
(3) the restriction of the normal derivative of this solution on Γ×(0, T ) is well-defined and
belongs to L2(0, T ;H1/2(Γ))∩H1/4(0, T ;L2(Γ)), see, for example, Lemma 3.4 in Chapter
II of [14]. In particular, ∂nu|Γ×(0,T ) ∈ L2(Γ× (0, T )).

From a practical viewpoint, it might be preferable to only measure function values
of the initial state φ without having any constraints on the smoothness of derivatives,
that is, to have φ ∈ L2(Ω) rather than φ ∈ H1(Ω). This can be achieved, for example, by
adding some additional smoothness on r(t) and having a homogeneous boundary condition
(β = 0), then the above Dirichlet problem has a unique solution in the above space, with
additionally u ∈ C1(0, T ;H2(Ω)) for a given φ ∈ L2(Ω), see Corollary 2.8 in Chapter 7 of
[15]. Similar conditions can also be specified for the Neumann (direct) problem, when f

is known, given by equations (1), (2) and (6).
For the sake of completeness, we mention that the space L2(0, T ;X), where X is a

Hilbert space, consists of measurable functions u(·, t) : (0, T )→ X with
∫ T

0
‖u(·, t)‖2

Xdt <
∞. By Ck([0, T ];X) is understood functions u such that the mapping u(·, t) : [0, T ]→ X
possesses continuous and bounded (in the usual norm) derivatives of order up to k ≥ 0.
The space Hk(Ω), k ≥ 0 is the standard Sobolev space of function having (weak) square
integrable derivatives up to order k, with trace space Hk−1/2(∂Ω).

3 Inverse problem

In the inverse problem, we assume that the space-dependent source component f(x) in
the heat equation (1) is unknown.

Throughout this section we assume that r ∈ C1[0, T ], r(0) 6= 0 such that, according to
Theorem 1, a solution to the inverse heat source problem (1), (2), (5) and (6) (or (1)–(4))
is unique.

For the Dirichlet inverse problem (1)–(4) we minimize the functional JDN : L2(Ω) →
L2(Γ× (0, T )),

JDN(f) :=
1

2

∥∥Kf − ν
∥∥2

L2(Γ×(0,T ))
, (16)

whilst for the Neumann inverse problem (1), (2), (5) and (6) we minimize the functional
JND : L2(Ω)→ L2(Γ× (0, T )),

JND(f) :=
1

2

∥∥K̃f − β
∥∥2

L2(Γ×(0,T ))
, (17)

where K and K̃ are operators which will be defined below.
Initially, we have tried to apply the MATLAB toolbox routine lsqnonlin for the min-

imization of the above least-squares functionals but this soon became too much time
consuming and hence prohibitive. Thus, the self-coded Landweber iterative algorithm
described next was preferred.
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Consider first the inverse problem (1)–(4). Introduce the operator K : L2(Ω) →
L2(Γ× (0, T ))

Kf = ∂nū|Γ×(0,T ), (18)

where ū solves the direct well-posed problem




ūt = ∇2ū+ r(t)f(x), (x, t) ∈ QT ,

ū(x, 0) = 0, x ∈ Ω,

ū(x, t) = 0, (x, t) ∈ ∂Ω× (0, T ).

(19)

The operatorK is linear and injective (due to the uniqueness of the inverse source problem,
[10,11]). Further, introduce the adjoint problem





vt = −∇2v in QT ,

v(x, T ) = 0, x ∈ Ω,

v(x, t) = 0, (x, t) ∈ Γc × (0, T ),

v(x, t) = ξ(x, t), (x, t) ∈ Γ× (0, T ),

(20)

where Γc := ∂Ω\Γ and ξ is a function to be specified.
Multiplying the first equation in (19) and (20) by v and ū, respectively, and employing

Green’s formula we obtain (using that ū|t=0 = v|t=T = 0, ū|∂Ω×(0,T ) = 0, v|Γc×(0,T ) = 0)

∫

QT

r(t)f(x)v(x, t) dxdt =

∫

QT

(ūt −∇2u)v dxdt+

∫

QT

(vt +∇2v)ū dxdt

= −
∫

Γ×(0,T )

v∂nū ds. (21)

Now, using the definition (18) of the operator K together with the specified v
∣∣
Γ×(0,T )

= ξ,

expression (21) can be rewritten as

(Kf, ξ)L2(Γ×(0,T )) = (f,K∗ξ)L2(Ω), (22)

where the adjoint operator K∗ : L2(Γ× (0, T ))→ L2(Ω) is defined by

K∗ξ = −
∫ T

0

r(t)v(·, t)dt, ∀ξ ∈ L2(Γ× (0, T )), (23)

where v solves the adjoint well-posed problem (20).
Finally, denote by ũ the solution of the direct problem (1)–(3) with f = 0, namely





ũt = ∇2ũ, in QT ,

ũ(x, 0) = φ(x), in Ω,

ũ(x, t) = β(x, t), (x, t) ∈ ∂Ω× (0, T ).

(24)

One can easily observe that the inverse problem (1)–(4) recasts into solving the linear
operational equation

Kf = ν − ∂nũ
∣∣
Γ×(0,T )

=: ν. (25)

The Landweber method for solving this equation is given by the following iterative pro-
cedure:
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Step 1. Make an arbitrary initial guess f0 ∈ L2(Ω) for the source f and solve the direct
well-posed problem given by the equations (1) with f = f0, (2) and (3) and denote
this solution by u0.

Step 2. Assume that fk and uk have been found. Let vk solve the well-posed adjoint
problem given by the system of equations (20) with

ξ(x, t) := ξk(x, t) = ∂nuk(x, t)− ν(x, t), (x, t) ∈ Γ× (0, T ). (26)

Step 3. Put

fk+1(x) = fk(x) + γ

∫ T

0

r(t)vk(x, t)dt, x ∈ Ω, (27)

where γ > 0 is a relaxation parameter to be prescribed, and let uk+1 solve the
well-posed direct problem given by equations (1) with f = fk+1, (2) and (3).

Step 4. Repeat Steps 2 and 3 until a desired level of accuracy has been achieved (for
exact data). For noisy data, use the discrepancy principle to stop the iterations
at an appropriate threshold. For more details on the convergence and regularizing
character of the Landweber method, see [16].

The inverse problem (1), (2), (5) and (6) is handled similarly by changing the Dirichlet
boundary conditions in the direct and adjoint problems (19) and (20) into Neumann
boundary conditions. The operator K̃ is then defined as K̃f = u|Γ×(0,T ) and we replace
expression (26) by

ξ(x, t) := ξk(x, t) = uk(x, t)− β(x, t), (x, t) ∈ Γ× (0, T ). (28)

The adjoint operator is defined as

K̃∗ξ =

∫ T

0

r(t)v(x, t)dt, (29)

and the plus sign in (27) is changed to minus.

4 Numerical discretisation

The one-dimensional case has been discussed in detail elsewhere, [17, 18], and therefore
it will not be considered herein. The two-dimensional case when Ω is a bounded planar
domain reflects more the typical properties of the general inverse and ill-posed source
problem. For the simplicity of explanation, in the remaining part of the paper we assume
that Ω is rectangle and, in fact, we take Ω to be the unit square (0, 1) × (0, 1), [10, 11].
Then, to discretise equation (1) in the unit square domain Ω = (0, 1)× (0, 1),

ut = uxx + uyy + r(t)f(x, y, t), (x, y, t) ∈ QT = Ω× (0, T ) = (0, 1)× (0, 1)× (0, T ), (30)

we subdivide QT into Mx, My and N subintervals of equal step lengths ∆x = 1/Mx

and ∆y = 1/My, and uniform time step ∆t = T/N . At the grid nodes (xi, yj, tk) given
by xi = i∆x, yj = j∆y and tk = k∆t, we denote uki,j := u(xi, yj, tk), rk := r(tk) and

fi,j := f(xi, yj) for i = 0,Mx, j = 0,My and k = 0, N .
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4.1 Alternating direction explicit method (ADEM)

Based on the method described in [19], in this section an unconditionally stable numerical
procedure for solving the heat equation (30) with initial and boundary conditions (2) and
(3) will be outlined.

Let ũki,j and ṽki,j be the solutions of the following equations which are multilevel finite-
difference discretisations of (30):

ũk+1
i,j − ũki,j

∆t
=
ũki+1,j − ũki,j − ũk+1

i,j+1 + ũk+1
i−1,j

(∆x)2
+
ũki,j+1 − ũki,j − ũk+1

i,j + ũk+1
i,j−1

(∆y)2
+ rkfi,j,

i = 1,Mx − 1, j = 1,My − 1, k = 0, N, (31)

ṽk+1
i,j − ṽki,j

∆t
=
ṽk+1
i+1,j − ṽk+1

i,j − ṽki,j + ṽki−1,j

(∆x)2
+
ṽk+1
i,j+1 − ṽk+1

i,j − ṽki,j + ṽki,j−1

(∆y)2
+ rkfi,j,

i = Mx − 1, 1, j = My − 1, 1, k = 0, N. (32)

We approximate uk+1
i,j as the arithmetic mean of ũk+1

i,j and ṽk+1
i,j , namely,

uk+1
i,j =

ũk+1
i,j + ṽk+1

i,j

2
. (33)

Rearranging the terms in (31) and (32), we obtain the explicit calculations of ũki,j and ṽki,j:

ũk+1
i,j = aũki,j + b(ũk+1

i−1,j + ũki+1,j) + c(ũk+1
i,j−1 + ũki,j+1)

+
∆t

1 + λ
rkfi,j, i = 1,Mx − 1, j = 1,My − 1, k = 0, N, (34)

ṽk+1
i,j = aṽki,j + b(ṽki−1,j + ṽk+1

i+1,j) + c(ṽki,j−1 + ṽk+1
i,j+1)

+
∆t

1 + λ
rkfi,j, i = Mx − 1, 1, j = My − 1, 1, k = 0, N. (35)

where

a =

[
1−∆t

(
1

(∆x)2
+

1

(∆y)2

)]/[
1 + ∆t

(
1

(∆x)2
+

1

(∆y)2

)]
=

1− λ
1 + λ

,

b =
∆t

(∆x)2

/
(1 + λ), c =

∆t

(∆y)2

/
(1 + λ), λ = ∆t

(
1

(∆x)2
+

1

(∆y)2

)
.

The initial and boundary conditions (2) and (3) in discretised form are

u0
i,j = φi,j, i = 0,Mx, j = 0,My, (36)

uk0,j = βk0,j, u
k
Mx,j = βkMx,j, j = 0,My, u

k
i,0 = βki,0, u

k
i,My

= βki,My
, i = 0,Mx, k = 1, N, (37)

where φi,j = φ(xi, yj), β
k
0,j = β(0, yj, tk), β

k
Mx,j

= β(1, yj, tk), β
k
i,0 = β(xj, 0, tk) and

βki,My
= β(xj, 1, tk) for i = 0,Mx, j = 0,My, k = 1, N .

From (34), ũk+1
i,j can be computed explicitly. In this case, calculations proceed from the

grid point close to the boundaries x = 0 and y = 0, as i, j increase. The needed values
such as ũk+1

i−1,j, ũ
k
i,j and ũki+1,j will be known from the initial and boundary conditions

(36) and (37). Similarly, ṽk+1
i,j can be calculated explicitly from (35) beginning at the

boundaries x = 1 and y = 1 and then marching in a sequence of decreasing i and j, i.e.
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i = Mx − 1,Mx − 2, · · · , 1, j = My − 1,My − 2, · · · , 1. These values are substituted into
(33) to obtain the solution uk+1

i,j .
This procedure is unconditionally stable, as both equations (34) and (35) are uncon-

ditionally stable, but the time increment ∆t cannot be taken indefinitely large. It has
been noticed in [19] that if the time increment is taken very large, the solution obtained
will be stable but may not describe the actual and physical problem. This behavior is
common to all unconditionally stable explicit or semi-implicit methods.

When the Neumann flux boundary condition (6) is given instead of the Dirichlet
boundary condition (3), then we approximate it as





νk0,j =
4uk1,j − uk2,j − 3uk0,j

2∆x
, j = 1,My − 1, k = 1, N,

νkMx,j =
4ukMx−1,j − ukMx−2,j − 3ukMx,j

−2∆x
, j = 1,My − 1, k = 1, N,

νki,0 =
4uki,1 − uki,2 − 3uki,0

2∆y
, i = 1,Mx − 1, k = 1, N,

νki,My
=

4uki,My−1 − uki,My−2 − 3uki,My

−2∆y
, i = 1,Mx − 1, k = 1, N.

(38)

4.2 Numerical solution of the inverse problem

We aim to obtain stable reconstructions for the heat source f(x, y) together with the
temperature u(x, y, t) satisfying the equations (2)–(4) and (30) for the Dirichlet problem
or, equations (2), (5), (6) and (30) for the Neumann problem. To assess the accuracy of
the numerical solution for the heat source we define the root mean square error by:

rmse(f) =

[
1

(Mx − 1)(My − 1)

Mx−1∑

i=1

My−1∑

j=1

(
fnumerical(xi, yj)− f exact(xi, yj)

)2

]1/2

. (39)

The space grid meshing of the unit square Ω = (0, 1)×(0, 1) is kept fixed atMx = My =
10 throughout the computations. The integral involved in (27) is simply approximated
by the point rule

∫ T

0

r(t)vk(x, y, t)dt ≈
T

N

N−1∑

i=0

r(ti)vk(x, y, ti), (x, y) ∈ Ω. (40)

We consider solving the Dirichlet inverse problem (2)–(4) and (30) with the input data
given by

r(t) = 1, t ∈ (0, T ), (41a)

φ(x, y) = 0, (x, y) ∈ (0, 1)× (0, 1), (41b)

β(x, y, t) = 0, (x, y, t) ∈ ∂Ω× (0, T ), (41c)

and the heat flux measurement

∂nu(0, y, t) = ν(0, y, t) = −π(e−2tπ2 − 1) sin(πy), (y, t) ∈ (0, 1)× (0, T ), (42)
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for Γ = {0} × (0, 1) and T = 1. The analytical solution of this problem is given by

u(x, y, t) =
(
exp(−2π2t)− 1

)
sin(πx) sin(πy), (x, y, t) ∈ (0, 1)× (0, 1)× (0, T ), (43)

and
f(x, y) = −2π2 sin(πx) sin(πy), (x, y) ∈ (0, 1)× (0, 1). (44)

As we also need to illustrate the convergence of the least-squares objective function (16),
this is numerically discretised, as

JDN(f) =
1

2
‖Kf − ν‖2

L2(Γ×(0,T )) ≈
T

2N(My − 1)

My−1∑

j=1

N∑

i=1

(νi0,j − ν(0, yj, ti))
2. (45)

We take the initial guess f 0 = 0 for the heat source.
For exact data, i.e. no noise in the heat flux measurement (42), we illustrate in Figure

1 the convergence of the objective function (16), as a function of the number of iterations,
for various time grids N ∈ {50, 100, 200} and various relaxation parameters γ ∈ {1, 5, 10}
in (27). For values of γ greater than about 11 the objective function (16) was found to
diverge. This is expected since it is well-known that there exists an upper bound condition
γ < ‖K‖−2 under which convergence of the Landweber method is assured, [16]. From
Figure 1 it can be seen that, after about 200 iterations, the objective function significantly
decreases as N increases. Also, the rate of convergence increases with increasing γ. The
corresponding absolute errors between the numerically retrieved heat source and the exact
solution (44) illustrated in Figures 3–5, as well as the rmse(f) values calculated from (39)
and given in Figure 2 and Table 1 all confirm the convergence and excellent performance
of the iterative Landweber method with ADE for solving the inverse Dirichlet heat source
problem for exact data. As shown in Figure 2, the FDM mesh with N = 50 is too
coarse and the semi-convergence phenomenon, [16], of the iterative regularization clearly
manifests.
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Figure 1: The objective function JDN in (16), as a function of the number of iterations, for

N ∈ {50, 100, 200} and (a) γ = 1, (b) γ = 5, (c) γ = 10.
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Figure 2: The rmse(f) in (39), as a function of the number of iterations, for N ∈ {50, 100, 200}
and (a) γ = 1, (b) γ = 5, (c) γ = 10.
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Figure 3: The numerical solutions and the absolute error between the numerical and the exact

solutions, for the heat source with γ = 1, and N = 50, plotted at iteration 6087 which is the

minimum point of rmse(f) in Figure 2(a), N = 100 and N = 200.
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Figure 4: The numerical solutions and the absolute error between the numerical and exact

solutions for the heat source with γ = 5, and N = 50, plotted at iteration 1216 which is the

minimum point of rmse(f) in Figure 2(b), N = 100, plotted at iteration 21925 which is the

minimum point of rmse(f) in Figure 2(b), and N = 200.
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Figure 5: The numerical solutions and the absolute error between the numerical and exact

solutions, for the heat source with γ = 10, and N = 50, plotted at iteration 605 which is the

minimum point of rmse(f) in Figure 2(c), N = 100, plotted at iteration 10976 which is the

minimum point of rmse(f) in Figure 2(c), and N = 200, plotted at iteration 69664 which is the

minimum point of rmse(f) in Figure 2(c).

Table 1: The minimum values of rmse(f) for N ∈ {50, 100, 200, 400} and γ ∈ {1, 5, 10}.
HHHHHHN

γ
1 5 10

50 4.7104 4.7102 4.7099
100 2.6418 2.6403 2.6403
200 1.5091 1.2313 1.2209
400 2.4603 1.5003 1.1313

The computational times to run 105 iterations on a laptop machine, with Intel core
i7 at 2.2 GHz processor and 8 GB of memory are approximately 13, 24 and 42 hours
for N ∈ {50, 100, 200}, respectively. This may imply some slow convergence and high
computational time but then the speeding up can be achieved either by increasing γ or
by using a variable γ (depending on the iterative number k) in (27), as in the conjugate
gradient method, [5, 16], described in the next section.

Next we fix N = 100, γ = 10 and consider the case of noisy data (4). This is numer-
ically simulated by perturbing the heat flux measurement (42) with Gaussian additive
random noise ε with mean zero and standard deviation

σ = p× max
(y,t)∈(0,1)×(0,T )

|ν(0, y, t)|, (46)

where p represents the percentage of noise, as follows:
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νε(0, yj, ti) = ν(0, yj, ti) + εj,i, j = 1,My − 1, i = 1, N. (47)

We use the MATLAB function normrnd to generate the random variables
ε = (εj,i)i=1,N,j=1,My−1, as follows:

ε = normrnd(0, σ,My − 1, N). (48)

In the case of noisy data (47), we replace ν(0, yj, ti) by νε(0, yj, ti) in (16). The total
amount of noise

ε(p) := ‖νε − νexact‖ =

√√√√ T

N(My − 1)

My−1∑

j=1

N∑

i=1

(νnoise(0, yj, ti)− ν(0, yj, ti))2, (49)

generated from one of these simulations is ε(p) ∈ {0.1374, 0.2749} for p ∈ {5, 10}%,
respectively. This is important to know because in order to obtain a stable solution we
need to stop the iterative process described in Section 3 at the first iteration number kd
for which the discrepancy criterion

JDN(fkd) ≤ τ
ε2(p)

2
, (50)

where τ is some constant greater than unity, is satisfied, [6, 16].
Figures 6(a) and 6(b) show the objective function (16) and the rmse(f), respectively,

for the first 105 iterations for various percentages of noise p ∈ {5, 10}%, for τ = 1.3.

This yields the thresholds in (50) given by τ ε
2(p)
2
∈ {0.0123, 0.0491} for p ∈ {5, 10}%,

respectively.
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Figure 6: (a) The objective function (16) and (b) the rmse(f), as functions of the number of

iterations, for various noise levels p = 5%(—) and p = 10%(−−−).

According to the discrepancy principle criterion (50), we terminate the iterations of
the algorithm at the iteration number kd

kd =

{
560, for p = 5%,
306, for p = 10%,

rmse(fkd) =

{
3.5659, for p = 5%,
4.5854, for p = 10%.

(51)

As expected, as p increases from 5% to 10% the iterations should be stopped earlier. From
Figure 6(b) it can be seen that the objective function (16) decreases as the number of
iterations k increases but the rmse(f) starts increasing once

k > kopt =

{
2618, for p = 5%,
1467, for p = 10%,

rmse(fkopt) =

{
3.0053, for p = 5%,
3.2750, for p = 10%.

(52)

Figures 7(a,b) and 7(c,d) illustrate the absolute errors between the exact solution (44)
and the numerically retrieved heat source at the iterations kd and kopt given by (51) and
(52), respectively, for p ∈ {5, 10}% noise. From these figures and equations (51) and
(52) it can be seen that the accuracy of the numerical solutions improves as the amount
of noise decreases from p = 10% to 5%. Moreover, by comparing Figures 7(a,b) and
7(c,d) it can be seen that although the numerical source solution f(kopt) is more accurate
than f(kd) it is less stable. This is expected since the Landweber method is a regularizing
semi-convergent iterative algorithm which should be stopped according to the discrepancy
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principle (50). Moreover, in practice only kd can be computed as kopt uses the knowledge
of the analytical solution which is not available in general.

0
0.5

1

0

0.5

1
0

2

4

6

8

x

(a)

y

Ab
so

lu
te

 e
rro

r

0
0.5

1

0

0.5

1
0

5

10

x

(b)

y

Ab
so

lu
te

 e
rro

r

0
0.5

1

0

0.5

1
0

2

4

6

x

(c)

y

Ab
so

lu
te

 e
rro

r

0
0.5

1

0

0.5

1
0

2

4

6

x

(d)

y

Ab
so

lu
te

 e
rro

r

Figure 7: The absolute error between the exact (44) and numerical solutions f(kd) for (a)

p = 5% and (b) p = 10% noise. The absolute error between the exact (44) and numerical

solutions f(kopt) for (c) p = 5% and (d) p = 10% noise.

5 The conjugate gradient method

From the previous numerical investigation it was observed that the convergence of the
Landweber iterative method described in Section 3 can become prohibitively slow even
when the relaxation parameter γ in (27) increases. For example, as previously reported
it takes 1 day to run 105 iterations for Mx = My = 10 and N = 100, γ = 10 to achieve
the rmse(f) = 2.6403. In order to speed up the convergence of minimization of the
least-squares functional (16) (or (17)) we can improve on the Landweber method and
employ instead the regularising γ-free conjugate gradient method (CGM). This iterative
algorithm runs as follows.

Let Steps 1 and 2 be the same as in the Landweber algorithm of Section 3. The next
steps are as follows:

Step 3 Calculate
dk(x) = −zk(x) + βk−1dk−1(x), k ≥ 0 (53)

with the convention that β−1 = 0 and

βk−1 =
‖zk‖2

L2(Ω)

‖zk−1‖2
L2(Ω)

, k ≥ 1, (54)

where the gradient (23) is given by

zk(x) = −
∫ T

0

r(t)vk(x, t)dt, k ≥ 0. (55)
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Step 4 Solve the direct well-posed problem given by the equations (19) with f = dk, to
determine Kdk defined by (18). Set

αk =
‖zk‖2

L2(Ω)

‖Kdk‖2
L2(Γ×(0,T ))

, k ≥ 0, (56)

and pass to the new iteration by letting

fk+1(x) = fk(x) + αkdk(x), k ≥ 0. (57)

Step 5 This step is the same as Step 4 of the Landweber algorithm of Section 3.

In what follows, we consider the same example as in Section 4. We takeMx = My = 10.
The L2(Ω)-norm of the functions involved in (54) and (56) is calculated as

‖z‖2
L2(Ω) =

1

(Mx − 1)(My − 1)

Mx−1∑

i=1

My−1∑

j=1

z2(xi, yj). (58)

For exact data, Figures 8(a) and 8(b) show the objective function JDN in (16) and
the rmse(f) in (39), respectively, as functions of the number of iterations, for various
N ∈ {50, 100, 200}. The corresponding absolute errors between the exact solution (44)
and the numerical CGM heat source are shown in Figure 9.

The minimum values for rmse(f) are rmse(f) ∈ {4.5997, 2.5783, 1.5583, 1.1328} for
N ∈ {50, 100, 200, 400}, respectively. By comparing these values to those obtained in
Table 1 obtained with the Landweber method (compare also Figure 8(a) with Figure 1,
Figure 8(b) with Figure 2, and Figure 9 with Figures 3–5) it can be seen that the CGM
gains at least two orders of magnitude speed of convergence, i.e. the CGM uses 103

iterations instead of 105 required by the Landweber method to achieve the same level of
accuracy.
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Figure 8: (a) The objective function JDN in (16) and (b) the rmse(f) in (39), as functions of

the number of iterations, for N ∈ {50, 100, 200}, using the CGM for exact data.
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Figure 9: The numerical solutions and the absolute error between the numerical and exact

solutions, for the heat source with N = 50, plotted at iteration 78 which is the minimum point

of rmse(f) in Figure 8(b), N = 100, plotted at iteration 715 which is the minimum point of

rmse(f) in Figure 8(b), and N = 200, using the CGM for exact data.

Next we fix N = 100 and consider the case of noisy data (47). Figures 10(a) and 10(b)
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show the objective function (16) and the rmse(f), respectively, for the first 103 iterations
for various percentages of noise p ∈ {5, 10}% for τ = 1.3. This yields the thresholds in

(50) given by τ ε
2(p)
2
∈ {0.0123, 0.0491} for p ∈ {5, 10}%, respectively. According to the

discrepancy principle criterion (50) we cease the CGM iterations at iteration number

kd =

{
58, for p = 5%,
37, for p = 10%,

rmse(fkd) =

{
3.5886, for p = 5%,
4.6043, for p = 10%.

(59)

Also,

kopt =

{
183, for p = 5%,
224, for p = 10%,

rmse(fkopt) =

{
3.0020, for p = 5%,
3.1774, for p = 10%.

(60)

(a)

10
0

10
1

10
2

10
3

0

0.05

0.1

0.15

0.2

Number of Iterations 

O
bj

ec
tiv

e 
fu

nc
tio

n 

τ ε2(5)/2 τ ε2(10)/2

(b)

10
0

10
1

10
2

10
3

2

4

6

8

10

Number of Iterations 

rm
se

(f)

Figure 10: (a) The objective function (16) and (b) the rmse(f), as functions of the number of

iterations, using the CGM for various noise levels p = 5% (—), and p = 10% (- - -).
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Figure 11: The absolute error between the exact (44) and numerical solutions f(kd) for (a)

p = 5% and (b) p = 10% noise. The absolute error between the exact (44) and numerical

solutions f(kopt) for (c) p = 5% and (d) p = 10% noise, using the CGM.

Figure 11 illustrate the numerical solutions for the heat source at the iterations kd
and kopt given by (59) and (60), respectively, for p ∈ {5, 10}% noise in comparison with
exact solution (44). Comparing the expressions (51), (52) and Figure 7 obtained using
Landweber method with the expressions (59), (60) and Figure 11 and obtained using
CGM it can be seen that the same levels of accuracy and stability are achieved by both
iterative regularization methods but the CGM is much faster.

6 Another test example mimicking a point source

In the previous sections 4.2 and 5 we have applied the Landweber method and the CGM,
respectively, for solving the inverse problem (2)–(4) and (30) with the input data (41a)–
(41c) and (42) having the analytical solution (43) for the temperature and (44) for the
heat source.

In this example, we consider reconstructing the function

f(x, y) =
1

a2π
exp

(
−(x− x0)2 + (y − y0)2

a2

)
, (61)

where (x0, y0) = (0.5, 0.5) and a = 0.3, mimicking a point source of unit strength/intensity
located in the middle of the square plate Ω = (0, 1)×(0, 1). We also take T = 1, r(t) = t+1
and the data (2) and (3) given by φ = 0 and β = 0, respectively. As for this data there
is no analytical solution available for the temperature u satisfying the Dirichlet direct
problem (2), (3) and (30) with f given by (61), the heat flux (4) on Γ = {0} × (0, 1) is
obtained numerically using the FDM. The numerical results obtained for Mx = My = 10
and various N ∈ {50, 100, 200} are shown in Figures 12(a)–(c), respectively.
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Figure 12: The numerical results for the heat flux ν(0, y, t) = ∂nu(0, y, t) obtained by solving

the direct problem with Mx = My = 10 and (a) N = 50, (b) N = 100 and (c) N = 200.

From Figure 12 it can be seen that the numerical solution for the heat flux ν(0, y, t) is
convergent as the time step decreases. Therefore, we consider the numerically simulated
flux from Figure 12(c) at every two time steps as the input data (4) for the inverse problem
(2)–(4) and (30) which is solved with the Mx = My = 10 and N = 100. This way we
avoid committing an inverse crime when numerically simulating the otherwise unavailable
input data for the inverse problem. Furthermore, we add p = 1% noise as in (47), where,
from (46) and Figure 12, σ = 0.76 p. We take the initial guess f 0 = 0.

We apply both the Landweber method (with γ = 5) and the CGM with τ = 1.1 in
the criterion (50) giving the stopping iterations

kd =

{
628, for Landweber,
164, for CGM,

rmse(fkd) =

{
0.4889, for Landweber,
0.4946, for CGM.

(62)

Also,

kopt =

{
6886, for Landweber,
1317, for CGM,

rmse(fkopt) =

{
0.3987, for Landweber,
0.3849, for CGM.

(63)

The objective function (45) and the rmse(f) error (39), as functions of the number of
iterations, are plotted in Figures 13 (a), (b) and 14 (a), (b), and the corresponding numer-
ical results obtained after kopt and kd iterations are compared with the analytical solution
(61) in Figures 13 (c), (d) and 14 (c), (d), for the Landweber and CGM, respectively. By
comparing these figures it can be seen that the CGM is more efficient as it produces faster
numerical reconstructions than the Landweber method with the same accuracy, see also
equations (62) and (63). In the meantime, both the Landweber and CGM yield stable
solutions, as expected, because of their regularizing character and the employment of the
discrepancy stopping criterion (50). Although the error between the numerical and exact
solutions may seem slightly large, there is noise generated both randomly with p = 1%
as in (46)–(48), as well as numerically as explained above from Figure 12. Furthermore,
the inverse problem with Γ = {0} × (0, 1) contains limited additional information (yet
sufficient for uniqueness but little for stability/accuracy of the reconstruction) on only one
side of the unit square and one expects better numerical results if Γ would be increased
to contain more sides.
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Figure 13: (a) The objective function, (b) the rmse, as functions of the number of iterations,

the exact (left), numerical (middle) and the absolute error (right) (c) at the iteration kopt = 6886

which is the minimum point of rmse(f) and (d) at the iteration kd = 628, for p = 1% noise,

using the Landweber method.
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Figure 14: (a) The objective function, (b) the rmse, as functions of the number of iterations,

the exact (left), numerical (middle) and the absolute error (right) (c) at the iteration kopt = 1317

which is the minimum point of rmse(f) and (d) at the iteration kd = 164, for p = 1% noise,

using the CGM.
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7 Conclusions

We have presented a computational analysis of the Landweber iterative regularization
method for solving the multi-dimensional (with numerical emphasis on the two-dimensional
case) inverse heat space-dependent source problem for the heat equation, with Cauchy
overprescribed boundary conditions. The Cauchy data is partial in the sense that it is
specified only on a small potion Γ of ∂Ω. Thus, the amount of sufficient information to
provide the uniqueness of solution is rather minimal and this may be applicable in prac-
tical situations concerning limited remote sensing. The CGM has also been developed
in order to speed-up the convergence. The direct solver based on ADE finite difference
scheme has been employed. Numerical results obtained for both exact and noisy input
data show that accurate and stable numerical reconstructions have been achieved. The
same conclusions can be obtained for other non-smooth or discontinuous source examples,
as shown elsewhere for related inverse source problems, [2, 5, 6].

Future work will consist in extending the analysis and methods of this study to the
simultaneous reconstruction of multi-dimensional space-dependent source and diffusivity
coefficient, [20].

References

[1] M.N. Ahmadabadi, M. Arab, F. Maalek-Ghaini, The method of fundamental so-
lutions for the inverse space-dependent heat source problem, Eng. Anal. Boundary
Elements 33 (2009) 1231–1235.

[2] A. Erdem, D. Lesnic, A. Hasanov, Identification of a spacewise dependent heat source,
Appl. Math. Model. 37 (2013) 10231–10244.

[3] A. Farcas, D. Lesnic, The boundary-element method for the determination of a heat
source dependent on one variable, J. Eng. Math. 54 (2006) 375–388.
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