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What should a forensic practitioner’s likelihood ratio be? II 

Abstract 

In the debate as to whether forensic practitioners should assess and report the precision of the strength of 

evidence statements that they report to the courts, I remain unconvinced by proponents of the position 

that only a subjectivist concept of probability is legitimate. I consider this position counterproductive for 

the goal of having forensic practitioners implement, and courts not only accept but demand, logically 

correct and scientifically valid evaluation of forensic evidence. In considering what would be the best 

approach for evaluating strength of evidence, I suggest that the desiderata be (1) to maximise empirically 

demonstrable performance; (2) to maximise objectivity in the sense of maximising transparency and 

replicability, and minimising the potential for cognitive bias; and (3) to constrain and make overt the 

forensic practitioner’s subjective-judgement based decisions so that the appropriateness of those 

decisions can be debated before the judge in an admissibility hearing and/or before the trier of fact at 

trial. All approaches require the forensic practitioner to use subjective judgement, but constraining 

subjective judgement to decisions relating to selection of hypotheses, properties to measure, training and 

test data to use, and statistical modelling procedures to use – decisions which are remote from the output 

stage of the analysis – will substantially reduce the potential for cognitive bias. Adopting procedures 

based on relevant data, quantitative measurements, and statistical models, and directly reporting the 

output of the statistical models will also maximise transparency and replicability. A procedure which 

calculates a Bayes factor on the basis of relevant sample data and reference priors is no less objective 

than a frequentist calculation of a likelihood ratio on the same data. In general, a Bayes factor calculated 

using uninformative or reference priors will be closer to a value of 1 than a frequentist best estimate 

likelihood ratio. The bound closest to 1 based on a frequentist best estimate likelihood ratio and an 

assessment of its precision will also, by definition, be closer to a value of 1 than the frequentist best 

estimate likelihood ratio. From a practical perspective, both procedures shrink the strength of evidence 

value towards the neutral value of 1. A single-value Bayes factor or likelihood ratio may be easier for 

the courts to handle than a distribution. I therefore propose as a potential practical solution, the use of 

procedures which account for imprecision by shrinking the calculated Bayes factor or likelihood ratio 

towards 1, the choice of the particular procedure being based on empirical demonstration of performance.  
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Highlights 

• Regarding the debate on precision of forensic strength of evidence statements. 

• Insisting on a subjectivist concept of probability is counterproductive. 

• Aims: maximise transparency & replicability, minimise potential for cognitive bias. 

• Proposed practical solution: 

• Procedures which shrink calculated Bayes factors or likelihood ratios towards 1.  



1. Discussion 

Much resistance to the adoption of the likelihood ratio framework is not to the idea of assessing the 

relative probabilities (or likelihoods) of the evidence under prosecution and defence hypotheses per se, 

but to what is perceived as unwarranted subjective assignment of those probabilities [1],[2]. Perhaps 

wider acceptance will be achieved if greater emphasis is placed on calculation of likelihood ratios via 

statistical models applied to empirical data and on empirical validation of system performance. 

Biedermann, Bozza, Taroni, and Aitken2 have now made four attempts [3]–[6] to explain their position 

in the debate as to whether forensic practitioners should assess and report the precision of strength of 

evidence statements (likelihood ratios or Bayes factors). Personally, I find the arguments of Biedermann 

et al. unconvincing because those arguments are based on a premise which a priori I believe to be false, 

and they have presented no evidence which has convinced me otherwise. The premise is that only a 

subjectivist concept of probability is legitimate. Under this premise, probability is a state of mind, not a 

state of nature. The Bayes factor reported by a forensic practitioner is therefore an expression of their 

personal belief, and not an estimate of something external to the mind of the forensic practitioner. The 

Bayes factor that the forensic practitioner reports should therefore be a single value which incorporates 

all sources of uncertainty affecting their belief. Berger & Slooten [7] take broadly the same position as 

Biedermann et al.  

Biedermann et al. state that assessing the precision of likelihood ratios “involve[s] a misconception of 

principles and abuse of language” [3], and that the use of non-subjectivist concepts of probability have 

“arisen from the failure of a scientist to take personal responsibility for their probability assertions” [6]. 

Insisting that forensic practitioners adopt a subjectivist concept of probability, especially using such 

confrontational language, is not helpful to the goal of having forensic practitioners implement, and courts 

not only accept but demand, logically correct and scientifically valid evaluation of forensic evidence. 

Nordgaard [8] accepts a subjectivist concept of probability, but from a practical perspective argues that 

it would be counterproductive to force this on forensic practitioners. Martire et al. [9] argue against 

subjective assignment of probabilities by forensic practitioners, and discuss what is expected and 

required by the courts.  

Even if one believes that, normatively, the trier of fact should act in a subjectivist Bayesian manner, what 

the court requires from a forensic scientist is not, I suggest, the forensic scientist’s subjective opinion, 

but rather an assessment of strength of evidence based on empirical data and empirically validated 

procedures. For example, US Federal Rule of Evidence (FRE) 7023 states that (emphasis added): 

                                                 

2 For simplicity, hereinafter Biedermann et al. Note, however, that in two of the relevant 

publications the authors are listed in the order Taroni, Bozza, Biederann, Aitken. 

3 Federal Rule of Evidence 702 as amended Apr. 17, 2000, eff. Dec. 1, 2000; Apr. 26, 2011, eff. 

Dec. 1, 2011. 



A witness who is qualified as an expert by knowledge, skill, experience, training, or 

education may testify in the form of an opinion or otherwise if: 

(a) the expert’s scientific, technical, or other specialized knowledge will help the trier of fact 

to understand the evidence or to determine a fact in issue; 

(b) the testimony is based on sufficient facts or data;  

(c) the testimony is the product of reliable principles and methods; and 

(d) the expert has reliably applied the principles and methods to the facts of the case. 

Daubert4 states that “In a case involving scientific evidence, evidentiary reliability will be based upon 

scientific validity.” (emphasis in original). That “The adjective ‘scientific’ implies a grounding in the 

methods and procedures of science. Similarly, the word ‘knowledge’ connotes more than subjective 

belief or unsupported speculation” (emphasis added). And that “a key question to be answered in 

determining whether a theory or technique is scientific knowledge that will assist the trier of fact will be 

whether it can be (and has been) tested. ... ‘[T]he statements constituting a scientific explanation must be 

capable of empirical test’”. Thus, experience and training constitute criteria for qualifying a forensic 

practitioner as an expert, but subjective judgement based on experience and training is not sufficient 

justification for admitting their testimony. I would also suggest that the term “opinion” be read in a 

restricted sense in which it means that an expert witness may testify as to inferences which they have 

drawn from facts and data that they observed. FRE 701 states that “If a witness is not testifying as an 

expert, testimony in the form of an opinion is limited to one that is: (a) rationally based on the witness’s 

perception; ...” (emphasis added). FRE 703 states that “An expert may base an opinion on facts or data 

in the case that the expert has been made aware of or personally observed.” And FRE 705 states that the 

expert witness may be required to state the reasons for their opinion and disclose the facts or data on 

which is it based. Thus, an opinion does not simply mean whatever a witness believes, but what they can 

rationally infer from what they have observed. Observation in the form of personal perception for non-

expert witnesses and observation of facts or data for expert witnesses. Much of FRE 702 and Daubert is 

then concerned with necessary conditions regarding the process by which experts draw inferences and 

demonstrate scientific validity (see also the 2016 report by President Obama’s Council of Advisors on 

Science and Technology [10] for commentary on what constitutes scientific validity in the context of 

FRE 702). 

In contrast to the position of Biedermann et al., Sjerps et al. [11] and Morrison & Enzinger [12] argue 

that once the forensic practitioner has made explicit the prosecution and defence hypotheses that they 

have adopted, including the relevant population specified as part of the defence hypothesis, and they have 

made explicit what properties they will measure, then there are true but unknown population5 

                                                 

4 William Daubert et al. v Merrell Dow Pharmaceuticals Inc., 509 US 579 (1993) 

5 In this instance I use the word “population” as a contrast with “sample”, not to contrast “relevant 



distributions and the forensic practitioner’s task is to estimate likelihoods from those distributions using 

models trained on relevant sample data. There are subjective decisions to be made, including selecting 

hypotheses that are expected to address an appropriate question of interest to the trier of fact, and 

selecting sample data which are sufficiently representative of the known source and relevant population 

specified in the prosecution and defence hypotheses. These are pre-empirical decisions which require 

subjective judgements on the part of the forensic practitioner. This should be made absolutely clear in 

the case report; first, so that the judge at an admissibility hearing and the trier of fact at trial can consider 

whether the question the forensic practitioner set out to answer is actually an appropriate question, and 

whether the data and statistical models used by the forensic practitioner are actually answering that 

question; and, second, so that the trier of fact can understand the meaning of the likelihood ratio value 

that the forensic practitioner provides in answer to that question – if one does not understand the question, 

one cannot understand the answer. The appropriateness of the forensic practitioner’s subjective 

judgements in these matters is something which should be debated by the parties before the judge at an 

admissibility hearing and/or the trier of fact at trial, in the first instance with respect to admissibility and 

in the second instance with respect to weight. 

The forensic practitioner should also empirically test the performance of their system (measurement and 

statistical modelling procedures) using test data which represent the relevant population and reflect the 

known-sample and questioned-specimen conditions. Again, the appropriateness of the test data depends 

on a subjective judgement made by the forensic practitioner, which ultimately needs to be accepted or 

rejected by the judge at an admissibility hearing or the trier of fact at trial. If the test data were not 

sufficiently representative of the relevant population and reflective of the case conditions, then the results 

of the empirical testing would not be informative as to the validity and reliability of the system when 

applied to the actual known-source sample and questioned-source specimen in the case. If the judge 

decides that the test data are appropriate, then the judge can consider whether the demonstrated degree 

of validity and reliability is sufficient to warrant admission of testimony based on the system that was 

tested.6  

The ability of the forensic practitioner to make good subjective judgements on the pre-empirical matters 

discussed in the last two paragraphs will depend on their expertise gained via training and experience, 

and these subjective judgements must ultimately be accepted or rejected by the judge and/or trier of fact. 

If, however, the remainder of the process consists of quantitative measurements and statistical models, 

and the output of the statistical model is directly reported as the strength of evidence statement, such 

procedures do not involve additional subjective judgement [13]. The latter procedures are transparent 

and replicable, and not susceptible to cognitive bias. Constraining subjective judgement to decisions 

                                                 

population” with “known source”, hence I am referring to both a relevant-population population 

distribution and a known-source population distribution. 

6 For extended discussion of the topics covered in the last two paragraphs, see [13]–[15]. 



relating to selection of hypotheses, properties to measure, training and test data to use, and statistical 

modelling procedures to use – decisions which are remote from the output stage of the analysis – 

substantially reduces the potential for cognitive bias. Lack of transparency and replicability, and 

susceptibility to cognitive bias are serious problems for approaches in which the strength of evidence 

statement is directly the result of a forensic practitioner’s subjective judgement [16]–[20]. The goal of 

the approach outlined here is not complete objectivity – complete objectivity is impossible. Rather, the 

goal is to maximise objectivity in the sense of maximising transparency and replicability, and minimising 

the potential for cognitive bias, and to constrain and make overt the forensic practitioner’s subjective-

judgement based decisions so that the appropriateness of those decisions can be debated before the judge 

in an admissibility hearing and/or before the trier of fact at trial. Considering the appropriateness of these 

pre-empirical subjective judgements, then considering the sufficiency of the empirically demonstrated 

degree of validity and reliability, should be more manageable tasks than deciding on the merit of a 

strength of evidence statement which is directly a forensic practitioner’s subjective judgement. 

For a frequentist, the forensic practitioner’s likelihood ratio is an estimate of a true but unknown value, 

and that estimate should be accompanied by an assessment of its imprecision due to sampling uncertainty. 

For a subjectivist Bayesian, the forensic practitioner’s Bayes factor is their state of belief, and the single 

value they report should already incorporate all sources of uncertainty. In their latest paper in the current 

debate [6], Biedermann et al. make it clear that the procedures they advocate do not allow forensic 

practitioners to directly assign likelihood ratios based only on their subjective judgement without 

consideration of sample data. Instead, they advocate explicit formal calculation of Bayes factors based 

on a combination of sample data and prior probability distributions, with integration over nuisance 

parameters. Once one has specified the hypotheses adopted, the properties measured, and the prior 

probability distributions, training data, and statistical models to be used, then the procedures for 

calculating a Bayes factor are as transparent, replicable, and resistant to cognitive bias as the procedures 

for a frequentist calculation of a likelihood ratio. The only additional elements which must be specified 

in the Bayesian approach are the prior probability distributions. Since the choice of prior distributions is 

a subjective judgement on the part of the forensic practitioner, this is also something which should be 

made explicit and its appropriateness debated before the judge in an admissibility hearing and/or before 

the trier of fact at trial. 

Jaynes [21] advises (p. 373, emphasis in original): 

problems of inference are ill-posed until we recognize three essential things. 

(A) The prior probabilities represent our prior information, and are to be determined, not by 

introspection, but by logical analysis of that information. 

(B) Since the final conclusions depend necessarily on both the prior information and the data, 

it follows that, in formulating a problem, one must specify the prior information to be 

used just as fully as one specifies the data. 

(C) Our goal is that inferences are to be completely ‘objective’ in the sense that two persons 



with the same prior information must assign the same prior probabilities. 

If one fails to specify the prior information, a problem of inference is just as ill-posed as if 

one had failed to specify the data. 

Biedermann et al. do not discuss forensic practitioners’ choice of prior distributions. I suggest that the 

best choice would not be prior distributions which are solely the result of a practitioner’s subjective 

judgement based on their training and experience. The forensic practitioner will have to attempt to justify 

their choice and show that they have taken steps to reduce the potential for cognitive bias. I suggest that 

this will be much easier if the priors are based on empirical data (raw data or published summary 

statistics) which the practitioner can argue are relevant (e.g., Morrison et al. [22]), or if the priors are 

uninformative or reference priors (see Curran [23]).  

I present an example which assumes unconstrained continuously-valued univariate data. A datum can 

have any value, x, between minus and plus infinity. In Fig. 1, the dotted curve represents a relatively 

uninformative prior distribution – it is a wide flat distribution. The solid curves represent Gaussian 

distributions fitted to sample data – 8 data points were used to estimate the mean for each of the leftmost 

and the rightmost distributions and all 16 data point were used to estimate a pooled variance.7 The dashed 

curves represent Bayesian posterior predictive probability distributions calculated using both the sample 

statistics and the hyperparameters of the prior distribution. Both the leftmost and rightmost posterior 

predictive probability distributions were calculated using the same prior distribution (the one shown as 

the dotted curve). In calculating posterior predictive probability distributions, the relative weight of the 

sample statistics and the prior-distribution hyperparameters depends on the number of data points in the 

sample. If only a small amount of sample data is available, as in this example (and as is often the case in 

forensic applications), the Bayesian posterior predictive probability distributions will be substantially 

flatter and wider than the sample distributions. If the amount of sample data is large, the Bayesian 

posterior predictive probability distributions will approximate the sample distributions. 

 

[INSERT FIG 1 ABOUT HERE] 

 

The result of wider flatter posterior predictive distributions in both the numerator and the denominator is 

that the Bayes factor will be closer to the neutral value of 1 than the frequentist best estimate for the 

likelihood ratio calculated using only the sample data. Taking the rightmost distribution in Fig. 1 as the 

distribution for the numerator of a likelihood ratio and the leftmost distribution as the distribution for the 

denominator, the y axis in Fig. 2 gives the log base 10 likelihood ratios corresponding to the values on 

the x axis (Fig. 1 and Fig. 2 both have the same x axis). The log Bayes factor values (dashed curve in Fig. 

                                                 

7 For illustrative purposes the values of these statistics were specified rather than calculated from 

actual data. 



2) are always closer to the neutral value of 0 than the frequentist log likelihood ratio values (solid line in 

Fig. 2), except trivially when they both equal 0. Taking the exponents, the Bayes factor values are always 

closer to the neutral value of 1 than the frequentist likelihood ratio values, except trivially when they 

both equal 1. For some examples of application of this approach see Brümmer & Swart [24] and Zhang 

et al. [25].  

 

 [INSERT FIG 2 ABOUT HERE] 

 

The smaller the amount of sample data, the closer to 1 the Bayes factor calculated using uninformative 

priors will be, and the worst the precision of the frequentist likelihood ratio will be. From a practical 

perspective a Bayesian procedure using uninformative priors therefore has the same effect as a frequentist 

procedure which uses a more neutral value than the best estimate, with the degree of shrinkage towards 

1 based on the assessed degree of precision. I refer here to the general effect, not the exact numerical 

values. 

The Bayesian procedure with uninformative priors is no less objective than the frequentist procedure. 

Use of reference priors (e.g., Jeffreys reference priors [26]), as opposed to uninformative priors in 

general, could even be considered more objective in that one would not have to make an arbitrary decision 

as to the degree of shrinkage.  

There are other (not necessarily Bayesian) procedures which result in shrinkage. One example is 

regularized logistic regression ([27] §4.4.5, [28]). Logistic regression is linear in the logged odds domain, 

and would therefore produce a straight line similar to the solid line in Fig. 2. Regularized logistic 

regression, however, would result in a line with a shallower slope, and hence would produce log 

likelihood ratios that are closer to 0 (likelihood ratios that are closer to 1). The extent of shrinkage would 

be controlled by the size of the regularisation weight, and a disadvantage is that the size of that weight 

would have to be chosen. 

 

2. Proposal 

Curran [29] (p. 380) points out that: 

An astute lawyer would also ask “If I took another sample of size 200, would this figure 

change?” The single most effective response to this question is “Yes, and my method for 

assessing this probability has already taken this into account.”  

And opines that: 

I believe that an expert witness who has used a statistically justifiable method for quantifying 

and adjusting for sampling uncertainty in his or her evaluation will be well-equipped to 

respond to the sample size question. 



The question is what is the best method for doing this? The impediment to reaching a consensual answer 

to this question seems to be due to paradigmatic philosophical differences down to the level of the 

meaning of probability. Is there, however, a practical solution which could be acceptable to all? 

The discussion above leads me to propose a potential practical solution:  

Rather than burden the court with the problem of dealing with a posterior likelihood ratio distribution, or 

a best estimate plus a coverage interval, or a best estimate plus the bound of the coverage interval closest 

to 1, the forensic practitioner should calculate and present a Bayes factor or likelihood ratio calculated 

using a procedure which shrinks the resulting value towards 1.  

No particular procedure is mandated. Whatever procedure a practitioner chooses, however, it should be 

transparent and replicable, resistant to cognitive bias, and its use should be justified via empirical testing. 

The practitioner should choose a procedure which, based on previous empirical testing under relevant 

conditions, they believe to be sufficiently valid and reliable. The practitioner should make the test results 

available to the court so that ultimately the court can decide if the analysis system including the chosen 

procedure is sufficiently valid and reliable. 

This proposed solution does not require the forensic practitioner to adopt a subjectivist concept of 

probability, nor does it preclude the forensic practitioner from having a subjectivist concept of 

probability. 

The proposed solution does not preclude the use of a Bayesian approach with empirically derived 

informative priors when the forensic practitioner believes that they can justify their choice of data on 

which they based the prior distributions.  

In addition, the precision or sensitivity of the analysis system actually employed should be empirically 

assessed and reported as part of validation. As per the recommendations in Taylor et al. [30] and Ommen 

et al. [31], the results of the precision/sensitivity assessment should be an important factor in the debate 

as to whether the system employed is sufficiently valid and reliable to be admitted, but it should not be 

suggested that the results of the precision/sensitivity assessment be used to further shrink the reported 

value of the strength of evidence towards 1. 
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Figure caption 

 

Fig. 1. Dotted curve: Relatively uninformative prior distribution. Solid curves: Gaussian distributions 

fitted to sample data. Dashed curves: Bayesian posterior predictive distributions.  

 

Fig. 2. Solid line: Frequentist log likelihood ratio values derived from the Gaussian distributions fitted 

to the sample data. Dashed curve: Log Bayes factor values derived from the Bayesian posterior predictive 

distributions.  
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