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Evaluation of the cosine function is done via a simple Cordic-like algorithm, together with
a package for handling arbitrary-precision arithmetic in the computer program Matlab. Ap-
proximations to the cosine function having hundreds of correct decimals are presented with
a discussion around errors and implementation.
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1. Introduction

A student learning trigonometry might ponder on the question how values of the basic
trigonometric functions like cos θ are actually evaluated. Typically, a calculator (or com-
puter) is at hands when having to find a particular value. We recall the rather simple
geometric idea behind a common method implemented in calculators and computers for
evaluating trigonometric functions namely the Cordic algorithm [7]. We shall see that
with an additional idea from computer science, termed arbitrary-precision arithmetic
(or “bignum” arithmetic), a basic version of Cordic can be used to generate values of
the cosine function to hundreds of correct decimal places. To keep the presentation ele-
mentary, to be useful for a beginner of trigonometry, we focus solely on the evaluation
of cosine; at the end we point to some references on how other elementary functions can
be similarly evaluated.

For the outline of the work, in Section 2 derivation of formulas for the Cordic algorithm
is given. In Section 3, error analysis is undertaken. Arbitrary-precision arithmetic and
motivation of its practical usage are discussed in Section 4 together with a package in
Matlab for such arithmetic operations. We also present numerical results in that section
and some conclusions. In the Appendix, a code in Matlab with high-precision arithmetic
is given for the method discussed of approximating the cosine function.

2. Formulas for evaluation of the cosine function

We shall derive to formulas to be used to evaluate the cosine function. These constitute
the basic version of what is known as the Cordic algorithm; for more on the Cordic
algorithm and advanced versions the reader can consult [7, 11] and [10, Chapters 8–9].
Our derivation of the basic formulas is shorter than in [10, Chapter 8] since we involve
the cosine theorem and the double-angle formula for the cosine function.
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Figure 1. Unit circle with chord of length s corresponding to the angle θ

Consider Fig. 1, where the circle is the unit circle (having radius one) and s is the
length of the chord between the points P and Q. Using the cosine theorem, we have

s2 = 2− 2 cos θ. (1)

This can be written as

1− s2

2
= cos θ. (2)

Thus, if we know the value of the length s of the chord, the above relationship can be
used to find the value of cos θ.

Taking instead the angle θ/2 and denoting the length of the corresponding chord by h,
we similarly obtain

1− h2

2
= cos

θ

2
. (3)

The double-angle formula gives

cos θ = 2 cos2
θ

2
− 1.

From this identity using (2) and (3),

1− s2

2
= 2

(
1− h2

2

)2

− 1.

Expanding the bracket in the right-hand side and then solving for s2, the following is
obtained

s2 = h2(4− h2). (4)

This means that from the length h of a chord corresponding to the angle θ/2, we can
find the length s of a chord corresponding to twice the given angle.

2



July 3, 2017 International Journal of Mathematical Education in Science and Technology
BTJ˙Cos˙Appr˙Rev2

To see the usefulness of this, take for example the angle θ = π/6. Half of this angle
is π/12. Now, the length of a chord corresponding to the angle π/12 is close to the
length of the corresponding arc of the unit circle, that is to the value π/12. Hence, as
an approximation, we can take h = π/12. Using this value in (4), then s2 = 0.269458
rounded to six decimal places. From (2), we find

cos
π

6
≈
(

1− 0.269458

2

)
= 0.865271.

Comparing with the standard value
√

3/2 = 0.8660254... for cosπ/6, we obtained a
reasonable approximation. To do better, we start with the angle π/24 and put h = π/24.
Then we calculate the length of a chord corresponding to the angle π/12 via (4). We
re-iterate and call the obtained new length for h and use again (4) to find the length s of
a chord corresponding to π/6. Using s, an improved approximation of cosπ/6 is found
from (2) (the reader trying this will find a slightly better approximation of 0.865838).

Iterations are suitable for a computer to perform. We can with ease do thousands of
iterations, however, halving an angle many times it will be rounded to zero on most stan-
dard calculators and computers. This can be overcome with what is known as arbitrary-
precision arithmetic. Before discussing this, in the next section we briefly investigate the
error in the above approximation for cos θ.

We end this section noting that the angle θ in Fig. 1 is less than π/2, however, the
derivations can be done similarly when the angle is greater than π/2 although it might
be easier to use trigonometric identities to reduce to the case shown in the figure.

3. Some error analysis of the given approximation

The algorithm from the previous section to generate an approximation of cos θ is to halve
the angle θ a certain number of times k, obtaining a sufficiently small value θ/2k. Then
the length of the chord corresponding to this (small) angle is taken as the length of the
corresponding arc of the unit circle, that means h = θ/2k. Iterate via (4) to obtain the
length s of a chord corresponding to the angle θ, and finally apply (2) to find the value
of cos θ.

The error when approximating the length of the chord with the length of the corre-
sponding arc is to be derived. In fact, we derive the error for the difference of the square
of the lengths since it is the square being used in (4). We have

θ2 − h2 = θ2 − (2− 2 cos θ) = θ2 −
(

2− 2

(
1 +

θ2

2
+O(θ4)

))
= O(θ4),

where we first used the cosine theorem to express h2 (the square of the chord related to
the angle θ) similar to (1) and then applied the Taylor approximation of order 4 of cos θ.
Choosing the angle to θ/2k (the corresponding chord is again denoted by h),

θ2

22k
− h2 = O

(
θ4

24k

)
. (5)

Thus, the error when approximating the square of the length of the chord with the square
of the length of the corresponding arc is of order θ4

24k . Instead of the correct value h2,

we are according to (5) using a value of the form h2 + O
(
θ4

24k

)
. To see how this error
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propagates when iterating in (4), we find after one step

s2 = h2(4− h2) + 22O
(
θ4

24k

)
.

Thus, an additional factor 22 is introduced. Continuing this k-times and then using (2),

the error in the calculation of cos θ will be of order O
(
θ4

22k

)
.

Since 2−2k = 10−2k log10 2 ≈ 10−0.60206k, with the choice of k = 16 there should be
about 10 correct decimals. We can easily do many more iterations on a computer to gain
better accuracy with the limitation being the accuracy built into the computer itself.
In the next section, it is shown how to work with arbitrary-precision arithmetic in the
computer program Matlab to generate hundreds of correct decimal places.

We conclude this section by pointing out that detailed error estimates for a more
advanced version of Cordic are presented in [13].

4. Examples of values of cosine using arbitrary-precision in Matlab

Before giving details on arbitrary-precision arithmetic we first briefly indicate that there
are practical applications of generating numbers with higher precision than what is usu-
ally provided by calculators and mathematical software.

The scale and complexity of computer simulations of real-world phenomena are rapidly
increasing, driving the need of more precision. An example where high precision was
crucial is the ATLAS experiment at the Large Hadron Collider that verified existence
of the Higgs boson. Moreover, in public-key cryptography numbers with thousands of
digits are needed. Another example is solving linear systems governed by ill-conditioned
matrices (can occur when discretising ill-posed problems) such as the Hilbert matrix
(it has an exponentially growing condition number with respect to its size) making the
solution to such a system highly sensitive to errors in the data. Further information and
motivation for the need of high-precision are presented in [2]. Numerical solutions of
some problems generating rapid convergence to at least 10 decimals are given in [12]
with one of the examples (problem 2) requiring extended precision. Further techniques
for implementing functions with high accuracy is given in [5].

We then turn to giving details of generating high precision approximations and imple-
mentation for the outlined method of evaluating the cosine function.

Arbitrary-precision arithmetic is based on the idea of taking a large positive integer B
as a number base and representing a number in the usual way like aB2 + bB + c, where
a, b and c are the digits, that is integers in the interval [0, B−1]. In most of the standard
computer programming languages there is some facility to store vectors or arrays of
numbers, and such storage is ideal for saving the digits corresponding to the base B.
The standard algorithms for addition, subtraction, multiplication and division learned
in school can be implemented on such vectors or arrays to get a working arithmetic for
elements in the base B. A detailed introduction to arbitrary-precision arithmetic showing
how algorithms for standard operations can be realised is given in [6, Chapter 4.3] with
history and further references.

In the computer program Matlab, there is a freely available package for arbitrary-
precision arithmetic denoted Mulprec; it can be downloaded together with a user manual
from http://www.siam.org/books/ot103/. The package is developed in conjunction with
the book [3]. The base B chosen in Mulprec is B = 107. Digits in this base are numbers
having at most 7 base 10 digits, stored as elements of a vector (digits in the base B of the
multiplication of two numbers can be represented exactly in floating-point in Matlab).
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As an example, the assignment

x=[-4 3 1415926 5358979 3238462 6433833]

means x is a 6 digit mulprec number with, for example, the fourth digit, x(4), being
5358979. The evaluation of x in the standard base 10 is generated as

Bx(1)
6∑
j=2

x(j)B6−j = 3B0 + 1415926B−1 + 5358979B−2 + 3238462B−3 + 6433833B−4

= 3.1415926535897932384626433833.

In the Mulprec package there can be at most 90 base B digits (although as stated
in the manual this can in principle be changed to any number of digits). The functions
sum, sub, mul and div are Mulprec routines based on arbitrary-precision arithmetic for
the summation, subtraction, multiplication and division. One can go ahead and use the
package without much practise. There are some subtleties like digits being allowed to
have varying signs, and for digits starting with a zero the zero itself is left out. Mulprec
numbers can always be brought to a standard form with the routine rnize. A code
for implementing the above procedure for approximating cos θ in conjunction with the
Mulprec package is given in the Appendix.

From the error analysis of the previous section, the error in the approximation of cos θ
is of order 10−0.60206k, where k is the number of iterations, thus with k = 48 at least 28
correct decimals is expected. Indeed, running the given code (see the Appendix) with
k = 48, the result is

cos 2 : −0.41614683654714238699756822950 . . .

and comparing with the standard source [1, Table 4.8, p. 175] all 23 decimals given there
are exactly matched (checking against sources with more digits, the obtained result
differ after the 29th decimal). We are able to match around 600 decimals with k = 1000
iterations. Trying larger values of k we run into problems with overflow in Matlab (the
code run in about one second for k = 250 apart from loading necessary constants and
variables needed in Mulprec which takes about the same amount of time in MATLAB
R2016b version 9.1 executed on an ordinary workstation having an Intel(R) Core(TM)
i3-3217U CPU at 1.80 GHz; no effort has been done to fully optimize the code thus speed
can probably be gained by several orders of magnitude by for example vectorising).

For the sake of it, we give the first 50 decimals (obtained with k = 85),

cos 2 : −0.41614683654714238699756822950076218976600077107554 . . .

We checked the validity of this against the high precision values given by Wolfram|Alpha
(https://www.wolframalpha.com). As a side note, cos 2 is irrational [9, Theorem 2.5] (it
is also a transcendental number by Theorem 9.11 from the same reference).

In Fig. 2 is the number of decimals obtained with the given code as a function of
the number of iterations for the approximation of cos 2. The solid line is the theoretical
linear convergence shown in the previous section whilst the stars are the actual number
of decimals obtained by the code in the Appendix. Since the obtained decimals closely
follow the predicted ones, the code is functioning well and does not unnecessarily increase
the approximation error and the same is true for the routines in the Mulprec package
(an introduction to errors due to rounding and cancellation is given in [4]).

We have also run the code for other values than θ = 2 and can report the similar
accuracy. To calculate some of the standard values like cos π6 , a good approximation
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Figure 2. Number of correct decimals as a function of the number of iterations when approximating cos 2. The

number of obtained decimals using the code in the Appendix is indicated by a star, ∗.

of π is needed to maintain high accuracy. The given code can be employed to find an
approximation to π, as well as to other numbers and functions as will be briefly explained.

Using standard trigonometric identities it is possible to also evaluate sin θ and tan θ
from knowledge of cos θ. Inverse trigonometric functions and also the exponential and
logarithmic functions can be approximated with extensions of the basic Cordic algorithm,
see [8, Chapter 6.8 and Chapter 7.2.4] and [10, p. 134 and p. 155] for formulas.

Once sin θ has been implemented it can be employed together with the approximation

n sin
π

n
≈ π

for large values of n to approximate π. Since cosπ = −1, we can run the basic Cordic
algorithm backwards with the starting length of the chord being s = 2, then find the
length of a chord corresponding to half the starting angle. Iterating we find the value of
cos π

2k expressed in terms of the corresponding chord. Then sin π
2k is expressed in terms

of cos π
2k and multiplied by 2k. We tried this rather naive approach obtaining around 200

correct decimals of π for k = 400 before getting overflow.
The convergence of the Cordic procedure to evaluate cos θ is only linear but the

method is still useful since it can be efficiently hard-wired into calculators and computers.
This is because halving a number is a fast operation in the binary system due to what
is known as bit shifts. Matlab has a version of Cordic built in for trigonometric functions.

To summarise, we shown that using the basic idea of approximating the cosine function
via a chord together with a package for high-precision arithmetic in Matlab, hundreds
of correct decimals can easily be generated. A software for high-precision arithmetic like
the one used can be of benefit not only in practical engineering applications but also in
beginning modules on analysis and numerical mathematics to spur discussions around
convergence and accuracy. In particular, it should be encouraging to see that simple
intuitive iterative schemes can generate arbitrarily high precision approximations.
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5. Appendix

We give a code using the above outlined algorithm in combination with the Mulprec
package in Matlab for approximating cos θ. The functions sum, sub, mul and div

are routines in Mulprec based on arbitrary-precision arithmetic for the summation,
subtraction, multiplication and division.

% Load necessary constants and variables needed in Mulprec
% (package can be found at http://www.siam.org/books/ot103/)
intro

% Choose an angle x (in radians)
x=2;

% The angle x is represented as a mulprec number
x=npr(x);

% Choose the number of steps k of the Cordic algorithm
% k=250 gives about 150 decimals, k=1000 about 600
k=250;

% Base B digits to keep in Mulprec when using elementary
% operations
dec=80;

% The angle xˆ2/2ˆ(2k) is generated

% Convert 1/2 to a mulprec number
t=npr(1/2);

% Put half=t
half=t;

% t is multiplied by half (k-1)-times to give 1/2ˆk
for i=1:k-1

t=mul(half,t,dec);
end

% The number x*t is multiplied by itself to get xˆ2/2ˆ(2k)
s=mul(mul(x,t,dec),mul(x,t,dec),dec);

% Convert 4 to a mulprec number
four=npr(4);

% The k steps of Cordic is performed.
% Rather than using sˆ2=hˆ2(4-hˆ2) and then
% updating hˆ2=sˆ2, it is done in one line
% and sˆ2 is denoted by s.
for i=1:k

s=mul(s,sub(four,s),dec);
end

% Formula to use is cos x = 1 - sˆ2/2, and sˆ2 is denoted
% by s, rnize(cosx) normalizes the Mulprec number cosx and
% might need to be applied one or more times to the result

cosx=sub(npr(1),div(s,npr(2),dec))
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