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Mean-field and mean-ensemble frequencies of a system of coupled oscillators
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We investigate interacting phase oscillators whose mean field is at a different frequency from the mean or
mode of their natural frequencies. The associated asymmetries lead to a macroscopic traveling wave. We show
that the mean-ensemble frequency of such systems differs from their entrainment frequency. In some scenarios
these frequencies take values that, counterintuitively, lie beyond the limits of the natural frequencies. The results
indicate that a clear distinction should be drawn between the two variables describing the macroscopic dynamics
of cooperative systems. This has important implications for real systems where a nontrivial distribution of
parameters is common.
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I. INTRODUCTION

Systems consisting of large numbers of interacting units
are common in science and nature, and have been the essential
modeling tools in physics, biology, chemistry, and social
science [1]. Here, the state of the whole system is charac-
terized with macroscopic variables such as the temperature,
magnetization, and so on. The values of these depend on both
the microscopic laws governing the dynamics of the units as
well as their interaction. Generally, only macroscopic variables
are accessible in experiments. Thus their precise definition and
interpretation are needed.

In the case of populations of weakly interacting oscillators,
application of the phase approximation leads to the Kuramoto
model (KM) for globally coupled phase oscillators [2].
Although the model itself represents an idealized scenario,
its analytical tractability makes it the prevailing approach
in tackling a wide variety of important problems—from
Josephson-junction arrays [3] to brain dynamics under anaes-
thesia [4] and pedestrian induced oscillations in the Millenium
bridge problem [5]. This has led to many extensions of the basic
model to allow more realistic descriptions of actual systems,
e.g., the KM under the influence of external fields [6], or with
time-varying parameters [7] (for a review of generalizations
and the problems they address see [8] and references therein).

A fundamental feature of this model is that, for a large
enough coupling, synchronized behavior emerges. Depending
on their inherent frequencies, some of the oscillators become
locked, while the others continue to rotate asynchronously but
with adjusted frequencies. The degree of the synchronization is
usually characterized by some order parameter. For example,
in the paradigmatic example of flashing fireflies [1], this
parameter would describe the fraction of fireflies that flash
in synchrony.

Since the building units of the KM are defined by their
natural frequencies, the macroscopic dynamics of the oscil-
lating system must be also characterized by some average
frequency. However, two quantities can be used: the effective
frequency to which synchronized oscillators are locked and the
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average frequency of all the oscillators, locked and unlocked,
that belong to the observed system. The former represents
the natural macroscopic frequency, whilst the latter is the
microscopically averaged mean frequency. We shall call these
respectively the mean-field frequency and the mean-ensemble
frequency. Returning to the example of fireflies, the frequency
of those flashing in synchrony (the mean-field frequency)
can generally deviate from the observed mean frequency
of the whole population (the mean-ensemble frequency).
Similarly, some of the neurons in the brain are expected
to be mutually locked to a certain frequency, whereas an
electroencephalographic recording contains the mean of all
neurons in some area, not just the synchronized.

In general, there is no reason for these frequency definitions
to coincide. Still, not enough attention has been paid in
formulating them for different parameters. Namely, due to
the equality of the frequencies in the cases with symmetry
that were mostly studied, they were used interchangeably and
without verification, even when they do differ (e.g., see [9]).
However, here we consider scenarios which most closely
resemble the actual physical or natural phenomena; in par-
ticular, models with asymmetrically distributed frequencies,
phase shifted coupling function, or asymmetric couplings
of opposite sign. For them we show that these frequencies
always differ and have nontrivial values. Hence, one should
be extremely cautious when the measured frequency of a pop-
ulation is interpreted and then compared with the theoretical
model.

We begin with a formulation of the model and its group
dynamics parameters. Section III describes the stationary so-
lutions of the KM, whilst all possible scenarios with nontrivial
mean-field and mean-ensemble frequencies are described in
Sec. IV. The summary of the work and its implications are
discussed in Sec. V.

II. FORMULATION

The KM consists of phase oscillators running at arbitrary
intrinsic frequencies and coupled through the sine of their
phase differences. In the case of heterogenous coupling
strengths, the dynamics of the phase θ̃i of the ith oscillator
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has the form

˙̃θ i = ω̃i + Ki

N

N∑
j=1

sin(θ̃j − θ̃i), i = 1, . . . ,N. (1)

Here, Ki is the coupling strength of each oscillator and it
is drawn from a probability distribution �(K). Similarly, the
natural frequencies ω̃i are randomly distributed according
to some g̃(ω̃). The tildes for the frequencies, phases, and
their distributions later are intentionally used for reasons to
be explained below. Without loss of generality, we assume
g̃(ω̃) to have a mean 〈ω̃i〉 centered at 0. Hereafter this frame
of reference will be called natural. Kuramoto introduced a
complex order parameter for this model, defined as a centroid
of the complex representation of the oscillators

z̃(t) ≡ r(t)eiψ̃(t) = 1

N

N∑
j=1

eiθ̃j . (2)

It characterizes the macroscopic behavior of the oscillators,
with r and ψ̃ being the amplitude and the phase of the
mean field respectively. The former shows the level of
synchronization, while the latter gives the position of the peak
in the distribution of phases. Generally, the long-term values
for both can depend on time. Applying Eq. (2) to the governing
equation (1), it is rewritten as

˙̃θ i = ω̃i − Kir sin(θ̃i − ψ̃). (3)

For infinitely large populations N → ∞, a probability
distribution function (PDF) f̃ (θ̃ ,ω̃,K,t) is defined, such that∫ +π

−π
f̃ (θ̃ ,ω̃,K,t) dθ̃ = g(ω̃)�(K). Thus, the complex mean

field Eq. (2) becomes

z̃ =
∫ π

−π

∫ +∞

−∞

∫ +∞

−∞
eiθ̃ f̃ (θ̃ ,ω̃,K,t) dθ̃ dω̃ dK. (4)

For convenience, infinite limits in all further definite integrals
will be omitted.

As a consequence of the conservation of the number of
oscillators the evolution of the density function is governed by
a continuity equation

∂f̃

∂t
= − ∂

∂θ

{[
ω̃ + K

2i
(z̃e−iθ̃ − z̃∗eiθ̃ )

]
f̃

}
. (5)

Here the right-hand side of Eq. (3) is used and the sine function
is expressed with complex exponents. Moreover, since f̃ is 2π

periodic in θ̃ it allows a Fourier expansion and can be written
as

f̃ = g̃(ω̃)�(K)

2π

{
1 +

∞∑
k=1

[f̃k(ω̃,K,t) eikθ̃ + c.c.]

}
, (6)

where c.c. are the complex conjugates and f̃−k = f̃ ∗
k .

In the limit t → ∞, the ensemble described by (5) might
settle into a stationary state for some rotating frame. We define
(i) systems that have stationary solutions in some frame of
reference, i.e., the complex mean field and the distribution of
phases rotate uniformly and they have a constant mean field
after the initial transitions; and (ii) systems that experience
complex nonstable behavior, i.e., a time-varying amplitude of
the order parameter r(t). These definitions might differ from

usual descriptions found elsewhere which regard as stationary
only those solutions that are fixed in the natural reference
frame. In this work, our attention is focused on the ensembles
with stationary solutions as described by (i).

For the case of identically coupled oscillators with uni-
modal and symmetric distributions of their natural frequencies,
above the critical coupling a phase locking of the oscillators
takes place around the peak of g̃(ω̃) where the density of the
oscillators is highest [2]. As a consequence of the symmetry,
the group dynamics is stationary and both mean frequencies
are equal to the mode of g̃(ω̃), which in this case is also its
mean value.

Nevertheless, introducing multimodal or asymmetric g̃(ω̃),
or distributed K , leads to much richer dynamics. Thus, for
multimodal g̃(ω̃) bistabilities and standing waves emerge
[10–12]. A standing wave is a macroscopic solution where
neither f̃ (θ̃ ,ω̃,K,t) nor z̃(t) are stationary in any rotating
frame. This further implies nonstationarity of r(t). Standing
waves are also observed in systems with symmetrical bimodal
distribution of natural frequencies, with the exact result for
bifurcations between different states given in [13].

Traveling waves (TW), another peculiar group behavior,
have also been observed for different parameter ranges within
the same systems [10,11]. In our analysis, a TW state is consid-
ered to be any solution characterized by long-term stationarity
of the mean-field amplitude, whereas the frequency of the
locking � differs from the mean of the natural frequencies.
In other words, the locking of synchronized oscillators is
in a frame different from the natural. This also represents a
stationary solution according to its definition above.

A recent study [9] shows the occurrence of TW in models
with positive and negative coupling strengths, and identifies so-
called conformists and contrarians. Similarly, a synchroniza-
tion around a frequency that is different from the mean or the
peak of the distribution was reported for ensembles that have an
asymmetric unimodal distribution of natural frequencies [14].
It is also worth mentioning here the Kuramoto-Sakaguchi
model [15], where the phase shift is introduced into the
coupling function, to allow synchronization at a frequency
different from the mean of the natural frequencies. Hence, it
always leads to TW states. Additionally, the whole class of
models of nonisochronous oscillators with constant shear can
be reduced to this model [2,16].

Stationary solutions for fully symmetric populations have
macroscopic frequencies that are equal to 〈ω̃i〉. In asymmetric
scenarios on the other hand, the synchronized cluster experi-
ences nontrivial phase velocity [9,14,15]. Therefore, the focus
of this work is interacting phase oscillators whose coherent
behavior is characterized by a TW state, as defined earlier.
Having certain asymmetries, either in the frequencies, the
coupling parameters, or in the coupling function itself, is a
necessary condition for occurrence of this state. As a conse-
quence, the influence of the unsynchronized oscillators on the
entrainment frequency does not vanish [9,14,15]. Additionally,
we show that these oscillators also cause the mean-ensemble
frequency to have a nontrivial value. It generally differs from
the entrainment frequency, but also from the mean and the
mode of the natural frequencies.

Before proceeding with the analysis of all cases with TW
state, let us define the macroscopic frequencies that we have
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already discussed. The mean-field frequency represents the
velocity of the mean phase ψ̃ and is obtained from the time
derivative of the complex mean field (2),

˙̃ze−iψ̃ = ṙ + i ˙̃ψr = 1

N

N∑
j=1

i ˙̃θj e
i(θ̃j −ψ̃). (7)

Taking into account that r and ψ are both real, the same is true
for their time derivatives, so from Eqs. (3) and (7) one finally
obtains following evolutions of the amplitude and the phase of
the complex mean field:

˙̃ψ ≡ � = 1

rN

N∑
j=1

[ω̃j − Kj r sin(θ̃j − ψ̃)] cos(θ̃j − ψ̃).

(8)

The expression for ˙̃ψ represents the velocity of the mean
phase, i.e., the frequency of the synchronized oscillators. For
the other frequency parameter—the mean frequency of the
ensemble—used for characterizing these systems, its definition
leads to

f̃ens ≡ 1

N

N∑
j=1

˙̃θj = 1

N

N∑
j=1

[ω̃j − Kj r sin(θ̃j − ψ̃)]. (9)

In the infinite limit, (6) is introduced into (4). By taking the
time derivative and applying the substitution (5), the evolution
of the complex order parameter is obtained:

˙̃z =
∫∫ [

iω̃f̃ ∗
1 + K

2
(z̃ − z̃∗f̃ ∗

2 )

]
g̃(ω̃)�(K)dω̃ dK. (10)

Similarly, the mean frequency of the ensemble becomes

f̃ens =
∫ π

−π

∫∫
˙̃θ f̃ (θ̃ ,ω̃,K,t)dθ̃ dω̃ dK. (11)

III. STATIONARY SOLUTIONS FOR THE PHASE
DISTRIBUTION

For a large class of problems, the long-term coherent
dynamics of an ensemble of phase oscillators is time in-
dependent, as a consequence of the stationary distribution
of the phases. This implies existence of the stationary so-
lution of the continuity equation (5), which does not need
to be in the natural reference frame. A recent work [17]
discusses generalized empirical stability conditions for these
systems.

From now on we consider that the ensemble has nonzero
mean field, i.e., it is out of the incoherent state (a fully incoher-
ent solution is also stationary), and that stationary solutions for
the phase distribution exist in some planes of reference. This
is true for the simplest possible scenario: unimodal symmetric
frequency distribution and constant coupling strengths. The
TW state is another possible scenario with this property,
despite the fact that in this situation the velocity of the mean
phase (or the mean-field frequency as defined here) differs
from the mean of the natural frequencies.

In our analysis the mean-field frequency is allowed to be
nonzero despite assuming that 〈ω̃〉 = 0. Still, most of the
time we work in the frame where f̃ (θ̃ ,ω̃,K,t) is stationary:

the reference frame rotating with the frequency �. Here
the phases of the oscillators are θ = θ̃ − �t and the phase
corresponding to the complex order parameter is ψ = ψ̃ − �t .
The distribution of the natural frequencies becomes g(ω) =
g̃(ω + �) with mean −�. In the same frame ψ = 0 can be
assumed after an appropriate phase shift.

For any ensemble, if the stationary solution of (5) exists,
then it exhibits two types of long-term behavior, depending
on the size of |ω̃ − �| = |ω| relative to |Kr| and to the sign
of K . The oscillators with |ω| < |Kr| approach a stable fixed
point defined implicitly by

θ =
{

arcsin ω
|K|r , if K > 0

π + arcsin ω
|K|r , if K < 0. (12)

These oscillators are called locked because they maintain
constant phase difference, while rotating at frequency �

in the original frame. It is also assumed that synchronized
oscillators with positive couplings have phases in the interval
(−π/2,π/2), while those with negative are in (π/2,3π/2),
since these are necessities for stable solutions of Eq. (12)
[8]. In contrast, the oscillators with |ωi | > |Kir| rotate in
a nonuniform manner. As expected, the locked oscillators
correspond to the center of g(ω) and the drifting oscillators
correspond to the tails.

For the synchronized oscillators the stationary distribution
of the phases becomes

fs(θ,ω,K,t)

=
{

g(ω)�(K)δ
[
θ − arcsin

(
ω

|K|r
)]

, if K > 0,

g(ω)�(K)δ
[
θ − arcsin

(
ω

|K|r
) − π

]
, if K < 0.

(13)

Oscillators with frequencies in the interval |ω| > r|K| are
out of synchrony with the mean phase. Their stationary
distribution is obtained from the continuity equation (5) and
the normalization condition of f (θ,ω,K,t), such that

fas(θ,ω,K,t) = g(ω)�(K)

√
ω2 − (Kr)2

2π |ω − Kr sin(θ )| . (14)

Hence, the real and imaginary parts of the complex mean-field
definition, Eq. (4), become

r =
∫ π

−π

∫∫
cos θf (θ,ω,K,t) dθ dω dK, (15)

0 =
∫ π

−π

∫∫
sin θf (θ,ω,K,t)dθdω dK. (16)

The latter is identified as the phase balance equation.
The distribution of the phases for synchronized oscillators,

Eq. (13), for each ω implies π difference between the phases
of the synchronized clusters with couplings of opposite sign.
Nevertheless, this holds for the distribution fs(ω,K,θ,t) only
if g(ω) is symmetric. This is not the case for the TW state,
where even if the oscillators were symmetrically distributed
in the natural frame, the symmetry would be broken when
moving to the frame rotating with �. Thereafter, the centroids
of the phases will be shifted from the π mutual distance, a
phenomenon that was reported in [9].

In the rotating reference frame the locked oscillators are
frozen; i.e., by definition θ̇ = ψ̇ = 0. Thus only the drifting
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ones need to be considered. This can be applied in the
expression for the mean frequency of the ensemble, Eq. (11),
which becomes (see the Appendix)

fens =
∫∫ ∞

|Kr|
[g(ω) − g(−ω)]�(K)

√
ω2 − (Kr)2dω dK.

(17)

The definition (17) is not restricted to any distributions of the
natural frequencies and couplings.

Going back to the rotating frame where the original g̃(ω̃)
has zero mean, frequency parameters of the TW state are
characterized by � and f̃ens, where

f̃ens = fens + �.

As a consequence of (16) � can equal 0 only if g(ω) is
symmetric in the boundaries of the integral in (17) [14]. This
means that for any zero-centered distribution of the natural
frequencies g̃(ω̃) which is even in the intervals ω̃ > |rK| (e.g.,
Lorentzian, Gaussian, etc.) the function inside the integral is
also even if � = 0. Thus the integrals cancel each other and
f̃ens = fens = � = 0.

IV. THE TRAVELING WAVE STATES

In the following we discuss the possible scenarios that lead
to the TW state for which we also obtain mean frequency
parameters described earlier.

All further analyses are carried out in the rotating frame
of the entrainment frequency �, such that ψ̇ ≡ 0 and natural
frequencies are distributed according to g̃(ω + �), where g̃(ω̃)
has zero mean. However, for better clarity of the figures,
frequencies in the examples with asymmetric g̃(ω̃) are depicted
as seen from the original distribution described in the captions.

In other words, compared to the results from the analysis, the
plots are shifted by the means of the given distributions g̃(ω̃).

A. Traveling waves in the Kuramoto model
with contrarians and conformists

First we focus on the TW solution described in [9], which
actually inspired this work. The model shows resemblance to
sociophysical models of opinion formation [18] and is also
a continuation of the KM with distributed positive couplings
[19].

The distribution of the couplings is

�(K) = (1 − p)δ(K − K1) + pδ(K − K2),

where K1 < 0 and K2 > 0, and p denotes the probability that
a randomly chosen oscillator is a conformist, while q = 1 − p

is the probability that a random oscillator is a contrarian.
The natural frequencies follow a zero-centered Lorentzian
distribution with half-width γ ,

g̃(ω̃) = γ

π (ω̃2 + γ 2)
.

As stated in [9], if the absolute coupling strength is higher
for conformists than for the contrarians, then for some region
in the parameter space γ − p, the synchronized oscillators
will experience a TW. This means that both peaks in the
phase distribution uniformly rotate in same direction. The
waves appear in symmetric pairs, with frequencies ±�, since
they result from the asymmetry in the coupling strengths. In
contrast, if the TW is due to the asymmetry in the natural
frequencies or in the coupling function, the waves are not
paired, as discussed later.

Following the definitions of �(K) and g̃(ω̃), and using the
substitution ω2 − (K1/2r)2 = u2

1,2, the integrals in Eq. (17) are
analytically solved, yielding

fens = −
√

2�γ

⎧⎪⎪⎨
⎪⎪⎩

1 − p√√(
γ 2 + �2 + K2

1 r2
)2 − 4K2

1 r2�2 − �2 + K2
1 r2 + γ 2

+ p√√(
γ 2 + �2 + K2

2 r2
)2 − 4K2

2 r2�2 − �2 + K2
2 r2 + γ 2

⎫⎪⎪⎬
⎪⎪⎭ . (18)

This expression can be straightforwardly generalized for
multimodal-δ distributed coupling strengths.

It is obvious that � = 0 will imply f̃ens = 0. Hence only in
the presence of a TW may the mean frequency of the ensemble
differ from the mean phase velocity for this model. Similarly,
for the TW state fens is nonzero and has opposite sign from �.
Additionally it can be shown that the expression in the curly
brackets is smaller than 1/γ , so that in the natural reference
frame, |f̃ens| < |�| always holds. This is also evident from the
numerical results plotted in Fig. 1.

Let us now derive the expression for obtaining the frequency
� of the TW, as seen in the natural reference frame. Ott and

Antonsen, in their seminal work [20], showed that macroscopic
evolution of large systems of coupled oscillators can be
described by an explicit definite set of nonlinear differential
equations. They introduced an ansatz for the complex Fourier
coefficients in Eq. (6),

f̃k(ω̃,K,t) = [α̃(ω̃,K,t)]k, (19)

which exactly solves the governing equation (5), as long as
α̃(ω̃,K,t) evolves following the nonlinear equation

∂α̃

∂t
+ iω̃α̃ + K

2
(z̃α̃2 − z̃∗) = 0. (20)
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FIG. 1. (Color online) The amplitude r and frequency � of the
mean field, and the mean-ensemble frequency f̃ens vs the ratio p.
Theoretical results are given with a solid line (black) for r , a dotted
line (red) for �, and a dashed line (blue) for f̃ens. Results from
numerical simulations are shown with squares (black) for r , triangles
(red) for �, and diamonds (blue) for f̃ens. Parameters: γ = 0.05,
K1 = −1, and K2 = 2.

When this ansatz is implemented in Eq. (4), the order
parameter reduces to

z̃ =
∫∫

α̃∗(ω,K,t)g̃(ω̃)�(K)dω̃ dK. (21)

Note that applying this ansatz in (10) leads to a simplified
expression for the evolution of the complex order parameter,

˙̃z =
∫∫ [

iω̃α̃∗ + K

2
(z̃ − z̃∗α̃∗2)

]
g̃(ω̃)�(K)dω̃ dK, (22)

from which the frequency of entrainment can be obtained.
Similarly, substituting Eqs. (3) and (6) and the ansatz (19) into
Eq. (11) transforms the mean-ensemble frequency to

f̃ens =
∫∫ [

ω̃ − K

2i
(z̃α − z̃∗α̃∗)

]
g̃(ω̃)�(K)dω̃ dK. (23)

We start by considering the low-dimensional evolution (20)
in the reference frame of the TW. Similar analysis, but in the
natural frame was performed in [9]. First the bimodal-δ and
Lorentzian distributions for �(K) and g(ω), respectively, are
substituted into the integral Eq. (21), such that it yields

z∗ = (1 − p)α1(� − iγ,K1) + pα2(� − iγ,K2). (24)

This is then used in Eq. (20), which, rewritten for both α1(� −
iγ,K1) and α2(� − iγ,K2), results in

∂α1,2

∂t
+(i� + γ )α1,2 + K1,2

2

(
zα2

1,2 − z∗) = 0, (25)

where we omit the dependencies of α(ω,K,t). As previously
stated, we are interested in a stationary solution of the TW
state in the t → ∞ limit. This implies time-independent
distribution of the phases in this limit, or from the ansatz (19),
time-independent α1,2 with ∂α1,2/∂t = 0. Further, similar to
[9], complex order parameters for each of the subpopulations,
and the difference between their phases, are defined:

r1e
−iψ1 = α1, r2e

−iψ2 = α2, δ = ψ1 − ψ2 = const.

(26)

In this way it is ensured that both synchronized populations,
in-phase and antiphase, rotate with the same velocity � in the
natural frame, and preserve constant phase difference. In the

rotating frame of the TW ψ̇ = 0, so ψ ≡ 0 can be set without
loss of generality. Thus, from Eqs. (25) and (26) we obtain
the following evolutions which describe a fixed point in the
{r1,r2,ψ1,ψ2} space:

ṙ1 = −γ r1 − K1

2

[(
r2

1 − 1
)
(pr2 cos δ + qr1)

] = 0, (27)

ṙ2 = −γ r2 − K2

2

[(
r2

2 − 1
)
(pr2 + qr1 cos δ)

] = 0, (28)

ψ̇1 = � − K1

2r1
pr2 sin δ

(
r2

1 + 1
) = 0, (29)

ψ̇2 = � + K2

2r2
qr1 sin δ

(
r2

2 + 1
) = 0. (30)

The low-dimensional parameters including � can be now
obtained self-consistently. The steady states (29) and (30)
result from the constant angle difference between the peaks
in the phase distribution, i.e.,

δ̇ = − sin δ

[
K1

2r1
pr2

(
r2

1 + 1
) + K2

2r2
qr1

(
r2

2 + 1
)] = 0.

Hence, when Im[z] = 0 is applied to Eq. (24), one can use the
expression

qr1 sin ψ1 = −pr1 sin ψ2 (31)

and the definition (26) of δ to obtain the values of ψ1 and ψ2,
such that the system will be fully described.

The equations (27)–(30) and all further numerical in-
tegrations are performed using a Runge-Kutta fourth-order
algorithm. Once we have the low-dimensional parameters,
Eq. (18) is applied to find the mean frequency of the ensemble.
Finally, results are compared with the values for the order
parameter r , the mean phase velocity of the ensemble �,
and the mean frequency fens, obtained from the numerical
simulations of the ensemble Eq. (1), using Eqs. (2) and (9).
As in all later simulated scenarios, the number of oscillators
was set to N = 100 000; the time step of the integration was
0.01. The simulations were running for 105 time steps, with the
initial 90% of each run discarded as possibly transient, while
the rest were time averaged. The proportion of the conformists
p is changed from 0 to 1 at 100 equally spaced points, and the
obtained results given in Fig. 1 fully confirm the theoretical
analysis.

B. Asymmetric unimodal frequency distribution

Another case of the KM characterized with a stationary
solution, where the mean frequency of locked oscillators
differs from the mean of the oscillators’ natural frequencies,
are ensembles with asymmetric unimodal distribution of the
natural frequencies, and equal couplings. The asymmetric
scenario is also more natural than the symmetric, because any
imperfection in the system, however small, can destroy the
ideal symmetry. Nevertheless, mostly due to the analytical
difficulties, this case has obtained little attention. It was
first examined by Sakaguchi and Kuramoto [15] and the
self-consistent condition for the mean-field frequency was
obtained in [14].

It is known from [14] that the phase balance equation (16),
for g(ω) asymmetric in the interval |ω| > rK , implies that
the oscillators always lock to a frequency that differs from
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the mean of the natural frequencies. For the mean-ensemble
frequency Eq. (17) was numerically integrated for ensembles
with triangular and log-normal frequency distributions and
constant coupling strength. We found that it always gives
fens = −� in the TW rotating frame. In other words, the
mean-ensemble frequency equals the mean of the natural
frequencies, although it differs from the mean-field frequency.
The results seemed unexpected at first sight. However, after
careful analysis we realized that the derivations for the
equation of balance (16), as given in [14], in the frame
rotating with � indeed leads to Eq. (17). Namely, applying
the derivations in the Appendix, Eq. (16) becomes

0 = � +
∫∫ ∞

|Kr|
g(ω)

√
ω2 − (Kr)2dω

−
∫∫ −|Kr|

−∞
g(ω)

√
ω2 − (Kr)2dω = � + fens. (32)

Thus, one can conclude that, for the KM with asymmetric fre-
quency distribution, the mean-ensemble frequency is always
equal to the mean of the natural frequencies.

Next, a triangular distribution with limits a and b, and peak
at c was explored. In the scenario shown in Fig. 2(a) the peak is
distributed in the interval [a,b], while in Fig. 2(b) the coupling
strength is increasing from 4 to 10 for fixed c. Similarly, for
log-normal frequencies

g̃(ω̃) = 1

ω̃σ
√

2π
e−(ln ω̃−μ)2/(2σ 2), ω̃ > 0,

μ is fixed to 0, while σ is logarithmically distributed, and the
results are given in Fig. 2(b). The mean ensemble frequency
values also match theoretical values for the means of the given
distributions, (a + b + c)/3 and eμ+σ 2/2 respectively.

For the triangular distribution shown in Fig. 2(a) the mode
is c, while for 2(b) it is fixed. Similarly for the log-normal
g̃(ω̃) given in Fig. 2(c) the mode is 1 for μ = 0 and σ → 0,
otherwise it exponentially decreases to 0 as eμ−σ 2

. Hence,
the presented results show that the mean-field frequency is
always between the mode and the mean of the distribution
of natural frequencies, and reaches the latter only when all
oscillators become synchronized. That is to say, by increasing
the coupling strength for a given frequency distribution,
the proportion of synchronized oscillators is also increased.
Accordingly the value of � moves closer to the mean of
the distribution, until it eventually reaches it for r → 1. For
unbounded g(ω) the last can only occur when K → ∞, while
in the case of bounded natural frequencies, for some value of
rK all oscillators will be entrained. This can also be deduced
from Eq. (32). Namely, higher synchronization implies a
smaller region for the integral on the right-hand side. At the
same time we assume g(ω) to be decreasing left and right from
the mode, meaning that higher r leads to smaller value of fens

which eventually becomes 0, implying � = f̃ens. Furthermore,
the value under the square root in the same integral also
decreases with increasing r . These are confirmed in Figs. 2(b)
and 2(c), where we see that, for smaller couplings and hence
for smaller mean field amplitudes, � is closer to the peak of
the distribution and approaches f̃ens for larger coupling.
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FIG. 2. (Color online) The amplitude r and frequency � of the
mean field, and the mean-ensemble frequency f̃ens for unimodal
asymmetric natural frequencies. Results from the numerical simu-
lations are shown with squares (black) for r , triangles (red) for �,
and diamonds (blue) for f̃ens. The lines (blue) are from theoretical
results for f̃ens and they also match the means of the frequencies’
distributions: crosses (blue). (a) and (b) Triangular g̃(ω̃) in boundaries
a = 1 and b = 10. (a) Coupling K = 4.2 and mode c ∈ [0,10];
(b) K ∈ [4,10] and c = 9; (c) log-normal distribution of natural
frequencies, with μ = 0, σ ∈ [0.25,2], and coupling K = 4.2. The
dashed line shows the modes of the distributions.

C. Asymmetric multimodal frequency distribution

The KM with multimodal asymmetric distribution of
natural frequencies is another candidate for the mean-field
behavior described by a TW. Nevertheless, due to difficulties
that arise in the mathematical analysis of this model, it was
never fully solved, nor has a thorough dynamical analysis
of possible macroscopic solutions been performed. Still,
following the analysis of the symmetric scenario [13] and
qualitative descriptions of the dynamics in the asymmet-
ric case given in [2,13], some conclusions can be drawn.
Namely, Kuramoto, in his seminal work [2], discusses how
transition from incoherence to mutual synchronization might
be modified when the oscillators’ natural frequencies are
bimodally distributed. For sufficiently large coupling strength,
he assumed that the clusters of synchronized oscillators “will
eventually be entrained to each other to form a single giant
oscillator.” For smaller coupling strengths compared to the
distance between peaks, he envisaged that the synchronized
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nuclei would be at the peaks of g(ω). Although some of the
transitions between different states described in [2] for the
symmetric case were shown to be wrong [13], the description
of the mean-field dynamics of a partially synchronized state is
indeed correct.

Hence, for a symmetrical g(ω) the ensemble should
be either partially synchronized for large enough coupling
compared to the peaks’ distance, or synchronized clusters
should exist near the peaks [2,13,21]. For asymmetrically and
bimodally distributed frequencies the partial synchronization
will be characterized by TW, whereas standing waves and other
complex collective rhythms appear for smaller couplings.

Therefore, for the partially synchronized state in the
asymmetric bimodal case, one might expect a TW state to
occur. As a consequence of having a single synchronized
cluster, the dynamic of the system is similar to the models
with unimodal asymmetric distribution described in Sec. IV B.
As a result the same conclusion drawn about the asymmetric
unimodal scenario also holds for the TW solution of the
asymmetric bimodal case. This means that the mean frequency
of the ensemble is equal to the mean of g̃(ω̃), and as such
differs from the frequency of the TW experienced by the mean
field. Hence, in the TW frame, fens = −�. This can be seen
in Fig. 3, where results from numerical simulations confirmed
the theoretically expected values for f̃ens and �.

As an example we analyze the dynamics of a population
with bimodal Lorentzian distribution of frequencies

g̃(ω̃) = (1 − p)γ1

π
[
(ω̃ − μ1)2 + γ 2

1

] + pγ2

π
[
(ω̃ − μ2)2 + γ 2

2

] .

The subdistributions are peaked at μ1 and μ2 with the half-
widths γ1 and γ2 respectively, where p is the proportion of the
oscillators belonging to the second subdistribution. The full
low-dimensional dynamics for this system can be obtained
using the ansatz Eq. (19) in a similar manner as in Sec. IV A.
The integral (21) for the given �(K) and g(ω) yields

z∗ = (1 − p)α1(μ1 − γ1,K,t) + pα2(μ1 − γ1,K,t).

Hence, substituting α1,2 in Eq. (20), the low-dimensional
dynamics are described by two ODEs,

α̇1,2 = −(i μ1,2 + γ1,2)α1,2 − K

2
(z∗ + zα1,2). (33)

In all the plots in Fig. 3 the values of the coupling strength
are large enough to induce TW instead of standing wave
states, i.e., one instead of two synchronized clusters. For
Fig. 3(a) both peaks are of equal distance from the zero.
This leads to zero mean for any width of the subdistri-
butions, and following previous discussion and Eq. (32) it
implies f̃ens = 0. For similar deviations of subdistributions
the entrainment frequency will be near zero, but closer to the
narrower peak, since more oscillators from that subdistribution
will be entrained. However, for a large deviation of the
first subdistribution compared to the second one, a small
number of the oscillators belonging to it will be entrained.
These oscillators will be almost equally distributed on both
sides of the second peak. Thus, the frequency of the entrained
oscillators will asymptotically reach the peak of the second
subdistribution in the limit case γ1 → ∞. If in the same limit
case p → 0 also holds, then with the same reasoning very
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FIG. 3. (Color online) The amplitude r and frequency � of the
mean field, and the mean-ensemble frequency f̃ens vs the frequency
width of the first subpopulation γ1. Results from the simulations,
Eq. (1), are shown with squares (black) for r , triangles (red)
for �, and diamonds (blue) for f̃ens. (a)–(c) The low-dimensional
dynamics, Eq. (33), are shown with solid lines (black) for r ,
dotted lines (red) for �, and dashed lines (blue) for f̃ens. (a)–
(c) Bimodal Lorentzian g̃(ω̃). Parameters: γ1 ∈ [0,10] γ2 = 0.75,
μ1 = −1, μ2 = 1, K = 5, and (a) p = 0.5, (b) p = 0.25, and
(c) p = 0.75. (d) Bimodal Gaussian g̃(ω̃) with γ1 ∈ [0,10], γ2 =
0.75, μ1 = −1.5, μ2 = 1, coupling K = 4.25, and p = 0.5.

few entrained oscillators will be close to the second peak.
At the same time the mean frequency of the distribution and
of the ensemble will be near the first peak. Similarly, for
p = 0.25 and p = 0.75 as in Figs. 3(b) and 3(c), the mean
of the frequencies is on 1/4 or 3/4 of the distance between the
peaks, respectively, while � reaches the narrower mode.

The generality of the described analysis for any bimodal
distribution is shown in Fig. 3(d), where the frequency
distributions are Gaussian. Although the low-dimensional
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dynamics in a form similar to Eq. (33) cannot be obtained
for this case, the results from the numerical simulations of
the ensemble, Eq. (1), are in line with the previous discussion
concerning Lorentizan g̃(ω̃).

D. Contrarians and conformists with asymmetric
unimodal frequency distribution

The analysis naturally continues with the KM in the
presence of both previously analyzed conditions that are
required for TW: contrarians and conformists, with asymmet-
ric distribution of natural frequencies. The phase locking in
this scenario happens in frames other than the natural for
all coherent solutions. But as it will be shown, due to the
distributed couplings, the mean ensemble frequency also has
nontrivial values; it is not always equal to 〈ω̃〉. As another
consequence of the asymmetry, the sign of the TW can no
longer be expected to be random, as is the case for the
contrarians and conformists over symmetrically distributed
frequencies [9]. However, the analysis of this case is largely
more complicated compared to previous ones and we have
taken some examples only to show the main points.

The phase balance equation (16) for distributed K in this
case does not lead to a simple expression, as was Eq. (32) for
equal couplings. Still, following the same procedure, Eqs. (13)
and (14) are substituted into Eq. (16) and, applying the
derivations from the Appendix, the balance of phases becomes

0 =
∫

�(K)

rK
dK

{ ∫
ωg(ω)dω

−
∫ ∞

|Kr|
ω[g(ω) − g(−ω)]

√
ω2 − (Kr)2dω

}

=
∫

�(K)

rK
dK [−� + I (K)]. (34)

This expression self-consistently gives the frequency of the
entrainment, whilst it no longer implies equality of f̃ens and
〈ω̃〉, as for constant coupling parameters. Results from numer-
ical simulations shown in Fig. 4 confirm the nontrivial nature
of both global frequency parameters. The most interesting
phenomena is that � and f̃ens for some parameters can have
values that not only differ from either the mode and the mean of
the natural frequencies, but that are also outside of the interval
between them as was case for equal K . Moreover, they can
even be outside of the boundaries of their distribution. For
example for the triangular g̃(ω̃) ∈ [0,1] depicted in Fig. 4(a),
the frequency of the entrainment can be up to ∼ − 1 or to ∼2,
and similar results occur with f̃ens. These values are clearly
out of the region of support of ω̃, which is shaded in the same
plot. Note that these on first sight counterintuitive results are a
consequence of the very high coupling strengths with opposite
sign, and they are still within the general boundaries of f̃ens

and �. Namely, from Eqs. (11) and (3), it is clear that

ω̂ − max |K| < f̃ens < ω̂ + max |K|, (35)

while from the fact that the entrainment frequency cannot be
out of the limits [min( ˙̃θ ), max( ˙̃θ )] it follows

min(ω̃) − max |K| < � < max(ω̃) + max |K|. (36)
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FIG. 4. (Color online) The amplitude r and frequency � of the
mean field, and the mean-ensemble frequency f̃ens for asymmetric
ensembles with distributed coupling strengths. Numerically obtained
results, Eq. (1), are shown with squares (black) for r , triangles (red)
for �, and diamonds (blue) for f̃ens. (a)–(c) The dashed lines (blue)
are theoretically predicted results for f̃ens, Eq. (17). Horizontal dashed
and dotted lines are the modes and the means of g̃(ω̃) respectively, and
its domain is shaded for (a). (a) Triangular g̃(ω̃) within a = 0 and b =
1 and peak at c = 0.8; bimodal-δ �(K) with K1 = −4, K2 = 8, and
p ∈ [0.34,1]. (b) and (c) Log-normal g̃(ω̃) with μ = 0 and bimodal-δ
�(K). (b) σ = 1.1, K1 = −10, K2 = 20; and (c) σ = 1, p = 0.55,
K1 ∈ [−6,13], K2 = 6.

Of course, these are broad limits and only for bounded g̃(ω̃)
do the boundaries for � not reach ±∞.

Hence, for bounded distributions, such as the triangular, and
for large enough couplings of opposite signs, the only way the
balance equation (34) can be satisfied is with the emergence of
a TW with a large enough value of �, so that the integral in the
same equation will be nonvanishing. Contrarily, if I (K) = 0
for the shown example, i.e.,

ω̃ − � < |rK|, ∀ ω̃ for which g̃(ω̃) > 0, (37)

then the phase balance becomes

0 = (1 − p)/K1 + p/K2. (38)

If (38) holds, then � can have any value that still obeys
condition (37), so each simulation would give a different TW
within these limits. Another consequence from condition (37)
when applied to Eq. (17) is that fens = 0.
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If (38) is not satisfied, then the oscillators rearrange,
rendering the condition (37) also invalid. The result is the
appearance of nonzero I (K) in Eq. (34) to impose the balance
of the phases. There may be more than one value for � which
impose this balance, and if that were the case one might expect
multiple solutions or even hysteresis behavior. In this work,
however, we only numerically confirm that for bounded natural
frequencies, as in the example in Fig. 4(a), �, when observed
in the natural frame, can have two stable values with opposite
signs. In other words, numerical realizations could lead to any
of the two stable values. This is illustrated in Fig. 4(a) where
one such realization is depicted, whilst in different realizations
the values on both sides of the mean and the mode of g̃(ω̃)
appeared for p around (0.35,0.7).

For the same triangular natural frequencies, if p > 0.65,
then a state similar to the π state in the symmetric model
in Sec. IV A is observed. Here, the equality of � and f̃ens

follows from the bounded distribution of the oscillators’
natural frequencies, which all become entrained. Similarly
the integral I (K) vanishes, and the requirement for the phase
balance holds only if � = 0. In this way only the first integral
of Eq. (34) survives and it gives 〈ω̃〉, which we set to be 0
[although in Fig. 4 the plots are for nonzero mean frequency
distributions, such that the plot (a) has mean 0.8].

If the natural frequencies are unbounded then I (K) �= 0,
meaning that a TW always emerges. For the simulations we
have performed, as seen in Figs. 4(b) and 4(c), the system was
always setting the same value for � that solves Eq. (34) for the
given parameter range. Thus, for the log-normally distributed
ω, � is always positive, although the existence of another
stable TW that also fulfills the phase balance is not excluded.
The entrainment of all oscillators is never achieved in this
scenario, and the mean frequencies will never reach 〈ω̃〉. Still
they will approach this value when the number of entrained
oscillators is increased, either by increasing the number of
conformists, Fig. 4(b), or by changing the coupling strength of
one of the groups, as shown in Fig. 4(c). The same plots also
show that, even when the couplings are all positive, the group
frequencies behave qualitatively differently from the case with
constant K . This characteristic becomes less obvious once the
modes are closer to each other. To check the generality of
the analysis, we also explored the case when K is bimodal
Gaussian distributed. The results did not show any qualitative
difference from the case with bimodal δ.

It is expected that, for multimodal couplings, clustering
emerges and plays a crucial role in defining the values of f̃ens

and �. A similar phenomenon was also reported in [19] for
distributed positive and unimodal K , but as a finite-size effect
only. That is to say, the distribution of the locked oscillators,
Eq. (13), for multimodal-δ �(K) will have peaks on different
angles ψi = arcsin ω

Kir
for each mode Ki . Further evidence

for this explanation can be seen in numerical simulations
performed over different �(K) and g(ω). Figure 5 presents
obtained phase distributions. As can be seen three qualitatively
different types were identified.

Firstly for very large coupling strengths compared to the
width of g(ω), and for bimodal �(K) with modes having
different signs, there are two separated peaks corresponding to
the contrarians and conformists. The distance between them
is smaller than π and the observed TW is similar to that in
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FIG. 5. (Color online) PDF of phases for different states of
the ensemble with log-normally distributed natural frequencies and
bimodal-δ distributed coupling strengths. Oscillators with coupling
K1 are shown with a dashed line (red), those with K2 are following
the dotted line (blue,) while the joint distribution is shown with a solid
line (black). Parameters: μ = 0, σ = 1, and p = 0.5. (a) K1 = −10,
K2 = 20. Two peaks at a distance smaller than π and a TW occurs.
(b) K1 = −4, K2 = 8. Two peaks at a distance π . (c) K1 = 2,
K2 = 3. The peaks merge into a single peak in the joint distribution.
(d) K1 = 2, K2 = 6. Two closely separated peaks.

Sec. IV A, although the asymmetry in g(ω) causes asymmetry
in the distribution f (θ,ω,K,t). This is shown in Fig. 5(a), and
also in examples (a) and (b) of Fig. 4, in the range for p around
0.4–0.65.

The second scenario differs from the first only in the sense
that the absolute values of the coupling strengths are not much
bigger than the width of the natural frequencies. As expected,
this corresponds to the π state from [9], but the form of g(ω)
will be mapped onto the peaks which are separated by π . The
asymmetry additionally will influence the values of the f̃ens and
�. However, the latter will always be in the interval between
the mode and the mean of g̃(ω̃). This means that qualitatively
this corresponds to the case with constant K described in
Sec. IV B, but with nonzero values for f̃ens because of the
phase balance equation (34).

Lastly, if the couplings distribution have positive peaks
only, depending on their distance apart, the phases will have
either one or two close peaks, while still keeping the form of
g(ω). Hence, the case with one peak will be the same as having
unimodally distributed K , and numerical results suggest that
f̃ens ≈ 〈ω̃〉 as for constant K , although this is not immediately
obvious from Eqs. (17) and (34). Finally, if f (θ,ω,K,t)
is no longer unimodal, then f̃ens has values that differ
from 〈ω̃〉.

The number and the nature of the emerging clusters is not
so straightforward for non-δ �(K) distributions. Still, from the
PDF of the phases it is clear that, for negative modes in �(K),
the peaks in the PDF corresponding to those oscillators do
not have the form of g(ω), but they are more symmetric. For
positive modes, the peaks keep mapping the distribution of the
natural frequencies. This is also an interesting peculiarity that
requires further attention.
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The bottom line is that different, and on first sight
counterintuitive values for the entrainment and mean ensemble
frequency are obtained even for all positive but multimodally
distributed couplings, as long as the natural frequencies
are nonsymmetric. Nevertheless, a thorough analysis is still
needed for this general case of the KM, with the emphasis put
on the entrainment at different clusters and their influence to
the group behavior.

E. Phase shifted coupling function

The final model leading to TW of the macroscopic parame-
ters being analyzed here is actually the earliest generalization
of the KM [15]. This model was introduced to allow for
entrainment in frames other than the natural. The so called
Kuramoto-Sakaguchi model has the form

˙̃θ = ω̃ − K r sin(θ̃i − ψ̃ − β),

where β is a phase shift of the coupling function. Low-
dimensional dynamics of this model with Lorentzian g̃(ω̃)
can be also obtained using the ansatz [20], with derivations
being similar to the problem in Sec. IV A. It yields

∂z̃

∂t
+ γ z̃ + K

2
(z̃α̃2eiβ − z̃∗e−iβ ) = 0,

which was also obtained in [22]. From here, one immediately
obtains the long-term evolution of ψ , i.e., the frequency of the
TW,

dψ̃

dt
≡ � = K sin β − γ tan β. (39)

For the mean ensemble frequency in this model, Eq. (17) can be
analytically solved, and with further substitution of stationary
values for r and � it transforms to

f̃ens = −sgn(�)γ tan β.

This directly leads to

f̃ens = K sin β − 2γ tan β, (40)

which can also be straightforwardly obtained from Eq. (23)
after applying the residue theorem for the integral over ω.
The stationary values of the macroscopic parameters of this
system are illustrated in Fig. 6. There, it is also obvious
that |f̃ens| < |�| and that the frequencies have odd symmetry,
features which are a direct consequence of Eqs. (39) and (40).

It is worth noting that by taking the derivative over β

from expressions (39) and (40), extreme values for both mean
frequencies follow as

βmax/min = ± arccos 3
√

2γ /K

for � and

βmax/min = ± arccos 3
√

γ /K

for f̃ens. Of course, since the population should be coherent,
parameters have to be chosen such that K > Kc = 2γ / cos β

holds. Thus, the values of the phase shift β that produce
maximum deviation in both mean-ensemble and mean-field
frequencies are directly obtained.
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FIG. 6. (Color online) The mean field’s amplitude r , the phase
velocity �, and the mean frequency of the ensemble f̃ens vs the
phase shift β. Results from the theoretical predictions for the low-
dimensional dynamics, Eqs. (39) and (40), are given with a solid line
(black) for r , a dotted line (red) for �, and a dashed line (blue) for
f̃ens. Results from numerical simulations, Eq. (1), of the ensemble are
shown with squares (black) for r , triangles (red) for �, and diamonds
(blue) for f̃ens. Parameters: γ = 0.5, K = 6, and α ∈ [−4π/9,4π/9].

V. SUMMARY

The TW state in the KM occurs whenever the symmetry
in either the natural frequencies or the coupling function itself
is broken. For asymmetric coupling strengths on the other
hand, the wave occurs only for certain coupling parameters.
The results of this study indicate that, in populations with an
asymmetric, bell-shaped distribution of the nonsynchronized
oscillators and equal couplings, the mean-ensemble frequency
is always the mean of the natural frequencies. In contrast,
the TW of the synchronized oscillators—the mean-field
frequency—has a value between the mean and the mode of
those. When the asymmetry originates from the coupling
strengths or the coupling function, both mean frequencies have
nontrivial values. In particular they differ from the mean or the
modes of the frequency distribution.

The case of the asymmetric unimodal frequency distribution
has quite a straightforward explanation. Here the frequency
of synchronization is a result of the interplay between the
cluster of the locked oscillators and the whole ensemble.
Synchronized oscillators tend toward frequency locking at the
mode, where the density of similar oscillators is the highest,
whilst the influence of all oscillators would be balanced if
it is at the mean of all natural frequencies. The compromise
is achieved through the self-consistent system for the phase
balance, and Eq. (32) follows directly from this interplay. This
balance would be destroyed if the nucleus is either on the peak
or on the mean.

By increasing the number of locked oscillators, the mean-
field frequency shifts towards the less skewed side of the
distribution, i.e., towards the mean, because the number and
the influence of the drifting oscillators decreases. Finally, once
all the oscillators get locked, the frequency of the entrainment
will be exactly the mean of the distribution. In this way, the
influence of all oscillators is equal. The same explanation can
be applied for bimodal or multimodal cases, since again there
is only one cluster of synchronized oscillators in the TW state.

On the other hand, in the case of contrarians and con-
formists, the physical explanation of the mean-ensemble
frequency, the frequency of entrainment, and their difference,
is not yet very clear. Previous work went as far as showing
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that, in some parameter spaces for opposite sign couplings,
both peaks in the distribution of the phases lose their stability.
Instead, they start to chase each other and are no longer a
distance of π apart, hence producing the TW. Here we have
emphasized that this behavior simply acts to preserve the phase
balance, which directly gives the value of the entrainment
frequency, while its influence on arranging the nonsynchro-
nized oscillators also makes it responsible for the mean
ensemble frequency. Despite this, we believe that, even by
showing, analytically and numerically, that the velocity of the
mean phase and the frequency of the ensemble differ in this
case, an important characteristic that seems to be unique for
TW states only is immediately revealed. This explanation was
missing when the model was first introduced [9], and clear
distinction between macroscopic frequencies was not made.
Moreover, “the mean phase velocity” obtained through the
low-dimensional dynamics was defined as the mean-ensemble
frequency.

In the more general and realistic situation, with asymmetric
frequencies and distributed couplings, the macroscopic fre-
quencies can have values in very unexpected boundaries—
even outside the limits of the natural frequencies. The reason
for this complex behavior is again a result of the system’s
self-arranging, such that the influence of the nonsynchronized
oscillators to the mean-field amplitude vanishes and the phase
balance is maintained. In order for this to be achieved for mul-
timodally distributed couplings, there are different clusters of
synchronized oscillators for each mode. This case also shows
possibilities for further research either in eventual hysteresis
dynamics and seeking the number of stable solutions, or in the
clustering phenomena for distributed coupling strengths.

When the asymmetry is induced through the coupling
function itself the macroscopic frequencies always differ, in
a similar way to the case when it stems from the coupling
parameters. In that sense the mean-ensemble frequency is
of the same sign, but with lower absolute value than the
mean-field frequency. Also, their dependence on the phase
shift is nonlinear, and the ways they respond to the shift do
not coincide, with both of them having the highest values for
different phase shifts.

Taken together, these results suggest that, whenever the
population is experiencing a TW, the locking of the oscillators
is at a frequency different from the mean of the instantaneous
frequencies. Since in inverse problems or in experiments it is
often only the macroscopic parameters that can be obtained, a
clear interpretation of the observed mean frequency is always
needed. Moreover, the asymmetric scenarios tend to be far
more abundant in the real physical systems. That is to say,
asymmetry of the natural frequencies can immediately make
any scenario more realistic, whilst few of the examples with
opposite coupling strengths can be traced in inhibitory and
excitatory neurons [23] or in social dynamics [18]. As for the
phase-shifted coupling function, although it was introduced to
describe the formation of nonlinear waves in nonoscillatory
media [15], it can be used to model various phenomena, such
as Josephson junctions [3], mammalian intestines, and heart
cells [24]. Hence, in the models based on measurements, like
those describing the brain dynamics [4], one should precisely
define to which of the macroscopic frequencies, of the mean
field or mean ensemble, the measured frequency corresponds.

Finally, this work reveals the strong need for future research
that should explain the physical link between the observed
mean frequency of any system with cooperative dynamics and
the two macroscopic frequency parameters described here for
nontrivial cases.
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APPENDIX: GENERAL FORMULA FOR THE MEAN
ENSEMBLE FREQUENCY

We work in the reference frame rotating with � = ˙̃ψ . In
this frame, the locked oscillators are frozen and one has to
consider the drifting ones only, Eq. (14). This can be applied
in the expression for the mean frequency of the ensemble,
Eq. (11), which becomes

fens =
∫ π

−π

∫∫
|ω|>|Kr|

(ω − Kr sin θ )g(ω)�(K)

×
√

(ω)2 − (Kr)2

2π |ω − Kr sin(θ )|dω dK dθ

= I1 − I2. (A1)

The first integral is

I1 =
∫∫

|ω|>|Kr|
ω�(K)g(ω)dK dω, (A2)

because of the probability normalization∫ 2π

0

√
(ω)2 − (Kr)2

2π |ω − Kr sin θ |dθ = 1. (A3)

The second integral requires more calculation. Integrating over
the phases first, for positive frequencies ω > |Kr| it yields∫ 2π

0

√
ω2 − (Kr)2Kr sin θ

2π |ω − Kr sin θ | dθ = ω −
√

ω2 − (Kr)2, (A4)

while for negative frequencies ω < −|Kr|∫ 2π

0

√
ω2 − (Kr)2Kr sin θ

2π |ω − Kr sin θ | dθ = ω +
√

ω2 − (Kr)2. (A5)

It is interesting to note that both integrals are even in K .
Following this, the second integral, I2, simply becomes

I2 =
∫ ∞

−∞

∫ −|Kr|

−∞
g(ω)�(K)[ω +

√
ω2 − (Kr)2]dω dK

+
∫ ∞

−∞

∫ ∞

|Kr|
g(ω)�(K)[ω −

√
ω2 − (Kr)2]dω dK.

(A6)

After partial cancellation of I2 with I1 because of (A1) one
obtains a simple formula for calculation of the mean ensemble
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frequency in the reference frame of the order parameter:

fens =
∫ ∞

|Kr|

∫ ∞

−∞
g(ω)�(K)

√
ω2 − (Kr)2dω dK

−
∫ −|Kr|

−∞

∫ ∞

−∞
g(ω)�(K)

√
ω2 − (Kr)2dω dK

=
∫ ∞

|Kr|

∫ ∞

−∞
[g(ω) − g(−ω)]�(K)

√
ω2 − (Kr)2dω dK.

(A7)

Note that g(ω) is centered in −� and hence is asym-
metric, even for symmetric g̃(ω̃) which is often the case.
Returning to the original frequencies ω̃, the last expression
becomes

fens =
∫ ∞

|Kr|

∫ ∞

−∞
[g̃(ω + �) − g̃(−ω + �)]�(K)

×
√

ω2 − (Kr)2dω dK. (A8)
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