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Abstract—Component Analysis (CA) consists of a set of sta-
tistical techniques that decompose data to appropriate latent
components that are relevant to the task-at-hand (e.g., clustering,
segmentation, classification, alignment). During the past few
years, an explosion of research in probabilistic CA has been
witnessed, with the introduction of several novel methods (e.g.,
Probabilistic Principal Component Analysis, Probabilistic Linear
Discriminant Analysis (PLDA), Probabilistic Canonical Correla-
tion Analysis). PLDA constitutes one of the most widely used
supervised CA techniques which is utilized in order to extract
suitable, distinct subspaces by exploiting the knowledge of data
annotated in terms of different labels. Nevertheless, an inherent
difficulty in PLDA variants is the proper initialization of the
parameters in order to avoid ending up in poor local maxima. In
this light, we propose a novel method to initialize the parameters
in PLDA in a consistent and robust way. The performance of
the algorithm is demonstrated via a set of experiments on the
modified XM2VTS database, which is provided by the authors
of the original PLDA model.

I. INTRODUCTION

Component Analysis (CA) methods are typically utilized
as dimensionality reduction or feature extraction techniques
in areas such as machine learning, computer vision and
signal processing. Some of the very first and most known
CA methods are Principal Component Analysis (PCA) [10],
Linear Discriminant Analysis (LDA) [19], [24] and Canonical
Correlation Analysis (CCA) [8]. One common attribute among
the aforementioned techniques is that they are deterministic.
Probabilistic interpretations of CA methods, such as Proba-
bilistic PCA [14], [18], [21], Probabilistic LDA (PLDA) [16],
[22], [25], [23], [9], [17] and Probabilistic CCA [11], [2], [15],
were introduced in the literature over the past two decades.
Probabilistic CA methods possess several advantages over
their deterministic counterparts. In particular, they may be
utilized as general density models [21], extended to mixture
models [20] and Bayesian methodologies [12], used to model
variance and handle missing data [1].

PLDA is a supervised probabilistic technique that takes into
account the label (e.g., identity of a person depicted in an
image) with which each datum is annotated. In particular,
in PLDA the following assumption holds: Each datum is
generated by two distinct, latent subspaces. The first subspace
models the class in which each datum belongs to and the
second renders the uniqueness for the specific datum. In face

identification tasks, for instance, the first subspace would
model the different identities that may exist in the training
set while the second one would render the uniqueness of an
image of a particular subject.

Nevertheless, initialization of the parameters of PLDA are
accomplished utilizing heuristic techniques. To overcome this,
we propose a novel algorithm to initialize PLDA. Our method
eliminates the chance of ending up in poor local maxima and
hence initializes the parameters in a consistent and robust way.
We demonstrate the performance of our method by a set of
experiments on the modifed XM2VTS database, provided by
the authors of the original PLDA model [17], [13].

II. PROBABILISTIC LINEAR DISCRIMINANT ANALYSIS

In this section, we briefly cover the PLDA model introduced
in [17], [13]. As stated above, in PLDA data are derived by two
distinct, latent subspaces. One that models the class in which
the sample belongs to and one that renders the uniqueness for
that sample. In more detail, for a training set that consists of a
total of I classes with each class i having a total of J images,
the j-th sample of the i-th class may be formulated as

xi,j = µ+ Fhi + Gwi,j + εi,j , (1)

where µ denotes the global mean of the training set, F defines
the subspace that renders the identities of the subjects included
in the training set, with hi being the latent variable rendering
the identity for the particular image. Moreover, G is the
subspace that captures the specific conditions under which
the images were taken (e.g., lighting variations) and wi,j is
the latent variable that renders the specific conditions for the
particular image. Finally, εi,j models a residual noise term
which is Gaussian with diagonal covariance Σ. Assuming that
the data is centered (i.e., they are zero-mean), the model in
(1) can be formulated as

P (xi,j |hi,wi,j ,θ) = Nx (Fhi + Gwi,j ,Σ) , (2)
P (hi) = Nh (0, I) , (3)

P (wi,j) = Nw (0, I) , (4)

where the set of parameters θ = {F,G,Σ} is optimized
during training process via the EM algorithm [5].
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III. INITIALIZING PLDA

As aforementioned, F and G are the parameters in PLDA
which model the two distinct subspaces. Parameter F is
initialized utilizing PCA [17], [13]. Moreover, parameter G
is initialized using a random number generator. This approach
has several shortcomings.

• Firstly, PCA is an unsupervised component analysis
method. Therefore, when applied, the labels with which
the data are annotated are not taken into account. Never-
theless, subspace F models the different classes in which
the samples belong to. By applying PCA to initialize
subspace F essential information is lost, which, had been
taken into consideration, would have improved the final
inference results.

• Secondly, PCA may be utilized for only a limited number
of dimensions (components). The maximum number of
principal components that may be used for a matrix
AM×N is min{M,N}. In PLDA [17], [13], the max-
imum number of components that may be used for F is
equal to the number of identities that exist in the training
set. In general, there should not be any restriction on how
many dimensions to choose for the subspaces.

• Thirdly, subspace G is randomly initialized [17], [13].
Therefore, when the same experiment is repeated several
times with the same set of parameters, the final result
undulates around a mean value and hence some variance
is introduced.

In order to tackle the disadvantages discussed above, we
conceived and developed a novel algorithm which is utilized
for the initialization of the parameters of PLDA. In more detail,
our method is a deterministic variant of PLDA and carries
the following assumptions. Each datum is generated by three
distinct parts:

• a part that renders the identity of the person depicted in
an image,

• a part that renders the specific conditions under which
each image was taken (e.g., lighting variations) and thus
the one that models the uniqueness for each image,

• a part that represents some residual noise.

This can be formulated as

xi,j = Fhi + Gwi,j + ri,j , (5)

where xi,j is the centered (i.e., zero-mean) j-th datum corre-
sponding to the i-th identity, F is the subspace that renders
the different identities that exist in the training set, hi is the
vector that defines the identity for the particular datum, G is
the subspace that defines the uniqueness for each datum, wi,j

is the vector that renders the uniqueness for the particular
datum and ri,j denotes some residual noise.

A. Problem formulation

Without any loss of generality, suppose that exist a total of
J images per identity and a total of I identities. By stacking

all images in a column-wise manner, the model in (5) can then
be reformulated as

X = F
[
h11

T . . . hI1
T
]
+ GW + R, (6)

where

X =
[
x1,1 . . . x1,J . . . xI,1 . . . xI,J

]
, (7)

1T =
[
1 . . . 1

]︸ ︷︷ ︸
J times

, (8)

W =
[
w1,1 . . . w1,J . . . wI,1 . . . wI,J

]
, (9)

R =
[
r1,1 . . . r1,J . . . rI,1 . . . rI,J

]
. (10)

In order to render subspaces F and G as informative as
possible, we should minimize error R. To achieve that, we
need to solve

min
R

1

2
‖R‖2F

subject to X = F
[
h11

T . . . hI1
T
]
+ GW + R, (11)

FTF = I,

GTG = I,

FTG = 0,

where ‖X‖F
.
=
√

tr (XTX) is the Frobenius norm and tr (·)
denotes the trace of a square matrix. We introduce the or-
thonormality constraints in the minimization function in order
to ensure that the subspaces are not correlated and thus the
solution is identifiable. To solve (11), we utilize the Alternating
Direction Method of Multipliers (ADMM) algorithm [6], [4],
where an augmented Lagrangian is minimized. Let us denote
H

.
=
[
h11

T . . . hI1
T
]
. The augmented Lagrangian can

then be written as follows

L (θ) = min
θ

{
1

2
‖R‖2F + tr

[
ΛT (X− FH−GW −R)

]
+
µ

2
‖X− FH−GW −R‖2F

}
subject to FTF = I,GTG = I,FTG = 0, (12)

where θ = {R,F,G,W,H,Λ, µ}. By employing an
alternating optimization scheme, the iteration of the ADMM
is the following.

Update the primal variables:
For obtaining subspace F, we need to solve

Ft+1 = argmin
Ft

∥∥∥∥X−Rt +
Λt

µt
− FtHt −GtWt

∥∥∥∥2
F

,

subject to FTt Ft = I,FTt Gt = 0. (13)

In order to solve (13), we rely on the Q operator and Lemma
introduced next. The rank-r Singular Value Decomposition
(SVD) is defined for any matrix Y as Y = BΣWT .
Moreover, based on the SVD of Y, the Procrustes operator
is defined as Q [Y]

.
= BWT .
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Lemma 1: The constraint minimization problem

Ω∗ = argmin
Ω

‖N−ΩM−QS‖2F ,

subject to ΩTΩ = I,QTΩ = 0, (14)

has a closed form solution [3] of the form Ω =

Q
[(

I−QQT
)

NMT
]
. Therefore, the solution for (13) is

given by

Ft+1 = Q
[(

I−GtG
T
t

)(
X−Rt +

Λt

µt

)
HT
t

]
. (15)

For deriving subspace G, we need to solve

Gt+1 = argmin
Gt

∥∥∥∥X−Rt +
Λt

µt
−GtWt − Ft+1Ht

∥∥∥∥2
F

,

subject to GT
t Gt = I,GT

t Ft+1 = I. (16)

The solution is given by utilizing the operator Q and Lemma
1.

Gt+1 = Q
[(

I− Ft+1F
T
t+1

)(
X−Rt +

Λt

µt

)
WT

t

]
. (17)

For obtaining error R, we have

Rt+1 = argmin
Rt

L (θ)⇒

Rt+1 =
µt

1 + µt

(
X− Ft+1Ht −Gt+1Wt +

Λt

µt

)
. (18)

For W, the solution is given by solving

Wt+1 = argmin
W

∥∥∥∥X− Ft+1Ht −Rt+1 +
Λt

µt
−GtWt

∥∥∥∥2
F

,

(19)

which admits a closed form solution

Wt+1 = GT
t+1

(
X− Ft+1Ht −Rt+1 +

Λt

µt

)
. (20)

For H
.
=
[
h11

T . . . hI1
T
]
, we need to solve for each

individual hi,∀i ∈ {1, . . . , I}. The solution for each hi is
given by minimizing

hi,t+1 = argmin
hi,t

∥∥∥∥∥Xi −Gt+1Wi,t+1 −Ri,t+1 +
Λi,t

µt

− Ft+1hi,t1
T

∥∥∥∥∥
2

F

, (21)

where the subscript i denotes that we consider only the J
columns corresponding each time to the i-th subject. The
solution for (21) is

hi,t+1 =
1

J
FTt+1

(
Xi −Gt+1Wi,t+1 −Ri,t+1 +

Λi,t

µt

)
1.

(22)

Update the Lagrange multiplier:

Λt+1 = Λt + µt (X− Ft+1Ht+1 −Gt+1Wt+1 −Rt+1) .
(23)

+ + =

Fhi GWi,j X̃i,jRi,j

Xi,j

Fig. 1. Visualizing how the different components after the training procedure
of ADMM reconstruct the original image (Xi,j ). Term Fhi refers to the
component that produces the specific identity, regardless of the different
conditions under which the image was taken (e.g., lighting variations, etc.),
term GWi,j refers to the component that renders the uniqueness for the
specific image (i.e., captures the illumination setting, etc.), term Ri,j refers
to the residual noise. Term X̃i,j is the reconstructed image. The original
image is taken from Multi-PIE [7].

The ADMM algorithm for solving (11) is outlined in Algo-
rithm 1. In Fig. 1, a visualization of the solution derived by
the ADMM solver (Algorithm 1) is provided. As shown, the
obtained subspaces clearly model identity and illumination.

IV. EXPERIMENTS

Having described PLDA along with a novel algorithm to ini-
tialize the parameters in PLDA, in this section we demonstrate
the superiority of our method against the original PLDA model
via a set of experiments on the modified XM2VTS database,
provided by the authors of the original PLDA model [17],
[13].

Modified XM2VTS database

Face identification: For this set of experiments, we utilize
the modfied XM2VTS dataset provided by the authors of the
original PLDA model [17], [13]. In more detail, we employ
our algorithm to initialize the parameters in the PLDA model
(dubbed Init. + PLDA) and compare the results against the
original PLDA model. For Init. + PLDA, we apply Algorithm
1 on the training set to initialize subspaces F and G. As
mentioned in Section III, when the same experiment with the
same set of parameters is repeated several times, variance
is introduced in the inference results in PLDA. Therefore,
for every distinct set of parameters we exectued 10 trials.
Average identification rates per setting of parameters for Init.
+ PLDA compared to PLDA are presented in Figure 2.
Average identification rates along with corresponding standard
deviations per distinct set of parameters for PLDA and Init. +
PLDA are shown in Tables I and II, respectively. Regarding the
dimensionalities of the subspaces, for PLDA we used the same
number of dimensions for subspaces F and G, as stated in
[13], due to the fact that the authors report that the maximum
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Algorithm 1: ADMM solver for (11)

1 Input: X, dF , dG, where X is the set of the training data, dF is the dimensionality of the F subspace and dG is the
dimensionality of the G subspace.

2 Initializations: µ0 = 1.25
‖X‖ , {Λ0,W0,R0,H0} = 0, ρ = 1.25, µmax = 107, {F0,G0} =

random initializations so that both F0 and G0 are orthogonal and FT0 G0 = 0.
Output: FT ,GT ,WT ,RT ,HT .

3 while not converged or no termination criterion is met do
4 Update R:
5 Rt+1 = µt

1+µt

(
X− Ft

[
h1,t1

T . . . hI,t1
T
]
−GtWt +

Λt

µt

)
6 Update F:
7 Ft+1 = Q

[(
I−GtG

T
t

) (
X−Rt+1 +

Λt

µt

) [
h1,t1

T . . . hI,t1
T
]T ]

8 Update G:
9 Gt+1 = Q

[(
I− Ft+1F

T
t+1

) (
X−Rt+1 +

Λt

µt

)
WT

t

]
10 Update W:
11 Wt+1 = GT

t+1

(
X− Ft+1

[
h1,t1

T . . . hI,t1
T
]
−Rt+1 +

Λt

µt

)
12 for i = 1 : I do
13 Update hi:

14 hi,t+1 = 1
JFTt+1

(
Xi −Gt+1Wi,t+1 −Ri,t+1 +

Λi,t

µt

)
1

15 end
16 Update Λ:
17 Λt+1 = Λt + µt

(
X− Ft+1

[
h1,t+11

T . . . hI,t+11
T
]
−Gt+1Wt+1 −Rt+1

)
18 Update µ:
19 µt+1 = min (ρµt, µmax)
20 end

TABLE I
PLDA AVERAGE IDENTIFICATION RATE ± STANDARD DEVIATION OVER 10
TRIALS PER DISTINCT SET OF PARAMETERS dF , dG , WHICH DENOTE THE

DIMENSIONALITIES OF SUBSPACES F AND G, RESPECTIVELY.

dF dG PLDA
16 16 0.69± 0.03
32 32 0.81± 0.02
48 48 0.81± 0.02
64 64 0.83± 0.03
80 80 0.86± 0.02
96 96 0.86± 0.02
112 112 0.85± 0.01
128 128 0.87± 0.02
144 144 0.87± 0.01
160 160 0.87± 0.01

identification rates are attained when subspaces F and G have
the same dimensionality. For Init. + PLDA we conducted
experiments for varying dimensionalities for subspace G and
concluded that the condition reported in [13] (i.e., maximum
results are attained when both of the subspaces have the same
dimensionality) is no longer valid. In Table II we provide
the dimensionalities of subspace G for which the maximum
identification rate is attained for various dimensionalities of
subspace F.

TABLE II
INIT. + PLDA AVERAGE IDENTIFICATION RATE PER DISTINCT SET OF

PARAMETERS dF , dG , WHICH DENOTE THE DIMENSIONALITIES OF
SUBSPACES F AND G, RESPECTIVELY. SINCE BOTH F AND G ARE FIXED

AT THE INITIALIZATION FOR EVERY SET OF PARAMETERS, THE FINAL
IDENTIFICATION RATE WILL BE FIXED AS WELL, THUS NO STANDARD

DEVIATION WILL BE INTRODUCED.

dF dG Init. + PLDA
16 16 0.73
32 32 0.84
48 32 0.86
64 52 0.88
80 44 0.91
96 48 0.90
112 96 0.90
128 72 0.90
144 56 0.90
160 160 0.90

V. CONCLUSION

In this paper we introduced an algorithm to initialize the
parameters of PLDA in a robust and consistent way. We
demonstrate the superiority of our method against the original
PLDA model via a series of experiments on the modified
XM2VTS database, which is provided by the authors of the
original PLDA model.
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Fig. 2. Average identification rates of PLDA (dashed line) compared to the
ones of Init. + PLDA (straight line) over a wide range of dimensions for
subspace F. When subspaces F and G are initialized utilizing Algorithm 1,
final inference results are improved compared to the original PLDA model.

ACKNOWLEDGMENTS

Stylianos Moschoglou is funded by an EPSRC DTA stu-
dentship from Imperial College London. The work of Ste-
fanos Zafeiriou was partially funded by the EPSRC Project
EP/N007743/1 (FACER2VM).

REFERENCES

[1] C. Archambeau, N. Delannay, and M. Verleysen. Mixtures of ro-
bust probabilistic principal component analyzers. Neurocomputing,
71(7):1274–1282, 2008.

[2] F. R. Bach and M. I. Jordan. A probabilistic interpretation of canonical
correlation analysis. 2005.

[3] C. Bao, J.-F. Cai, and H. Ji. Fast sparsity-based orthogonal dictionary
learning for image restoration. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 3384–3391, 2013.

[4] D. P. Bertsekas. Constrained optimization and Lagrange multiplier
methods. Academic press, 2014.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the royal
statistical society. Series B (methodological), pages 1–38, 1977.

[6] D. Gabay and B. Mercier. A dual algorithm for the solution of nonlinear
variational problems via finite element approximation. Computers and
Mathematics with Applications, 2(1):17–40, 1976.

[7] R. Gross, I. Matthews, J. Cohn, T. Kanade, and S. Baker. Multi-pie.
Image and Vision Computing, 28(5):807–813, 2010.

[8] D. R. Hardoon, S. Szedmak, and J. Shawe-Taylor. Canonical correlation
analysis: An overview with application to learning methods. Neural
Computation, 16(12):2639–2664, 2004.

[9] S. Ioffe. Probabilistic linear discriminant analysis. In Proceedings of
the European Conference in Computer Vision (ECCV), pages 531–542.
Springer, 2006.

[10] I. Jolliffe. Principal Component Analysis. Wiley Online Library, 2002.
[11] A. Klami, S. Virtanen, and S. Kaski. Bayesian canonical correlation

analysis. The Journal of Machine Learning Research, 14(1):965–1003,
2013.

[12] N. Lawrence. Probabilistic non-linear principal component analysis
with gaussian process latent variable models. The Journal of Machine
Learning Research, 6:1783–1816, 2005.

[13] P. Li, Y. Fu, U. Mohammed, J. H. Elder, and S. J. Prince. Probabilistic
models for inference about identity. IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), 34(1):144–157, 2012.

[14] B. Moghaddam and A. Pentland. Probabilistic visual learning for object
representation. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), 19(7):696–710, 1997.

[15] M. A. Nicolaou, V. Pavlovic, and M. Pantic. Dynamic probabilistic
cca for analysis of affective behavior and fusion of continuous annota-
tions. IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI), 36(7):1299–1311, 2014.

[16] M. A. Nicolaou, S. Zafeiriou, and M. Pantic. A unified framework for
probabilistic component analysis. In Machine Learning and Knowledge
Discovery in Databases, pages 469–484. Springer, 2014.

[17] S. J. Prince and J. H. Elder. Probabilistic linear discriminant analysis
for inferences about identity. In Proceedings of the IEEE International
Conference on Computer Vision (ICCV), pages 1–8. IEEE, 2007.

[18] S. Roweis. Em algorithms for pca and spca. Advances in Neural
Information Processing Systems, pages 626–632, 1998.

[19] D. L. Swets and J. J. Weng. Using discriminant eigenfeatures for
image retrieval. IEEE Transactions on Pattern Analysis and Machine
Intelligence (PAMI), (8):831–836, 1996.

[20] M. E. Tipping and C. M. Bishop. Mixtures of probabilistic principal
component analyzers. Neural Computation, 11(2):443–482, 1999.

[21] M. E. Tipping and C. M. Bishop. Probabilistic principal component
analysis. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 61(3):611–622, 1999.

[22] M. E. Wibowo, D. Tjondronegoro, L. Zhang, and I. Himawan. Het-
eroscedastic probabilistic linear discriminant analysis for manifold learn-
ing in video-based face recognition. In Proceedings of the IEEE
Conference Applications of Computer Vision (Workshop), pages 46–52.
IEEE, 2013.

[23] S. Yu, K. Yu, V. Tresp, H.-P. Kriegel, and M. Wu. Supervised
probabilistic principal component analysis. In Proceedings of the ACM
International Conference on Knowledge Discovery and Data Mining,
pages 464–473. ACM, 2006.

[24] S. Zafeiriou, G. Tzimiropoulos, M. Petrou, and T. Stathaki. Regularized
kernel discriminant analysis with a robust kernel for face recognition
and verification. IEEE Transactions on Neural Networks and Learning
Systems, 23(3):526–534, 2012.

[25] Y. Zhang and D.-Y. Yeung. Heteroscedastic probabilistic linear discrimi-
nant analysis with semi-supervised extension. In Machine Learning and
Knowledge Discovery in Databases, pages 602–616. Springer, 2009.

2017 25th European Signal Processing Conference (EUSIPCO)

ISBN 978-0-9928626-7-1 © EURASIP 2017 1219


