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Abstract. Sensing health-related behaviours in an unobtrusive, ubiqui-
tous and cost-effective manner carries significant benefits to healthcare
and patient management. In this paper, we focus on detecting typing
behaviour that is characteristic of patients suffering from Parkinson’s
disease. We consider typing data obtained from subjects with and with-
out Parkinson’s, and we present a framework based on topic models that
determines the differing behaviours between these two groups based on
the key hold time. By learning a topic model on each group separately
and measuring the dissimilarity between topic distributions, we are able
to identify particular topics that emerge in Parkinson’s patients and
have low probability for the control group, demonstrating a clear shift in
terms of key stroke duration. Our results further support the utilisation
of key stroke logs for the early onset detection of Parkinson’s disease,
while the method presented is straightforwardly generalisable to similar
applications.
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1 Introduction

Early diagnosis of progressive neurodegenerative disease plays a crucial role in
maximising the impact of medication and preventing (as far as possible) further
progression of the disease. In particular, Parkinson’s disease is considered a slow
progressing neurodegenerative disease. While diagnosis is usually performed by
considering the patient’s symptoms as well as a physical examination, a main
characteristic of Parkinson’s disease lies in the manifestation of motor symptoms
during the early stage of the disease. Since the cost of constantly monitoring
motor signs can be prohibitive for healthcare systems, a possible alternative is
to study the daily behaviours of patients. Typing behaviour can be indicative of
degenerative motor signs during the early stages of the disease. This constitutes
an unobtrusive, ubiquitous, transparent and inexpensive approach, since data
can be collected while subjects perform their daily routines.

Motivated by the above, in this paper we study the typing behaviour of
Parkinson’s patients in an unsupervised setting, and contrast results to a control
group. To this end, we consider topic models, and in particular Latent Dirichlet
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Allocation (LDA) [2], a statistical generative model that has been successfully
employed in human behaviour mining problems in various contexts [4, 7–9, 11].
LDA discovers semantically coherent latent topics in a collection of data (called
a corpus), with low-level features (or words) being generated from a distribution
of topics. Considering a recently released dataset of typing data [5], we present
an approach where LDA models are trained on each of the Parkinson’s and
control groups. We consider a typing session to be analogous to a document,
with the key hold durations corresponding to words. We show that discovered
topics are heavily shifted towards long key hold times in the Parkinson’s patient
group, and that discovering topics containing long key press durations is likely
to be an indicator of the disease. While key hold times are the dominant feature
considered in this paper, the methodology proposed can easily extend to words
encoding multiple features. We further validate our findings by computing the
similarity between topics across groups with the Bhattacharyya coefficient. The
results of this analysis indicate which topics, and therefore which words and
co-occurrence of words, have the highest probability of being associated with
Parkinson’s disease.

2 Related work

Machine learning techniques have previously been used to monitor and automat-
ically detect the severity of Parkinson’s symptoms considering speech data [15,
6]. Home monitoring systems for Parkinson’s patients have also been developed
using accelerometer data [3] as well as gyroscope data sensing upper body ac-
tivities [13]. Wearable sensor data has been used to estimate the severity of
Parkinson’s symptoms, such as tremor, bradykinesia and dyskinesia from ac-
celerometer data features [12]. While most works in the wearable sensing com-
munity consider Parkinson’s monitoring using upper body sensors, shoe worn
sensors have also been used to assess locomotion for early diagnosis [10]. Bachlin
et al. [1] use wearable technology to study gait, particularly freezing of gait by
using accelerometer sensors attached to the belt and lower body.

Giancardo et al. [12] recently proposed to use typing data for the detection
of Parkinson’s disease. This is the first study to consider typing data and it
has the major advantage of “transparency” and ubiquitousness. Giancardo et
al. propose a neuroQWERTY index (nQi) based on key hold times in order to
classify Parkinson’s vs. control patients. In this work, we consider a very different
approach to the problem, one based on unsupervised learning, and the goal is to
discover the precise patterns which may be discriminative of Parkinson’s disease.
Our proposed approach is generalisable to new features that can be obtained by
typing and to other similar problems.

3 Methodology

All the analysis performed in this paper uses the datasets mit-cs1pd and mit-
cs2pd associated with Ref. [5]. Subjects in Madrid, Spain performed typing tests



by transcribing a folk tale on a word processor for 15 minutes with key stroke
data being recorded. Some subjects completed two such typing tests. For our
purposes, the key strokes from each individual typing test form a document. In
total there are 116 documents, of which DP = 60 correspond to Parkinson’s
sufferers and DC = 56 to control subjects. These two collections of documents
correspond to our groups of Parkinson’s and control. Using the language of
LDA [2], each collection of documents forms a corpus.

The documents are preprocessed to keep only key presses corresponding to
alphabetic and the space, comma, period and return keys. Thus any extraneous
key presses such as shift, accents and backspaces are removed. To filter out
erroneously recorded data (e.g., arising from simultaneous or overlapping key
strokes) we keep only key strokes whose duration is between 0 and 0.5 seconds,
and whose travel time to the following key is between 0.02 and 20 seconds.
Following this data cleaning procedure, the average number of key strokes in a
document is 1240 (standard deviation 470).

We next convert each document into a collection of words that will be anal-
ysed by the topic model. Again, we emphasise that a ‘word’ in this context does
not describe the actual Spanish word typed, but instead relates to the duration
for which each key is pressed. Combining the control and Parkinson’s corpora,
we find a set of boundaries that will allocate each key press duration into one of
50 bins. These boundaries are calculated so that there is a roughly equal number
of key strokes in each bin across the two corpora. Owing to the distribution of
key press durations, the bin widths are not uniform. For example, bin number 5
corresponds to a key press between 0.0615 and 0.0645 seconds, whilst bin number
45 corresponds to a key press between 0.1697 and 0.1771 seconds. The word that
labels each key stroke is given by the number of the key press duration bin to
which it is allocated. We therefore have a vocabulary V = {1, 2, . . . , 50}, where
the word 1 corresponds to the shortest time bin and the word 50 corresponds
to the longest time bin. A document d then consists of a sequence of Nd words
drawn from V.

We train a separate LDA model on each of the two corpora independently.
Each model is trained on all documents in the corpus in order to infer the un-
derlying distributions. In particular, the inference identifies latent topics that
describe documents, where each document can be thought of as a random mix-
ture over topics; for document d, the probability distribution Θd(t) gives the
probability of drawing a word from topic t. Each topic will itself consist of a
distribution over words; for topic t, the probability distribution Φt(w) gives the
probability of drawing word w ∈ V from the topic t. Note that since we are apply-
ing LDA to the two groups independently, we will discover different distributions
for the control and Parkinson’s corpora, which we label with the appropriate su-
perscript. We instruct LDA to discover T = 50 topics for each corpus using
α = 50/T = 1 and β = 0.1 for the hyperparameters that describe the underlying
prior Dirichlet distributions for ΘC,P and ΦC,P respectively. These values are
chosen heuristically and follow the guidance given in Ref. [14]. The procedure of
building LDA models from the datasets is illustrated in Figure 1.



Fig. 1. An outline of the procedure: typing data is preprocessed to form a control
corpus and a Parkinson’s corpus. Each corpus consists of a set of documents (typing
sessions) formed from a sequence of words (key stroke durations). LDA then infers 50
latent topics for each corpus.

4 Results

4.1 Topic discovery on Parkinson’s and control groups

The LDA models trained on the control and Parkinson’s groups are visualized
in Figures 2 and 3. We emphasise that the words are common between the
two datasets (i.e., w = 23, for example, will always refer to key presses of the
same duration), whilst the meaning of the topics is different for the control
and Parkinson’s datasets (i.e., the control topic tC = 23, for example, does not
contain the same words as the Parkinson’s topic tP = 23). Figure 2 shows the
composition of documents as a mixture of topics, and Figure 3 shows the word
content of each of the topics.

Note that, within each corpus, topics are ordered according to their proba-
bilities. Thus tC,P = 1 corresponds to the topic that is most likely to be drawn
for generating a document, tC,P = 2 is the next most likely, and so on (the
least likely topic is tC,P = 50). The ordering of documents has no particular
significance.



Fig. 2. The distribution of topics discovered in each document, ΘC
dC (tC) and ΘP

dP (tP ).
Results for the control corpus are shown on the left, and results for the Parkinson’s
corpus are shown on the right. The same colour scale has been used for both plots, and
each row sums to 1. The points at (tC , dC) = (7, 48) and (1, 54) have been clipped to
the limit of the colour scale.

Figure 2 shows that each document is indeed generated by a probabilistic
mixture of a range of topics. As expected from the labelling, the most probable
topics are towards the left of each plot. Although there are some particularly
high density data points for the control corpus (indicating that a document is
composed of just a few topics), there is no clear distinction between the control
and Parkinson’s corpora in terms of the distribution of topics over documents.
In other words, both a control and Parkinson’s typing session can be modelled
using a similar distribution of topics. In order to discriminate between control
and Parkinson’s typing data, we turn to the content of these latent topics.

Figure 3 demonstrates that the words discovered in each topic are notice-
ably different for the control and Parkinson’s corpora. There is a clear tendency
towards Parkinson’s topics containing words with higher labels, which corre-
spond to longer key press durations. In particular, we might highlight tP = 4, 6,
which contain high density points around long key press durations, as particu-
larly indicative. These topics are relatively likely to be drawn when generating a
Parkinson’s document, and no similar topics exist for the control corpus. They
could thus be regarded as potential signatures for Parkinson’s disease.

It is also worth noting that there appears to be some quite similar topics
for the control and Parkinson’s corpora, although the topic label (and hence
relative probability) may be different, e.g., compare tC = 1 with tP = 8. In both
corpora, a topic tends to be composed of words clustered around a certain label.
This indicates that for both the control and Parkinson’s subjects, similar length
key press durations tend to co-occur in a given document. From our results the
clearest signature of Parkinson’s is the content of topics discovered by LDA;



Fig. 3. The distribution of words discovered in each topic, ΦC
tC (w) and ΦP

tP (w). Results
for the control corpus are shown on the left, and results for the Parkinson’s corpus are
shown on the right. The same colour scale has been used for both plots, and each row
sums to 1. The point at (w, tP ) = (50, 7) has been clipped to the limit of the colour
scale.

in particular, topics which show long key press durations seem to be strongly
indicative of Parkinson’s disease.

4.2 Topic similarity analysis to discover Parkinson’s behaviour

We now systematise the detection of signature Parkinson’s topics by computing
the similarity between topics discovered for the control group and those for the
Parkinson’s group. In particular, for each control topic tC and Parkinson’s topic
tP we compute the Bhattacharyya coefficient

ρ(tC , tP ) =
∑
w∈V

√
ΦC
tC

(w)ΦP
tP

(w), (1)

where the summation runs over all words in the vocabulary. This gives a mea-
sure of the overlap between the distribution ΦC

tC and ΦC
tC . As a measure of the

“uniqueness” of a given Parkinson’s topic tP , we then compute the average Bhat-
tacharyya coefficient,

ρ̄(tP ) =
1

T

T∑
tC=1

ρ(tC , tP ). (2)

A small value of ρ̄(tP ) indicates that there is on average little overlap between
the content of topic tP and the control topics, and hence that tP is a signature
of Parkinson’s disease.

Figure 4 shows the Bhattacharyya coefficient for each pairing (tC , tP ) and the
average Bhattacharyya coefficient ρ̄(tP ). Identifying the Parkinson’s topics with



Fig. 4. Identification of signature Parkinson’s topics. Left: the Bhattacharyya coeffi-
cient ρ(tC , tP ) gives a measure of the similarity between a control topic and a Parkin-
son’s topic. Right: the average Bhattacharyya coefficient ρ̄(tP ) indicates which Parkin-
son’s topics are on average the most dissimilar from the control topics. We have high-
lighted the five topics with the lowest ρ̄(tP ); these topics are signatures for Parkinson’s
disease.

the smallest ρ̄(tP ) confirms our above interpretation of tP = 4, 6 as signature
topics for Parkinson’s disease and also identifies tP = 7, 11, 30. The content of
the topics is shown in Figure 5, which indicates that they are dominated by
words that correspond to long key press durations.

tP = 4

w ΦP
tP (w)

49 0.483

50 0.369

48 0.108

47 0.033

44 0.003

tP = 6

w ΦP
tP (w)

48 0.390

47 0.243

49 0.230

44 0.115

40 0.017

tP = 7

w ΦP
tP (w)

50 0.964

44 0.013

46 0.008

42 0.007

28 0.003

tP = 11

w ΦP
tP (w)

49 0.365

48 0.294

47 0.201

46 0.126

39 0.008

tP = 30

w ΦP
tP (w)

47 0.358

48 0.277

49 0.187

44 0.065

45 0.062

Fig. 5. The content of the topics discovered that signify Parkinson’s disease. For each
topic the most likely 5 words are shown, together with the corresponding probabilities.

4.3 Discussion

In preparing this paper we also considered a number of features which are not
discussed here, including the travel time between key strokes as well as the hand



(left vs. right). We found the key press duration time to reveal the most inter-
esting differences between the two groups. However, considering more features
related to typing activity such as key pressed, keyboard row, or even smartphone
key and holding information, is an avenue for further work.

These initial results are promising and the approach can be generalised to
other datasets and applications. One possible limitation with the approach is
that the topics found across the two corpora are different, although the words
are consistent. Our initial experiments learned a topic model on both corpora
combined, but the topics discovered showed a mixture of behaviours and the
results did not address the task well. In future work, extensions to the graphical
model of LDA to learn consistent topics across two groups without combining
the data or learning them completely separately will be considered.

5 Conclusions

In this paper, we aimed to find the differences in typing behaviour between people
who have Parkinson’s disease and those who do not. Considering a dataset of 116
typing sessions each of 15 minutes duration, we formulated an approach based on
topic models to identify the patterns that are much more probable in the group
with Parkinson’s disease than in the control group. These patterns corresponded
to longer key hold times. The novelty of this work stems from the ability to dis-
play the word distributions from topics which correspond to the actual behaviour
of interest. This is particularly useful when considering more complex typing fea-
tures, as well as multi-modal typing features (e.g., hand, key and hold time).

Several future directions arise based on this work. The most elementary of
these is to consider more features and fuse them appropriately in order to ob-
tain more intricate behaviour differences between the two groups. Experiments
on other datasets to validate the generalisation of the results would also be
important. We also plan to utilise generative models that learn keystroke dy-
namics and further evaluate the discovered topics in order to detect signatures
of Parkinson’s disease in key stroke logs.
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