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Abstract. Swarm intelligence mimics the behaviours of social insects
like bees, wasps and ants to offer powerful problem solving metaheuristic
which lies in a network of interactions amongst the agents of a multi-
agent system as well as with their environment. One of the computer al-
gorithms inspired by swarm intelligence is the stochastic diffusion search
(SDS). SDS uses some of the processes and techniques found in swarm
to solve search and optimisation problems. In this paper, a hybrid ap-
proach is proposed to deal with real-world imbalanced data. The pro-
posed model involves oversampling the minority class, undersampling
the majority class as well as optimising the parameters of the classifier,
Support Vector Machine (SVM). The proposed model uses Synthetic
Minority Over-sampling Technique (SMOTE) to perform the oversam-
pling and the agents of a swarm intelligence technique, SDS, to per-
form an ‘informed’ undersampling on the majority classes. The use of
this swarm intelligence technique in conducting the undersampling tasks
is investigated and its impact on improving the classification results is
demonstrated. In addition to comparing the agents-led undersampling
with random undersampling, the results are contrasted against other
best known techniques on nine real-world datasets. Additionally, further
experiments are designed to explore the behaviour of the SDS agents
during the undersampling process.

Keywords: Swarm intelligence, Agents, Class imbalance, Stochastic Dif-
fusion Search, SVM

1 Introduction

Class imbalance – a major problem in machine learning – occurs when the num-
ber of instances in the majority class is significantly higher than the number of
instances in the minority class. Class imbalance is present in most real-world
data in medicine, business and many other fields. For instance, in direct mar-
keting, businesses are interested in identifying potential buyers which are only a
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small proportion of the target audience, and in charities where potential givers
are a very small segments of the population. The issue has been receiving some
attention in the literature (e.g. [13, 19, 24, 26, 11]) mostly due to the fact that
data mining models tend to be influenced with the skewed data distribution,
therefore the minority class is usually misclassified leading to bad performance.

In this work, SDS is applied to the problem of class imbalance in machine
learning. Primarily, SDS, in this context, is tasked with the undersampling of
the majority class and SMOTE is tasked with the oversampling of the minority
class. Moreover, to solve the problem at the algorithmic level SVM values; C
and gamma are optimised using a grid search and 5 cross validations to train
and test the classifier. key research questions raised in the paper are:

– What is the impact of the duplication at dataset’s feature-level (the role of
duplications on each individual feature) on the undersampling process?

– How could SDS provide a way to address the feature-level duplications?
– Whether the proposed model in the paper, which uses SDS for undersam-

pling, provides any outperformance compared to random undersampling as
well as other techniques?

– Is it possible to make a recommendation on when to use the method proposed
in this paper? In other words, which types of datasets are more responsive
to the proposed technique?

2 Related Work

In a number of real-world classification applications, like software prediction, oil
spill detection from satellite images, detection of fraudulent online credit card,
diagnosis of rare diseases, training data might be imbalance [12, 31, 25], where
the number of data (instances) in some classes are extremely smaller than other
classes. This is often due to the limitations of a data collection process; e.g. high
cost or privacy problems. This can be seen in biomedical data, for example, that
is derived from a rare disease and an abnormal condition, or some data that
often obtained via expensive experiments.

The key issue regarding an imbalanced learning problem is its dataset re-
stricts the performance of most standard learning algorithms, and such algo-
rithms often assume balanced class distributions. Such problems lead to biased
standard machine learning algorithms, which are biased towards the majority
class, since these types of algorithms attempt to maximize overall accuracy. Con-
versely, in the event of complex imbalanced datasets, these algorithms will not
reveal the distributive characteristics of the data, thus leading to unfavourable
accuracies within the data classes. In the medical field, this issue is particularly
crucial, since learning from these imbalanced data can help us discover useful
knowledge to make important decisions while it can also be extremely costly to
misclassify these data.

Several solutions have been suggested in the literature to address this issue,
amongst which are data-level techniques, algorithmic-level techniques and a com-
bination of both. At the data level, solution is achieved by applying sampling on



the dataset until it is balanced. There are various existing ways of sampling which
include oversampling the minority class, undersampling the majority class and a
combination of both. However, this issue, faces the challenges of the loss of im-
portant information and over fitting to balance the data. Despite these challenges
researches are still implementing machine learning pre-processing techniques to
overcome this issue; one approach is to generate new synthetic instances from
the minority class. The approach, Synthetic Minority Oversampling Technique
(SMOTE), takes a subset of the minority class samples (two or more) and creates
a synthetic example using k -Nearest Neighbour algorithm (k -NN) [11].

At the algorithmic level, valuable progress has been made in finding better
ways to overcome the challenges of sampling by investigating possible algorithmic
solutions. When a machine learning algorithm is trained on imbalanced datasets,
it assumes that the misclassification costs are the same, which is not true in all
cases; a stark example would be in medical diagnosis and tumour detection
where the cost of misclassifying cancerous cells could potentially lead to risking
the patients’ heath. Solutions can be applied by adjusting the cost parameter
to improve the model’s performance on imbalanced datasets. This approach is
shown to perform well when dealing with imbalanced dataset [29].

Numerous machine learning algorithms have performed well on imbalanced
datasets. These include adjusted decision tree [4], Support Vector Machines
(SVMs) and genetic programming [15]. SVMs are forms of binary classification
algorithms and are supervised learning methods which analyse data and discover
patterns; they can be used for classification and regression in data mining. They
are widely used cost sensitive machine learning algorithms as they have some
distinctive advantages such as performance speed [35, 28]. Various researchers
have combined data level solutions with a cost sensitive SVM. One way is to
adjust the classification cost of negative and positive instances and combine this
with a data level balancing techniques to improve the overall performance [5].
In another method applied by Akbani, Kwek and Japkowicz [1], SMOTE and
Different Error Cost (DEC) are used in SVM to overcome the class imbalance
problem.

In summary, there is no clear answer as to what is the best method to use
when dealing with the challenging imbalanced datasets. A study by Weiss, Mc-
Carthy and Zabar [32] compares cost-sensitive learning and data level solutions
in handling the issue of class imbalance; the authors highlight that the choice
of method is dependant on the data in use; for example, when working on a
datasets with 10, 000 instances, cost-sensitive learning performed well when com-
pared with sampling. Another study by Tang and Chawla [28] to compare four
variations of SVMs, shows that the application of granular SVMs-reptitive un-
dersampling algorithm (GSVM-RU) outperformed the other variations of SVMs
in aspects like effectiveness and efficiency.

2.1 Swarm intelligence in data mining

Finding efficient solutions to search and optimisation problems has inspired many
researchers to utilise nature informed algorithms, where the interactions of sim-



ple agents could lead to promising solutions to challenging problems [7]. Swarm
intelligence meta-heuristic models have been gaining increasing level of interest
for solving common optimisation problems [27]. These technique often mimic
the behaviours of social insects like bees, wasps and ants to offer powerful tools
to solve problems. The emergence of collective intelligence, which is the core
of such techniques, lies in a network of interactions among social insects and
their environment; this process is described as a self-organised and decentralised
system of collective behaviour [6].

When applied to data mining, swarm intelligence techniques are applicable
to two broad areas: the first consists of a search technique in which individuals
members of of the swarm move through the solution space in search of solution to
a data mining task; the second area is a data organising approach which occurs by
swarms moving data away from low dimensional feature space so they can achieve
a clustering solution of the data. These two areas are, to some extent, explored
through a few swarm intelligence algorithms, including ant colony optimisation
algorithms which was utilised to evaluate solutions to single and multi-objective
data for fitness functions [22].

One of the established swarm intelligence techniques which has been applied
to various areas of optimisation, medical diagnosis, data clustering, and many
more, is Stochastic Diffusion Search (SDS) [8]. Unlike many other nature inspired
algorithms, such as ant colony optimisation that modifies physical properties of
a simulated environment, SDS, which has a strong mathematical framework,
uses the direct communication between agents inspired by the tandem calling
mechanism found on one species of ants called Leptothorax Acervorum.

2.2 Stochastic diffusion search

Stochastic diffusion search (SDS) is a population based algorithm that imple-
ments direct communication patterns to evaluate the search and optimisation
hypothesis. SDS is originally attributed to Bishop in 1989 [9], as a population
based matching algorithm that uses direct communication patterns such as co-
operative transport found among social insects to perform evaluation of search
space.

In SDS, the agents population have ‘hypotheses’ about the possible solu-
tions; these hypothesis are partially evaluated in order to provide feedback that
ensure the agents convergence on promising solutions. Using SDS, agents com-
munication and the ‘partial’ evaluation of hypotheses play the critical role in
the performance of the agents and the emergence of “intelligence” [9]. SDS as
shown in Algorithm 1 comprises of three key phases which are described below:

Initialisation phase

The initialisation phase is where each agent randomly selects a hypothesis (i.e.
an element’s index or in case of a dataset, the instance number) from the search
space. These ‘pointers’ are later used to lead the search process of the SDS
population.



Test phase

After the initialisation phase, where each agent is assigned to a random hypoth-
esis in the search space, in the test phase, each agent’s hypothesis is evaluated
individually based on the objective function; if the hypothesis evaluation is suc-
cessful, the agent is set to active, otherwise inactive. Therefore, at the end of the
test phase, each agent adopts either of the two possible boolean outcomes.

Diffusion phase

During the diffusion phase, information about the hypotheses are exchanged
amongst agents. In this work, passive recruitment strategy is used where each
inactive agent selects another agent randomly; if the randomly selected agent is
active, the hypothesis of the active agent is diffused to the inactive agent; oth-
erwise, the inactive agent randomly selects a hypothesis from the search space.

Existing studies have tested the efficacy of different SDS algorithms and their
fitness to solve search problems. For instance, the performance of different types
of SDS algorithms and RANSAC were compared for a hyperplane estimation
task, where SDS is shown to have similar performance as RANSAC but with
better potential for turning into particular search problems for outcomes [33].
SDS has also been placed in context with other biological and traditional search
algorithms in numerous studies. In most search cases, SDS have been found to
outperform other algorithms especially for partial search functions.

In principle SDS is applicable to changing objective functions which makes
it suitable for dynamic problems as well as the static ones. Given this feature,
SDS has been applied to applications like eye tracking in facial images by us-
ing a combination of a Stochastic Search network and an n-tuple network [16],
site decision for transmission equipment for wireless networks [21] and mouth
locating in human faces images [17].

Algorithm 1: SDS Algorithm

Initialising agents

While (stopping condition is not met)

Test hypotheses

Diffusion hypotheses

End

In this paper more work has been carried out to make SDS more applicable
to solve the problem of class imbalance in machine learning in a reliable yet
computationally effective way.



3 Experiment

Some previous work (e.g. [10]) have shown that a combination of data level and
algorithmic level solutions can improve the model performance on imbalanced
datasets . In the experiments conducted for this work, data level processes are
used and SDS is set to undersample the majority classes. Additionally, SMOTE
algorithm is used to oversample the minority classes. At the algorithmic level,
the model uses SVM algorithm, where parameters like C (misclassification cost)
and gamma for the radial kernel are optimised using a grid search, which is a
simple search through a range of parameters. The range for C has been defined
as [2−5,215] and the range of gamma as [2−15,23] [20]. The search is performed
using 5 cross validation and multi-threading to run multiple process at a time.
The hybrid approach is then contrasted against random undersampling (along
with SVM optimisation).

To evaluate the proposed model, nine imbalanced datasets are used in this
work. The datasets are available from the University of California, Irvine (UCI)
Machine Learning Repository, plus the Oil Spills dataset [23]. The datasets, all
collected from real-world cases, vary greatly in their class distributions, sizes and
features characteristics (continuous and discrete features). The full list of dataset
used are shown in Table 1. In the experiments reported here, for the Abalone
dataset, the authors applied the algorithm on the classes ‘9’ versus ‘18’; for the
Yeast dataset, the model is applied on the classes ‘CYT’ versus ‘POX’; and for
the Vehicle dataset, the class ‘Van’ vs the others is used, in order to have a
highly imbalanced dataset. Additionally, all datasets values are normalised, and
missing values are removed.

Balancing the datasets

The first task is the application of SDS to undersample the majority class where
the aim is to reduce the size of majority class (SDS’s search space). The proposed
model uses SDS to undersample the majority class to around fifty percent; in
cases where the minority class instances need to be oversampled (to reach a
comparable size with undersampled majority class) SMOTE is applied, with
the following configurations: class is set to zero to detect the minority class
automatically; nearest neighbours is set to 5 as this will create synthetic instances
from the five nearest neighbours; the percentage of instances to create depends
on the majority class size; and the number of seeds used for the sampling is set
to 0.

Applying SDS to undersample the majority class instances

In this experiment, SDS is implemented to perform the undersampling for the
majority class. The number of SDS agents are empirical set to be half of the
search spaces (half the number of instances); quarter of the SDS population size
is set for the number of iterations to undersample the majority class. Initially
a model (an instance from the majority class) is randomly selected from the



Table 1: Summary of datasets used in this experiment
Dataset No. of instances Missing Values Minority Class Majority Class Distribution Continuous Features Discrete Features SMOTE

Oil Spills 937 No 41 896 0.04:0.96 49 0 Yes
Yeast 483 No 20 463 0.04:0.96 8 0 Yes
Abalone 731 No 42 689 0.06:0.94 7 1 Yes
Vehicle 846 No 199 647 0.23:0.77 18 0 Yes
Breast Cancer 699 Yes 241 458 0.34:0.66 9 0 No
Bank Marketing 4119 No 451 3668 0.11:0.89 10 10 Yes
Thoracic Surgery 470 No 70 400 0.15:0.85 3 13 Yes
Ionosphere 351 No 126 225 0.35:0.65 34 0 No
Hepatitis 155 Yes 32 132 0.21:0.79 6 13 Yes

search space (the entire majority class instances) and the agents are set to find
the closest match (an instance) from the remaining items of the search space.
Once a match or the most similar item is found (further details as to how this
is carried out are provided later), it is removed from the majority class with
the aim of removing redundant data. Given this process aims at undersampling
the majority class without removing useful information, removing the closest
item (instance) to a randomly selected model prevents the deletion of useful
information from the search space.

The initialisation, test and diffusion phases of SDS are expanded with more
details to shed more light as to how SDS is adapted for the purpose of un-
dersampling. In the initialisation phase each agent is assigned to a hypothesis
from the search space (i.e. a random instance number from the majority class).
Subsequently, in the test phase, a randomly selected micro-feature (one of the
attributes of the instance) is compared against the corresponding micro-feature
of the model (i.e. the corresponding attribute of the model); if the randomly
selected micro-feature of the hypothesis is within the threshold of the model’s
micro-feature, the agent is set to active, otherwise inactive (threshold vector cal-
culation is described in Section 3.1). This process is repeated for all the agents,
after which all agents are either active or inactive. Once the status of all the
agents are determined in the test phase, the next phase starts. In the diffusion
phase, each inactive agent randomly picks another agent; if the randomly se-
lected agent is active, its hypothesis (i.e. instance number) is shared with the
inactive agent, otherwise the selecting agent picks a random hypothesis (a ran-
dom instance number) from the search space.

The cycle of test-diffusion phases are repeated equal to the number of it-
erations allowed. Then the instance which has attracted the largest number of
agents is labelled as the ‘closest match’ and thus removed from the search space.
The model is then transferred to another list ‘models list’. In the next step, an-
other model is randomly chosen from the remaining instances, its closest match
is found and removed from the search space and the new model is then added
to the ‘models list’. Once the sum of the size of the models list and the remain-
ing search space reaches the number of interest (i.e. when the majority class is
downsized), the undersampling process is terminated.



3.1 Feature Dependent Threshold Vector

There are two types of features or attributes in the datasets (i.e. continuous and
discrete). Depending on their types, feature’s threshold is calculated accordingly
and separately (for each feature). For continuous features, the thresholds are
found by calculating the median values (excluding the zeros) of the difference
between the values of the features.

Following the same analogy, for the discrete features, the threshold is calcu-
lated using the following formula:

τi =
1

n− 1
(1)

where τi is the threshold of feature i, and n is the number of discrete values.
Therefore, τ returns the value of the ‘gap’ between each neighbouring discrete
value.

Using the method described for calculating the threshold vector, τ , the al-
gorithm can perform an evaluation as to whether any two selected values from
the same feature can be considered ‘adjacent’ values.

Therefore, using τ during the test phase for each agent, the proximity of the
instances can be partially evaluated (though each individual feature comparison).
SDS has shown in many other applications, that after several iterations, it is
capable of finding the closest match, which can then be removed as part of the
undersampling process. This process guarantees that while the most similar item
is removed from the search space, the model, which represents the deleted item
is kept and used later during the classification process. This process is repeated
until the dataset is completely undersampled to the desired size.

4 Results

This section summarises the result of applying SDS (i.e. SDS-SVM) to under-
sample the majority classes of all the datasets used. In order to fairly evaluate
the performance of the proposed model, various performance measurements have
been used (i.e. G-mean, F-measure, AUC, accuracy, sensitivity and specificity).

The summary of the results are shown in Table 2 where the results of SVM
classifying after random undersampling (RND-SVM) and SDS undersampling
(SDS-SVM) are reported and contrasted against other methods. Table 1 shows
in which of the datasets SMOTE is used to oversample the minority class as
with RND-SVM and SDS-SVM.

The results in Table 2 shows that in most cases SDS-SVM is outperforming
RND-SVM. In order to investigate the reason behind this different of perfor-
mance, the redundancy at instance and feature levels will be discussed in the
next section.

Considering the existing literature, there have been other relevant experi-
ments on the same datasets (see Table 2); for example, Zhang and Li [34] im-
plemented a positive biased nearest neighbour algorithm (PNN) on real-world



datasets including the Oil Spills and the Vehicle datasets. The proposed model
gave the best results when compared against K-nearest neighbour algorithm,
other sampling method including SMOTE as well as the general method for
making a classifier cost sensitive known as MetaCost. The model has been eval-
uated using AUC and PNN gave the best results with AUC equal to 0.847 for the
Oil Spills dataset and 0.983 for the Vehicle dataset. In both instances SDS-SVM
outperforms PNN.

Guo and Viktor [18] proposed a new model that combines boosting, data gen-
eration and an ensemble based learning algorithm (DataBoost-IM). The model
was evaluated using F-measure, G-mean and Accuracy using seventeen imbal-
anced datasets including: Ionosphere, Hepatitis, Abalone, Yeast, Oil spills and
Breast Cancer datasets. For each datasets the model was compared with C4.5,
AdaBoostM1, DataBoost, CSB2, AdaCost [30] and SMOTEBoost [14]. The pro-
posed model scored high on highly imbalanced datasets in terms of the F-measure
and is comparable (in some instances higher) with other models when it comes
to G-mean and Accuracy. The authors have also found that the DataBoost-IM is
not biased toward one class while giving a high overall accuracy for both classes.
This algorithm has been outperformed by the model proposed in this paper.

In another research, Chawla and Tang [28] evaluated four different variations
of SVM on seven datasets including; Oil spills, Abalone and Yeast. The authors
found that GSVM-RU is the best and it outperforms other models in term of
both effectiveness and efficiency.

The next section aims at exploring the behaviour of the algorithm proposed
for undersampling in this paper. The aim is to provide some insight as to where
it would be recommended to use SDS-SVM.

5 Discussion

5.1 Analysing instance and feature levels redundancy

It is intuitive that having a dataset with a high level of duplication would mean
that picking a randomly selected instance and removing it as part of the un-
dersampling process is less likely to cause the removal of important information.
This hypothesis is clearly demonstrated with two of the datasets used (i.e. Yeast,
and Breast Cancer) where there are duplications at instance level making all the
features of some samples identical with some others. Table 3 (No. of Dupli-
cates) shows the duplications (percentage of duplicate instances) for both of
these datasets.

While this justifies the outperformance of RND-SVM over SDS-SVM, this
neither justifies the outperformance of RND-SVM in Bank Marketing nor offers a
strong reason for the outperformance of SDS-SVM in all the remaining datasets.
For this purpose the redundancy at the feature level is explored as shown in
Table 3 where the number of repetition in each feature is calculated and then
the median, mean and standard deviation of all the feature repetitions are taken
into account. Considering these figures, a link can be established between a high



Table 2: Results for the datasets
G-mean AUC F-measure Accuracy Sensitivity Specificity

Oil Spills RND-SVM 35.27% 0.648 69.61% 56.27% 100.00% 12.44%
SDS-SVM 98.74% 0.999 98.74% 98.74% 99.58% 97.92%
DataBoost-IM [18] 67.70% NA 55.0% 96.60% 46.30% 98.90%
PNN [34] NA 0.847 NA NA NA NA

Yeast RND-SVM 91.43% 0.969 90.86% 91.26% 94.00% 88.94%
SDS-SVM 90.33% 0.965 89.74% 90.11% 94.00% 86.81%
DataBoost-IM [18] 66.9% NA 58.0% 97.3% 45.00% 99.90%
GSVM-RU [28] NA 0.845 68.8% NA NA NA

Abalone RND-SVM 88.69% 0.951 89.29% 88.62% 91.43% 88.00%
SDS-SVM 89.83% 0.957 89.39% 89.77% 91.11% 88.57%
GSVM-RU [28] 86.5% NA 60.4% NA NA NA
DataBoost-IM[18] 61.1% NA 45.0% 94.6% 38.0% 98.1%

Vehicle RND-SVM 98.45% 0.995 98.46% 98.45% 99.06% 97.85%
SDS-SVM 98.45% 0.999 98.46% 98.45% 99.37% 97.54%
DataBoost-IM[18] 95.7% NA 93.7% 97.0% 93.4% 98.1%
PNN [34] NA 0.983 NA NA NA NA

Breast Cancer RND-SVM 97.70% 0.996 97.71% 97.70% 98.33% 97.08%
SDS-SVM 95.81% 0.972 95.77% 95.83% 97.07% 94.58%
DataBoost-IM [18] 96.40% NA 95.2% 96.70% 95.40% 97.3%

Bank Marketing RND-SVM 92.91% 0.972 93.43% 93.06% 97.05% 88.95%
SDS-SVM 90.96% 0.966 91.46% 91.07% 94.04% 88.00%
HybridDA [3] NA 0.98 NA 96.73% 97.93% 94.82%

Thoracic Surgery RND-SVM 71.69% 0.755 70.51% 71.82% 68.88% 74.63%
SDS-SVM 73.51% 0.767 72.78% 73.59% 71.94% 75.12%
Boosted SVM [36] 65.7% NA NA NA 60.00% 72.00%

Ionosphere RND-SVM 94.01% 0.979 93.77% 94.15% 97.69% 90.48%
SDS-SVM 95.32% 0.986 95.27% 95.31% 96.03 94.62%
CSB2 [30] 93.00% NA 89.7% 82.90% 96.5% 89.7%
DataBoost-IM [18] 92.3% NA 91.2% 94.0% 87.3% 97.7%

Hepatitis RND-SVM 91.02% 0.960 90.62% 91.21% 93.55% 88.57%
SDS-SVM 91.98% 0.963 91.47% 92.42% 87.10% 97.14%
CSB2 [30] 80.9% NA 63.4% 80.6% 81.3% 80.5%
DataBoost-IM [18] 76.2% NA 62.6% 83.8% 65.6% 88.6%

level of similarity (duplications) between the features (e.g combination of median
(or average) and standard deviation) and the performance of SDS-SVM. For
instance in the case of the Oil Spills dataset, the median repetition of 81.47% and
the standard deviation of 32.61% indicate a varying level of duplications across
various features, which leads to the the outperformance of SDS-SVM which
partially evaluates the instances. In terms of the Bank Marketing where there
are no duplications of instances, there is a high level of duplication at feature level
with median of 99.72% and standard deviation of only 4.14% which justifies the
good performance of RND-SVM. In all other cases (Oil Spills, Abalone, Vehicle,
Thoracic Surgery, Ionosphere and Hepatitis), where feature-level duplications
are not high, and there are no large standard deviations (causing a larger level
of oscillations), SDS-SVM is a recommended method to use.

As can be seen, feature-level duplication analysis also cater for the instance-
level duplication analysis, thus providing a better insight on which of the two
algorithms to use.



Table 3: Instance and Feature duplication rates
Instance Level Figures Features Level Figures Best Model

Datasets No. of Duplicates Median Average Standard Deviation

Oil Spills 0 81.47% 68.65% 32.61 SDS-SVM
Yeast 25 (5.39%) 91.25% 92.54% 4.61 RND-SVM
Abalone 0 61.62% 58.01% 33.57 SDS-SVM
Vehicle 0 94.12% 88.46% 13.43 SDS-SVM
Breast Cancer 231 (50.43%) 95.19% 95.26% 0.2 RND-SVM
Bank Marketing 0 99.72% 98.48% 4.18 RND-SVM
Thoracic Surgery 0 99.50% 94.90% 10.63 SDS-SVM
Ionosphere 0 4.88% 7.67% 6.3 SDS-SVM
Hepatitis 0 97.01% 81.30% 26.15 SDS-SVM

5.2 Investigating agents behaviour

Convergence of agents is defined as the number of iterations needed for the agents
to form a stable population of active agents [2]. SDS algorithm adopted for the
purpose of undersampling is responsive towards feature-level duplications and
when there are many duplications at feature level, the number of active agents is
higher; this is illustrated in the graphs of Fig. 1, where the Bank dataset with the
high feature-level duplications is shown (on the left) as opposed to the Ionosphere
dataset (on the right) where the feature-level duplication is much lower (with the
median of 4.88% and the standard deviation of 6.3). The oscillating behaviour of
the population’s activity is attributed to the micro-feature evaluation of each of
the agents. In other words, if an agent picks a certain micro-feature and becomes
active, it is likely that other agents are attracted towards the hypothesis of
that agent, thus adopting the same hypothesis (but a randomly selected and
likely different micro-feature); if the newly selected micro-feature is not within
the threshold, this would lead to the agent inactivity for the next cycle. This
mechanism assists the agents to only maintain their activities when a hypothesis
is (in most of its micro-feature selections) within the calculated threshold.

One interesting feature of the algorithm is that high activity level of the
population does not always correspond to convergence to a single instance. While
this in itself is a useful feature for identifying more (than one) similar instances,
this characteristics is yet to be experimented in the future work. Also it would
be worthwhile to explore whether each trial (i.e. removal of one similar instance
from the search space) could be terminated depending on the activity level of
the populations.

5.3 Search Space Coverage

As stated before, one of the important aspect of SDS algorithm is partial function
evaluation which manifests itself in the micro-feature evaluation of the search
space. It is known that swarm intelligence algorithms are mostly used when
dealing with large search spaces where neither pre-existing knowledge about the
problem space exists nor it is possible to visit all the elements of the search
space. In case of the SDS algorithm and its partial function evaluation, while
SDS might visits each instance ‘briefly’ (i.e. checking one of few features), it



Fig. 1: Convergence of agents over the iterations allowed for the Bank datasets (left)
and the Ionosphere datasets (Right)
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Fig. 2: Search space coverage for the Oil Spills dataset (left) and the Ionosphere dataset
(right)
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does not run a greedy comparison on all of the instance’s features. Therefore,
the agent aims to ‘form an idea’ before spending further computational time (by
itself or by attracting other agents).

This behaviour of the agents can be summarised in two sets of experiments:
the first would be to explore the percentage of the instances visited by the SDS
agents, and the second is to calculate the percentage of all features visited from
the whole of the dataset (i.e. all the features of all the instances). The results of
these two experiments are shown in the graphs of Fig. 2. It is shown that while
the empirically chosen values for the number of agents and the iterations suffice
in visiting the instances at least once, not all the features are (or need to be)
visited.

In another experiment, the frequency of agents visiting each feature is ex-
plored, investigating the distribution of agents’ exploration capability in the
search space with the ultimate goal of finding the closest match. For this pur-
pose, three datasets with varying degrees of feature-level duplications are chosen
and the results are illustrated in Fig. 3.

For instance, in the case of the Bank Marketing dataset where the duplication
is very high the median of 99.72% and standard deviation of 4.14%, it is shown



Fig. 3: Frequency of visiting individual features in three datasets.
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the agents are converged to the closest matches (showing themselves as stripe of
while lines) while in the case of the Oil Spills and Ionosphere, the agents presence
is distributed in the search space. Also in terms of the Oil Spills dataset, instances
in position 450 to 550 are attracting more agent visits which is attributable their
similarity to the model which is located at position 471.

6 Conclusion and Future Work

This paper proposes a model which uses a swarm intelligence algorithm (Stochas-
tic Diffusion Search or SDS) which is assigned to perform the undersampling of
the majority classes in imbalanced datasets. Acknowledging the role of removing
exact duplicates (redundancies) of instances from the majority on the outcome
of the classifiers, the proposed SDS algorithm conducts its process at the feature-
level (attribute-level) of the datasets. This algorithm demonstrates to be effective
in identifying feature-level duplications which are shown to be also playing an
important role in the performance of the classifier.

This work presents an analysis of both instance and feature levels redundan-
cies and establishes a link between the feature-level duplications and the role
of feature-level undersampling mechanism. This analysis is accompanied by in-
vestigating the behaviour of the agents through their activity level during the
undersampling process. It is shown that the agents activity is directly propor-
tional to the level of redundancy in the datasets (not only at the instance level,
but more importantly, the feature level).

Another investigation carried out in this work is the ability of the algorithm to
comprehensively explore the search space without having to greedily investigate
all the features of all the instances in the dataset.



As part of the future research, various coverage percentages could be explored
and thus associating the coverage percentage with the termination criteria. This
might shed light on the ‘bare essential’ coverage needed before removing an in-
stance. Another ongoing study is being conducted on the link between the agents
activity level and the termination criteria as well as the possibility of removing
more than one instance from the dataset where the agents share a ‘similar in-
terest’ in multiple instances. At last but not least, during the undersampling
process, there is a gradual decrease in the size of the search space. Therefore, by
establishing a more dynamic population size and iteration numbers, the coverage
of the search space could be made homogeneous throughout the undersampling
process.
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