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ABSTRACT 1 

Aim  2 

Understanding the spatial ecology of endangered species is crucial to predicting habitat 3 

use at scales relevant to conservation and management. Here, we aim to model the 4 

influence of biophysical conditions on habitat suitability for endangered fin whales 5 

Balaenoptera physalus, with a view to informing management in a heavily impacted 6 

ocean region. 7 

Location 8 

We satellite-tracked the movements of 67 fin whales through the California Current 9 

System (CCS), a dynamic eastern boundary upwelling ecosystem in the Northeast 10 

Pacific.  11 

Methods 12 

We use a multi-scale modelling framework to elucidate biophysical influences on habitat 13 

suitability for fin whales in the CCS. Using Generalised Additive Mixed Models, we 14 

quantify the influence of a suite of remotely-sensed variables on broad-scale patterns of 15 

occupancy, and present the first year-round, high-resolution predictions of seasonal 16 

habitat suitability. Further, we model the influence of contemporaneous biophysical 17 

conditions on individual-level residence times in high-use habitat. 18 

Results 19 

We present evidence of year-round habitat suitability in the southern California Current 20 

System, robust to inter-annual variability, establishing that North Pacific fin whales do 21 

not follow the canonical baleen whale migration model. Within the high-use habitat in the 22 

Southern California Bight (SCB), individual-level residency to localised areas (n=16 for 23 

>30 days; n=4 for >6 months) was associated with warm, shallow, nearshore waters 24 

(>18°C, <500m); with cool waters (14-15°C) occurring over complex seafloor 25 

topographies and convergent (sub-)mesoscale structures at the surface.  26 

Main Conclusions 27 

Biophysical conditions in the southern CCS generate productive foraging habitats that 28 

can support the fin whale population year-round and allow for extended periods of 29 

residency in localised areas. High-use habitats for fin whales are co-located with areas of 30 
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intense human use, including international shipping routes and a major naval training 31 

range. Seasonal habitat suitability maps presented here could inform the management of 32 

anthropogenic threats to an endangered baleen whales in this globally significant 33 

biodiversity hotspot. 34 

 35 

KEYWORDS (6-10) 36 
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(A) INTRODUCTION  39 

 40 

Understanding the spatial ecology of wide-ranging species is complex - as habitat 41 

selection is known to be driven by a range of inter-related intrinsic and extrinsic 42 

motivations– yet a comprehensive understanding of the dynamics of space use is essential 43 

for conservation and management. Wide-ranging species must make habitat selection 44 

decisions based upon the interplay between intrinsic motivations such as breeding cycles, 45 

inter- and intra-specific competition, predation risk and spatial memory; and extrinsic 46 

factors such as heterogeneity and variability in habitat quality (Schick et al. 2008; Geijer 47 

et al. 2016). Many taxa are known to migrate between habitats suitable at different stages 48 

of the annual cycle owing to fluctuating resource availability (Drake & Dingle, 2007), a 49 

strategy observed in multiple baleen whale populations (Corkeron & Connor, 1999; 50 

Firestone et al. 2008, Horton et al. 2011, Ramp et al. 2015). Anticipating the broad-scale 51 

distribution of resources in this way confers a fitness advantage, but relies upon both 52 

predictability in the physical environment and prior knowledge of the system.  53 

 54 

Recent insights resulting from progressive techniques in animal tracking and habitat 55 

modelling have vastly improved our understanding of the influence of the physical 56 

environment in habitat selection decisions across taxa (Block et al. 2011; Hays et al. 57 

2016), and have challenged the canonical baleen whale migration model of predictable 58 

seasonal movements between low-latitude winter breeding grounds and high-latitude 59 

summer foraging grounds (Geijer et al. 2016). Multiple baleen whale populations are now 60 

known to contradict this rule. For example, the fin whale population of the Mediterranean 61 
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sea is known to remain resident to a sub-basin scale region throughout the annual cycle 62 

(di Sciara et al. 2016; Geijer et al. 2016). The blue whale Balaenoptera musculus 63 

population of the Indian Ocean remain year-round in resource-rich regions associated 64 

with episodic upwelling off Sri Lanka (de Vos et al. 2014); Eastern Atlantic blue whales 65 

exhibit considerable intra-population variability in migratory movements with some 66 

individuals traveling north from central Africa following breeding while others migrate to 67 

the Southern Ocean (Rosenbaum et al. 2014); and blue and fin whales Balaenoptera 68 

physalus in the North Atlantic are known to suspend migration when biophysical 69 

conditions are conducive for foraging (Silva et al. 2013). Similarly, humpback whales 70 

Megaptera novaeangliae are known to remain resident to particular areas for weeks to 71 

months to exploit super-aggregations of prey (Nowacek et al. 2011).  72 

 73 

Fin whales are also thought to be present through the annual cycle in the California 74 

Current System (CCS; Barlow et al. 1994; Forney & Barlow, 1998) – a highly dynamic 75 

eastern boundary upwelling that supports a diverse range of predatory marine vertebrates, 76 

both resident and migratory (Ainley et al. 2005; Block et al. 2011). Classified as globally 77 

endangered since 1996, following historical over-exploitation (IUCN Red List of 78 

Threatened Species; Reilly et al. 2013), the fin whale is listed as a protected species 79 

under both the Marine Mammal Protection Act (1972) and Endangered Species Act 80 

(1973). Known as the ‘greyhound of the sea’ for its speed of movement, this wide-81 

ranging, long-lived, large-brained and social marine vertebrate is known to occur 82 

throughout the temperate zones of the global ocean (Edwards et al. 2015). However, our 83 

understanding of fin whale spatial ecology at (sub-)ocean-basin scales, including 84 
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population structure, migration patterns, preferred habitats, inter- and intra-population 85 

variability and plasticity in habitat selection decisions, is severely lacking, which 86 

complicates conservation (Geijer et al. 2016). 87 

 88 

Developing effective conservation and management strategies for baleen whales relies 89 

upon a more complete understanding of how environmental conditions influence the 90 

spatial ecology of different populations at ocean-basin scales and finer, and of the role of 91 

dynamic biophysical coupling in driving prey availability and, hence, space use 92 

decisions. Modelling habitat suitability for populations of conservation concern is useful 93 

for understanding animal-environment interactions, for locating high-use habitats and 94 

areas of residency (e.g. Forney et al. 2015), for predicting how these habitats might shift 95 

with changing oceanographic dynamics (e.g. Hazen et al. 2013), and for identifying areas 96 

of overlap with anthropogenic threat (e.g. Maxwell et al. 2013; Howell et al. 2015; Hazen 97 

et al. 2016) – all crucial aspects in developing effective strategies for protected species 98 

management. 99 

 100 

Improving our understanding of the spatial and foraging ecology of baleen whales is 101 

particularly important in the California Current System (CCS), where several populations 102 

of conservation concern co-exist with intense anthropogenic pressure on the marine 103 

environment. Predicting habitat suitability for baleen whales in the CCS throughout the 104 

annual cycle and at sufficient spatial and temporal resolution is critical to anticipating 105 

overlaps with anthropogenic threats such as ship strike risk, underwater noise and 106 

fisheries (e.g. Hazen et al. 2016). However, this is complicated by the inherent 107 
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heterogeneity and variability in the physical environment in the CCS, a highly dynamic 108 

system subject to intense episodic upwelling events and a complex and variable flow 109 

field (Bograd et al. 2016). Biophysical conditions in the CCS can be highly variable at 110 

(sub-)mesoscales (1-10 km) and over timescales of days-weeks-months, leading to 111 

heterogeneity in the manifestation of prey patches (Santora et al. 2011). Baleen whales 112 

are known to exhibit threshold foraging responses, in that they will remain to feed on a 113 

particular prey patch until a prey density threshold is reached and energetic constraints 114 

prompt a behavioural switch to searching for other foraging opportunities (Piatt & 115 

Methven 1992; Hazen et al. 2009). Dynamic biophysical processes determine the 116 

foraging seascape experienced by baleen whales in the CCS and, ultimately, the 117 

spatiotemporal distribution of important habitats (Croll et al. 2005). 118 

 119 

Using a multi-year (2008-15) satellite telemetry dataset tracking the movements of 67 120 

adult fin whales, we therefore aim to (i) model the relative influence of biophysical 121 

conditions on broad-scale patterns of occupancy in the CCS, (ii)predict seasonal habitat 122 

suitability for fin whales throughout the annual cycle; (iii) explore seasonal and inter-123 

annual variability in habitat suitability; and (iv) elucidate the proximate environmental 124 

drivers of residency behaviour through modelling (sub-)mesoscale biophysical influences 125 

on individual-level residence times in high-use habitat.126 
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(A) MATERIALS AND METHODS  127 

(B) Tagging and tracking  128 

Fin whales were tagged off the coasts of Southern California (n=58) and Washington 129 

State (n=9). Argos-linked, Low Impact Minimally Percutaneous External-electronics 130 

Transmitter (LIMPET; Wildlife Computers, Redmond, WA, USA) tags were deployed 131 

from a 7-8m rigid hull inflatable boat with a modified bow pulpit, using a Dan-Inject 132 

pneumatic projector (Børkop, Denmark). Two types of tags were used: location-only 133 

SPOT5 tag (n=49) and location and dive-reporting SPLASH10-A tag (n=18). Duty-134 

cycling varied by tag type, to conserve battery power. SPOT5 tags were programmed to 135 

transmit daily for 50 days, then switch to every other day for 20 days, followed by every 136 

third day for 30 days, every fifth day for 50 days, and then every 10
th

 day thereafter. 137 

Programming for SPLASH10-A tags varied as new information was applied regarding 138 

battery and data transmission rates. Ten of the tags transmitted daily before they stopped, 139 

the remaining 8 transmitted for 20 (n=1), 22 (n=1), 23 (n=4), and 28 (n=2) days before 140 

switching to an every other day duty-cycle (Table S1). 141 

 142 

All location fixes were filtered using the Douglas algorithm (Douglas et al. 2012). We 143 

also ran an additional speed filter based on maximum feasible speed for fin whales (15km 144 

h
-1

 for >1 h; Cotte et al. 2011). Tracks with fewer than three remaining locations (n=3) 145 

were removed from the set used for further analysis (n=64).  All location fixes were 146 

reprojected to an equal area projection system (EPSG:3410).    147 

 148 
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Location estimates were weighted according to tracking duration, to reduce bias 149 

associated with tagging location and uneven tracking durations. Low weights (increasing 150 

0.1 to 1.0) were applied to the first 10 days of tracking. Each successive location was 151 

then weighted by the inverse of the number of individuals with locations on the same 152 

relative day, up to the 85% percentile of all track lengths (65d), beyond which all weights 153 

applied were equal to that threshold (following Irvine et al. 2014).  154 

 155 

(B) Environmental Data 156 

The study area was defined by the extent of all filtered tracking data (130°W - 112°W; 157 

20°N - 50°N ; Fig. 1).  Static physiographic data were derived from the ETOPO2v2 2-158 

minute gridded global relief dataset (NOAA National Centers for Environmental 159 

Information; http://www.ngdc.noaa.gov/mgg/global/etopo2.html). Standard deviation in 160 

water depth – a proxy for bathymetric rugosity – was determined using a 3x3 pixel 161 

moving window over this bathymetry field (‘ncdf4’ and ‘raster’ packages for R; Hijmans 162 

et al. 2015, Pierce et al. 2014).  163 

 164 

Seasonal environmental data fields were created for each season (Spring: Mar – May; 165 

Summer: Jun – Aug; Autumn: Sept – Nov; Winter: Dec – Feb) of each tracking year 166 

(2008-15).  High-resolution monthly composites covering the entire tracking period were 167 

downloaded as NetCDF via NOAA’s ERDDAP server 168 

(http://coastwatch.pfeg.noaa.gov/erddap/), and reprojected to an Equal-Area Scalable 169 

Earth projection (EPSG:3410, EASE-grid, http://spatialreference.org/ref/ epsg/nsidc-170 

ease-grid-global/) using the ‘raster’ package for R (Hijmans et al. 2015). 171 
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 172 

Monthly SST composites were obtained using Local Area Coverage (LAC; 0.0125° 173 

resolution) of the Advanced Very-High Resolution Radiometer (AVHRR) sensor aboard 174 

NOAA’s Polar Operational Environmental Satellites (POES). Monthly chlorophyll-a 175 

composites were obtained from Aqua-MODIS (West US) at 0.0125° resolution. Seasonal 176 

medians were calculated for each year, and for average seasonal conditions over the 177 

tracking period. Seasonal thermal front frequency (% time in which a front ≥0.4°C in 178 

gradient magnitude was present in each pixel) was derived using 8-day composite front 179 

maps processed from Pathfinder AVHRR SST data (Miller & Christodoulou 2014).  180 

 181 

Shorter timespan composites were used as indicators of conditions contemporaneous to 182 

fin whale movements. These included time-matched daily Global High Resolution Sea 183 

Surface Temperature (GHRSST) data (Level 4, AVHRR, Blended) obtained via 184 

ERDDAP; 8-day chlorophyll-a composites from Aqua-MODIS via ERDDAP; Sea 185 

Surface Height (SSH) from AVISO Absolute Dynamic Topography (ADT; 186 

http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global/madt-187 

h-uv.html); Eddy Kinetic Energy calculated from u and v fields of AVISO geostrophic 188 

velocities; and 4-day Finite Size Lyapunov Exponent fields (FSLE; 189 

http://www.aviso.altimetry.fr/en/data/products/value-added-products/fsle-finite-size-190 

lyapunov-exponents.html). The Finite Size Lyapunov Exponent is a Lagrangian measure 191 

of sub-mesoscale circulation (Cotté et al. 2011). Here, we use backward-in-time FSLE to 192 

identify convergent Lagrangian Coherent Structures such as fronts, eddies and upwelling 193 

filaments. 194 
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 195 

(B) Habitat Modelling 196 

A multi-scale approach was taken to habitat modelling. First, broad-scale seasonal 197 

models were used to ascertain relative habitat suitability in the California Current System 198 

(CCS; enclosed by vertices at -112°W, -120°W, -130°W, 24°N, 40°N, 52°N; Fig. 2). 199 

Second, finer-scale models were used to investigate contemporaneous biophysical 200 

influences on individual residence times within high-use habitat. 201 

 202 

(C) Broad-scale seasonal presence-availability 203 

All filtered locations were plotted as individual tracks (Fig. 1a). Weighted locations were 204 

also summed within a 0.1° hexagonal grid as an indication of patterns of occupancy (Fig. 205 

1b; ‘ggplot2’ package for R; Wickham 2009).  206 

 207 

Broad-scale, seasonal presence-availability models were used to identify environmental 208 

conditions characterising high-use areas. First, areas used by whales in each season were 209 

identified using a kernel utilisation distribution (KUD) incorporating all tracking data, 210 

aggregated over all years to account for low and uneven sample sizes in individual years 211 

(Fig. 2). Utilisation distributions were generated using standard techniques in the 212 

adehabitatHR package for R (version 0.4.14; Calenge, 2006). A large bandwidth 213 

smoothing parameter was selected using the 'h-ref' method (Fig. 2). Presence locations 214 

(n=200 for each iteration) were resampled at random from within the 95% seasonal KUD 215 

isopleths. Habitat availability during each season was quantified through randomised 216 
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background sampling from within the CCS domain (n=1500 for each iteration; Barbet-217 

Massin et al. 2012). 218 

 219 

Generalised Additive Mixed Models (GAMMs) with binomial errors were used to 220 

quantify seasonal habitat preferences (‘gamm4’ package for R; Wood & Scheipl 2014). 221 

Environmental predictors were included on the basis of AIC corrected for sample size 222 

(AICc; ‘AICmodavg’ package for R; Mazerolle, 2015).  Generalised Variance Inflation 223 

Factors (GVIFs) ensured predictor variables were not colinear. Season and tagging region 224 

were included as random effects. Initial models were constructed with unconstrained 225 

smooths, then smooths were constrained to five knots. Response curves were plotted by 226 

predicting over the range of each predictor while others were held constant at their mean 227 

(Fig. 3). 228 

 229 

Model diagnostics included k-fold cross-validation (CV), with a 75%/25% data split and 230 

random sampling of the presence-availability data frame over each of 5 folds, using Area 231 

Under the receiver operating Curve (AUC) as a diagnostic measure (k- fold CV score, 232 

AUC =  0.76).  233 

   234 

High-resolution spatial predictions (0.05°) of relative habitat suitability for fin whales 235 

(HSI, scaled 0-1) were generated through predicting from our GAMM response curves 236 

over multi-parameter physical datasets quantifying the average seasonal conditions in the 237 

CCS during the tracking period (2008-14), obtained via remote sensing. Inter-annual 238 

variability in seasonal habitat suitability was determined using a two-step process. Firstly, 239 
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the standard deviation in our relative habitat suitability predictions for each 0.05° grid 240 

cell was calculated through prediction from model response curves over separate seasonal 241 

physical data fields for each year of the tracking study (Fig. S1). Secondly, 50% KUD 242 

isopleths for all animals tracked in each year were overlain to determine the extent of 243 

overlap in high-use habitat over the tracking period (Fig. 5a). 244 

 245 

(C) Individual-level residence time  246 

Finer-scale models explored the influence of contemporaneous biophysical conditions on 247 

residence times within the Southern California Bight (SCB), a high-use habitat identified 248 

in seasonal models. The SCB domain was restricted to south of 35°N and only the first 30 249 

days of each track of whales frequenting the area were used, owing to irregularities in 250 

location fix frequency. Location fix interval in this data subset was 3.24  ± 4.4hrs (mean 251 

± s.d.; range 0 – 61.2hrs). Residence time was calculated for all remaining location fixes, 252 

using a radius of 10km and a maximum time outside this radius of 12 hours 253 

(‘adehabitatLT’ package for R; Calenge 2006).  254 

 255 

Residence time in hours was used as a response variable in GAMMs, with a Tweedie 256 

distribution (‘gamm4’ and ‘tweedie’ packages for R; Wood & Scheipl 2014; Dunn 2014) 257 

and an individual-level random effect. A sensitivity analysis was carried out to determine 258 

the optimal parameterisation of the Tweedie distribution. All environmental covariates 259 

were checked for colinearity. Model selection involved AICc and proportion of deviance 260 

explained as indicators of relative variable importance.  K-fold cross-validation was used, 261 

with five iterations of folds by individual (75% individuals in training subset; 25% in 262 
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testing subset). Root mean squared error was used as a diagnostic, comparing model-263 

predicted residence time to that observed (k- fold CV score, RMSE =  36.29; 0.16 of 264 

max. observed residence time). 265 

 266 

(A) RESULTS 267 

(B) Movements and Spatial Ecology 268 

Telemetry data collected over timescales of days-weeks-months (Fig. 1a; Fig. S2; Table 269 

S1) has revealed complexity in habitat use by fin whales in this dynamic marine 270 

ecoregion. A high degree of intra-population variability in space use was evident, as was 271 

the lack of a clear population-level seasonal migration between high-latitude foraging 272 

areas and low-latitude breeding areas, common to other baleen whales (Ramp et al. 273 

2015). However, a general trend for increased use of areas in the central CCS between 274 

Point Arena (38.9°N, 123.7°W) and Point Conception (34.4°N, 120.5°W) during summer 275 

(Fig. 2b), and south into Mexican waters in the winter (Fig. 2d), is evidence of some 276 

seasonal movement within the CCS domain. 277 

 278 

Tracking data clearly indicated a region of year-round residency in the Southern 279 

California Bight (SCB; Fig1b; Fig. 2), though it must be noted that 55 tag deployments 280 

(86%) took place within the SCB (Table S1). Fin whales were consistently present in the 281 

SCB during all seasons (Fig. 2), and throughout all years of the tracking study. This year-282 

round residency at the population-level was mirrored by extended residency at the 283 

individual level, with several whales tagged in different years exhibiting residency to 284 

localised areas for periods of 30 days or more (n=16; Fig. S3; Table S1). Seasonal shifts 285 
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in use of waters inside the SCB were also evident. Tracked whales tended to favour 286 

nearshore habitats along the mainland coast and in the northern Catalina basin in autumn 287 

and winter, and then to disperse to the outer waters of the SCB, offshore and further north 288 

in spring and summer (Fig. 2).   289 

 290 

(B) Broad-scale habitat suitability 291 

Broad-scale models establish that relative habitat suitability over seasonal timescales 292 

were strongly influenced by water depth, thermal properties of water masses, primary 293 

productivity, the frequency of occurrence of thermal fronts, and, to a lesser extent, 294 

bathymetric rugosity (Fig. 3). Whale presence was associated with waters less than 295 

3000m deep, particularly those shallower than 1500m (Fig. 3a). A preference for cooler 296 

waters in the 8-10°C range likely reflects use of areas along the Washington coast in 297 

winter, although may also be associated with upwelling of cool waters further south. Fin 298 

whales also exhibited a preference for shallower depths (<500m) with warmer waters in 299 

the 16-20°C range - at the other extreme of thermal habitat availability in this domain 300 

(Fig. 3b).  This was associated with utilisation of the SCB, a region into which the warm 301 

Southern California Countercurrent intrudes (Hickey, Dobbins & Allen 2003). Whales 302 

preferred intermediate chlorophyll-a concentrations (Fig. 3c), and areas of higher thermal 303 

front frequency (Fig. 3d). The influence of bathymetric rugosity (standard deviation in 304 

water depth; Fig. 3e) is likely to reflect temporary associations with the shelf break in the 305 

northern CCS, and with bathymetric features such as ridges and submarine basins in the 306 

central and southern CCS.  307 

 308 
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The combined influence of these biophysical parameters is evident in spatial predictions 309 

of seasonal presence-availability models (Fig. 4). Habitat suitability was consistently 310 

high, year-round, in the SCB. In spring, suitable habitat was available to fin whales on 311 

the continental shelf along the entire western coast of the US, but the most favourable 312 

conditions were in the SCB (Fig. 4a). In summer and autumn, habitat suitability increased 313 

in the central CCS, including Monterey Bay and the region between Point Pinos (36.6°N, 314 

121.9°W) and Point Conception (Figs. 4b. 4c), presumably related to seasonal upwelling. 315 

In winter, suitable habitat again contracted to the southernmost region of the CCS, as fin 316 

whales moved south into warmer Mexican waters (Fig. 4d). Here, we present a single 317 

model with seasonal environmental data for each of the four seasons informing overall 318 

predicted habitat suitability responses. Results of separate season-specific models are 319 

provided in Supporting Information (Figs. S4-S8). 320 

 321 

Inter-annual variability in habitat suitability was low across most of the CCS over the 322 

tracking period (2008-14; Fig. S1). Standard deviation in predicted habitat suitability 323 

among years was particularly low in the SCB.   324 

 325 

(B) Biophysical influences on side fidelity 326 

Residency in localised areas was initially revealed through mapping individual tracks, 327 

revealing a clustering of location fixes around bathymetric features in the SCB (Fig. 5, 328 

Fig. S3). Modelling individual residence times as a response to contemporaneous 329 

conditions generated further insight into (sub-)mesoscale biophysical influences on 330 

foraging decisions (Fig. 6). Several individuals remained for extended periods in shallow, 331 
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warm, nearshore areas, leading to highest predictions of residence time in warm 332 

contemporaneous SST (18-20°C; Fig. 6a) and shallow depths (Fig. 6b). Residence time 333 

was also elevated in the 14-16°C range, indicating associations with cooler water masses 334 

further offshore (Fig. 6a). The response curve for water depth peaks at 1500m – in 335 

concordance with the seasonal model. In terms of primary productivity, residence time 336 

was also highest at intermediate chlorophyll-a concentrations (Fig. 6c).  337 

 338 

Bathymetric rugosity had a stronger influence on residence time than in seasonal models, 339 

presumably owing to associations with complex seafloor topographies in the SCB.  The 340 

humped-shape response to standard deviation in water depth indicates a preference for 341 

seafloor features, but an apparent avoidance of the shelf-break (Fig. 6d). FSLE – which 342 

highlights Lagrangian Coherent Structures (LCS) such as mesoscale fronts, eddies and 343 

filaments - influenced individual residence times, particularly in the -0.05 to 0.01 days
-1

 344 

range (Fig. 6e). Similarly, spatial standard deviation in FSLE - a measure of the relative 345 

number and strength of convergent (sub-)mesoscale structures in the proximate 346 

environment – increased with residence time (Fig. 6f). In summary, individual residence 347 

time appears to be strongly influenced by water depth and bathymetric features, and 348 

hence the interactions between complex seafloor topographies and Lagrangian Coherent 349 

Structures at the surface. 350 

 351 

(A) DISCUSSION  352 

(B) Movement patterns and broad-scale habitat suitability 353 
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Satellite tracking the movements of fin whales in the California Current System has 354 

established that this population can be considered a clear exception to the canonical 355 

baleen whale migration model (see also Mizroch et al. 2009; Geijer et al. 2016). A clear 356 

hotspot of year-round habitat suitability for the CCS fin whale population, and of 357 

extended residency at the individual level, is evident in the Southern California Bight. 358 

This is corroborated by at-sea surveys (Fiedler et al. 1998; Campbell et al. 2015), 359 

acoustic monitoring (Stafford et al. 2009; Širović et al. 2013), and photo-identification 360 

work (Falcone et al. 2011). For example, sightings surveys report fin whales as the most 361 

abundant baleen whale in the SCB (Moore & Barlow, 2011; Campbell et al. 2015); fin 362 

whale calls are acoustically detected throughout the annual cycle (Stafford et al. 2009; 363 

Širović et al. 2013; Stimpert et al. 2015); and individuals are repeatedly re-sighted in the 364 

SCB in photo-identification work (Falcone et al. 2011).  365 

 366 

The observed variability in habitat use between individuals, lack of an extensive seasonal 367 

migration and extended residency in localised areas is likely tied to the comparatively 368 

broad foraging niche of fin whales. Fin whales feed on euphausiids, such as the krill 369 

species Euphausia pacifica and Thysanoessa spinifera, and small fish such as northern 370 

anchovy Engraulis mordax and Pacific sardine Sardinops sagax (Pauly et al. 1998), and 371 

have a propensity to prey-switch between krill and small pelagic fish. Fin whales can 372 

therefore exploit a broader range of biophysical conditions when making foraging 373 

decisions than other baleen whales such as the blue whale, an obligate krill feeder 374 

(Mizroch et al. 1984). Prey-switching may be a factor that enables fin whales to remain in 375 
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the CCS year-round, although data limitations prevented direct testing of this hypothesis 376 

in this study. 377 

 378 

Although satellite tracking revealed no evidence of extensive seasonal migrations, 379 

predictions of relative habitat suitability within the CCS do reveal some regional 380 

seasonality in movements. The SCB appears to represent the southernmost extent of the 381 

summer range and northernmost extent of the winter range of the CCS population, and 382 

may be an area in which a resident sub-population remains year-round. Seasonality 383 

within the CCS is likely driven by processes of biophysical coupling associated with 384 

upwelling dynamics, including foraging opportunities induced by episodic wind-driven 385 

upwelling events that are most frequent in late spring and summer. In concordance with 386 

our results, at-sea surveys suggest that fin whales are present year-round but more 387 

abundant in the central and southern CCS during summer and autumn (Campbell et al. 388 

2015). Known krill hotspots downstream of upwelling centres at Point Arena, Point Sur 389 

and Point Conception (Santora et al. 2011) are co-located with predicted high-suitability 390 

habitats for fin whales during summer and autumn. In particular, southward advection of 391 

nutrient-rich waters from the known upwelling centre at Point Conception (Fiedler et al. 392 

1998) leads to enhanced prey availability in the SCB feeding grounds used year-round by 393 

fin whales.  394 

 395 

 396 

(B) Biophysical drivers of residency  397 
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The tendency for individuals to remain for periods of weeks to months in localised areas 398 

within the SCB appears to be associated with foraging in productive habitats. Fin whales 399 

tended to remain for extended periods around bathymetric features such as seafloor ridges 400 

and escarpments, and within small-scale basins. Here, fin whales are likely to be 401 

exploiting prey aggregations resulting from (sub-)mesoscale dynamics and trophic 402 

focusing, in which prey from immense volumes of water flowing around abrupt 403 

topographies is accumulated in confined layers (Genin 2004). Bathymetric features and 404 

steep altimetric and temperature gradients have also been shown to be predictors of fin 405 

whale habitat suitability in the Mediterranean Sea (Panigada et al. 2008; Cotté et al. 406 

2009) and along the east coast of the United States (Roberts et al. 2016). 407 

 408 

Intense (sub-)mesoscale dynamics in the SCB lead to complex spatial structuring in prey 409 

distributions, and enhance foraging opportunities for fin whales. The SCB has an 410 

extremely dynamic flow field, owing to interactions between the mainland coast, the 411 

poleward-flowing Southern California Countercurrent, the equatorward main California 412 

Current offshore, and the Channel Islands. Resultant (sub-) mesoscale dynamics create an 413 

energetic field of Lagrangian Coherent Structures including multiple small-scale, 414 

cyclonic coastal eddies and transport fronts. Island wakes create strong surface vorticity 415 

(Dong 2007). These processes lead to the complex phytoplankton dynamics (Bialonski et 416 

al. 2016) and the circulation-retention of potential prey in (sub-)mesoscale structures 417 

(Fiedler et al. 1998; Logerwell, Lavaniegos & Smith 2001; Powell & Ohman 2015). We 418 

contend that the fin whales in the Southern California Bight can exploit these rich 419 

foraging opportunities for extended periods year-round, explaining the patterns of 420 
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residency we observed in this high-use habitat and the influence of FSLE in predicting 421 

high residence times. 422 

 423 

Alongside seasonality in use of the wider CCS, finer-scale seasonal distribution shifts 424 

within the SCB were evident from this tracking work, and supported by photo-425 

identification (Falcone et al. 2011). In winter, whales spent more time along the mainland 426 

coast and in the northern Catalina basin, and then dispersed offshore and further north in 427 

spring and summer. Despite the evident preference for warm, nearshore waters, the SCB 428 

is unlikely to be a breeding ground as calves are very seldom sighted (Falcone & Schorr 429 

2014). It may be that these periods of residency to localised areas are associated with 430 

partial migration (Chapman et al. 2011), as observed in other baleen whale populations 431 

(Silva et al. 2013), or over-wintering of residents to the CCS. 432 

 433 

(B) Implications for understanding population structure 434 

Our findings suggest the possible presence of two sub-populations of fin whales using the 435 

CCS - one that remains resident in the SCB year-round, aggregating nearshore in autumn 436 

and winter and dispersing into deeper waters during spring and summer, and one that 437 

ranges further offshore. Whether these are separate populations or subsets of one is 438 

difficult to determine, but genetic data do indicate the presence of a Southern California 439 

sub-population (Archer et al. 2013). Non-migratory sub-populations have been observed 440 

elsewhere, albeit in geographically isolated seas (Gulf of California, Tershy et al. 1993; 441 

Mediterranean Sea, Bérubé et al. 2002; Castellote, Clark & Lammers 2012a; di Sciara et 442 

al. 2016; Geijer et al. 2016). Although these tracking data cannot provide incontrovertible 443 
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evidence, it is arguable that the year-round residents of the SCB constitute a distinct sub-444 

population and should be managed as such. 445 

 446 

(B) Implications for protected species management 447 

The importance of the Southern California Bight for fin whales appears to have been 448 

underestimated in previous models of relative habitat suitability based on ship survey 449 

datasets (Becker et al. 2012; Forney et al. 2012; Redfern et al. 2013; Calambokidis et al. 450 

2015). This has potentially significant implications for conservation and management. 451 

The SCB is under intense anthropogenic pressure, fringed by the human population 452 

centres of Los Angeles and San Diego. Major international shipping routes pass through 453 

the Southern California Bight, thus the risk of ship strike and increased underwater noise 454 

are legitimate threats to this population. Fin whales are known to be highly sensitive to 455 

underwater noise resulting from shipping and seismic surveys (Castellote, Clark & 456 

Lammers 2012b), and 8 of 10 fin whale mortalities attributed to ship strike off California 457 

during 2009-15 occurred in the SCB (NOAA, unpublished data).  458 

 459 

Previous habitat suitability predictions for baleen whales have been used as evidence 460 

supporting a change in the position of the major shipping lane through the Santa Barbara 461 

channel – an area intensively used by blue whales during summer (Fiedler et al. 1998) – 462 

to reduce the risk of ship strike (Redfern et al. 2013). However, our results suggest that 463 

the proposed change in shipping routes could increase this risk for fin whales.  464 

While predicting absolute densities remains a major challenge, and density models (i.e. 465 

number of whales per unit area) are difficult to compare directly with habitat suitability 466 
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models (i.e. relative habitat suitability per unit area), satellite tracking has generated 467 

valuable new insights into habitat suitability for fin whales in the CCS and the resulting 468 

risk of ship strike in areas in which fin whales are semi-resident. 469 

 470 

In addition to risks from shipping, the US Navy’s Southern California (SoCal) Range 471 

Complex and Point Mugu Sea Range are located in the SCB. Training activities within 472 

the Range Complex include live fire exercises, surface and underwater explosions, and 473 

anti-submarine warfare (including MFA sonar), while activities within the Point Mugu 474 

Sea Range include live fire exercises and a limited number of surface explosions. A total 475 

of 88% of location fixes were received from within the SoCal Range Complex (50%) or 476 

Pt. Mugu Sea Range (38%). Overlap between naval activities and high-use habitat could 477 

entail deleterious consequences for the fin whale population, through exposure to these 478 

training activities and collisions with military vessels. Alongside displacement from 479 

preferred habitats, potential impacts of exposure to anthropogenic noise include the 480 

masking of communications, and changing vocal behaviour (Williams et al. 2014). The 481 

importance of the SCB for this population suggests that these activities could entail 482 

population-level consequences for this protected species in the CCS.  483 

 484 

The fin whale population of the California Current may require more careful management 485 

to adequately mitigate these threats. The Northeast Pacific fin whale population is 486 

currently managed as a single stock estimated to number 3,000 individuals (Carretta et al. 487 

2014). More recent abundance calculations estimate a population of approximately 8,500 488 

(Barlow, 2016). However, these estimates do not incorporate potential population 489 
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differentiation. A sub-population resident to the SCB year-round will experience 490 

intensification of anthropogenic threat and so require more targeted management 491 

strategies than a diffuse migratory population. Ultimately, accurate space use predictions 492 

informed by a detailed understanding of population size and structure, spatial ecology 493 

and habitat preferences of populations of conservation concern (e.g. Hazen et al. 2016) 494 

are likely to be instrumental in designing management solutions that can accommodate 495 

both human users and the conservation of protected species as we move further into the 496 

Anthropocene.    497 
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See Supporting Information 754 

 755 

(A) FIGURE LEGENDS 756 

 757 

Fig. 1 (a) Filtered tracking data per individual (n=64), aggregated over all years (2008-758 

15), with tag deployment locations as grey diamonds and track end-points as grey 759 

squares. (b) Sum of weighted locations per 0.1° hexagonal grid cell. Locations 760 
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weighted to remove bias resulting from tag deployment location, and by tracking 761 

duration per individual. 762 

 763 

Fig. 2 Seasonal kernel utilisation distribution (KUD) for (a) spring (Mar-May), (b) 764 

summer (Jun - Aug), (c) autumn (Sept - Nov), (d) winter (Dec - Feb), aggregated 765 

over all years of study (2008-15). Black contours show 95%, 50% and 20% 766 

isopleths of all filtered tracking data from each season. KUD isopleths overlain on 767 

high-resolution (2”) etopo2 bathymetry, showing water depth in metres. Extent of 768 

California Current System domain enclosed by dashed line and west coast of US. 769 

 770 

Fig. 3 Response curves of seasonal presence-availability GAMM, showing influence of 771 

(a) water depth (m), (b) sea surface temperature, SST (°C), (c) chlorophyll-a 772 

concentration, log(mg m
-3

), (d) thermal front frequency (% time in which a thermal 773 

front ≥ 0.4°C present over that season), and (e) standard deviation of water depth 774 

(m), a proxy for bathymetric rugosity, on the probability of fin whale presence. 775 

 776 

Fig. 4 Spatial predictions of seasonal presence-availability GAMM per 0.05° grid cell for 777 

 (a) spring (Mar-May), (b) summer (Jun-Aug), (c) autumn (Sept-Nov), (d) winter 778 

 (Dec-Feb), showing relative habitat suitability over California Current domain 779 

 as Habitat Suitability Index (HSI) scaled from 0 to 1, where 1 represents greatest 780 

suitability. 781 

 782 

Fig. 5 Fin whale use of the Southern California Bight (SCB). (a) Inter-annual variability 783 
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in high-use areas. Black contours show kernel utilisation distribution (KUD) for 784 

each year of study (2008-14), as 50% KUD isopleth of filtered tracking data per 785 

year. Overlap between 50% KUD polygons per year (filled white) confirms low 786 

degree of inter-annual variability in high-use areas. (b),(c) Movements of one 787 

tagged whale (BpTag065) through the SCB, over complex seafloor topography (b) 788 

and in relation to Lagrangian Coherent Structures at the surface (c). 789 

 790 

Fig. 6 Response curves of residence time GAMM for Southern California Bight, showing 791 

influence of (a) sea surface temperature, SST (°C), (b) water depth (m), (c) 792 

chlorophyll-a concentration, (d) standard deviation of water depth (m), a proxy for 793 

bathymetric rugosity, (e) Finite-Size Lyapunov Exponent, FSLE (days
-1

), which 794 

identifies Lagrangian Coherent Structures (LCS), and (f) standard deviation of 795 

FSLE over a 3-grid cell radius, a proxy for mesoscale oceanographic dynamics. 796 

Influence of all predictors plotted on response scale, residence time within a 10km 797 

radius of each relocation. 798 
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(A) FIGURES 

 799 

Fig. 1 (a) Filtered tracking data per individual (n=64), aggregated over all years (2008-800 
15), with tag deployment locations as black diamonds. (b) Sum of weighted locations 801 
per 0.1° hexagonal grid cell. Locations weighted to remove bias resulting from tag 802 
deployment location, and by tracking duration per individual.  803 
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Fig. 2 Seasonal kernel utilisation distribution (KUD) for (a) spring (Mar-May), (b) 804 

summer (Jun - Aug), (c) autumn (Sept - Nov), (d) winter (Dec - Feb), aggregated over 805 
all years of study (2008-15). Black contours show 95%, 50% and 20% isopleths of all 806 
filtered tracking data from each season. KUD isopleths overlain on high-resolution 807 
(2”) etopo2 bathymetry, showing water depth in metres. Extent of California Current 808 
System domain enclosed by dashed line and west coast of US.  809 
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Fig. 3 Response curves of seasonal presence-availability GAMM, showing influence of 810 

(a) water depth (m), (b) sea surface temperature, SST (°C), (c) chlorophyll-a 811 
concentration, log(mg m

-3
), (d) thermal front frequency (% time in which a thermal 812 

front ≥ 0.4°C present over that season), and (e) standard deviation of water depth 813 
(m), a proxy for bathymetric rugosity, on the probability of fin whale presence. 814 
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Fig. 4 Spatial predictions of seasonal presence-availability GAMM per 0.05° grid cell for 815 
 (a) spring (Mar-May), (b) summer (Jun-Aug), (c) autumn (Sept-Nov), (d) winter 816 
 (Dec-Feb), showing relative habitat suitability over California Current domain 817 
 as Habitat Suitability Index (HSI) scaled from 0 to 1, where 1 represents greatest 818 

suitability.  819 
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Fig. 5 Fin whale use of the Southern California Bight (SCB). (a) Inter-annual variability 820 
in high-use areas. Black contours show kernel utilisation distribution (KUD) for 821 
each year of study (2008-14), as 50% KUD isopleth of filtered tracking data per 822 
year. Overlap between 50% KUD polygons per year (filled white) confirms low 823 
degree of inter-annual variability in high-use areas. (b),(c) Movements of one 824 
tagged whale (BpTag065) through the SCB, over complex seafloor topography (b) 825 
and in relation to Lagrangian Coherent Structures (c). 826 

  827 

36°N

34°N

32°N

30°N

124°W 122°W 120°W 118°W 116°W 124°W 122°W 120°W 118°W 116°W

N

0

-0.5

-1.0

-1.5

-2.0

25°N

35°N

45°N

110°W120°W130°W

0

1000

2000

3000

4000

5000

metres

(a)

(b) (c) FTLE (days  )-1



 43 

 
 

Fig. 6 Response curves of residence time GAMM for Southern California Bight, showing 828 
influence of (a) sea surface temperature, SST (°C), (b) water depth (m), (c) chlorophyll-a 829 
concentration, (d) standard deviation of water depth (m), a proxy for bathymetric 830 
rugosity, (e) Finite-Size Lyapunov Exponent, FSLE (days ), which identifies Lagrangian 831 
Coherent Structures (LCS), and (f) standard deviation of FSLE over a 3-grid cell radius, a 832 
proxy for mesoscale oceanographic dynamics. Influence of all predictors plotted on 833 
response scale, residence time within a 10km radius of each relocation.  834 
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(A) SUPPORTING INFORMATION 835 

 

Fig. S1 Inter-annual variability in habitat suitability over California Current System 836 
(CCS) domain. Standard deviation in spatial predictions of seasonal presence-837 
availability GAMM per 0.05° grid cell over all years of tracking study (2008-14), 838 
for (a) spring (Mar-May), (b) summer (Jun-Aug), (c) autumn (Sept-Nov), (d) winter 839 
(Dec-Feb), scaled as Habitat Suitability Index (HSI).  840 
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Fig. S2 Tracking duration by individual (days)  841 
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 842 
Fig. S3 Extended residency in Southern California Bight (SCB). Satellite tracking 843 

locations received from four individuals that spent over three months in the SCB.  844 



 47 

 845 
 846 
Fig. S4 Smooth functions from broad-scale seasonal GAMM (overall, four seasonal 847 

datasets combined). 848 
 849 

 850 
 851 
Fig. S5 Smooth functions from broad-scale seasonal GAMM (spring, March - May). 852 
 853 
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 854 
 855 
Fig. S6 Smooth functions from broad-scale seasonal GAMM (summer, June - August). 856 
 857 
 858 

 859 
 860 
Fig. S7 Smooth functions from broad-scale seasonal GAMM (autumn, September - 861 

November). 862 
 863 
 864 
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 865 
 866 
Fig. S8 Smooth functions from broad-scale seasonal GAMM (winter, December - 867 

February). 868 
 869 

  870 



 50 

Table S1 – Satellite tracking summary 871 
 


