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Temperature variability is a major driver of ecological pattern, with recent

changes in average and extreme temperatures having significant impacts on

populations, communities and ecosystems. In the marine realm, very few exper-

iments have manipulated temperature in situ, and current understanding of

temperature effects on community dynamics is limited. We developed new tech-

nology for precise seawater temperature control to examine warming effects on

communities of bacteria, microbial eukaryotes (protists) and metazoans. Despite

highly contrasting phylogenies, size spectra and diversity levels, the three com-

munity types responded similarly to seawater warming treatments ofþ38C and

þ58C, highlighting the critical and overarching importance of temperature in

structuring communities. Temperature effects were detectable at coarse taxo-

nomic resolutions and many taxa responded positively to warming, leading

to increased abundances at the community-level. Novel field-based experimen-

tal approaches are essential to improve mechanistic understanding of how ocean

warming will alter the structure and functioning of diverse marine communities.

provided by Plymouth Marine Science Electronic Archive (P
1. Introduction
Understanding community-level responses to environmental change is a central

goal of ecology. Recent alterations in environmental conditions, principally

caused by human activities, have rendered this goal more pressing since a

better understanding of ecological processes is necessary to improve our ability

to detect and predict the impact of future changes [1,2]. The majority of exper-

imental work on the effects of both climate [3–5] and non-climate [6,7] stressors

on multi-species assemblages has been conducted under controlled conditions,

in mesocosm systems for example, where environmental variables can be

manipulated more readily. The choice of target organism(s) in controlled exper-

iments is, however, heavily prejudiced by the investigator and rarely represents

natural or complete communities, while tightly-controlled ecological experiments

may also suffer from artificiality [8–10]. As such, the influence of environmental

variability on complex communities representing naturally-occurring species

pools has seldom been examined [8]. This limitation currently restricts the

inference space of experimental ecology, particularly with regards to marine eco-

systems. Using novel technology and approaches to translocate manipulative

experiments from the laboratory to natural field settings will increase realism

and, to a large extent, remove issues of artificiality and representativeness [8,10].
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Figure 1. Local environmental conditions and experimental temperatures for
each warming treatment. Top plots show local conditions of (a) wave height
(adjacent open coast), (b) rainfall, (c) wind speed and (d ) sea level during
the experiment. Bottom plot (e) shows average temperature (n ¼ 10 plates)
for each treatment (ambient, þ38C and þ58C) over the 40-day experiment,
which ran from October to November 2013. (Online version in colour.)
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Climate change is driving the redistribution of species,

reorganization of communities and restructuring of entire eco-

systems at global scales [11,12]. Warming, through both

gradual increases in temperature and short-term extreme

events (i.e. heat waves) influences processes across

all biological scales and can lead to step-wise shifts in eco-

system structure and functioning [13]. In the marine realm,

temperature has long been recognized as a fundamental

factor influencing the biology of ectotherms [14–16], and

recent ocean warming trends have had both direct and indirect

effects on populations [17], communities [18] and ecosystems

[19]. Understanding community-level responses to tempera-

ture variability across different phyla, size spectra, trophic

levels and functional groups is therefore of critical importance.

Marine communities are particularly useful models for

global change ecology studies because (i) they are often extremely

diverse and comprise highly divergent taxa, from microbes to

metazoans; (ii) they often comprise taxa that are short-lived

and fast growing and thereby responsive to experimentation;

and (iii) they are dominated by ectotherms that are strongly influ-

enced by their surrounding environment and thermal variability.

In contrast to both terrestrial [20,21] and freshwater [22,23] eco-

systems, however, there have been very few field-based

controlled manipulations of temperature in the marine environ-

ment. The vast majority of existing knowledge stems from

laboratory-based microcosms/mesocosms, which typically

focus on one or a few target species in isolation and are generally

subjected to single uniform stressor treatments (e.g. constant

temperature) that do not mimic natural variability [8].

We developed a novel experimental tool to conduct in situ
temperature manipulations within natural marine habitats

that support complex communities and diverse species pools.

We tested the following hypotheses: (i) that increased tempera-

ture will alter patterns of diversity and community structure

across multiple diverse biological groupings (i.e. from unicellu-

lar microorganisms through to metazoans), and (ii) that the

pervasive community-level effects of increased temperature

will be detectable at coarse taxonomic resolutions.
2. Methods
(a) Experimental approach and design
Seawater temperature was elevated in situ with a heated settlement

panel system (HSPS). Briefly, the HSPS comprised three sets of 10

replicate panels (individual panel dimensions: 15� 15 cm) mounted

onto a fibreglass lattice frame (see electronic supplementary material,

figure S1). The first set of 10 panels were each heated with an electri-

cal heat pad fixed to the underside of a stainless steel plate, and

controlled by a series of microprocessors linked to a temperature

sensor embedded onto each panel surface. The second set of 10

panels were heated in a similar way and a third set of 10 panels

served as experimental controls held at ambient seawater tempera-

ture (full details and additional data are presented in the electronic

supplementary material: methods statement and figures S1–S3).

The desired temperature increase for each treatment (ambient temp-

erature, þ38C and þ58C) was programmed into a shore-based

control unit (see electronic supplementary material, figure S1),

which maintained constant communications to the microprocessor

units to precisely control temperatures over the panels.

The field experiment was conducted within a marina in

Plymouth, UK, between 10 October and 18 November 2013. An

experimental settling surface (polyester fabric with a 700 mm

pore size) was mounted onto each panel to provide a surface for
colonization by marine organisms. A glass microscope slide was

also secured to each panel, ensuring that it was mounted against

the settling surface and within the heated boundary layer. The

HSPS was deployed horizontally, suspended from a pontoon at

approximately 2 m depth, with the plate surfaces facing down-

wards. Microbial and metazoan communities were sampled

after 18 and 40 days, respectively, which allowed adequate time

for biofilms and sessile invertebrates to cover more than 50% of

all microscope slides/panel surfaces. Previous work has shown

that assemblages of bacteria and protists associated with sub-

merged substrata in marine habitats reach maturity within this

timeframe [24–26], while approximately 1 month is sufficient

time to allow for the colonization and development of sessile

invertebrate assemblages [27,28]. Experimental trials indicated

that the depth of the boundary layer of warmed seawater

ranged from approximately 2 to more than 8 mm from the panel

surface, depending on flow conditions (electronic supplementary

material, figure S2). As such, the depth of warming treatment

would be greater than that of the developing biofilm and of

early-stage sessile invertebrate species, which were therefore con-

tinuously subjected to the temperature treatments. The HSPS

facilitated precise control of in situ seawater temperature within

a highly-dynamic coastal marine habitat, with the desired warm-

ing treatments of þ38C and þ58C above ambient sea temperature

maintained for 40 days (figure 1a–e). Temperatures over the exper-

imental panels precisely tracked natural variability in ambient sea

temperature, which was of the order of 38C throughout the exper-

iment and was related to tidal cycles and storm events (figure 1).

Experimental temperatures were highly correlated with ambient

sea temperature (r2 . 0.998 for both treatments, see electronic
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Figure 2. The effect of experimental warming on multivariate structure of multi-kingdom communities. Multidimensional scaling plots depicting communities of (a)
bacteria and (b) protists after 18 days and communities of (c) metazoans (sessile invertebrates) after 40 days under each experimental treatment. Ordinations are
based on a Bray – Curtis similarity matrix generated from square-root-transformed abundance data. Also shown are multidimensional scaling plots generated from
presence/absence data describing communities of (d ) bacteria and (e) protists after 18 days and communities of ( f ) metazoans (sessile invertebrates) after 40 days
under each experimental treatment. (Online version in colour.)
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supplementary material, figure S4) and the target treatments were

maintained within +0.28C throughout the experiment (see

electronic supplementary material, figure S4).

(b) Quantifying diversity, abundance and community
structure

After 18 days of in situ manipulation, microbial diversity was

assessed by biofilm DNA extraction and bacterial 16S and

eukaryote 18S rRNA gene high-throughput sequencing. Biofilms

were removed from five replicate microscope slides (selected at

random from each treatment) using a sterile razor blade before

DNA was extracted and stored at 2208C. Standard PCR and

sequencing techniques were employed (see electronic supplemen-

tary material; methods) and QIIME [29] was used to process the

sequence data as described in detail previously [30,31]. In sum-

mary, quality filters were used to remove short (less than 200 bp)

and low-quality reads (average phred score less than 25). Chimeric

sequences were identified against the Greengenes reference data-

base (release 13_5) [32] and removed. Operational taxonomic

units (OTUs) were defined at 97% similarity and classified against

the Greengenes reference database. Sequences are available from

the European Nucleotide Archive (PRJEB18120). The total abun-

dance of bacterial and microbial eukaryotes (primarily protists)

after 18 days of immersion was quantified using quantitative

PCR of bacterial 16S and eukaryote 18S rRNA genes, using well-

established protocols (see electronic supplementary material;

methods). Warming treatments were maintained for 40 days in

total, after which time the settling surfaces were removed from

the HSPS and preserved in ethanol for subsequent identification

and quantification of macroscopic metazoans. The inner 13�
13 cm of each surface was analysed by overlaying a transparency

with grid markings to form 1 mm2 subunits. The metazoan taxa

within each 1 � 1 mm grid-square were identified to the lowest

taxonomic level possible (to species for 75% of all taxa and to

genus for the remaining 25%) and the total number of subunits

within which each taxon occurred was summed for each sample

to quantify areal cover. The total abundance (i.e. number of

individuals or distinct colonies) of each taxon was also recorded.
(c) Statistical analysis
Community-level response patterns were analysed using multi-

variate statistics. The relative abundances of the OTUs determined

by molecular methods and the abundance/cover of taxa identified

with traditional taxonomic approaches were analysed separately

but in a directly comparable way. Abundance data were initially

square-root transformed to down-weight the influence of highly

abundant taxa before constructing Bray–Curtis similarity matrices.

PERMANOVA [33] was used to test for differences between the

treatments (more than 999 unique unrestricted permutations) and

where significant effects were detected (at p , 0.05) pairwise tests

were conducted to determine which treatments differed from

one another. Univariate community-level metrics were exami-

ned with permutational ANOVA. Similarity matrices based on

Euclidean distances between untransformed abundance and

richness values were constructed prior to conducting 999

unique unrestricted permutations to test for differences between

treatments. Where significant differences in multivariate com-

munity structure between warming treatments were detected (at

p , 0.05), SIMPER analysis was conducted to determine which

OTUs/taxa contributed most to the observed differences. All stat-

istical procedures were conducted using PRIMER v7 software [34]

with the PERMANOVA add-on [35].
3. Results
In total, 2465 and 388 distinct OTUs were determined for bac-

teria and protists, respectively, and 12 distinct metazoan taxa

(mostly bryozoa and ascidia) were identified. Multivariate ana-

lyses showed that communities comprising bacteria, protists

and metazoans responded analogously to warming, in that

communities held under ambient conditions were distinct

from those that had developed under the warming treatments

(figure 2a–c). PERMANOVA [35] tests showed significant

differences between the experimental treatments, with the con-

trol communities being statistically distinct from those held

under þ38C and þ58C (table 1). This response pattern was

http://rspb.royalsocietypublishing.org/


Table 1. Permutational analyses to test for community-level differences between experimental warming treatments. (a) Variability in multivariate community
structure was examined with PERMANOVA. Taxa abundances were square-root transformed prior to constructing a Bray – Curtis similarity matrix. Analyses were
based on 999 unique unrestricted permutations. (b) Results of PERMANOVA tests to examine variability in multivariate community structure as described by
presence/absence data. (c) Variability in community-level metrics was examined with univariate permutational analysis. Similarity matrices based on Euclidean
distances between untransformed abundance and richness values were constructed prior to conducting 999 unique unrestricted permutations. Where significant
differences were detected (at p , 0.05, given in italics) pairwise comparisons were conducted to determine which treatment levels differed from one another.
The degrees of freedom associated with each test are shown in subscripted parentheses.

response variable SS MS F p pairwise tests

(a) multivariate community structure (SQRT)

bacteria (2,11) 2913 1456 1.606 0.001 C = D3&D5, D3 ¼ D5

protists (2,10) 7355 3677 1.673 0.007 C = D3&D5, D3 ¼ D

metazoans (2,27) 4621 2310 4.259 0.001 C = D3&D5, D3 ¼ D5

(b) multivariate community structure (P/A)

bacteria (2,11) 2644 1322 1.200 0.013 C = D3&D5, D3 ¼ D5

protists (2,10) 7245 3622 1.736 0.003 C = D3&D5, D3 ¼ D

metazoans (2,27) 832 416 1.340 0.301 n.a.

(c) univariate community metrics

bacteria abundance (2,10) 7.26 � 1013 3.63 � 1013 4.736 0.036 C , D3 ¼ D5

eukaryote abundance (2,10) 1.46 � 1012 7.33 � 1011 1.076 0.375 n.a.

metazoan abundance (2,27) 10 120 5060 3.640 0.004 C , D3 ¼ D5

bacteria richness (2,11) 33 676 16 838 2.883 0.070 n.a.

protist richness (2,10) 3452 1726 4.900 0.042 C , D3 ¼ D5

metazoan richness (2,27) 5.60 2.80 2.634 0.114 n.a.
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highly consistent between the major groupings (i.e. bacteria,

protists and metazoans). Multivariate patterns based on pres-

ence/absence data were also examined, to assess the degree

of community turnover between temperature treatments and

community types. Variability patterns based on presence/

absence data were similar to those based on square-root-

transformed data for both bacteria and protists (figure 2d,e),

as communities developed under warmed conditions were sig-

nificantly different from those held at ambient temperature

(table 1). For metazoans, however, multivariate patterns

based on presence/absence data did not indicate separation

between temperature treatments (figure 2f ) and PERMA-

NOVA tests did not detect significant between-treatment

variability (table 1). For all comparisons, the PERMDISP rou-

tine indicated that within-treatment variability did not differ

between treatments ( p . 0.1 in all cases), suggesting that

multivariate community structure, rather than multivariate

dispersion (i.e. variability between plates), was impacted by

increased seawater temperature.

For all community types, the total abundance of organisms

increased in response to warming (figure 3a–c) with, on average,

communities comprising three to six times as many organisms/

marker genes in the þ58C treatments compared with the

controls. Variability between temperature treatments was sig-

nificant for the bacteria and metazoan communities, but not

for the microbial eukaryotes owing to high within-treatment

variability (figure 3, table 1). For bacteria and metazoan commu-

nities, the number of organisms recorded in theþ38C andþ58C
samples was significantly higher than the samples held at ambi-

ent temperature (table 1). A similar pattern was observed for

metazoan communities when structure was determined by the

areal cover of sessile invertebrates (rather than the abundance);
the warmed communities were more abundant and structurally

distinct compared with the control communities (see electronic

supplementary material, figure S5, table S1).

Patterns of community richness, as determined by the

number of bacterial OTUs, eukaryote OTUs or the number of

invertebrate taxa, also showed a similar response in that com-

munities held atþ58C had consistently greater richness values

than those held at ambient temperature (figure 3d– f). While

this trend was apparent for all the groups, statistically signifi-

cant differences between treatments were observed only for

protists (table 1). The recorded number of OTUs/taxa that

were unique to particular treatments did not vary in any con-

sistent way between treatments or kingdoms (electronic

supplementary material, figure S6).

With regards to the responses of individual OTUs/taxa

to warming, a SIMPER analysis was conducted to determine

the variables that were the principal contributors to the

observed dissimilarity in community structure between the

treatments. For the bacterial communities, Rhodobacteria were

consistently important discriminators between the control

and the warmed communities (see electronic supplementary

material, table S2). For the protist communities, OTUs closely

related to the diatom Melosira varians and the dinoflagellate

Paradinium poucheti were less abundant at higher temperatures,

whereas several other taxa (e.g. Takayama cf. pulchellum,

Telonema sp.) showed the opposite pattern and were important

discriminators between treatments (see electronic supplemen-

tary material; table S2). The metazoan communities were

dominated by colonial and solitary ascidians and cheilostome

bryozoans, which were all more abundant on warmed

panels compared with controls (see electronic supplementary

material, table S2). The UK-native ascidians Diplosoma

http://rspb.royalsocietypublishing.org/
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listerianum and Ciona intestinalis, and the non-native ascidian

Corella eumyota, were major contributors to the observed

dissimilarity between the communities, and were all more

abundant on panels held at þ38C and þ58C compared

with those held at ambient temperature (see electronic

supplementary material, table S2).

Community-level responses to increased temperature were

examined across a range of taxonomic resolutions by consoli-

dating species/OTU-level data according to their taxonomic

position (see electronic supplementary material, table S3, for

taxonomic groupings used for protists). For bacteria, partition-

ing in multivariate community structure by treatment was

evident through to aggregation to order level (see electronic

supplementary material, figure S7). Order-level communities

held at ambient temperature and at þ58C were significantly

different, with overall dissimilarity at 21.8% (figure 4 and elec-

tronic supplementary material, table S4). For protists, clear and

statistically significant partitioning in community structure

between treatments was observed up to the third level of taxo-

nomic aggregation (see electronic supplementary material,

figure S7), after which communities became more similar and

pairwise comparisons were non-significant (figure 4, see elec-

tronic supplementary material, table S4). Even at the coarsest

level of taxonomic resolution, overall dissimilarity between

protist communities held at ambient temperature and at

þ58C was 26.1%. Dissimilarity between metazoan commu-

nities held under different temperature treatments was more

consistent throughout aggregation to coarser taxonomic
levels, and clear partitioning between treatments was observed

at the phylum level (see electronic supplementary material,

figure S7). Statistically, phylum-level metazoan communities

held at ambient temperature and at þ58C were significantly

different, with overall dissimilarity at 27.3% (figure 4 and

electronic supplementary material, table S4).
4. Discussion
Our study has experimentally shown the overarching impor-

tance of seawater temperature in driving the development

and structure of marine communities comprising a diversity

of taxa, from microbes to metazoans. While the importance of

temperature in determining the biology of marine ectotherms

has been known for decades [14,36], only recently have techno-

logical advances allowed for experimental work on the

underlying role of temperature variability in structuring natural

communities. This is particularly true for marine communi-

ties, as controlling seawater temperature in situ is logistically

challenging and, consequentially, very few studies have

manipulated temperature within marine habitats (but see

[28,37]), and no previous experiments have achieved such pre-

cise temperature control. Here, seawater warming resulted in

significant shifts in community structure, which were similar

in magnitude and direction across bacteria, protists and

metazoans. Moreover, ecological responses to warming were

evident even at coarse taxonomic scales, indicating that

http://rspb.royalsocietypublishing.org/
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fundamental and pervasive shifts in community organization

occurred (i.e. changes in the abundances of higher-order taxa

rather than replacements of closely-related species), which

would probably alter ecological functioning as well as structure.

Our results show that temperature is a key driver of community

development and succession in marine habitats, which sup-

ports and elaborates on previous work focusing on individual

community-types such as bacteria-dominated aquatic biofilms

[38] and marine assemblages comprising sessile invertebrates

[39], which also highlighted temperature variability as a critical

process (but see [27] for an example of limited temperature

effects on metazoan communities).

Our most striking finding was the consistency of responses

to warming across highly divergent communities, from bac-

teria to protists to metazoans, which operate at vastly

different spatial and temporal scales and comprise fundamen-

tally distinct organisms and taxa. Shifts in community

structure were primarily driven by increased abundances at

higher temperatures, as many key discriminatory taxa

responded positively to warming and total community abun-

dance generally increased with temperature across all

community types. In addition, total community richness

tended to be greater at the warmest treatment compared with

the ambient controls. As temperature controls processes

acting across biological scales, from genes [16] to ecosystems

[13], increased temperature can lead to improved fitness and

enhanced ecological performance as the thermal optimum of

a species or population is reached, before declining rapidly

as thermal thresholds are exceeded [15,40]. It is likely, how-

ever, that the maximum temperatures experienced during

this experiment (approx. 19–218C) fell below thermal

thresholds for most taxa, many of which are widely distributed

and occur in warmer waters [41–43], and experience tempera-

ture maxima of a similar magnitude during the summer

months within the study region [44,45]. As such, many taxa

are likely to have responded positively to higher temperatures,

and exhibited faster growth and development on warmed

surfaces.

Previous work on aquatic biofilms developed under differ-

ent thermal regimes has shown that modest temperature

increases of the order of 2–58C can have considerable effects
on the development, structure and functioning of communi-

ties comprising bacteria and other single-celled organisms

[3,38,46–48]. Several studies have shown positive effects of

warming, in that biofilms develop more quickly at elevated

temperatures [3,47,49], while other studies have documented

changes in the relative abundances of bacteria and protists

[38,46,50]. With regards to the metazoans, it is well established

that post-settlement and early development mortality, through

disturbance or predation, is particularly high for many sessile

invertebrates [51,52] and, as such, faster growth and matu-

ration under warmer conditions may have reduced mortality

rates and resulted in the higher abundances and spatial

coverage of colonies and individuals observed at higher temp-

eratures. If the experiment had been conducted during periods

of maximum ambient temperatures (i.e. midsummer), or if

trophic resources had become limiting, it is possible that

increased temperature would have become stressful as thermal

thresholds for some taxa were exceeded and, consequently,

different population- and community-level responses would

have been observed. Overall, our findings indicate that the

rate of development of microbial biofilms and macroscopic ses-

sile invertebrate communities is greater under warmed

conditions, at least during periods when higher temperatures

do not exceed annual maxima. Further work on the seasonality

of community-level responses to warming is needed.

As well as a general increase in the abundances of bacteria

and protists with warming, we recorded significant shifts in

community composition (i.e. presence/absence data) between

the temperature treatments, suggesting a high rate of turnover

for these taxon-rich communities. Bacterial communities were

particularly diverse and the number of unique taxa associated

with each treatment was high (i.e. 250–400 OTUs); replacements

of species in response to warming suggests some degree of selec-

tivity or adaptation to temperature at the community-level. For

the metazoans, however, there was no evidence of species turn-

over as multivariate communities based on presence/absence

data did not differ between temperature treatments. Rather,

shifts in metazoan community structure were related to changes

in abundance rather than turnover of species or higher-order

taxa. The higher richness of bacteria and protist communi-

ties and the greater diversity of the available species pool
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compared with metazoans may suggest that species turnover,

and perhaps functional redundancy, in response to warming

is comparatively limited for metazoans.

The rate and trajectory of microbial biofilm development is

likely to have mediated, to some degree, the development of

macroscopic metazoan communities, as settlement of sessile

invertebrates is known to be influenced by biofilm community

structure [53,54]. For example, recent experimental work has

shown that seawater warming of the order of 2–68C above

ambient temperature can alter the structure of developing bio-

film communities, which in turn may positively affect the

settlement success of a coral reef sponge [55]. As such,

the higher abundances of metazoans we observed under

warmer conditions may have been caused, to some extent,

by differences in the structure of recipient biofilms at each

experimental temperature.

The most effective and reliable way of determining causation

is through controlled experimentation [56], but manipulating

temperature in natural marine environments is challenging.

Here, the state-of-the-art HSPS facilitated precise temperature

control to show experimentally that seawater temperature is a

fundamental driver of community development and succession

in marine environments across diverse taxonomic groupings.

However, as with other experimental approaches, the HSPS

does have limitations and the current study has certain caveats

that should be considered when interpreting our results. First,

the HSPS does not subject all components of populations and

communities to increased temperature, and cannot test for

warming effects on dispersal stages in the water column nor

on highly mobile species such as mesograzers. It is likely that

continued ocean warming will influence both dispersal capacity

[57] and trophic interactions [58], and these types of ecological

response warrant further research through other experimental

approaches. Second, the HSPS approach is only appropriate

for examining warming responses within a specific ecological

window, as it can only be used for short-term manipulations

and on early successional-stage sessile assemblages. Third, as

previously stated, the current study reports on an experiment

conducted in autumn and, as such, seasonal variability in

responses to warming, carry-over effects between seasons and
the importance of climatological history were not explored

here and require further work. Even so, the HSPS does facilitate

experimentation within complex habitats that are subjected to

natural environmental variability and support representative

species pools. In doing so, many of the issues of artificiality

associated with even the most sophisticated mesocosm systems

are largely removed and novel insights into the effects of temp-

erature variability on whole, naturally-assembled communities

can be gained.

While other anthropogenic stressors, such as ocean acidi-

fication [59] and eutrophication [60], are also important in

determining ecological pattern, our study demonstrates that

increased temperature is a major driver of change at both

the population- and community-level. Warming events (i.e.

‘marine heatwaves’, see [61]) similar in magnitude and duration

to our experimental treatments occur naturally in the oceans and

may increase in severity as a consequence of anthropogenic cli-

mate change [61,62]. As such, current and predicted future

changes in seawater temperature variability may drive funda-

mental and universal shifts in ecosystem structure with

largely unknown impacts on ecosystem functioning.
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