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A B S T R A C T

The Baltic Sea is a semi-enclosed sea that is optically dominated by coloured dissolved organic material (CDOM)
and has relatively low sun elevation which makes accurate ocean colour remote sensing challenging in these
waters. The high absorption, low scattering properties of the Baltic Sea are representative of other optically sim-
ilar water bodies including the Arctic Ocean, Yellow Sea, Black Sea, coastal regions adjacent to the CDOM-rich
estuaries such as the Amazon, and highly absorbing lakes where radiometric validation is essential in order to
develop accurate remote sensing algorithms. Previous studies in this region mainly focused on the validation and
improvement of standard Chlorophyll-a (Chl a) and attenuation coefficient (kd) ocean colour products. The pri-
mary input to derive these is the water-leaving radiance (Lw) or remote sensing reflectance (Rrs) and it is therefore
fundamental to obtain the most accurate Lw or Rrs before deriving higher level products. To this end, the retrieval
accuracy of Rrs from Medium Resolution Imaging Spectrometer (MERIS) imagery using six atmospheric correc-
tion processors was assessed through above-water measurements at two sites of the Aerosol Robotic Network for
Ocean Colour (AERONET-OC; 363 measurements) and a shipborne autonomous platform from which the highest
number of measurements were obtained (4986 measurements). The six processors tested were the CoastColour
processor (CC), the Case 2 Regional processor for lakes (C2R-Lakes), the Case 2 Regional CoastColour processor
(C2R-CC), the FUB/WeW water processor (FUB), the MERIS ground segment processor (MEGS) and POLYMER.
All processors except for CC had small average absolute percentage differences (ψ) in the wavelength range from
490 nm to 709 nm (ψ < 40%), while other bands had larger differences with ψ > 60%. Compared to in situ val-
ues, the Rrs(709)/Rrs(665) band ratio had ψ < 30% for all processors. The most accurate Rrs in the 490 to 709 nm
domain was obtained from POLYMER with ψ < 30% and coefficients of determination (R2) > 0.6. Using a score
system based on all statistical tests, POLYMER scored highest, while C2R-CC, C2R-Lakes and FUB had lower
scores. This study represents the largest data base of in situ Rrs, the most comprehensive analysis of AC models for
highly absorbing waters and for MERIS, conducted to date. The results have implications for the new generation
of Copernicus Sentinel ocean colour satellites.

1. Introduction

Remote sensing has become an important tool to monitor the dy-
namics of optically active substances in the marine environment due
to high coverage at both spatial and temporal scales (IOCCG, 2000).
Some bio-optical and geophysical variables, such as the concentration
of chlorophyll a (Chl a) as an indicator of phytoplankton biomass, sus-
pended particulate matter, coloured dissolved organic matter (CDOM),
as well as the bulk inherent optical properties of the visible surface
layer, have been successfully retrieved from water-leaving radiance (Lw)
or remote sensing reflectance (Rrs). Lw or Rrs at the sea surface is de-
rived from the top-of-atmosphere (TOA) radiance after atmospheric cor-
rection (AC). In principle, the more accurate Lw or Rrs, the more ac

curate will be the derived biogeochemical products. The performance of
atmospheric correction is therefore key to quality assured ocean colour
data for monitoring issues of water quality, carbon cycling and climate
change.

Various AC methods have been developed for remote sensing of the
open-ocean, coastal seas, and inland waters. In the open ocean, AC
mainly rely on the black pixel hypothesis (Gordon and Wang, 1994)
which assumes that the marine reflectance in the near infrared (NIR,
700–1000 nm) is negligible due to the relatively high absorption of
water itself. The TOA radiance in the NIR wavebands is further influ-
enced by absorption and scattering from atmospheric aerosols, and the
reflectance in the short visible domain (400–700 nm) is extrapolated
through spectral aerosol models. The black pixel assumption is too sim-
plistic for most inland and coastal waters since the contributions to Rrs
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of suspended particulates can cause Rrs in the near-infrared wavelength
range to depart from zero (Ruddick et al., 2000; Hu et al., 2000; Knaeps
et al., 2012). Alternative AC methods have been proposed to cope with
a variety of the Case 2 waters, including the black pixel method by
means of the short wave infrared or ultraviolet wavebands (Wang and
Shi, 2007; Siegel et al., 2000; He et al., 2012), spectral optimization that
utilizes a bio-optical model in conjunction with radiative transfer mod-
els (Steinmetz et al., 2011; Callieco and Dell'Acqua, 2011), and artifi-
cial neural networks (Schiller and Doerffer, 1999; Doerffer and Schiller,
2007; Schroeder et al., 2007; Brockmann et al., 2016).

MERIS on the European Space Agency ENVISAT mission, during its
operation in 2002–2012, offered a wide dynamic range of products for
both marine and terrestrial observations. It provided global coverage in
3 days, with observations at 15 bands at visible and NIR wavelengths
designed to observe both open-ocean and coastal environments. It also
provided data at full (~ 300 m) and reduced (~ 1200 m) resolution.
The MERIS era marked the start of long-term remote sensing observa-
tions of water quality in optically complex environments. A range of
atmospheric correction processors were developed for MERIS, designed
for a wide range of applications from coastal to inland waters. These
include the CoastColour (CC) processor (Doerffer and Schiller, 2007),
the Case 2 Regional (C2R) processor (Doerffer and Schiller, 2008), the
FUB/WeW water (FUB) processor (Schroeder et al., 2007), and the Case
2 Regional CoastColour (C2R-CC) processor (Brockmann et al., 2016).
In addition, the default MERIS ground segment (MEGS) processor has
been continually updated (Aiken and Moore, 2000) to reflect the perfor-
mance of the MERIS instrument over its lifespan. An alternative poly-
nomial based algorithm (POLYMER) (Steinmetz et al., 2011) has been
increasingly used with MERIS and other sensors, though it was not the
primary choice for optically complex waters.

The high-CDOM waters of the Baltic Sea are characteristic of wa-
ter bodies with high riverine input, long water retention times, but low
mineral particle loading, such as the Arctic Ocean, Yellow Sea, Black
Sea, coastal regions adjacent to the CDOM-rich estuaries such as the
Amazon, and highly absorbing lakes. In these environments, reflectance
at short visible wavelengths is particularly low and may contribute as
little as 0.4% of the TOA radiance, compared to 9.8% over open ocean
waters (IOCCG, 2010). The performance of AC processors dedicated to
high absorbing coastal waters, have thus far not been as successful as
those applied to turbid waters which have a stronger reflectance signal.
Regional re-tuning of some AC processors has improved their perfor-
mance in some highly absorbing waters (Attila et al., 2013).

Previous research in the Baltic Sea evaluated the performance of
standard and Case 2-specific Chl a (Harvey et al., 2015; D'Alimonte et
al., 2012; Kratzer et al., 2008; Melin et al., 2007; Reinart and Kutser,
2006) and kd (Stramska and Swirgon, 2014; Doron et al., 2011; Pierson
et al., 2008) ocean colour products. Regionally calibrated blue-green ra-
tio versions of OC4v6 (Pitarch et al., 2016; Darecki and Stramski, 2004)
have allegedly improved the accuracy of Chl a retrieval in the Baltic
Sea, but do not work for waters where CDOM dominates the absorption
in the blue. Using longer wavelengths such as red-to-green (Woźniak
et al., 2014) and red-to-near-infra red (Koponen et al., 2007; Krawczyk
et al., 1997; Matthews, 2011) is therefore advisable in these optically
complex, CDOM-rich waters. Ligi et al. (2016) assessed 30 empirical re-
mote sensing algorithms for retrieving Chl a in the Baltic Sea through
modelled and in situ reflectance data, and found that NIR-red band ra-
tio algorithms performed best. Few papers have considered the perfor-
mance of and improving the accuracy of the primary input, Lw or Rrs,
of SeaWiFS, MODIS-Aqua and MERIS, used to derive Chl a and kd prod-
ucts (D'Alimonte et al., 2012; Zibordi et al., 2009a, 2009b; Kratzer et
al., 2008; Melin et al., 2007; Darecki and Stramski, 2004; Ohde et al.,
2002). Some studies have improved the performance of regional specific
Chl a algorithms for the Baltic Sea using FUB and C2R processors cou-
pled to AC neural networks has been improved (Beltrán-Abaunza et al.,
2014; Attila et al., 2013; Kratzer et al., 2008). Melin et al. (2013) and
Bulgarelli et al. (2003) also showed that improvements in the aerosol li-
braries used in the AC processors for MERIS and SeaWiFS also improves
retrieval of Rrs. Some studies have shown that the accuracy of both the
shape and amplitude of Lw or Rrs are required otherwise improvements

in green to near infrared bands but failure in the blue bands may result
in reasonable Chl a concentration retrieval but a failure in the retrieval
of other products, such as absorption by CDOM.

Another common challenge to achieve this is obtaining sufficient
in situ data to carry out a comprehensive analysis of satellite Rrs. Both
MOBY (Voss et al., 2007), BOUSOLLE (Antoine et al. 2008) and
AERONET-OC (Zibordi et al., 2009b) have undoubtedly aided the global
assessment of ocean colour products. These platforms are fixed struc-
tures, close to the coast, and though temporal coverage from them is
good, spatial coverage is limited. A growing network of autonomous ra-
diometers deployed on research ships and ships of opportunity such as
ferries could potentially fill these spatial gaps in data coverage, provided
that the same high quality measurements on shipborne platforms are
achieved as on the fixed platforms. To this end in this paper, by combin-
ing shipborne and AERONET-OC measurements, and using a rigorous
quality control procedure for the ship data (Simis and Olsson, 2013),
we use the largest data base to date of in situ Rrs to evaluate the per-
formance, accuracy and suitability of six AC processors for MERIS for
the Baltic Sea. The retrieval accuracy at each band and spectral shape of
CC, C2R, C2R-CC, FUB, MEGS and POLYMER processors were evaluated
against in situ Rrs from two AERONET-OC measurement platforms and a
prototype platform for continuous shipborne reflectance measurements
operated from a research vessel, which has since been installed on two
merchant vessels on the Alg@line network managed by the Finnish En-
vironment Institute (SYKE).. The suitability of each processor at differ-
ent locations as well as the seasonal bias in retrieval of Rrs, was also
compared.

2. Data and methods

2.1. Study area

The Baltic Sea is a semi-enclosed brackish marine water body located
in Northern Europe between the maritime temperate and continental
sub-Arctic zones (Fig. 1), and has partial, seasonal sea-ice cover. It cov-
ers an area of ~ 400,000 km2 which includes the Gulf of Bothnia, Gulf
of Finland, Gulf of Riga, Gulf of Gdansk and Kattegat Bay. The mean wa-
ter depth over the region is approximately 54 m and tides are negligible
due to limited connectivity with the Atlantic Ocean. One of the main
characteristics of the Baltic Sea is the salinity gradient that increases
from the north with salinity < 1 PSU to the south-west with salinity up
to > 20 PSU. Riverine input is large and seasonal, with annual mean
river runoff of ~ 14,000 m3/s (Leppäranta and Myrberg, 2009; Omstedt
et al., 2004). Eutrophication and pollution are significant in the region
due to the terrestrial input of nitrogen and phosphorus and the limited
water exchange with the North Sea.

CDOM absorption coefficients at 440 nm are generally > 1.0 m− 1,
with higher values in estuaries and bays, such as the Neva Bay where
aCDOM(442) is 3.77 m− 1 (Woźniak et al., 2014; Ylöstalo et al., 2016).
There are generally two annual phytoplankton blooms in the Baltic Sea.
The spring bloom is dominated by diatoms and dinoflagellates, and ex-
hibits high peak biomass but this is generally short-lived from March to
April. The summer bloom is dominated by cyanobacteria from July to
September, when there is thermal stratification and cyanobacteria accu-
mulate during prolonged calm weather (Kahru et al., 2015; Groetsch et
al., 2014).

2.2. Shipborne observations

In situ radiometric observations from the shipborne platform were
acquired during three cruises on R/V Aranda in the Baltic Sea during
spring (April) 2011 and summer (July) 2010 and 2011 in the Gulf of
Finland, the Baltic Proper and the Archipelago Sea (Fig. 1).

Three RAMSES spectro-radiometers (TriOS Optical Sensors, Rast-
ede, Germany) were mounted on the bow of the research vessel. A
RAMSES-ACC with cosine collector optics was directed upwards to
record the downwelling irradiance above the water surface (Ed), and
two RAMSES-ARC radiance sensors were used to measure the sky ra-
diance (Ls) and the total upwelling ra
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Fig. 1. Locations of in situ data from the research vessel (RV, blue lines) and two AERONET-OC sites (yellow markers): Gustaf Dalen Lighthouse Tower (GDLT) and Helsinki Lighthouse
Tower (HLT). Red markers represent match-ups with the shipborne observations. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

diance pointed at the surface of the water (Lt), at 140° and 40° zenith
angles respectively. The azimuth angle in relation to the solar azimuth
was kept as close to 135° as possible using a stepper motor platform
to compensate for the solar azimuth (calculated from GPS time and lo-
cation) and vessel heading, without pointing back at the ship, and was
always > 90° (Simis and Olsson, 2013). Three sensors recorded the
wavelength range of 320–950 nm with 3.3 nm spectral resolution and a
field-of-view of 7° at 15-s intervals. Inter-calibration of the sensors was
verified before each cruise by pointing the radiance sensors at a large
white spectralon panel and simultaneously recording Ed on the roof of
the laboratory on a day with clear skies. Rrs (sr− 1) was then calculated
as follows:

(1)

(2)

where Lw + is the water-leaving radiance just above the sea surface and
ρs is the reflectance of sky radiance at the air-water interface, which de-
pends on solar azimuth angle, viewing geometry, wind speed, cloud and
surface roughness (Mobley, 1999; Ruddick et al., 2006; Mobley, 2015).
Here ρs was determined using the fingerprint method (Simis and Olsson,
2013), a spectral optimization technique that minimizes the propaga-
tion of atmospheric absorption features to Rrs and flag observations that
do not resolve to a smooth Rrs spectrum.

The shipborne reflectance underwent a secondary screening proce-
dure to eliminate spurious observations based on assumptions of the
spectral shapes of reflectance in the highly absorbing and weakly scat-
tering waters of the Baltic Sea. The following threshold criteria were
used: (1) the average Rrs in the ultraviolet range (350–400 nm) and
near infra-red (800–900 nm) should not be significantly negative, i.e.
Rrs(350–400) ≥ − 0.0005 sr− 1 and Rrs(800–900) ≥ − 0.0005 sr− 1. (2)
The maximum reflectance value was limited to Rrs(λ) < 0.015 sr− 1,
which removed spectra strongly affected by sun glint, whitecaps, or
spray. (3) Spectra were only considered valid if they retained a green
reflectance peak, following the criterion
1.5Rrs(400) < Rrs(580) > 2Rrs(800). This shape of the spectrum is ex-
pected in CDOM-rich waters with minor contribution to scattering from
mineral particles, such that CDOM and pure water absorption dom-
inate the blue and near infra-red reflectance, respectively. (4)

Following the same assumption, CDOM absorption increases towards
shorter wavelengths, spectra were validated with the criterion
Rrs(412) < Rrs(443), which removed spectra affected by incomplete re-
moval of reflected sky light causing a rise of reflectance in the blue.
(5) Removal of spectra where the difference between the maximum and
minimum Rrs in the 760–770 nm wavelengths was larger than 10% of
the maximum Rrs(560–600), i.e. clearly showing an effect of the oxygen
absorption peak. This set of filtering criteria applies specifically to con-
ditions in the Baltic Sea and should be revised for other water bodies.
Shipborne collection of Rrs(λ) should be significantly less challenging in
more turbid coastal waters with a higher amplitude of reflectance and
lower errors associated with the removal of reflected sky radiance. Fol-
lowing this screening procedure, the Rrs(λ) spectra are given in Fig. 2.

The NIR reflectance is expected to be close to zero in waters with
low particle scattering (Hooker et al., 2002). The NIR reflectance mea-
sured in the Baltic Sea may depart significantly from zero near to river
plumes or when there is an accumulation of near-surface phytoplankton.
In most cases, however, an offset from zero in the NIR will be primar-
ily attributed to residual surface water effects (spray, sun glint, white-
caps, and sky radiance including scattered cloud reflected on waves).
Removal of the offset in the NIR reflectance minimizes additional conta-
mination in the signal and leads to a better correlation with the satellite
signal. The fingerprint method to resolve Rrs(λ) per definition accounts
for direct and diffuse contributions to sky radiance reflected at the water
surface. Any offset observed in the NIR that is not due to high particle
scatter is expected to be spectrally neutral and can be compensated for,
by subtracting this signal from the Rrs(λ). In theory, the validity of this
assumption can be easily checked by evaluating the shape of the NIR
signal. For high particle scattering, this shape should reflect the spectral
dependence of water absorption. When this is not the case, high particle
scattering cannot account for the NIR offset and may thus be subtracted.
The shape of the NIR signal did not generally show a spectral depen-
dence of water absorption in the Baltic Sea (results not shown). NIR off-
set-corrected Rrs(λ) is here defined as Rrs(λ) from which the average Rrs
in the near infrared region (850–900 nm) is subtracted. The difference
between performing and not performing offset correction was compared
(Table 3).
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Fig. 2. Spectra of remote-sensing reflectance Rrs(λ) observed from the ship (blue curves) and AERONET-OC (black curves), separated by month in panels A–G. Panel H shows the ship-
borne Rrs spectra before applying a near infra-red offset correction. The number of observations are marked na and nf for the AERONET-OC and shipborne Rrs (following quality control),
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

2.3. AERONET-OC

AERONET-OC is a standardized measurement system installed on
fixed platforms at a range of coastal locations to collect marine ra-
diometric measurements coincident with aerosol measurements for re-
trieving aerosol optical properties (Zibordi et al., 2009b). Measurements
from two AERONET-OC sites were used from April 2005 to October
2011: the Gustaf Dalén Lighthouse Tower (GDLT) in the northern Baltic
Proper and the Helsinki Lighthouse Tower (HLT) in the Gulf of Finland
(Fig. 1). AERONET-OC measures the radiances of sun, sky and sea wa-
ter at 412–1020 nm using the modified CIMEL Electronique CE-318 au-
tonomous sun photometers, known as Sea-Viewing Wide Field-of-View
Sensor (SeaWiFS) Photometer Revision for Incident Surface Measure-
ments (SeaPRISM). The system adopts a sea-viewing zenith angle of
140° and relative azimuth of 90° with respect to the sun in the succes-
sive observations at each waveband. Radiometric measurements in the
first six wavebands (412–667 nm) are used to obtain water leaving ra-
diance, while bands at 870 nm and 1020 nm are used for quality checks
and turbid water flagging for the application of alternative above-water
methods (Zibordi et al., 2009b).

The AERONET-OC data are processed at three levels (Level 1.0, 1.5
and 2.0) based on different quality assurances, in which Level 2.0 is
fully quality-controlled including pre- and post-field calibration with
differences smaller than 5%, automatic cloud removal, and manual in-
spection. AERONET-OC Level 2.0 data at GDLT and HLT were obtained
from http://aeronet.gsfc.nasa.gov. For the present validation, the nor-
malized water-leaving radiances (LWN-f/Q) corrected for viewing angle
dependence and for the effects of the non-isotropic distribution of the
in-water radiance field, included in the AERONET-OC Level 2.0 data
products, were selected (Fig. 2).

The AERONET-OC wavebands were designed for SeaWiFS which are
slightly different to waveband centers for MERIS. The AERONET-OC
wave

band centers are 413, 441, 491, 555, 668 and 870 nm in HLT, and
412, 439, 500, 554, 675 and 870 nm in GDLT; while the related MERIS
bands are centered at 412, 443, 490, 560, 665 and 865 nm. Lwn-f/Q was
band shift corrected based on regional bio-optical algorithms to reduce
inter-band uncertainties. Further details of the methods are given in
Zibordi et al. (2009a), where LWN-f/Q is a function of the ratio of to-
tal backscattering and absorption coefficients, and of the extra-atmos-
pheric solar irradiance. The calculation of Rrs is subsequently derived
from LWN-f/Q after band-shifting, as follows:

(3)

where F0 is the extra-atmospheric solar irradiance for each waveband
(Thuillier et al., 2003).

2.4. MERIS AC processors

MERIS full resolution level 1b products (3rd reprocessing) seg-
mented into 0.5° × 0.5° tiles around in situ measurements were
processed using the following atmospheric correction schemes: CC
(v1.8.3), C2R-Lakes (v1.6), C2R-CC (v 0.15), FUB (v 2.2), MEGS (v 8.1)
and POLYMER (v 3.5). The first four atmospheric correction processors
are based on artificial neural network algorithms to derive the atmos-
pherically corrected water-leaving reflectance from TOA radiances. An-
cillary data with actual sea surface pressure and total ozone content val-
ues are utilized to calculate reflectance at the TOA. Water-leaving re-
flectance was estimated using the forward artificial neural network. The
main differences between these four processors are the range of water
constituents and inherent optical properties used in the datasets to train
their respective neural networks.

The CC processor employed a wider range of optical properties in
the training data (Doerffer and Schiller, 2007), and was developed
for application
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in optically-complex coastal waters. C2R (Doerffer and Schiller, 2007)
was intended as a generic AC processor for complex Case 2 waters, and
includes two plugins for the inland water constituent retrieval optimized
for boreal and eutrophic lakes (Doerffer and Schiller, 2008). The train-
ing data set was produced through the ocean-atmosphere Monte Carlo
photon tracing model. The atmospheric component of the model used
a standard atmosphere (1013.2 hPa atmospheric pressure and 350 Dob-
son units of ozone) with different aerosol models, cirrus cloud parti-
cles and a rough, wind dependent sea surface with reflectance. The at-
mospheric correction for these two plugins is identical and hereafter
we refer to them as C2R-Lakes. The atmospheric model for C2R-Lakes,
in turn, was developed for optically complex inland and coastal wa-
ters using a calibration dataset specific to these environments. Similar
to CC, a Monte Carlo radiative transfer model was used to simulate the
TOA radiance, which contained four aerosols models (continental, mar-
itime, urban/industrial and stratospheric). C2R-CC is the latest in the
evolution of these processors, and employs artificial neural networks
for atmospheric correction using a large training database obtained by
radiative transfer simulations (Brockmann et al., 2016). C2R-CC used
a coastal aerosol model derived from coastal AERONET measurements
(Aznay and Santer, 2009), and the atmospheric radiative transfer was
calculated through a parameterised version of the successive order of
scattering technique (Lenoble et al., 2007). A version of C2R-CC specif-
ically trained for extreme combinations of inherent optical properties is
also included, but has not been considered here. FUB was designed for
European coastal waters and integrates the entire AC process in a single
neural network to retrieve water leaving reflectance from the TOA radi-
ances. The data set used to train the neural network was generated by
the matrix operator method, using a mixture of maritime and continen-
tal aerosol models as well as an US standard atmosphere (Schroeder et
al., 2007). The atmospheric correction scheme for FUB is divided into
a Rayleigh-ozone correction and an atmospheric correction network.
Water constituents and atmospheric properties are retrieved simultane-
ously from the TOA radiance, whereas the other processors firstly derive
the reflectance, then calculate in-water parameters from the reflectance
(Schroeder et al., 2007). FUB provides the water-leaving reflectance at
a subset of eight MERIS wavebands (412–665 nm and 709 nm).

MEGS was developed specifically for MERIS and has been regularly
improved and updated, following vicarious calibrations of MERIS. It
performs the black-pixel atmospheric correction for open oceanic wa-
ters with the low NIR Rrs, and uses the bright-pixel atmospheric cor-
rection for turbid waters based on the NIR Rrs with a fixed spectral
shape (Antoine and Morel, 2011; Moore and Lavender, 2011). The opti-
cal properties of atmospheric aerosol are inferred from the near-infrared
wavebands and the atmospheric contribution to the TOA signal is then
extrapolated to the visible part of the spectrum. MEGS uses the spectra
at near infrared wavelengths (778 and 865 nm) to calculate the aerosol
radiance ratio assuming that the reflectance is null at the wavelength
beyond 700 nm. The path radiance and its spectral shape in the visible
wavebands is then determined by iterating the different aerosol models
and then validated using water-leaving reflectance at 510 nm assuming
an priori known constant for Rrs(510) (Nobileau and Antoine, 2005).

POLYMER is a spectral optimization method using a polynomial
atmospheric model and a bio-optical ocean water reflectance model.
The atmospheric model simultaneously fits three components ranging
from spectrally neutral (e.g. residual sun glint) to weak (λ− 1, aerosols)
and strong (λ− 4, e.g. Rayleigh scatter) wavelength dependence. The
bio-optical model only relies on Chl a concentration and the backscat-
tering coefficient of non-covarying particles (newer versions of POLY-
MER also include a mineral absorption component, which is not consid-
ered relevant to the current data set). These five parameters are opti-
mized to obtain the best approximation of the measurements in a con-
figurable range of spectral bands. Version 3.5 of POLYMER was not
specifically designed to handle optically complex coastal waters but
includes a Case 2 water switch. The initial conditions for the Case-1
bio-optical model were changed to Chl a = 1 mg m− 3 and total sus-
pended matter = 1 g m− 3 to avoid solutions designed for oceanic wa-
ters. The atmospheric model uses the visible and NIR wavebands to
assess sun glint and aerosol scattering properties (Steinmetz et al.,
2011). A version of POLYMER (v4.1), with a modified

bio-optical model which includes scattering by mineral particles was
trialed, but not considered to be a significant improvement for the
low-mineral laden waters of the Baltic Sea.

The main output of the six AC processors was the reflectance ρw(λ),
which was converted to Rrs(λ) following:

(4)

A series of quality flags included with the output of each processor
were used to define the validity of a pixel either according to the input
L1B data or as processor-specific conditions. Invalid pixels were masked
based on land, haze, whitecaps, cloud or sun glint contamination flags
based on processing the L1B data with Idepix v2.2.10. Processor specific
flags included: poor fits to aerosol models; TOA radiances outside of the
training or application range; and results surpassing the minimum or
maximum concentration bounds. The flag combinations used with each
processor are listed in Table 1.

2.5. Match-up procedure

Match-ups between in situ and MERIS retrieved Rrs were selected
based on location and overpass time, as well as a spatial homogeneity
criterion following Bailey and Werdell (2006), as outlined below.

Match-ups within ± 12 h between in situ shipborne observations
and MERIS over-pass were extracted from the processed imagery in
3 × 3 pixel boxes using the nearest neighbour approach. Subsequently
match-up time-windows of ± 0.5 h to ± 12 h were compared (Table 3)
to obtain the best balance between the highest number of match-ups and
reducing artefacts such as water mass and particle dynamics (including
phytoplankton mobility). Due to the high sampling frequency from the
ship, MERIS match-up pixels could correspond to multiple shipborne ob-
servations. In these cases the mean (μ) and standard deviation (σ) spec-
trum of any valid in situ observations was calculated. In situ observa-
tions which exceeded μ ± 1.5σ were discarded to decrease the effects of
the horizontal (and to an extent, temporal) non-homogeneity. The mean
spectrum of the remaining observations matched to the same pixel was
used for further analysis.

AERONET-OC Level 2.0 data were selected strictly within a ± 2-h
window around the satellite overpass. The shorter time window was
chosen because the AERONET-OC observations did not directly acquire
Ed and changing in situ illumination conditions could lead to invalid
comparisons with Rrs. The AERONET-OC data were obtained from the
average in observations using the procedures outlined above to filter for
outliers.

The 3 × 3-pixel boxes centered on the in situ locations were ex-
tracted from the atmospherically corrected MERIS products. The MERIS
retrieved Rrs were checked for spatial homogeneity to avoid the influ-
ence of severe spatial variability and abnormal values. Differences be-
tween the value of each valid pixel and their mean in the 3 × 3-pixel
box were limited to twice the standard deviation to eliminate out-
liers. To meet the spatial homogeneity criterion (filtered standard de-
viation divided by the filtered mean), the coefficient of variation

Table 1
Quality flags for pixel exclusion criteria. l1 is level 1, l2 is level 2, l2r is level 2 reflectance,
agc is atmospheric sun glint correction, aot560 is aerosol optical thickness at 560 nm, oor
is out of range, toa is top of atmosphere, tosa is top of standard atmosphere, oos is out of
scope, ooadb is aerosol model is out of aerosol model database, rtosa is reflectance at top
of standard atmosphere, atm_in is atmospheric correction failure in input, atm_out atmos-
pheric correction failure in output, pcd_1_13 is product confidence flag in bands 1 to 13,
negative _bb is negative backscatter.

Processor Flags Names

l1_flags suspect, land_ocean, bright, coastline,
invalid

CC l2r_flags aot560_oor, toa_oor, tosa_oor, tosa_oos
C2R_Lake agc_flags atc_oor, toa_oor, tosa_oor
C2R-CC l2_flags rtosa_oor, rtosa_oos
FUB result_flags atm_in, atm_out
MEGS l2_flags ooadb, pcd_1_13
POLYMER bitmask negative_bb, out_of_bounds, exception
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was set at < 0.15. If the number of remaining pixels in the 3 × 3-pixel
box was < 5, the observation was omitted. The mean of remaining pix-
els in the 3 × 3-pixel box was then calculated.

Approximately 12% of the shipborne in situ observations remained
after stringent quality control, corresponding to 1947 individual MERIS
pixels within the ± 12-h window around the satellite overpass. The
number of shipborne observations available for match-up analysis de-
creased further after applying specific quality flags for each AC proces-
sor. The number of match-up observations was 59 for CC, 602 for
C2R-Lakes, 644 for C2R-CC, 256 for FUB, 427 for MEGS and 644 for
POLYMER within the ± 12-h window. From the AERONET-OC Level 2
data approximately 22% of the available data (363 observations) corre-
sponded to the ± 2-h window around the satellite overpass, which were
all used in subsequent analyses.

Fig. 2 gives all shipborne and AERONET-OC data meeting these
criteria. Measurements ± 3-h for shipborne data and ± 2-h for
AERONET-OC were subsequently used for accuracy assessment analysis
given in Figs. 3–9 and to compute the statistics given in Table 4 and Fig.
10a, c, d. The number of retrievals differed for each AC processor. Table
5 and Fig. 10b gives statistics using the same number of data for each
AC processor using a threshold of N = 494.

2.6. Statistical indices

The differences between MERIS observations and in situ observations
were quantified using a number of statistical metrics, including the co-
efficient of determination (R2), the average absolute percentage differ-
ence (ψ), the root-mean-square difference (Δ) and the bias (δ) between
MERIS and in situ match-ups, calculated as follows:

(5)

(6)

Fig. 3. Scatter plots of MERIS Rrs retrieved by FUB versus in situ Rrs, for MERIS bands as indicated at the top of each panel. The number of observations are na = 176 for the AERONET-OC
and nf = 221 for shipborne Rrs. Blue points represent match-ups with shipborne data, red crosses are shipborne observations where Rrs was negative in the near infra-red (before offset
correction), and black plusses are match-ups with AERONET-OC. The solid line represents unity and the dashed line is the best fit of Type-2 linear least-squares regression through the
combined data sets. R2 is the coefficient of determination, p is the probability level of significance, ψ is the average absolute percentage difference, Δ is the root mean square difference
and δ is the bias between MERIS and in situ match-ups, S is the slope of the Type-2 linear regression. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)
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Fig. 4. Scatter plots of Rrs retrieved by CC versus in situ Rrs. The number of observations are na = 110 for the AERONET-OC and nf = 40 for shipborne Rrs. Markers and symbols are as
described for Fig. 3.

(7)

(8)

where xi is the i-th in situ observation, yi is the i-th MERIS observation,
and N is the number of match-ups.

R2 is equal to the square of the correlation coefficient, represent-
ing a linear consistency between the in situ and MERIS observations,
and the proportion of the variation that explained by the linear re-
gression. Higher R2 indicates a higher degree of correlation, whereas
R2 is sensitive to both outliers and narrow

data distributions. Statistical significance of the correlation coefficient
is tested using the student's distribution. The smaller the probability
level of significance (p), the more significant the linear relationship be-
tween in situ and MERIS observations. Δ and ψ measures the accuracy of
match-ups. ψ is the relative difference which is sensitive to small values
while Δ is the absolute difference which is sensitive to outliers. Values
of ψ and Δ close to zero indicate that MERIS observations compare well
with the in situ observations. Bias δ is used to determine the underes-
timation or overestimation of MERIS products compared to the in situ
data, with a value near zero indicating no systematic under- or over-es-
timation.

Type-2 linear regression was used to fit the in situ and MERIS obser-
vations for their independent randomness (Glover et al., 2011; Brewin
et al., 2015). The slope (S) close to one and intercept (I) close to zero
indicate that the MERIS observations fit well against the in situ observa-
tions.
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Fig. 5. Scatter plots of Rrs retrieved by C2R-Lakes versus in situ Rrs. The number of observations are na = 213 for the AERONET-OC and nf = 420 for shipborne Rrs. Markers and symbols
are as described for Fig. 3.

2.7. AC processor ranking

A scoring scheme based on Brewin et al. (2015) and Müller et al.
(2015) was employed to rank the relative performance of the AC proces-
sors. The score was obtained by comparing all statistical metrics (R2, ψ,
δ, Δ, S and I) for each waveband of each processor. The average score of
all processors was compared against each individual processor. A score
of < 1 or > 1 indicates significantly worse or better performance re-
spectively.

A score ranging from zero to two for each statistical metric was as-
signed as follows:

(1) Zero points were assigned when: (i) R2 was less than the mean of
the lower 90% confidence intervals of all processors; (ii) each of ψ
and Δ was higher than the mean of the upper 90% confidence in-
terval; (iii) each of δ and I overlapped with neither the mean 90%
confidence interval nor zero ± twice the mean standard deviation;
(iv) S overlapped with neither the mean 90% confidence interval
nor one ± twice the mean standard deviation.

(2) One point was assigned when: (i) each of R2, ψ and Δ overlapped
with the mean 90% confidence interval; (ii) each of δ and I over-
lapped with either the mean 90% confidence interval or
zero ± twice the mean standard deviation, but not both; (iii) S
overlapped with either the mean 90% confidence

8



UN
CO

RR
EC

TE
D

PR
OOF

P. Qin et al. Remote Sensing of Environment xxx (2017) xxx-xxx

Fig. 6. Scatter plots of Rrs retrieved by C2R-CC versus in situ Rrs. The number of observations are na = 214 for the AERONET-OC and nf = 453 for shipborne Rrs. Markers and symbols are
as described for Fig. 3.

interval or one ± twice the mean standard deviation for all proces-
sors, but not both.

(3) Two points were assigned when: (i) R2 exceeded the upper limit of
the mean 90% confidence interval; (ii) each of ψ and Δ was less than
the lower limit of the mean 90% confidence interval; (iii) each of δ
and I overlapped with both the mean 90% confidence interval and
zero ± twice the mean standard deviation; (iv) S overlapped with
both the mean 90% confidence interval and one ± twice the mean
standard deviation.

For each waveband, a maximum of 12 points could be scored.
Considering the varying numbers of wavebands returned by the six
processors, the score was standardized to the sum of points by divid-
ing over the number of wavebands. The final score for each proces-
sor was then obtained from the individual scores divided by the av-
erage score of all processors. The Monte Carlo method

(Robert and Casella, 2013) was used over 1000 repetitions, with the size
of each re-sampled subset 0.75 times the size of the original dataset, to
reduce the sensitivity of the scores to the size of the matched dataset
available with each processor. Monte Carlo resampling resulted in a con-
fidence range of the score for each AC processor.

3. Results

3.1. Offset correction for the shipborne observations

Fig. 2 presents the in situ Rrs spectra observed from the AERONET-OC
and shipborne platforms. The two data sources may differ slightly
since the AERONET-OC observations are taken from a stationary tower
where the sensors are located some ~ 25 m from the sea surface with
a field of view of 1°.

9



UN
CO

RR
EC

TE
D

PR
OOF

P. Qin et al. Remote Sensing of Environment xxx (2017) xxx-xxx

Fig. 7. Scatter plots of Rrs retrieved by MEGS versus in situ Rrs. The number of observations are na = 187 for the AERONET-OC and nf = 306 for shipborne Rrs. Markers and symbols are
as described for Fig. 3.

The shipborne observations were located ~ 7 m from the sea surface
with the field of view of 7°. The spectra measured from the shipborne
platform are given in Fig. 2H and Rrs(865) was > 0.0020 sr− 1 for many
spectra. These values are significantly higher than those reported in
Ficek et al. (2011) and in most cases greater than the ranges obtained
from the MERIS atmospheric correction processors for Rrs(865) (Figs.
3–8). Spectra in panels A-G have been offset-corrected by subtracting
the average Rrs at 850–900 nm from each reflectance spectrum.

Basic match-up statistics between MERIS-derived Rrs(λ) and both
offset-corrected and uncorrected shipborne observations are given in
Table 2. For the match-ups between MERIS and shipborne observa-
tions, Δ of the non-offset corrected Rrs at selected MERIS wave bands
varied from 0.0009 sr− 1 to 0.0078 sr− 1 for CC, while the range was
0.0004–0.0011 sr− 1 for other processors. Using the offset corrected
data, the difference was greater for

CC (Δ = 0.0011–0.0080 sr− 1), but lower for all other processors
(Δ = 0.0002–0.0011 sr− 1). The determination coefficients R2 increased
and the correlation was improved for each processor following the off-
set correction. From hereon, the in situ shipborne Rrs are reported exclu-
sively using the offset correction. We note that the use of a spectrally
neutral offset correction is suitable in combination with the fingerprint
method used to calculate shipborne Rrs(λ), which is discussed further in
Section 4.1.

3.2. In situ Rrs

The monthly AERONET-OC spectral reflectance over the visible and
near-infrared domains exhibited a high degree of similarity (Fig. 2A–G).
The hyperspectral Rrs collected from the shipborne measurements cov-
ered a wider
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Fig. 8. Scatter plots of Rrs retrieved by POLYMER versus in situ Rrs. The number of observations are na = 211 for the AERONET-OC and nf = 453 for shipborne Rrs. Markers and symbols
are as described for Fig. 3.

Rrs range, but were largely restricted to observations in April and July
when the research cruises primarily targeted the period of highest
chlorophyll a.

A dominant peak in the reflectance between 500 and 600 nm is seen
in all AERONET-OC spectra. The amplitude of reflectance was con-
sistently low with the maxima < 0.006 sr− 1 around 550 nm and the
minima approaching zero in the blue waveband at 412 nm, indicating
high absorption by CDOM. Monthly average Rrs(550) changed season-
ally with the lower values of 0.0017 sr− 1 in May and September, and
with the higher values of 0.0029 sr− 1 in July and August.

The shipborne hyperspectral Rrs observation showed a similar spec-
tral shape, with the green peak located near 580 nm, with a maximum
< 0.015 sr− 1. A local minimum at 660 nm and maximum at 680 nm
were consistently observed in the shipborne hyperspectral Rrs, corre-
sponding to the absorption of Chl a in the red waveband (675 nm)
and sun-induced fluorescence of Chl a, re

spectively. Spectra in July and August also had the highest absorption
at red wavebands when Chl a concentrations reached up to 15 mg m− 3

(Simis and Olsson, 2013).

3.3. Match-up time window of the shipborne observations

We analyzed various time windows (± 12 h, ± 6 h, ± 4 h, ± 3 h,
± 2 h and ± 0.5 h) between the shipborne data and MERIS over-pass to
assess the effect on the match-up results, which are given in Table 3 for
Rrs(560).

Compared to the ± 12-h window, the number of match-ups de-
creased to 90% for the ± 6-h window, 83% for the ± 4-h window,
73% for the ± 3-h window, 46% for the ± 2-h window and 14% for
the ± 0.5-h window. The ψ values of Rrs(560) by POLYMER ranged
from 5.5% (± 0.5-h window) up to 11.5% (± 12-h window) and Δ
were from 0.0002 sr− 1 to 0.0008 sr− 1. Anal
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Fig. 9. Scatter plots of band ratio between MERIS-derived and in situ Rrs. Markers and symbols are as described for Fig. 3.

ogous results were observed for C2R-Lakes, C2R-CC and MEGS. The
number of match-ups was lower for these processors and MERIS
Rrs(560) showed a lower difference with the in situ Rrs when using
the shorter time windows. For the shorter match-up windows, the co-
efficient of determination improved for

most processors except for CC and FUB, while the bias varied slightly
for all processors. Rrs(560), irrespective of AC processor, had the low-
est deviation when using the ± 3-h match-up window. Similar per-
formance was observed for the other wavebands. The time window
of ± 3 h was selected to report fur

12
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Fig. 10. Scores assigned to the Rrs retrieval performance of each processor (1. CC; 2. C2R-Lakes; 3. C2R-CC; 4. FUB; 5. MEGS; 6. POLYMER). (A) Scores when including all data available
for each processor. (B) Scores obtained with observations shared between C2R-Lakes, C2R-CC, MEGS, and POLYMER. (C) Scores (all data and processors included) separated by data
source (GDLT = Gustaf Dalen Lighthouse Tower, HLT = Helsinki Lighthouse Tower, RV = Research Vessel). (D) Scores separated by month. Error bars in panels A–C are the 2.5% and
97.5% confidence interval of the scores (see text).

Table 2
The root mean square difference (Δ, units sr− 1) and the coefficient of determination (R2) between Rrs derived from MERIS and in situ shipborne observations using a match-up time
window of ± 3 h, using no offset and offset correction.

Δ (R2)

443 nm 490 nm 560 nm 665 nm 709 nm

No offset correction
CC 0.0054 (0.00) 0.0068 (0.55) 0.0078 (0.63) 0.0018 (0.01) 0.0009 (0.01)
C2R-Lakes 0.0005 (0.40) 0.0006 (0.62) 0.0006 (0.88) 0.0004 (0.58) 0.0004 (0.40)
C2R-CC 0.0007 (0.20) 0.0007 (0.57) 0.0009 (0.79) 0.0004 (0.56) 0.0004 (0.44)
FUB 0.0006 (0.40) 0.0006 (0.79) 0.0011 (0.86) 0.0008 (0.35) 0.0006 (0.01)
MEGS 0.0011 (0.25) 0.0009 (0.61) 0.0008 (0.83) 0.0006 (0.44) 0.0005 (0.36)
POLYMER 0.0007 (0.44) 0.0005 (0.79) 0.0007 (0.88) 0.0004 (0.50) 0.0006 (0.31)
Offset correction
CC 0.0056 (0.30) 0.0070 (0.47) 0.0080 (0.53) 0.0021 (0.64) 0.0011 (0.73)
C2R-Lakes 0.0005 (0.40) 0.0007 (0.65) 0.0005 (0.91) 0.0003 (0.78) 0.0002 (0.66)
C2R-CC 0.0008 (0.23) 0.0008 (0.62) 0.0008 (0.80) 0.0003 (0.71) 0.0003 (0.63)
FUB 0.0004 (0.51) 0.0003 (0.87) 0.0008 (0.88) 0.0004 (0.76) 0.0003 (0.61)
MEGS 0.0011 (0.22) 0.0009 (0.62) 0.0008 (0.85) 0.0004 (0.62) 0.0004 (0.62)
POLYMER 0.0009 (0.54) 0.0006 (0.88) 0.0006 (0.91) 0.0003 (0.80) 0.0003 (0.67)

ther results, providing the best balance between match-up volume and
statistical match-up performance.

3.4. Accuracy assessment of AC processors

Firstly, all valid match-up observations within ± 3-h for shipborne
data and ± 2-h for AERONET-OC were considered for each of the
processors. All six AC processors showed a low correlation at 412 nm
(R2 < 0.37), significant probability of the regression fit (p < 0.001)
and large deviations (ψ > 200%)

with in situ Rrs match-ups (Figs. 3–8). It is noted that the range in
in situ Rrs at blue bands was small, which influences these regression
results. For C2R-Lakes, C2R-CC, FUB, MEGS and POLYMER Rrs(443),
there was a slightly higher correlation (R2 ranging from 0.11 to 0.60)
and lower differences (ψ ranging from 51% to 102%) compared to
in situ Rrs(443), except for CC. The highest relative differences of all
processors were observed in the near infrared at 754 and 779 nm
with ψ > 150%. For the other visible wavebands (490–709 nm), the
performance of all processors improved, especially FUB, C2R-Lakes,
C2R-CC, MEGS and POLYMER (Figs. 3, 5, 6, 7 and 8). The FUB proces-
sor performed well at 490–709 nm with R2 > 0.61 and low ψ of
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Table 3
Statistical results of Rrs(560) between MERIS and shipborne observations for six match-up time windows of ± 0.5 h, ± 2 h, ± 3 h, ± 4 h, ± 6 h and ± 12 h, including the number of
match-ups (N), the determination coefficient (R2), the average absolute percentage difference (ψ), the root mean square difference (Δ) and the bias (δ).

Time window

± 0.5 h ± 2 h ± 3 h ± 4 h ± 6 h ± 12 h

CC N 4 26 40 40 52 59
R2 1.00 0.56 0.53 0.53 0.13 0.08
ψ (%) 240.95 215.56 246.10 246.10 219.57 211.65
Δ 0.0077 0.0073 0.0080 0.0080 0.0076 0.0074
δ 2.41 2.13 2.45 2.45 2.14 2.07

C2R-Lakes N 81 245 420 490 544 602
R2 0.91 0.92 0.91 0.87 0.86 0.85
ψ (%) 8.85 9.77 9.03 9.70 10.46 10.44
Δ 0.0004 0.0005 0.0005 0.0006 0.0006 0.0006
δ 0.05 0.07 0.05 0.05 0.05 0.04

C2R-CC N 86 265 453 534 578 644
R2 0.91 0.87 0.80 0.75 0.70 0.69
ψ (%) 9.79 14.07 14.51 16.49 16.56 17.39
Δ 0.0004 0.0007 0.0008 0.0008 0.0009 0.0009
δ − 0.03 − 0.07 − 0.03 − 0.04 − 0.02 − 0.03

FUB N 43 149 221 255 255 256
R2 0.61 0.85 0.88 0.87 0.87 0.86
ψ (%) 22.36 21.36 18.20 18.40 18.41 18.56
Δ 0.0009 0.0008 0.0008 0.0009 0.0009 0.0009
δ − 0.22 − 0.17 − 0.14 − 0.15 − 0.15 − 0.15

MEGS N 74 201 306 364 377 427
R2 0.92 0.88 0.85 0.77 0.76 0.76
ψ (%) 7.11 12.28 12.05 12.89 13.09 14.79
Δ 0.0004 0.0007 0.0008 0.0009 0.0009 0.0009
δ 0.02 − 0.03 − 0.01 − 0.02 − 0.02 − 0.05

POLYMER N 95 281 453 518 573 644
R2 0.98 0.93 0.91 0.87 0.85 0.83
ψ (%) 5.47 9.19 8.63 9.10 9.48 11.51
Δ 0.0002 0.0005 0.0006 0.0006 0.0007 0.0008
δ − 0.03 − 0.05 − 0.03 − 0.03 − 0.03 − 0.06

12–37% (Fig. 3). Compared to all in situ Rrs(λ), the CC processor over-es-
timated Rrs with a high positive bias (δ > 1.9), which resulted in the
highest differences (ψ > 190%) in visible wavebands (Fig. 4). The
C2R-Lakes processor showed good agreement with in situ Rrs(λ) for most
bands with ψ < 30% and R2 = 0.66–0.80, but exhibited high differ-
ences at 490 nm (ψ = 49%) and 560 nm (ψ = 32%). C2R-CC also per-
formed well and had low ψ at < 35% in bands 490–709 nm and a mod-
erate coefficient of determination (R2 ranging from 0.62 to 0.84). MEGS
had a low correlation at most wavebands (R2 < 0.74) and similar devi-
ations with ψ = 22–38%, except for Rrs(560) with a better performance
(ψ = 16% and R2 = 0.87). POLYMER was the most accurate processor
with lowest ψ (12% to 22%) and highest consistency (R2 > 0.81), ex-
cept for Rrs(709) with lower accuracy (ψ = 29%, R2 = 0.66).

There was a large variation in the number of valid match-ups be-
tween processors with 150 for CC, 633 for C2R-Lakes, 667 for C2R-CC,
397 for FUB, 495 for MEGS and 664 for POLYMER. We therefore
also compared performance over the set of match-ups shared by the
processors to reduce the effect of processor-specific quality flags. Table
4 gives an overview of the number of observations shared between
any two AC processors within the ± 3-h window. CC and FUB had
the lowest number of valid observations,

which indicates that these two processors were often operating out of
their scope and may not be applicable to the Baltic Sea. When CC and
FUB are not considered, the shared subset of match-ups for C2R-Lakes,
C2R-CC, MEGS and POLYMER was 494 and the statistical results at Rrs
490, 560, 620, 665 and 709 nm is given in Table 5.

For this data set, C2R-Lakes tended to overestimate Rrs from
510 to 709 nm where δ varied from − 0.02 to 0.33 and ψ was < 35%.
Rrs(490) showed higher deviation with ψ = 54% and R2 = 0.35 (Table
5). C2R-CC tended to overestimate Rrs with δ between 0.00 and 0.23
at 490 to 709 nm, with ψ < 31%. MEGS underestimated Rrs especially
at 620 to 709 nm, with a moderate correlation (R2 = 0.57–0.74) and
ψ varying from 22% to 38%, except for Rrs(560) where R2 = 0.87 and
ψ = 17%. The highest correlation with in situ Rrs was for POLYMER
which gave R2 > 0.65 and ψ < 27% at these wavebands.

3.5. Accuracy assessment of band ratios

Band ratios Rrs(443)/Rrs(560), Rrs(490)/Rrs(560) and
Rrs(709)/Rrs(665) are commonly used to relate the shape of reflectance
to biogeochemical properties, notably phytoplankton absorption sig-
nals in the blue/green and near infrared/red part of the spectrum.
The band ratios for each processor were evaluated

Table 4
The numbers of observations shared between any two AC processors.

CC FUB C2R-Lakes C2R-CC MEGS POLYMER

CC 150
FUB 101 397
C2R-Lakes 150 355 633
C2R-CC 150 396 622 667
MEGS 118 336 495 494 495
POLYMER 150 397 632 664 495 664
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Table 5
Statistical results of Rrs match-ups based on 494 shared observations within a time window of ± 3 h, including the coefficient of determination (R2), the average absolute percentage
difference (ψ), the root mean square difference (Δ), and bias (δ), slope (S) and intercept (I) of type-2 linear regression between MERIS and in situ match-ups.

Processor λ (nm) R2 ψ (%) Δ (sr− 1) δ S I (sr− 1)

C2R-Lakes 490 0.35 53.75 0.0012 0.52 1.21 0.0004
510 0.78 17.52 0.0006 0.15 1.09 0.0001
560 0.81 35.25 0.0011 0.33 0.75 0.0017
620 0.78 28.33 0.0006 0.20 1.64 − 0.0008
665 0.71 22.99 0.0003 0.08 1.31 − 0.0003
680 0.66 16.34 0.0003 − 0.02 1.95 − 0.0012
709 0.62 27.67 0.0003 0.12 1.71 − 0.0005

C2R-CC 490 0.73 31.08 0.0008 0.23 1.39 − 0.0004
510 0.82 17.78 0.0007 0.09 1.47 − 0.0012
560 0.85 17.06 0.0008 0.00 1.03 − 0.0002
620 0.73 27.76 0.0008 0.23 2.08 − 0.0016
665 0.78 20.89 0.0003 0.03 1.56 − 0.0006
680 0.64 20.42 0.0004 0.07 2.11 − 0.0013
709 0.62 21.39 0.0003 0.10 1.81 − 0.0006

MEGS 490 0.57 38.19 0.0009 − 0.08 1.87 − 0.0020
510 0.74 22.15 0.0008 0.00 1.62 − 0.0019
560 0.87 16.54 0.0007 0.05 1.10 − 0.0003
620 0.66 22.33 0.0005 − 0.08 1.69 − 0.0014
665 0.63 32.66 0.0004 − 0.19 1.79 − 0.0010
680 0.57 23.80 0.0004 − 0.01 2.18 − 0.0015
709 0.62 30.39 0.0004 − 0.03 2.33 − 0.0011

POLYMER 490 0.87 22.05 0.0006 0.17 1.31 − 0.0003
510 0.90 13.44 0.0005 0.07 1.34 − 0.0008
560 0.87 12.89 0.0007 0.02 1.08 − 0.0002
620 0.79 15.19 0.0005 0.06 1.58 − 0.0010
665 0.83 21.07 0.0003 0.00 1.60 − 0.0006
709 0.65 26.95 0.0003 − 0.15 2.10 − 0.0010

against in situ band ratios (Fig. 9), to assess the potential for retrieving
accurate spectral shapes and phytoplankton biomass in these CDOM rich
waters. Owing to limited spectral variability in the dataset, the band
ratios from all processors had relatively low correlations (R2 < 0.36)
with the in situ observations. ψ varied from 5.7% at Rrs(709)/Rrs(665)
by C2R-CC to 94% at Rrs(443)/Rrs(560) using MEGS. Rrs(490)/Rrs(560)
had a relatively stable accuracy compared to other band ratios with ψ
of 18–31% and Δ of 0.12–0.32 for all AC processors. Rrs(490)/Rrs(560)
retrieved by POLYMER had better agreement with the in situ values
with ψ = 18% and Δ = 0.12. Compared with Rrs(443)/Rrs(560) and
Rrs(490)/Rrs(560), the retrieval accuracy for Rrs(709)/Rrs(665) was bet-
ter with low ψ and Δ of 10.2% and 0.08 for CC, 13.8% and 0.1 for
C2R-Lakes, 5.7% and 0.05 for C2R-CC, 17.7% and 0.14 for FUB, and
12.5% and 0.11 for MEGS. This suggests that the best retrieval of spec-
tral shape occurs in the red to NIR domain.

3.6. Statistical ranking of the accuracy of AC processors

Based on the statistical metrics given in Figs. 3–8 and Table 5 for all
match-up data, the ranked scores of all processors is given in Fig. 10A
and the subset of match-ups shared between C2R-Lakes, C2R-CC, MEGS
and POLYMER is given in Fig. 10B.

For each processor, POLYMER showed the highest score of 1.43 and
a 95% confidence interval of 1.31 to 1.55. C2R-CC and FUB had the next
highest scores (1.18–1.37 and 1.05–1.32, respectively), and the overlap-
ping error bars between them indicated statistical similarity (Fig. 10A).
CC had the lowest score (~ 0.22), indicating that it was the least accu-
rate processor.

For shared observations, the performance of C2R-Lakes, C2R-CC,
MEGS and POLYMER was similar to those for all processors using all
match-ups. POLYMER still obtained the highest score (~ 1.32 with a
1.19–1.44 at 95% confidence interval), followed by C2R-CC (~ 1.15;
1.00–1.29), and MEGS with a score of 0.69.

Further comparisons of these ranked scores to account for differ-
ences between methods (Shipborne vs AERONET_OC), locations (coastal
AERONET-OC and open Baltic Sea) and months are given in Fig. 10C
& D.

For the GDLT, C2R-CC had the highest score (~ 1.49; 1.31–1.65 at 95%
confidence; Fig. 10C), followed by FUB and POLYMER with the aver-
age scores of 1.33 and 1.23, respectively. For the HLT, the highest score
was obtained for POLYMER (~ 1.52), followed by C2R-CC (~ 1.38). For
the shipborne observations, C2R-Lakes and POLYMER had similar mean
scores (~ 1.27; 1.12–1.40 at 95% confidence). C2R-CC and FUB exhib-
ited slightly lower scores of about 1.15, and CC had consistently the
lowest score (~ 0.35).

The monthly scores of each processor are shown in Fig. 10D based
on the match-ups between MERIS and AERONET-OC observations. The
ranges of the average scores separated by month are 0.19–0.94 for
CC, 0.50–1.08 for C2R-Lakes, 1.09–1.35 for FUB, 0.61–1.11 for MEGS,
1.02–1.46 for POLYMER and 1.19–1.43 for C2R-CC. The scores of POLY-
MER, C2R-CC and FUB were consistently > 1.0, indicating better than
average performance throughout the seasons. C2R-Lakes scored highest
in July (~ 1.07), and CC always scored lowest.

4. Discussion

4.1. Offset correction for shipborne observations

Shipborne Rrs in 750–900 nm bands was high compared to previ-
ous observations in the Baltic Sea (Ficek et al., 2011). The sources of
these differences were investigated. The NIR spectrum is largely deter-
mined by the absorption of pure water except in optically turbid wa-
ters, in which case NIR reflectance ratios approach constant values, a
phenomenon known as the ‘NIR similarity spectrum’ (Ruddick et al.,
2006). The shipborne observations (before offset correction) showed a
linear regression between Rrs(779) and Rrs(865) of Rrs(779) = 1.0054
Rrs(865) + 0.0001 with a high correlation (R2 = 0.99; Fig. 11) and
slope near unity. For the turbid waters of the North Sea it has been
reported that this value should approach 1.82 (Ruddick et al., 2006).
This suggests that the NIR signal of the Baltic Sea shipborne obser-
vations does not represent significant particle scattering as no dis-
cernable variation due to the absorption characteristics of pure water
are observed. The high reflectance from 750 to 900 nm in the Baltic
Sea is therefore likely caused by residual effects of surface contam-
ination effects from waves, ship movement, spray, or whitecaps.
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Fig. 11. Relationship between Rrs(779) and Rrs(865) in shipborne observations.

It may be assumed that this effect is spectrally neutral because the fin-
gerprint method (Simis and Olsson, 2013) already accounts for the com-
bined effect of diffuse and specular reflection at the water surface. Sun
glint effects are likely minor due to the use of a sun-tracking platform
measuring water-leaving radiance at an azimuth angle close to 135°
from the solar azimuth. Nevertheless, due to the low amplitude of wa-
ter-leaving radiance in the highly absorbing waters of the Baltic Sea,
the residual offset can become significant with respect to the ampli-
tude of reflectance. It is likely that a similar correction is not needed
in more turbid water bodies. Since the AERONET-OC observations are
made from a fixed platform, they are less prone to sea spray, tilt and
roll that can affect the shipborne observations, hence there is no or little
residual offset in these data. Following offset correction, the shipborne
reflectance spectra and AERONET-OC observation produced a continu-
ous pattern compared to the MERIS-derived reflectance bands.

4.2. Match-up time window

The time window between in situ collection and satellite overpass
was a compromise between reducing the effects of temporal variability
in the in situ data and obtaining a large volume of match-up observa-
tions. It has been recommended to restrict match-up windows to ± 3 h
in Case 1 waters and no more than ± 0.5 h in Case 2 waters (Bailey and
Werdell, 2006). However, the movement of water masses, rate of verti-
cal mixing, and the motility of phytoplankton ultimately determine how
fast optical conditions change. Tidal currents in the Baltic Sea are slight
due to limited connectivity with the Atlantic Ocean in the Baltic. The
movement of water masses in the Baltic Sea resembles a quasi-enclosed
estuary supplied with fresh water from river runoff. The basins are nor-
mally well-mixed within the visible surface layer, except during some
phytoplankton bloom periods (Drozdowska, 2007). Comparison results
within various time windows (± 0.5–12 h) between the shipborne ob-
servations and MERIS over-pass suggest that a ± 3-h window yielded a
useful number of match-ups and close to optimal statistical match-up
performance.

4.3. Accuracy assessment of AC processors

Our results showed a variable number of match-ups between the six
AC processors. For the neural network based processors, the numbers
were dependent on the range of the training datasets. CC developed
for Case 2 waters had the lowest number of match-up pairs, indicated
that more pixels retrieved by CC were out of the training range and the
range of CC was not available to the Baltic Sea. C2R-CC, in contrast,
showed the largest number of match-ups due to the increased range in
the training dataset of the neural network. POLYMER also obtained a
higher number of match-ups as it applies less stringent flagging of the
processor output.

The radiometric validation results illustrated that the six AC proces-
sors had the lowest accuracy at shorter wavebands (412 and 443 nm).
The accuracies improved from 490 to 560 nm, but the deviations in-
creased again at longer

wavebands (> 709 nm), corresponding to varying amplitude of Baltic
Sea reflectance between these bands, which are similar to previous stud-
ies (Beltrán-Abaunza et al., 2014; Attila et al., 2013; Zibordi et al.,
2009a; Zibordi et al., 2013). Based on the AERONET-OC data collected
at the HLT and GDLT stations, Zibordi et al. (2013) found that MERIS
LWN by MEGS at the 490, 560 and 665 nm bands had lower deviation
(ψ < 24%) and moderate correlation (R2 > 0.39) than the blue bands
(412 and 443 nm). Beltrán-Abaunza et al. (2014) used the in-water ra-
diometer to compare the MERIS ρw(λ) obtained by the MEGS, C2R and
FUB processors on the Northern Baltic Proper. Better consistency with
in situ observations was found at 560 nm with the correlation coefficient
of 0.91 for MEGS, 0.87 for C2R and 0.84 for FUB, and the worst con-
sistency was at 412 nm for these three processors. The relatively weak
Rrs at blue bands (412 and 443 nm) is characteristic of the optical prop-
erties of highly absorbing waters. The contribution of the reflectance
at the sea surface to the top-of-atmospheric radiance is therefore low,
which amplifies the errors at these wavebands. This resulted in the poor
performance to retrieve Rrs in the blue wavebands.

The combined validation results assigned the POLYMER processor
the highest overall score, better correlation, lowest deviations and high-
est number of match-ups compared against all other processors. This
indicated that POLYMER was the most accurate processor applied to
MERIS for the Baltic Sea. Owing to the flexibility of this model, POLY-
MER exhibited the smallest deviation and highest score in the Case 1
and Case 2 waters compared to MEGS, SeaDAS and Forward NN (Müller
et al., 2015). POLYMER also showed the best performance and high-
est score in the CDOM dominated waters of the Baltic Sea, throughout
the observation period. Even so, the accuracy of retrieval at blue wave-
lengths was worse than at longer wavelengths for POLYMER and this
still requires improvement. Possible reasons for this were that the ab-
sorption of CDOM was neglected or expressed as the Chl a concentration
in the bio-optical model. In the Baltic Sea CDOM does not co-vary with
Chl a and significantly affects the blue to green range of the spectra.

Among the four neural network AC processors (CC, C2R-Lakes,
C2R-CC and FUB), C2R-CC showed the best performance and CC the
worst, which is likely to be due to the training data sets used to calibrate
the neural network. This calibration also includes the effects of different
aerosol types, cirrus clouds, sun and sky radiance, and the coupling be-
tween them and the air molecules. The atmospheric masses in the Baltic
Sea are affected by both land and marine due to its geographical posi-
tion. The average aerosol optical thickness was about 1.3 as determined
at the island of Gotland in the central part of the basin (Carlund et al.,
2005). The higher values of the aerosol optical thickness over the Baltic
Sea in April may be related to the burning of agricultural waste straw in
northern Europe and Russia (Zdun et al., 2011). The standard AC used
in CC was not suited to this region, which resulted in the worst perfor-
mance of all the processors tested. The mixture of maritime and conti-
nental aerosol models may account for the improved accuracy of FUB
and C2R-Lakes. The coastal aerosol model used in C2R-CC is appropriate
for the Baltic Sea. The maximum CDOM absorption used to generate the
simulated reflectance in the training databases was 1 m− 1 at 443 nm
for CC, C2R-Lakes, C2R-CC and FUB, which was sufficient for most ar-
eas of the Baltic Sea except for areas near large rivers in the north and
east which are not close to the AERONET-OC or shipborne stations.

The performance of MEGS 8.1 was poor in the Baltic Sea, most likely
because it was primarily designed for open ocean waters dominated by
phytoplankton, but it uses the bright pixel (BP) AC in highly scatter-
ing waters. In the Baltic Sea however, the BPAC is rarely triggered and
only the open ocean AC model is used in this region. The constant for
Rrs(510) was obtained from the Case 1 waters, and likely resulted in
larger derivations from the actual aerosol and path radiance when used
in high-CDOM absorption waters of the Baltic Sea. An over-correction
of the atmospheric signal resulted in the bias (δ) being less than zero at
blue and green wavebands (Fig. 7).

The use of such a comprehensive data set for the Baltic Sea has
wider implications for other similar high CDOM waters and for the
new generation of Copernicus Sentinels, which additional have short
wave infra-red (SWIR) bands that can potentially improve the per-
formance of AC models (Wang and
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Shi, 2007). The estuaries of the Northern most parts of the Gulf of Both-
nia, in Finland and Sweden, and the Eastern most part of the Gulf of Fin-
land are the highest absorbing CDOM waters in the region (Kowalczuk,
1999; Ylöstalo et al., 2016), but were not covered by the shipborne ob-
servations.

4.4. Implications for use of AC processors with band ratio algorithms

The retrieval of biogeochemical components, such as the Chl a con-
centration, from satellite sensors depends on the availability of suitable
algorithms, as well as the performance of atmospheric correction to ac-
curately retrieve both the amplitude and shape of Rrs at the sea surface
from the TOA radiances. Band ratio algorithms are common in optically
complex and productive waters, and can reduce systematic retrieval er-
ror caused by atmospheric corrections when the aerosols are not absorb-
ing, i.e. when the error affects the bands used in the band ratio in equal
measure. Low correlation coefficients between satellite and in situ re-
flectance band ratios appear to have been caused by a highly conserved
shape of the Rrs spectrum in the Baltic Sea resulting in a narrow range
of band ratio values.

For all six atmospheric correction processors, the bias between
MERIS and in situ observations at blue wavebands was larger than at
blue-green bands, which resulted in poor retrieval of Rrs(443)/Rrs(560)
ratios (Fig. 9) suggesting that these band ratios are not suitable to
retrieve biogeochemical products in these waters. For POLYMER, the
MERIS-retrieved Rrs(490)/Rrs(560) had the best agreement with the in
situ data. The retrieval of Rrs(709)/Rrs(665) ratios improved for some
processors, such as C2R-CC, C2R-Lakes, CC, FUB and MEGS which is rel-
evant for retrieving Chl a in highly absorbing waters when the use of
blue-green ratios can be erroneous.

For all processors, the blue-green ratio of Rrs(443)/Rrs(560) exhib-
ited the worst performance with the lowest R2 (< 0.11) and largest ψ
(38.1–72.5%). Rrs is low in the blue region due to the high absorption
by CDOM, and the performance of Rrs(490)/Rrs(560) ratios were bet-
ter compared to Rrs(443)/Rrs(560) ratios since the Rrs(490) signal was
stronger than Rrs(443), which may be relevant for Chl a algorithms such
as OC3 and OC4 when they use the Rrs(490)/Rrs(560) ratios. Pitarch
et al. (2016), however used the regional calibration of OC4v6 to map
the Chl a concentration in the Baltic Sea, but they found that OC4v6
over-estimates Chl a resulting in a R2 = 0.43 and bias of 0.44, suggest-
ing that Chl a algorithms for the Baltic Sea, should use longer wave-
lengths than Rrs(490). In their analysis, they also included data from
the Kattegat and Skagerrak which proved to be more accurate with
blue: green Chl a algorithms than for the Baltic Sea area. Considering
that 600 nm was the waveband for minimum particle absorption and
that pigment absorption dominated the total absorption at wavelengths
longer than 510 nm, Darecki et al. (2003) shifted the wavelengths from
Rrs(490)/Rrs(550) to Rrs(550)/Rrs(590) in empirical Chl a algorithm. Bet-
ter results were obtained with R2 = 0.75 and ψ = 20%. Based solely
on our observations of the radiometric retrieval accuracy of AC models,
other Chl a algorithms, including NIR-red ratio algorithms and possibly
algorithms based on fluorescence line height, could improve the accu-
racy of Chl a retrieval.

The band ratio Rrs(709)/Rrs(665) showed the highest accuracy for
C2R-CC and C2R-Lakes. Ligi et al. (2016) recently showed, that the
NIR-Red model Rrs(709)/Rrs(665) is most suitable for Chl a concentra-
tion based on a large dataset of simulated Rrs(λ) and field measurements
in the Baltic Sea. The wavelength region from 620 nm to 709 nm pro-
vides essential features for Chl a estimation, as well as absorption di-
agnostic of cyanobacteria pigments at 620 nm, smaller interference of
CDOM absorption, and the light scattering peak near 709 nm where ab-
sorption of water constituents is small with respect to absorption by
water. Accurate retrieval of Rrs in the NIR-red region in general and
the Rrs(709)/Rrs(665) ratio in particular should therefore be consid-
ered a priority in further AC and in-water algorithm validation. Cur-
rently, three AC processors (POLYMER, C2R-CC and C2R-Lakes) exhibit
promising results in this spectral domain.

The 709 nm band as well as retrieval further into the NIR also
plays an essential role in the detection of surface accumulation of
phytoplankton, such as cyanobacteria blooms in the Baltic Sea dur-
ing calm weather in summer

(Groetsch et al., 2014). During the field campaigns only small surface
blooms were encountered and few co-occurred during clear-sky satel-
lite passes, so we can only focus on the systematic Rrs retrieval perfor-
mance of the various AC schemes during relatively well mixed condi-
tions. Reflectance retrieval over patchy, sub-pixel sized surface blooms
is an enormous challenge both from the perspective of satellite AC and
in situ data collection. Neither the AERONET (due to its limited band
set) nor the shipborne (disturbance of the water mass) platforms are
well suited to perform this matchup analysis. Spectra characteristic of
surface blooms were therefore not included in this analysis.

5. Conclusions

The performance of six AC processors (CC, C2R-Lakes, C2R-CC, FUB,
MEGS, and POLYMER) for MERIS was assessed in the Baltic Sea, against
in situ remote sensing reflectance from AERONET-OC and shipborne
measurements. All six processors showed poor performances in the blue
(412 and 443 nm) and NIR wavebands (754–865 nm), but better per-
formances at 490 to 709 nm except for CC. The CC processor exhibited
the worst accuracy with ψ > 190% for all wavebands. POLYMER ex-
hibited the best performance at MERIS bands from 490 to 709 nm and
had the lowest deviations (ψ = 12–29%) and bias (δ = − 0.3–0.1) and
the highest correlation (R2 = 0.66–0.91) when compared to the in situ
data. C2R-CC was the second most accurate algorithm. The retrieval of
Rrs(709)/Rrs(665) was supported by all processors, suggesting that ac-
curate Chl a concentrations for the Baltic Sea are feasible. Further im-
provement in POLYMER and C2R-CC at blue and NIR bands, which
are both still under development, would improve their applicability for
highly absorbing waters such as the Baltic Sea.

This analysis represents the largest data set used to date to test a
range of AC models for the highly absorbing waters of the Baltic Sea,
and is therefore relevant and applicable to other highly absorbing wa-
ter bodies such as the Arctic Ocean, The Yellow Sea, the Black Sea,
the River mouths of the Amazon and a large range of freshwater lakes,
where ocean colour products still prove to be erroneous.
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