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Abstract 
 

This thesis investigates domain dynamics in one of the most well-known 

ferroelectric materials – polycrystalline BaTiO3 ceramics, and one of today’s most 

promising ferroelectric materials for future device applications – mixed-phase 

BiFeO3 thin films. The investigations use primarily TEM techniques accompanied 

by relevant theory and AFM techniques. 

 The study on polycrystalline BaTiO3 (FIB lamellae) aims to further 

understand the link between domains coupling across adjacent grains and to 

explore the domains’ re-ordering as a function of heating through TC. Two cases 

were explored: domains coupling across a single grain boundary, and a more 

complex case of domains within adjacent grains meeting around a junction (or 

pore). Analysis using martensite crystallography theory demonstrated that 

domains sharing a single grain boundary do on average arrange themselves in a 

compatible and stress-free manner. For the example of grains arranged around a 

junction, a computational example was created, given the complexity of the case. 

It was demonstrated that the relaxation of the out-of-plane constraint gives rise 

to an undetermined set of linear equations which can be solved for compatible 

domain wall orientations and volume fractions of domains, indicating that 

groups of adjacent grains can form stress-free domain patterns. STEM in-situ 

heating cycle experiments, heating and cooling through TC, showed that the re-

configuration of the domain structure (domain density, favourable domain 

orientations and presence of domain bundles) was directly influenced by the rate 

and continuous/dis-continuous nature of the performed heating cycles. 
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 Furthermore, this material was explored with focus on the functionality of 

its positive temperature coefficient of resistivity (PTCR) effect. Aberration-

corrected STEM and EELS revealed a grain boundary PbTiO3-like region (~10-15 

nm), which was associated with an increased local polarisation in that region. The 

chemical and electronic heterogeneity of the ceramic was linked to the changes in 

potential barrier at the grain boundary, theorised by the Heywang-Jonker model. 

It was inferred that the confined PbTiO3 rich grain boundary region would have 

a higher spontaneous polarisation (than BaTiO3), thus reducing the grain 

boundary barrier potential further below TC, augmenting electronic transport and 

enhancing the magnitude of resistivity jump at TC, and so justifying the optimised 

PTCR effect exhibited by this ceramic. 

 For the study on phase reversibility in BiFeO3 thin films, the native 

polymorphs, known as T and R, were initially identified. The thermal activation 

phase transformation was investigated by STEM in-situ heating cycle 

experiments; showing a lateral growth of the highly-strained T phase above 

400°C. Additionally, an AFM tip was used to locally apply electric field and stress, 

demonstrating reversible switching between the native mixed-phase and a pure 

T phase state. Energy-based effective Hamiltonian simulations verified phase 

competition under the application of electric field and stress, comparable to 

experimental data. The stress-written phase boundaries (R’/T’) were investigated 

via c-AFM showing enhanced conductivity. TEM analysis of cross-sectional 

lamellae from pre-written AFM regions revealed that the stress-written R’ and T’ 

polymorphs differ in structure from the native polymorphs and, the R’/T’ 

boundaries have higher in-plane strain gradients compared to the native R/T 

boundaries, rationalising the enhanced conductivity as a strain mediated effect. 
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1. Introduction  
 

 

1.1 Thesis motivation & overview 

 

Ferroelectrics are both intriguing and intricate materials to study for their 

technological relevance. The presence of ferroelectricity was first discovered in 

Rochelle salt by J. Valasek in 1920 [1], but it was not until the 1940s that 

ferroelectric research began to flourish with the discovery of one of the most well-

known ferroelectrics: Barium Titanate (BaTiO3). Since then, ferroelectrics have 

been discovered and fabricated in many forms, ranging from solid solution 

ceramics to thin films of nanometre thicknesses. Ferroelectric materials, 

particularly polycrystalline ceramics, have attracted and been considerably 

implemented in electronic applications such as high dielectric capacitors, 

piezoelectric transducers and actuators. Progress in ferroelectric memories and 

data storage however, still has considerable room for growth to catch up with 

analogous ferromagnetic materials which are currently widely manufactured for 
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digital information storage devices. Current research in ferroelectrics for data 

storage relies on the configuration and manipulation of domains with an even 

more recent novelty regarding domain wall functionalities, in which the 

interfaces between domains could act as an active component of the device; some 

recent exciting discoveries include domain wall conductivity [2]. To fully exploit 

the potential of ferroelectrics for data storage applications, a deeper 

understanding of domain configurations and dynamics with applied external 

stimuli is necessary. In light of this, this thesis presents a study of domains in one 

of the most technologically used ferroelectric materials: polycrystalline BaTiO3, 

and one of today’s most promising ferroelectrics for device applications: mixed-

phase BiFeO3 thin films. The investigations primarily use transmission electron 

microscopy (TEM) techniques accompanied by relevant theory and atomic force 

microscopy (AFM) techniques. 

 In this chapter some concepts relevant to ferroelectric materials are 

discussed. Following this, Chapter 2 covers an overview of TEM including 

different imaging modes and spectroscopy techniques, as well as the sample 

preparation methods utilised in this thesis. Additional techniques such as AFM 

are briefly described. Chapters 3 and 4 describe the experimental investigations 

carried out on a BaTiO3-based ceramic with emphasis on the coupling of domains 

across grain boundaries and the reconfiguration of domains during heat cycling 

(Chapter 3), and an investigation into how chemical heterogeneity and 

spontaneous polarisation affects the ceramic functionality (Chapter 4). In Chapter 

5 mixed-phase BiFeO3 thin films are investigated, exploring phase reversibility by 

application of external stimuli and characterisation of the BiFeO3 polymorphs 
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before and after switching. The research presented in this thesis is summarised in 

Chapter 6 and additional ideas for future work are suggested. 

 

1.2 Definition and properties of ferroelectrics 

 

Ferroelectrics are materials that possess a spontaneous polarisation (or net dipole 

moment) in the absence of an applied electric field. The spontaneous polarisation 

can be reoriented (or ‘switched’) between (at least) two energetically degenerate 

states by the application of a sufficiently large electric field, which creates a typical 

ferroelectric hysteresis loop schematically displayed in Figure 1.1. The polarisation 

subject to electric field cycling (P-E hysteresis) is generally thought to be indicative 

of ferroelectricity, and bears a likeness to the magnetisation hysteresis (M-H 

hysteresis) which is characteristic of ferromagnetic materials.  

If a positive electric field is applied to an un-poled ferroelectric the dipoles 

begin to align parallel to the electric field (see central region of Figure 1.1) until 

they become fully aligned and the polarisation is largely saturated (+Psat). The 

extrapolation of this linear section to the polarisation axis (at E=0) denotes the 

value of the spontaneous polarisation (Ps). On decreasing the strength of the 

electric field, dipoles begin to back-switch to the opposite direction, however, the 

polarisation will not return to zero because some dipoles will remain aligned in 

the positive direction and the ferroelectric material will exhibit a remnant 

polarisation (Pr). When the electric field is reversed, the polarisation eventually 

becomes negatively saturated (-Psat) with the dipoles fully aligned in the opposite 

direction. The turning point at which the polarisation is reduced to zero occurs at  
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Figure 1.1: Schematic of a typical hysteresis loop measuring polarisation (P) whilst cycling 

electric-field (E). The remnant polarisation (Pr), spontaneous polarisation (Ps), saturation 

polarisation (Psat) and the coercive field (Ec) are labelled. 

 

a value of applied electric field known as the coercive field (Ec). The ferroelectric 

hysteresis loop (Figure 1.1) demonstrates the ability of a ferroelectric to be 

switched from one state to another, forming the basis for ferroelectric non-volatile 

memory devices. Although indicative of ferroelectricity, caution is required when 

interpreting hysteresis loops as J. F. Scott pointed out that “a (distinctly non-

ferroelectric) banana skin demonstrates a cigar-shaped hysteresis loop which 

could be mistaken for a ferroelectric hysteresis loop” [3].  Similar P-E loops have 

been misidentified when measuring materials exhibiting lossy (i.e. partially 

conductive) dielectric behaviour using a capacitor test-geometry. 

For a material to be ferroelectric, it must firstly be crystalline and belong to 

a non-centrosymmetric crystal class (of which there are 21 crystallographic point 

groups) otherwise a net-dipole-moment cannot exist. Of the 21 non-

centrosymmetric point groups, 20 of these exhibit ‘piezoelectric’ properties 
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(meaning they develop a polarisation with applied strain). Within the 

piezoelectrics, there are 10 point groups (1, 2, m, mm2, 3, 3m, 4, 4mm, 6, 6mm) 

which are polar (i.e. there is at least one direction along which no point group 

symmetry element forces both sides of the crystal to be the same [4]). These 10 

polar point groups are also known as ‘pyroelectric’ meaning that they develop a 

spontaneous polarisation in response to a temperature change. Only if the 

spontaneous polarisation can be reversed by an electric field (as demonstrated in 

Figure 1.1) can a pyroelectric crystal be deemed as a ‘ferroelectric’. Hence, 

ferroelectrics can be defined as a subset of pyroelectric crystals which exhibit 

reversible polarisation when subject to electric field cycling (P-E hysteresis). It is 

important to note that the temperature at which the ferroelectric material 

transitions from a non-ferroelectric (paraelectric) phase into a ferroelectric phase 

is known as the ‘Curie temperature’, denoted Tc. The classification of the 

crystallographic point groups capable of displaying ferroelectricity are 

summarised in Figure 1.2.  
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Figure 1.2: Classification by electric properties of the 32 crystalline point groups and their 

relationship leading to ferroelectricity. 

 

 

 

1.3 Perovskite ferroelectrics 

 

Several ferroelectrics including the two materials studied in this thesis (BaTiO3 

and BiFeO3) belong to the perovskite family of oxides which have an ABO3 

structure, it is therefore vital to understand how polarisation is manifested in  
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Figure 1.3: Perovskite structure ABO3 displaying the high-temperature cubic and the low-

temperature tetragonal ferroelectric phase in BaTiO3 (tetragonality exaggerated). The direction of 

the net spontaneous polarisation in the tetragonal phase is denoted by the labels ‘Pup’ and ‘Pdown’. 

The in-plane (a0 and a1) and out-of-plane (a0 and c1) are labelled for the cubic and tetragonal unit 

cells respectively. Adapted from [5]. 

 

these crystals. The perovskite structure of BaTiO3 (barium titanate) is shown in 

Figure 1.3, the paraelectric phase (above Tc) shows a centrosymmetric cubic m3m 

(point group symmetry) structure, this structure cannot support a net dipole 

moment due to the inversion centre of the unit cell and therefore shows no sign 

of ferroelectricity. When BaTiO3 is cooled below Tc (~120 oC) the symmetry of the 

unit cell is reduced to a tetragonal 4mm structure and there are two energetically 

degenerate off-centre positions for the central Ti4+ cation (labelled as Pup and Pdown 

in Figure 1.3). This is the origin of the net dipole moment i.e. spontaneous 

polarisation which is oriented along the polar c-axis. On cooling through Tc into 

the ferroelectric phase, the BaTiO3 unit cell is spontaneously strained due to the 

structural transformation between crystal classes. This is illustrated in Figure 1.3 
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where the tetragonal polar axis length, labelled ‘c1’, is larger than the two 

equivalent a-axes lengths, labelled ‘a1’ and ‘a0’ in the tetragonal and cubic phases 

respectively.  

As the temperature is reduced even further in BaTiO3 more phase 

transitions occur; the unit cell structure changes to orthorhombic and then to 

rhombohedral. With each change in structure the polar direction changes as 

displayed in Figure 1.4. In the tetragonal phase the polar direction is along the 

[001]pseudocubic (pc) direction,  i.e. the displacement of the Ti4+ cation is along this 

direction. Similar to this, the polar direction for the orthorhombic phase is along 

[011]pc and for the rhombohedral phase it is along the [111]pc direction. In the first 

half of this thesis studies are carried out on room-temperature tetragonal BaTiO3, 

with an additional study focusing on cycling between the paraelectric-

ferroelectric phases (cubic-tetragonal), therefore the tetragonal polar directions 

are of particular interest (illustrated in Figure 1.4). The three principal tetragonal 

axes display the six energetically equivalent polar directions where the central 

Ti4+ cation can be displaced [6]. It is worth noting that an alternative model has 

been proposed which suggests that the spontaneous polarisation is not simply 

due to a displacement of the Ti4+ cation along one of the polar directions. Instead, 

it has been suggested that a time-averaging of spontaneous displacements along 

the <111> corner directions provides a measure of polarisation in the [001] 

direction for the tetragonal phase [7, 8]. In a similar manner, in the high 

temperature cubic phase, the Ti4+ cation moves rapidly between all eight corners 

such that the time-averaged polarisation is zero in this model [9-11]. 
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Figure 1.4: The polar directions for the (left-to-right) cubic, tetragonal, orthorhombic and 

rhombohedral unit cells of BaTiO3. From [12]. 

 

 

As a convention, a useful measure of the crystal distortion in tetragonal 

unit cells is the tetragonality, which is described as the percentage ratio of lattice 

parameters c and a; for the example of tetragonal BaTiO3 where a = 3.99Å and c = 

4.04Å (shown in Figure 1.5), the c/a = 1%. Lead titanate (PbTiO3) possessed the 

largest known tetragonality of 6% until recent years, when research began to 

flourish on epitaxially strained BiFeO3 thin-films displaying an enormous 

tetragonality of up to 27% within its tetragonal phase. BiFeO3 thin-films will be 

discussed in more detail in Chapter 5 of this thesis. 
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Figure 1.5:  Lattice parameters for the different phases of BaTiO3. Labels a, b and c correspond to 

the respective unit cell axes. From [13]. 

 

1.4 Phase transitions in Ferroelectrics 

 

To understand the conditions in which a high-symmetry paraelectric to low-

symmetry ferroelectric phase transition takes place, it is of high importance to 

consult the associated thermodynamics of Landau theory [14-16] which was later 

applied to BaTiO3 by Devonshire [17, 18]. Landau proposed that the excess free 

energy due to a phase transition can be described as a polynomial expansion of 

the order parameter Q, given by [19]: 

𝐹(𝑄) = 𝑎𝑄 +
1

2
𝐴𝑄2 +

1

3
𝑏𝑄3 +

1

4
𝐵𝑄4 + ⋯                (1.1) 

If we consider the free energy of a ferroelectric crystal where the order parameter 

is polarisation (P), and expanding in Taylor series, we obtain: 

  

          𝐹(𝑃) =
1

2
𝐴𝑃2 +

1

4
𝐵𝑃4 +

1

6
𝐶𝑃6 + ⋯                      (1.2) 
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where odd-order terms have been excluded. The free energy of ferroelectrics is an 

even function of polarisation (because it does not depend on the sign of 

polarisation) without any exception, if there is no external force acting on the 

crystal [20]. The equilibrium behaviour of the polarisation through the phase 

transition is determined by minimising the free energy F(P) with respect to 

polarisation P, and therefore [19, 21]: 

𝑑𝐹(𝑃)

𝑑𝑃
= 0        and  

𝑑2𝐹(𝑃)

𝑑𝑃2 > 0    

In the high symmetry paraelectric state which is stable above Tc, the polarisation 

equals zero and the equilibrium conditions above can only be satisfied if A (in 

Equation 1.2) is positive. If A is negative, the polarisation must be larger than zero 

and the low temperature ferroelectric state becomes stable. Therefore, the sign of 

A must change from positive to negative at a temperature T=T0. This temperature 

dependence of A describes the ‘Curie-Weiss’ behaviour expressed linearly as a 

function of temperature, where T0 is the so-called ‘Curie-Weiss’ temperature [16]: 

𝐴 = 𝛼(𝑇 − 𝑇0)                  (1.3) 

Inserting Equation 1.3 into the free energy expansion yields: 

𝐹(𝑃) =
1

2
𝛼(𝑇 − 𝑇0)𝑃

2 +
1

4
𝐵𝑃4 +

1

6
𝐶𝑃6 + ⋯                (1.4) 

Since α and C are positive for ferroelectrics [16], the sign of B determines the 

‘order’ of phase transition which occurs when transitioning from the paraelectric 

state through Tc, to the ferroelectric state. A phase transition can either 

demonstrate a continuous (2nd order) or discontinuous (1st-order) development of 

polarisation when transitioning through Tc. Furthermore, an expression for the 
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electric field can be obtained from Landau theory, considering an electric field E 

is applied parallel to P, and finding the energy minimum, it follows that [20, 21]: 

𝑑𝐹(𝑃)

𝑑𝑃
= 𝐸                  (1.5) 

By differentiating the free energy expansion in Equation 1.4 we obtain an 

expression for the electric field in terms of polarisation: 

𝐸 =  𝛼(𝑇 − 𝑇0)𝑃 + 𝐵𝑃3 + 𝐶𝑃5                (1.6) 

The electric susceptibility (χ) indicates the degree of polarisation of a dielectric 

material in response to an applied electric field, and is defined by [16]: 

χ = lim
𝐸→0

 [
𝑑𝑃

𝑑𝐸
]                  (1.7) 

Applying Equation 1.7 to Equation 1.6 and neglecting the fifth-order term since it 

is negligibly small, we obtain an expression which describes electric susceptibility 

for ‘Curie-Weiss’ behaviour: 

          χ =
1

𝛼(𝑇−𝑇0)+3𝐵𝑃𝑠
2                 (1.8) 

where PS is the equilibrium value of the spontaneous polarisation at zero field.  

Equation 1.8 can therefore be solved for electric susceptibility in relation to the 

spontaneous polarisation above and below the phase transition temperature 

which develops continuously or discontinuously depending on the order of the 

transition. 
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1.4.1 Second-order (continuous) phase transition 

 

When B is positive and sixth-order terms are negligibly small in the free energy 

expansion (Equation 1.4), a thermodynamically second-order phase transition is 

described. In this case, the spontaneous polarisation develops continuously in 

zero-field (E=0) below the transition temperature Tc, which in this case equals the 

Curie-Weiss temperature T0. The spontaneous polarisation for T<Tc can be 

determined from Equation 1.6, to obtain: 

𝑃𝑆 = ±√
𝛼

𝐵
(𝑇𝑐 − 𝑇)                  (1.9) 

From Equation 1.9 two solutions with equal magnitude but different signs (±PS) 

exist in the ferroelectric state. Two minima corresponding to the same value of 

free energy exist for ±PS as can be seen for T<Tc in Figure 1.6a; these minima 

correspond to oppositely orientated polarisations. The spontaneous polarisation 

develops continuously up to Tc as can be seen in Figure 1.6b. Above Tc, were the 

spontaneous polarisation equals zero, the minimum in free energy is indicated by 

one single well as shown in Figure 1.6a. The electric susceptibility is also 

displayed in Figure 1.6b, determined by Equation 1.8, demonstrating that χ is 

expected to diverge towards infinity at the transition temperature, Tc [15]. One 

example of a ferroelectric which exhibits a second-order (continuous) phase 

transition is triglycine sulphate [22]. 
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Figure 1.6: Free energy (F) as a function of polarisation (P) of a ferroelectric displaying a second-

order phase transition (a). The continuous development of spontaneous polarisation (PS) (red 

line), the Curie-Weiss behaviour of electric susceptibility (χ) (black line) and inverse electric 

susceptibility (χ -1) (blue dashed line) transitioning through the Curie temperature (Tc) (b).  

 

 

1.4.2 First-order (discontinuous) phase transitions 

 

When B is negative and the sixth-order term is included in the free energy 

expansion (Equation 1.4), a thermodynamically first-order phase transition is 

described. In the high temperature paraelectric state (T>>Tc and Ps=0) the free 

energy minimum is indicated by a single well similar to the second-order free 

energy diagram in Figure 1.6. In the case of a first-order phase transition however, 

T0 is less than Tc leading to some non-zero metastable polarisation states around 

the transition temperature as shown in Figure 1.7a. At these temperatures 

paraelectricity is stable and ferroelectricity is metastable giving three minima in 

free energy [21]. Once Tc is reached, all three minima are degenerate and equally 

stable [13]. However, on cooling below Tc the ferroelectricity becomes more 

(a) (b) 
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energetically favoured and is stabilised below T0. The spontaneous polarisation, 

determined from Equation 1.4 (including the sixth-order term), for the low 

temperature ferroelectric phase (Ps>0), gives: 

𝑃𝑆
2 =

−𝐵±√𝐵2−4𝛼𝐶(𝑇−𝑇0)

2𝐶
                          (1.10) 

Due to the metastability of ferroelectricity in the vicinity of the phase transition 

temperature, the spontaneous polarisation develops discontinuously as can be 

seen in Figure 1.7b. This discontinuous jump in polarisation is further 

demonstrated by the development of the electric susceptibility (determined by 

Equation 1.8) through the phase transition temperature [21]. An example of a 

ferroelectric displaying a first-order phase transition is BaTiO3 [23] which is one 

of the materials studied in this thesis.  

 

 

 

 

 

 

 

 

Figure 1.7: Free energy (F) as a function of polarisation (P) of a ferroelectric displaying a first-order 

phase transition (a). The discontinuous development of spontaneous polarisation (PS) (red line), 

the Curie-Weiss behaviour of electric susceptibility (χ) (black line) and inverse electric 

susceptibility (χ -1) (blue dashed line) transitioning through the Curie temperature (Tc) (b). 

(a) (b) 
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1.5 Ferroelectric Domains 

 

In general, the spontaneous polarisation in a ferroelectric crystal is not uniformly 

aligned throughout the whole crystal [24]. Regions which have uniform dipole 

alignment are called domains. Ferroelectric domains form to minimise the 

electrostatic energy of depolarisation fields (‘Edep’ in Figure 1.8) created by surface 

charges which form at the onset of the spontaneous polarisation, at the 

paraelectric-ferroelectric transition temperature. The depolarising field is 

orientated oppositely to the spontaneous polarisation and may be very strong 

(MVm-1) rendering the single-domain state in Figure 1.8a energetically  

 

 

 

 

 

 

 

 

 

Figure 1.8: Ferroelectric single-domain state produces surfaces charges creating a depolarising 

field (Edep) (a). The formation of 180° domains reduces Edep (b), a larger number of domains 

would further reduce Edep. Schematic of a 180° domain wall (c). Adapted from [21, 24].  

(a) (b) 

(c) 
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unfavourable [24]. The electrostatic energy of the depolarising field may be 

minimised if the ferroelectric crystal splits into domains with oppositely oriented 

polarisation. The ferroelectric domains seen in Figure 1.8b have anti-aligned 

spontaneous polarisation and are known as ‘180° domains’, the interfaces which 

separate 180° domains are known as ‘180° domain walls’ (Figure 1.8c) and are 

generally considered to be sharp interfaces i.e. ~1 nm, in direct contrast to 

ferromagnets which have a domain wall width of ~100 nm [25]. This highlights 

the high values of anisotropy and low exchange energy in ferroelectrics compared 

to that of ferromagnets [26]. Domain walls in ferromagnets are generally Néel- or 

Bloch-type walls and have continuous rotation of magnetisation (Figures 1.9a and 

1.9b), whereas ferroelectric domain walls are typically Ising-type where the 

magnitude of the polarisation reduces to zero through the boundary without 

significant rotation (Figure 1.9c) [27]. 

 

 

 

 

 

 

 

 

Figure 1.9: Néel- (a) and Bloch- (b) type domain walls seen in ferromagnets, magnetisation rotates 

through the angles θN and θB respectively. Ising-type domain wall (c) seen in ferroelectrics, 

polarisation has zero rotation in an ideal case. Adapted from [27]. 

(a) (b) 

(c) 
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1.6 Ferroelastic Domains 

 

As well as offsetting depolarising fields, domains can form in response to the 

strain imposed on a crystal by a mechanical stress, and these domains are known 

as ‘ferroelastic’ domains [24]. For example, when cooling through the 

paraelectric-ferroelectric transition temperature, in an attempt to maintain the 

paraelastic initial shape (represented by the dashed box in Figure 1.10a) a 

ferroelectric tetragonal crystal will split into orthogonal polar orientation, leading 

to regions known as ‘90° domains’ shown in Figure 1.10b. Since the direction of 

the spontaneous polarisation varies by 90° from domain to domain, the 

depolarising fields are offset in a manner analogous to 180° domains. Whilst both 

180° and 90° domains can reduce electrostatic energy, only 90° domains can 

alleviate spontaneous strains [24]. The interfaces which separate ferroelastic 

domain walls are known as ‘ferroelastic domain walls’, a schematic of a 90°  

 

 

 

 

 

 

Figure 1.10: Tetragonal phase associated with cooling through Tc, the high temperature 

paraelectric phase is illustrated by a dashed box (a). The formation of ferroelastic domains reduces 

the elastic energy by forming a combined shape closer to the original (b).  Schematic of a 90° 

ferroelastic domain wall (c). Adapted from [16, 24, 28]. 

(a) (b) (c) 
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ferroelastic domain wall is shown in Figure 1.10c. Increasing the density of 

ferroelastic 90° domains leads to a more complete compensation of strains and 

the domain period can be estimated using Kittel’s domain scaling relation [29, 30], 

given by: 

    𝐺(𝑤, 𝑑) = 𝑈w + 
𝛾d

𝑤
      (1.1) 

 where G is the elastic free energy (replacing the analogous surface energy term 

in ferroelectric domains), which depends on the domain width (w) and thickness 

of material (d). U and  γ are constants (the areal energy density associated with 

charged surfaces and the domain wall energy density respectiviely) for a given 

system [11]. 

It is worth noting, as a large part of this thesis is based on imaging 

ferroelastic domains, that ferroelastic domains can appear differently depending 

on which orientation they are observed (or ‘viewed’) from. To illustrate this, a 

schematic of a cubed section of ferroelectric material containing ferroelastic 

domains has been drawn in Figure 1.11. When the front-face of the cube (labelled 

‘1’) is viewed, a pattern of in-plane ferroelastic domains displaying orthogonal 

polarisation from one domain to the next is observed. These domains are called 

‘a-a domains’ (because the polarisation is entirely in-the-plane of the cube face 1 

for each domain) having domain walls which are orientated along {110}pc planes. 

To observe how these a-a domains are projected through the thickness of the cube, 

we turn to the face labelled ‘2’. Here, the same set of domains appear with walls 

projected along <100>pc directions, the domains still vary in polar direction by 90° 

however, this time one set of domains has polarisation directed out-of-plane of 

the cube face 2, owing to a combination of in-plane and out-of-plane domains 
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known as ‘a-c domains’. The same situation is present when viewing the 

ferroelastic domains from the face labelled ‘3’. 

 

 

 

 

 

 

 

 

 

Figure 1.11: A cubed section of ferroelectric material made up of ferroelastic 90° domains. The 

domains appear as ‘a-a domains’ when viewed from face 1 but as ‘a-c domains’ when viewed 

from faces 2 and 3. Adapted from [28]. 

 

 

1.7 Domains in polycrystalline ferroelectrics 

 

In polycrystalline ferroelectrics (bulk ceramics), the overall domain pattern can 

look quite different compared to a single crystal because the domain structure of 

each grain is formed under elastic clamped conditions by its surrounding 

neighbour grains, whereas a single crystal is free [31]. A grain in a ceramic is 
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clamped by its neighbouring grains in all three dimensions and can deform only 

by a cooperative motion of the adjacent grains. Maintaining the grain shape when 

transitioning from the paraelectric to ferroelectric state generates high internal 

stresses which can be alleviated by the formation of an intricate pattern of 

ferroelastic domains to preserve the gross shape of the grains. Arlt et al. studied 

in detail the domain structure in ferroelectric ceramics, and revealed that the 

domain pattern depends on the grain size [32], for example fine-grained ceramics 

(<~3 µm diameter) will favour a simple laminar structure (shown in Figure 1.12a) 

whereas coarse-grained ceramics (>~3 µm diameter) tend to favour a banded 

laminar structure to allow stress relief (Figure 1.12b). Figure 1.12c shows a 

scanning electron microscope (SEM) image of a BaTiO3 ceramic which has an 

average grain size of 5µm, in which the ferroelastic domain pattern, which is 

banded laminar, is visible.  

 

 

 

 

 

 

 

Figure 1.12: Ferroelastic domain pattern in ferroelectric ceramics. (a) Schematic of a fine-grained 

ceramic. (b) Schematic of a coarse-grained ceramic. (c) SEM image of a BaTiO3 ceramic containing 

a banded laminar domain pattern. Schematics (a)-(b) from [21]. 

 

(a) (b) (c) 

3 µm 
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1.8 Domains in epitaxially strained thin-films 

 

In thin films, epitaxial strain can be used as an additional degree of freedom to 

tune ferroelastic domain configuration [33, 34]. By growing thin films on 

substrates which have an in-plane lattice mismatch, ferroelectricity can be greatly 

enhanced [35] or even created [36] within a thin-film. In this thesis, the 

ferroelectric thin film of interest is bismuth ferrite (BiFeO3) which in its bulk form 

has a room-temperature rhombohedral structure (a=3.97 Å). When BiFeO3 is 

epitaxially grown onto lanthanum aluminate (LaAlO3) which is also 

rhombohedral at room temperature (a=3.79 Å) a compressive strain of -4.4% is 

created due to the lattice mismatch. The BiFeO3 thin-film accommodates this huge 

strain by forming a mixture of polymorphs which correspond to different phases. 

It should be noted that BiFeO3 polymorphs are analogous to ferroelastic ‘domains’ 

in terms of the spontaneous polarisation varying from polymorph to polymorph; 

in addition to the fact that the polymorphs are formed due to strain. However, for 

consistency with literature only the term ‘polymorph’ will be used from here on 

throughout this thesis, and the boundaries which separate the BiFeO3 

polymorphs will be referred to as ‘morphotropic phase boundaries (MPB)’. A 

scanning transmission electron microscope (STEM) image of the polymorphs 

(labelled R and T) in mixed-phase BiFeO3 is shown in Figure 1.13. The highly-

strained tetragonal-like T polymorphs demonstrate a strikingly high spontaneous 

polarisation, around 1.5 times that of bulk BiFeO3 [35]. Specific details on 

polymorph structure and the ability to reorganise (or switch between) phase 

mixtures will be expanded upon in Chapter 5 of this thesis.  
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Figure 1.13: STEM image of T and R polymorphs formed in epitaxially strained BiFeO3 grown on 

a LaAlO3 substrate.  
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2. Microscopy Techniques 
 

 

This chapter describes the microscopy techniques involved in studying the 

ferroelectric samples in this thesis. An overview of the transmission electron 

microscope is described, with emphasis on the various imaging modes and 

spectroscopy techniques carried out. The focused ion beam sample preparation 

method is also described, a necessary step in creating electron transparent 

samples suitable for transmission electron microscopy. Additional atomic force 

microscopy techniques used to accompany the transmission electron microscopy 

within this thesis are also described. 
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2.1 Overview of Transmission Electron 

Microscopy  

A transmission electron microscope (TEM) operates by accelerating a beam of 

electrons to sufficient energy so that when incident on a very thin sample (<100 

nm), electrons are transmitted through it. Conventional TEMs work on the same 

principle as light microscopes but utilise a beam of electrons which travel in 

vacuum and originate from an electron gun source, rather than using a light 

source (see TEM optics in Figure 2.1). The first TEM was built by Ernst Ruska and 

Max Knoll in 1931 [1], with the first commercial TEM developed only four years 

later. The invention of the TEM came about due to the limitations of using light 

for imaging objects, as optical microscopes are constrained by the resolution and 

diffraction limits of the wavelengths of visible light. 

For any optical system, the theoretical diffraction resolution limit, d0, is 

given by Rayleigh’s criterion (equation 2.1). This criterion describes the smallest 

resolvable distance between two points, where λ is the wavelength of the 

illuminating source and NA is the objective numerical aperture (NA = nsinθ where 

n is the refractive index of the medium and θ is the aperture angle). 

𝑑0 =
0.61𝜆

𝑁𝐴
     (2.1) 

From equation 2.1, it is apparent that d0 is proportional to wavelength and 

therefore a straightforward approach to improve the resolution would be to use 

an illumination source with a shorter wavelength, such as electrons. It is known 
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from Louis de Broglie’s work that electrons, while considered as particles, can 

also have wave-like properties such that: 

 𝜆 =
ℎ

𝑝
=

ℎ

𝑚𝑣
      (2.2) 

where λ is the de Broglie wavelength, h is Planck’s constant and p is the electron’s 

momentum. Therefore, increasing the momentum of an electron beam will 

decrease its wavelength, and as a result greatly increase the resolution limit over 

that attainable by visible light.  

 In the TEM, when an electron (with charge e) passes through a potential 

difference V, its kinetic energy will be equal to the energy of the field i.e. eV 

(energy in electron volts): 

      
𝑚𝑣2

2
= 𝑒𝑉     (2.3) 

Substituting a rearranged version of equation 2.2 into equation 2.3, gives: 

     
1

2
𝑚 (

ℎ

𝑚λ
)
2

= 𝑒𝑉     (2.4) 

And rearranging equation 2.4 gives the non-relativistic electron wavelength: 

      𝜆 =
ℎ

(2𝑚𝑒𝑉)
1
2

     (2.5)  

However, relativistic effects cannot be ignored because the velocity of electrons 

increases with the square root of the accelerating voltage (equation 2.5), meaning 

that at an accelerating voltage of 100 kV, the velocity of electrons is already greater 

than half the speed of light. To account for this, we consider the relativistic form 

of the kinetic energy, Ek: 
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      𝐸𝑘 = 𝑚𝑐2 − 𝑚0𝑐
2    (2.6) 

where m0 is the rest mass of an electron and c is the speed of light. Noting again 

that the kinetic energy is determined by the accelerating voltage (Ek=eV) then 

rearranging for m gives: 

      𝑚 =
𝑒𝑉+𝑚0𝑐2

𝑐2
     (2.7) 

which can be substituted into equation 2.5 to give the relativistic electron 

wavelength: 

      𝜆 =
ℎ

[2𝑚0𝑒𝑉(1+
𝑒𝑉

2𝑚0𝑐2)]

1
2

    (2.8) 

For a TEM operating with an accelerating voltage of 200 kV, the theoretical 

wavelength of the electrons will be ~2.51 pm (much smaller than the wavelength 

of visible light (550 nm for green light). Hence, the electron beam can reach a 

theoretical resolution limit smaller than atoms themselves. However, this 

theoretical resolution does not consider the aberrations which are present in the 

optics of a TEM; the aberrations limit the resolution in TEM beyond this 

theoretical limit. More detail on aberrations will be given in section 2.1.3. 

The main components of the TEM are shown schematically, along with the 

corresponding ray diagram, in Figure 2.1. The main components consist of: the 

electron gun (source of electrons); gun alignment controls; condenser lenses 

(magnetic lenses to collimate the beam); objective lens (to focus and initially 

magnify the image); apertures (to limit the diameter of the electron beam); 

intermediate lens; projective lens; sample holder; viewing screen and detectors to 
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pick up the main and secondary signals. There are four main parameters which 

determine the nature and the quality of the image or spectrum obtained with a 

TEM, these are the probe size, convergent angle, electron energy and the electron 

probe current [2]. 

 

 

 

 

 

 

 

 

 

Figure 2.1: Schematic ray diagram of a conventional TEM microscope. Adapted from [3]. 

 

2.1.1 Electron Sources 

For TEM, electron beams may be generated from two main types of sources: 

thermionic and field emission guns. Thermionic guns operate by heating a source 

(LaB6 being the only thermionic source in modern TEMs [2]) which is used as the 
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cathode. In addition to the cathode there is a grid called a Wehnelt cylinder 

(which acts like a simple electrostatic lens, the first lens the electrons pass through 

in the TEM) and an anode at earth potential with a hole in its center. The cathode 

is connected to the high-voltage supply while a metal wire, such as rhenium, is 

attached to the LaB6 crystal which is resistively heated to cause thermionic 

emission of electrons. The thermionic emission can be summarised by 

Richardson’s law which relates the current density from the source, J, to the 

operating temperature, T in Kelvin: 

𝐽 = 𝐴𝑇2𝑒−
Φ

𝑘𝑇                         (2.9) 

When leaving the cathode, the electrons have a negative potential of the chosen 

acceleration voltage (e.g. 200 kV) with respect to the anode so they accelerate 

through this potential difference acquiring an energy of 200 keV. Due to the self-

biasing design of the gun, a small negative bias is applied to the Wehnelt cylinder 

meaning that as the electrons come off the cathode they are converged into a point 

called a crossover leading to a controllable beam of electrons ready to pass 

through the next set of lenses in the TEM.  

A field emission gun (FEG) works in a different way, emitting electrons due to an 

applied electric field. The principle of a FEG is that the strength of an electric field 

E is increased at sharp points if a voltage V is applied to a tip (sharp point) of 

radius r, then: 

𝐸 =
𝑉

𝑟
                                  (2.10) 

The tip is most commonly made from tungsten (W) wire which can readily be 

given a tip radius of <0.1 µm (Figure 2.2a). For a FEG to operate, the W tip is made 
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to be the cathode with respect to two anodes (see Figure 2.2b). When the first 

anode is positively charged by a few kV with respect to the tip, this charge 

generates an extraction voltage because the electric field created is large enough 

to pull electrons out of the W tip. The electrons are then accelerated to the chosen 

voltage by the second anode. The combination of the two anodes acts like an 

electrostatic lens to produce a crossover. For field emission to occur the surface 

must be free of contaminants and therefore an ultra-high vacuum (<10-9 Pa) is 

necessary [2]. 

 Although FEGs have a higher cost than thermionic guns, they are superior 

in terms of the quality of the electron beam produced having a smaller energy 

spread and a smaller spot size [4]. FEGs can be further distinguished by two 

different designs: a Schottky (or warm) FEG and a cold FEG. To achieve an energy 

spread of below 0.5 eV with a high beam coherence, a cold FEG is required. The 

increased energy resolution does however come with a drawback, namely the 

cold FEGs emission decreases with time due to changes in the tip and the arrival 

of impurity atoms on the surface. Therefore, the tip needs to be flash heated 

periodically to remove any impurities and to restore the emission level [4].   

 

 

 

 

Figure 2.2:  Scanning electron microscope (SEM) image of a Field emission gun (FEG) W tip (a). 

Electron paths from a FEG tip showing how the electron beam crossover is formed (b). From [2]. 

(a) (b) 
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2.1.2 Electron Optics in the TEM 

Lenses in the TEM are the electromagnetic equivalent of the glass lenses in a light 

microscope. A typical electromagnetic lens (see schematic in Figure 2.3) is 

rotationally symmetric and consists of a copper coil wound around a soft iron 

pole piece which has a hole drilled through it. The hole in the pole piece is known 

as the bore of the pole piece. When a current is passed through the coil, a magnetic 

field is created in the bore. Electrons passing through the bore undergo a focusing 

effect which is dependent on the coil current and can be increased in doing so 

increasing the strength of the resultant magnetic field. The small gap in the pole 

piece concentrates the field and shortens the focal length of the lens [4]. It is the 

strength of the magnetic field that controls the electron path trajectories, the force 

F on an electron (charge, e) travelling with velocity v in a magnetic field B is given 

by the Lorentz force equation: 

𝑭 = −𝑒(𝑣 ×  𝑩)                                           (2.11 )    

 

 

 

 

 

Figure 2.3: A schematic diagram of an electromagnetic lens in the TEM. From [5]. 
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F is the magnitude of the force where |𝑭| = |𝑩|𝑒|𝑣| sin 𝜃 and θ is the angle 

between B and v. If the lens has a homogeneous field then electrons which pass 

exactly through the centre having a component of v parallel to B, will experience 

no force. But, the electrons which pass some distance off the main axis (having a 

perpendicular component) will spiral towards the centre and then out again, 

leading to a focusing action. The magnitude of the magnetic field (which is 

determined by the current applied to the lens coil) governs the focal length of the 

lens; using a combination of lenses gives a range of image magnifications while 

correcting for image rotations which would occur in the use of a single lens [4]. 

In addition, the resistive heating of the coil means that the lenses must be cooled 

by a water recirculating system in the TEM.  

 In a TEM, the first set of electromagnetic lenses that the electrons pass 

through after emission from the gun are the condenser lenses, C1 and C2. The C1 

lens controls the spot size of the beam, creating a crossover of the electrons from 

the gun lens. The C2 lens controls the convergence angle of the beam and can be 

used to create a parallel or a convergent beam depending on the mode desired by 

the user operating the TEM.   

The next (and arguably the most important) set of electromagnetic lenses 

that the electrons pass through in the TEM are the objective lenses. The sample is 

located in between these two lenses, their purpose being to focus the beam onto 

the sample and to form an initial inverted image of the sample.  

The intermediate lens further down the TEM column is used to magnify 

the initial image formed by the objective lens onto the viewing screen (imaging 

mode) shown schematically in Figure 2.4a, or, by changing the excitation of the 
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intermediate lens project the diffraction pattern which is brought to focus on the 

back focal plane (BFP) of the objective lens onto the viewing screen (diffraction 

mode), shown schematically in Figure 2.4b.  

 

 

 

 

 

 

 

Figure 2.4: Varying the strength of the intermediate lens moves its object plane to, either the image 

plane forming an image on the screen (a) or, the back focal plane (BFP) forming a diffraction 

pattern on the viewing screen (b). 

 

2.1.3 Aberrations 

In an ideal TEM (or any optical system) every point on the object will be 

reproduced in the image, but in reality, this is not the case as electrons which are 

closer to the optical axis are not focused to the same point as electrons further 

from the optical axis. This defect within the electromagnetic lenses is known as 

spherical aberration (Cs). A schematic of positive spherical aberration within a lens 

(a) (b) 
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is shown in Figure 2.5a, where we can express the diameter of the spherically 

distorted disk of intensity dsph in terms of the collection semiangle of the lens, β, 

and the spherical aberration coefficient, Cs, of the lens [2]: 

𝑑𝑠𝑝ℎ =
1

2
𝐶𝑠𝛽

3                         (2.12) 

Another common type of aberration is known as chromatic aberration Cc, 

which arises due to the electron beam not being monochromatic. This spread of 

energies (E1, E2 etc.) in the electrons may be due to fluctuations in the gun 

accelerating voltage causing an energy spread in the electrons leaving the source, 

or, different energy losses due to interactions with the sample. Like spherical 

aberration, the diameter of the chromatic disc of least confusion, dchr, can be 

expressed by: 

𝑑𝑐ℎ𝑟 = 𝐶𝑐
∆𝐸

𝐸0
𝛽                             (2.13) 

Where ΔE is the energy loss, E0 the incident energy and Cc is the chromatic 

aberration coefficient of the lens[2]. A schematic of chromatic aberrations in a lens 

resulting in electrons of different energies being brought to focus at different 

points along the optic axis is shown in Figure 2.5b.  

Astigmatism is another type of aberration in the TEM which occurs when 

electrons sense a non-uniform magnetic field as they spiral down the electron 

column. Astigmatism arises due to defects in the soft-iron pole pieces (it is 

practically impossible to machine them to be perfectly cylindrically symmetrical) 

or if the apertures are not clean, contamination can charge up and deflect the 

beam[2]. Astigmatism can distort the image by an amount dast given by: 



2. Microscopy Techniques 

 

38 

 

 𝑑𝑎𝑠𝑡 = 𝛽∆𝑓                         (2.14) 

Where Δf is the maximum difference in focus induced by the astigmatism. 

Luckily, astigmatism is easily corrected by using stigmators, which are small 

octupoles that introduce a compensating field to balance out the in homogeneities 

in the magnetic field. 

Fortunately, the effect of Cs and Cc aberrations can be overcome by using 

aberration correctors. Spherical aberration correction was first theorised by 

Scherzer in 1947 and made possible in the TEM, after many years of practical 

problems based on design, in 1997 [6]. A Cs corrector can compensate for the 

 

 

 

 

 

 

 

 

Figure 2.5: Spherical (a) and chromatic (b) aberrations in the lens. The disc of least confusion 

marks the plane where the effects of the aberration are minimised. Adapted from [4]. 

(a) 

(b) 
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natural distortion in the lens by using multi-pole lenses in series with the objective 

lens. There are two types of Cs correctors: the quadrupole-octupole and the 

hexapole corrector. By producing a negative Cs, the corrector compensates for the 

positive Cs in the objective lens, resulting in zero Cs. Before Cs correction was 

available, a high-quality system delivered about 1 nA of current into a picture 

element 1 nm in size; this amounts to about 5000 million electrons per second. 

With Cs correction, the system delivers about the same current into a picture 

element 0.1 nm or 1 Å in size [4]. The ability to correct Cc has also been made 

possible within the last decade with the design of Cc correctors [7], however, 

unfortunately Cc correction was not available on the TEMs used for this thesis.   

 

2.2 Beam – Sample Interactions 

As the accelerated electrons become incident on the sample various interactions 

can occur. Firstly, an electron may pass through the sample directly with no 

interactions at all. However, most likely the electrons will be scattered by the 

Coulomb forces generated by the nuclei and orbiting electrons of the sample. 

These electrons can either be scattered elastically (implying that the energy lost 

by the primary electron is either zero or too small to be detected) or inelastically 

(implying an energy loss of the primary electron which is big enough to be 

detected in the microscope). Elastic scattering occurs mainly from interactions 

with atomic nuclei (or the whole electrostatic field of the atom) and is responsible 

for diffraction from crystalline samples, used to reveal structure. Meanwhile, 

inelastic scattering mainly involves electron-electron interactions and can be 
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exploited for chemical analysis, for example by electron energy loss spectroscopy 

(EELS), or for analysing Kikuchi patterns, these are bands of alternating dark and 

light bands in diffraction mode. Kikuchi patterns are formed by electrons which 

have been previously inelastically scattered, they are related to atomic spacing 

and can be followed like “road maps” to the elastically scattered electron 

diffraction pattern (by tilting the sample). The inelastic scattering of a primary 

electron also leads to the generation of X-rays which can be detected and analysed 

using energy dispersive X-ray (EDX) spectroscopy. 

 

2.3 Electron Diffraction 

Electron diffraction is the result of Bragg scattering as the electron beam passes 

through a crystalline sample. Crystals act as three-dimensional gratings allowing 

the waves (electrons) to be scattered from the lattice planes separated by lattice 

constant, d. When the scattered waves interfere constructively, they remain in 

phase and the path difference between the two waves undergoing interference is 

given by Bragg’s law: 

 2𝑑ℎ𝑘𝑙 sin 𝜃 ≈ 𝑛𝜆                        (2.15) 

where θ is the scattering angle of the wave and n is the integer multiple of the 

wavelength (or order of reflection). The collective effect of scattering from 

successive crystallographic planes of the crystal lattice (described by Miller 

notation, hkl) increases the amount of constructive interference and intensifies the 

resultant reflections in the diffraction pattern (DP). In TEM, an aperture (metal 
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strip with holes to limit the beam size) can be inserted to generate a DP from a 

selected area of the sample (called selected area electron diffraction, SAED). For 

a single crystal, the distance in reciprocal space, rhkl, between a particular 

reflection and the reflection from the direct beam (000) is related to the interplanar 

distance. Using the relation:    

           
𝑟ℎ𝑘𝑙

𝐿
= tan 2𝜃                         (2.16) 

where L is the camera length of the TEM. By applying the small angle 

approximation (i.e. tan2θ = 2θ) and substitution with equations 2.15, gives us: 

𝑑ℎ𝑘𝑙 =
𝐿

𝑟ℎ𝑘𝑙
                         (2.17) 

The analysis of SAED can indicate structural information such as ferroelastic 

domains, exemplified by Figure 2.6. A DP for BaTiO3 oriented along the [100] zone 

axis (determined by the Weiss Zone Law: hU+kV+lW=0) is shown in Figure 2.6. 

Evidence of ferroelastic domains can be seen due to the splitting of reflection 

spots [8, 9]. 

 

 

 

 

 

Figure 2.6: Electron diffraction pattern from BaTiO3, oriented along [100]. 
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2.4 Bright- and dark-field TEM 

In conventional TEM operation mode, the electron beam is parallel (with respect 

to the column) when incident on the sample, such that both the diffracted and 

transmitted electrons contribute to the final image. However, by placing an 

objective aperture into the back focal plane it is possible to select the information 

in the image to the transmitted or specific diffracted beams. In bright-field (BF) 

imaging the objective aperature selects only the transmitted beam and all strongly 

diffracted regions in the sample appear dark (Figure 2.7a). In dark-field (DF) 

imaging, an objective aperture selects only one (or a few) diffracted beam without 

the contribution of the direct beam and this diffracted beam of electrons then 

appears bright in the DF image (Figure 2.7b). The contrast change due to bending 

or strain can also be interpreted in BF/ DF images since bending of atomic planes 

changes the Bragg condition. In BF imaging the intensity drops in regions with 

strain or bending and increases in the corresponding areas of the DF image. 

 

 

 

 

 

Figure 2.7: BF (a) and DF (b) image of a BFO thin-film on an LAO substrate. The DF image was 

acquired from the (002) reflection whilst the sample was oriented along [100]pc zone axis. 

(a) (b) 
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2.5 High Resolution TEM (HRTEM) 

High resolution TEM (HRTEM) or phase contrast imaging is useful for visualising 

the crystallinity of samples in real space rather than reciprocal space (diffraction 

mode). For HRTEM a large objective aperture is used to select many beams, 

including the direct and diffracted beams to form the image. As electron waves 

interact with the sample, their phase may change relative to the unscattered wave; 

the resulting interference of these waves gives rise to contrast in the image with 

periodicity of the crystal lattice, known as lattice fringes (see example in Figure 

2.8). The sample must be oriented along a zone axis so that the crystal lattice can 

be visualised from the lattice fringe spacing.  Although this provides useful 

information, caution is necessary when interpreting HRTEM images as the image 

will reproduce the periodicity of the crystal structure but the atom positions do 

not necessarily correlate with regions of high or low intensity. In addition, the 

image resolution is heavily influenced by the thickness of the sample (the thinner 

the better!) and aberrations in the objective lens, defocus and astigmatism. Due to 

these reasons, phase contrast images are not used in this thesis to gain 

quantitative information about crystal structure (diffraction is used instead) but 

are rather used as a preliminary indication of interface effects (existence of 

dislocations or phase changes) and for initial strain analysis.  

Geometrical Phase Analysis (GPA) can give a quantitative local 

measurement of strain from a HRTEM image (although caution must also be 

applied if thickness variations are present in the sample). Using an area of non-

strained crystal lattice in the image as a reference, the image FFT will display 

sharp bright spots. By comparing the FFT of the reference area to that of the rest 
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of the image, local variations in lattice parameter can be quantitatively measured 

(without measuring the absolute lattice parameter values) by measuring the 

distance between the bright spots in the FFT to the slightly diffuse spots which 

originate due to areas which show strained lattices. These variations can be 

measured vertically, horizontally and diagonally to give the respective out-of-

plane, in-plane and shear strain within the image (εyy, εxx and εxy) and are reflected 

by a colour intensity scale (given by a percentage relative to the unstrained 

reference lattice), see examples of GPA used to visualise the strain in mixed-phase 

BFO thin-films in Chapter 5. 

 

 

 

 

 

 

 

 

Figure 2.8: HRTEM image of a mixed-phase BFO thin film on a LAO substrate, with 5nm thick 

LSCO bottom electrode layer. The lattice fringes are visible, allowing the crystal lattice to be 

visualised along the [010]pc ZA. 
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2.6 Scanning TEM (STEM) 

Whilst in TEM mode the convergence angle is small, leading to a parallel electron 

beam, in scanning TEM (STEM) mode the beam is converged (with a maximum 

convergence angle) to a small electron probe. The probe scans across the sample 

forming an image in series, pixel by pixel, collected as a function of the position 

of the probe position on the sample. Due to the raster (scanning) of the probe, 

image acquisition is slower than in TEM and must be acquired using different 

detectors, therefore the objective and projector lenses do not play a role in STEM 

image acquisition. Here, the resolution is governed by the size of the electron 

probe (smaller is better), the beam current (higher is better) and any aberrations 

(none is better) present in the condenser lens.  

The various detectors used in STEM are summarised in Figure 2.9. Bright 

field images are acquired using a BF detector collecting electrons within a 

semiangle of 10mrad from the optical axis. A DF detector is an annular scintillator 

(shaped like a doughnut) and collects electrons between 10-50 mrad, constructing 

an image which is typically called an annular dark field (ADF) image. At even 

higher semiangles (>50 mrad) a high angle annular dark field (HAADF) detector 

is used, which collects electrons which have been inelastically scattered at high 

angles due to Rutherford scattering. In Rutherford scattering the angle through 

which the electron is scattered depends on the size of the nucleus of the atom, 

meaning that for heavier atoms (higher atomic no., Z), electrons will be scattered 

to higher angles. HAADF images show no or very little diffraction contrast, since 

the inner cut-off angle of the detector is so large that diffracted electrons do not 



2. Microscopy Techniques 

 

46 

 

reach it. For a HAADF detector with a fixed collection semiangle, θ, the number 

of electrons collected will be: 

𝑁(𝜃) ∝  𝑍2                         (2.18) 

Therefore, HAADF STEM images can also be called ‘Z-contrast’ images, heavier 

atoms will scatter more, generating more signal and hence appearing brighter in 

the image relative to lighter atoms. Electron channelling plays an important role 

in STEM imaging. When the electron probe is located over an atomic column in a 

crystal which is oriented on zone axis, the electrons are to some extent trapped by 

the attractive potential of the atoms. This effect maximises the signal and makes 

the atomic column appear brighter than an identical atomic column that is not 

oriented on zone axis. While STEM is a separate mode within TEM, dedicated 

STEM systems with no conventional TEM mode also exist (e.g. Nion UltraSTEM 

100: microscope used to collect data in Chapter 4). Using a converged scanning 

beam in STEM mode is also useful for analytical techniques such as energy 

dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy 

(EELS). 

 

 

 

 

 

                           Figure 2.9: Schematic of detectors used in STEM mode. From [2] 
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2.7 Energy dispersive X-ray Spectroscopy (EDX) 

When a high-energy electron is incident on the sample, an electron from the inner 

shell of an atom may be ejected, leaving a hole. Electrons from a higher-level shell 

will drop down to fill this inner shell hole and in doing so will emit a photon of 

an energy which is equal to the difference in energy of the two shells (see Figure 

2.10a). The emitted photon is typically within the X-ray frequency region of the 

electromagnetic spectrum, and the process of detecting X-rays in electron 

microscopy is called electron dispersive X-ray spectroscopy (EDX or EDS). A 

measure of the X-ray energy can be used as a ‘finger-print’ of individual elements 

as the difference in atomic energy levels is unique to a particular element, X-rays 

produced in this way are known as ‘characteristic X-rays’.  Another type of X-ray 

production exists, which is always present alongside characteristic X-rays (see  

 

 

 

 

 

 

Figure 2.10: EDX. Schematic of atomic energy levels showing the transitions which give rise to 

characteristic X-ray production (a). From [10]. An example EDX spectrum displaying continuum 

X-rays and characteristic X-rays labelled with their corresponding elemental symbols (b). 

(a) (b) 
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experimental spectrum in Figure 2.10b) known as ‘continuum’ or 

‘Bremsstrahlung’ X-rays, they result from the incident electrons interacting with 

the coulomb field of the nuclei of the atoms. The incident electron loses energy on 

interaction and this is given off as a continuum X-ray (seen mostly as a nuisance 

to microscopists because the characteristic X-rays used for elemental mapping 

need to be distinguished from the continuum X-rays). 

EDX has several limitations, one being that the element detection is best 

used for heavy elements. This limitation comes from the detector itself; before 

1980 detectors used to have a window made from beryllium (Be) and therefore 

only high energy X-rays could pass through the window [11]. Modern EDX 

detectors now have an ultrathin or windowless detector, allowing the detection 

of light elements down to Boron (Z = 4), however, the limited energy resolution 

of the EDX detector can lead to peak-overlap problems. An example of peak-

overlapping is demonstrated in Figure 2.11, leading to the apparently identical 

EDX maps for two elements under investigation. Peak overlapping in EDX can be 

resolved with caution by using complex deconvolution procedures [11] which 

involve having good statistics and knowing a precise measurement of the local 

thickness of the sample. It takes a finite time for the detector to process each X-

ray and during that time another X-ray cannot be recorded, this is called ‘dead 

time’. If the arrival rate of the X-rays is too high, the dead time will approach 

100%, allowing no X-rays to be recorded. Improving the energy resolution of the 

detector can reduce peak overlapping but this requires longer processing times, 

again at the expense of increased dead time and possible sample damage. 
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Figure 2.11: STEM-EDX demonstrating the effect of characteristic X-ray peak overlapping. Ba-Lα 

(a) and Ti-Kα (b) EDX maps appear to have identical elemental distributions, both showing a 

decrease in X-ray counts (dark contrast) along the grain boundary which is situated vertically 

along the centre of each map. The EDX spectrum (c) shows that the Ba-Lα peaks and the Ti-Kα 

peaks have overlapping energies making them undistinguishable in the maps (a) and (b).  

 

 

2.8 Electron Energy Loss Spectroscopy (EELS) 

Electron energy loss spectroscopy (EELS) is a very powerful technique because it 

detects any loss of energy by the incident electrons, not just a fraction of the 

inelastic scattering measured by EDX (which only measures when an X-ray is 

emitted and is within the collection angle of the detector). Above all, EELS is more 

sensitive to light (low Z) elements making it preferential for analysing elements 

such as oxygen which is the common element in the ferroelectric perovskites 
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studied in this thesis. EELS data is collected using a spectrometer added to the 

end of the STEM optical axis. When the electrons enter the EEL spectrometer, they 

are separated by energy based on their radius of curvature in a magnetic field and 

imaged by a charge-coupled device (CCD) [12]. As a result, the image on the CCD 

has one large bright peak corresponding to the non-scattered and elastically 

forward scattered electrons known as the zero-loss peak (ZLP), and satellite peaks 

corresponding to the elemental peaks with higher energy loss. This data can be 

plotted as the energy lost by an incident electron against its relative frequency, 

producing an energy loss spectrum. The EEL spectrum (see example in Figure 

2.12) can be divided into two main energy ranges for analysis: 

1. The low-loss energy region which includes transitions below electron energy 

losses of 50 eV. This region includes: 

a. The zero-loss peak (ZLP). The full width half-maximum (FWHM) 

of the ZLP can be taken as a measure of the spectral resolution, this 

can be as low as 15 meV with the latest monochromatic Nion 

‘HERMES’ at SuperSTEM: the EPSRC National Facility for 

aberration corrected STEM. 

b. Plasmon peaks. In the energy range of around 10-15 eV, the 

plasmon peaks arise from collective, resonant oscillations of the 

valence electrons and can be utilised along with the ZLP to 

determine the local thickness, t, of the sample: 

𝑡 = 𝜆
𝐼𝑝

𝐼0
                       (2.19) 

where λ is the plasmon mean free path, Ip and I0 are the intensities 

of the first plasmon peak and ZLP, respectively. 
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c. Interband transitions. The interaction of the electron beam can in 

some incidences excite valence electrons to the conduction band, 

producing characteristic peaks in the low energy loss region, 

allowing the band gap of some elements in the sample to be 

obtained. 

 

2. The core-loss energy region which includes all transitions above 50 eV energy 

loss. This energy range contains more specific information about the 

electronic structure, chemical bonding and density of states (DOS) of 

elements within the sample. Peaks within the core-loss energy range are 

mainly caused by the inelastic electron interactions within core shells of 

the atoms, and because the binding energy of core electrons is dependent 

on the atomic no. each element has a unique ionisation edge energy onset 

in the energy loss spectrum. The excitation of electrons from the core shells 

gives rise to K, L, M and N edges, originating from initial sates with 

quantum numbers n=1,2,3 and 4. For example, the excitation of a 1s1/2 state 

K shell electron gives rises to a single K edge, while the L2,3 edge arises from 

excitations of 2p1/2 and 2p3/2 electrons into unoccupied states. For heavy 

elements, it is more ideal to use the lower energy (L or M) ionisation edges 

for analysis, because the higher the atomic number, the more energy is 

required to excite electrons from the inner core shells as they are more 

tightly bound to the nucleus. 
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Figure 2.12: Schematic illustration of a typical EEL spectrum. The low-loss energy range shows 

the ZLP and plasmon resonance and interband transitions. The high-energy core-loss energy 

region shows a characteristic core-loss edge and extended post-edge structure. Adapted from [13]. 

 

2.8.1 Energy-loss near-edge structure (ELNES) 

Core-loss edges are the most intriguing features in the EEL spectrum because they 

contain a wealth of information about the chemical composition of an element 

within the sample. The spectral features within 50 eV above the edge onset are 

called the energy-loss near-edge structure (ELNES) of the element, the shape and 

intensity of the ELNES provides information about the local atomic environment 

of the atom as well as the DOS. The most distinguished ELNES feature in 

transition metals is the “white lines”, which occur due to spin-orbit coupling. 

They appear as intense sharp peaks in the EEL spectrum, an example of the L2,3 

white lines of Ti is shown in Figure 2.13a. As mentioned in Chapter 1, the 

ferroelectric phase of a perovskite involves the polar distortion of the unit cell 

which includes a shift of the central cation and distortion of the oxygen octahedra.  
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The ELNES of the central cation (Ti in the case of BaTiO3) is therefore very 

sensitive to these changes, and so the Ti-L2,3 edge along with the O-K edge 

(example shown in Figure 2.13b) are often used to understand the relation 

between local atomic environment, electronic structure and polarisation in 

ferroelectric materials. 

After acquisition of the EEL spectrum, and before the ELNES can be 

usefully interpreted, further processing is required. Firstly, the continuous 

decaying background must be removed; this can be done using a power law 

model [11], followed by the integration of the intensity of the core-loss edges over 

a suitable energy window (typically 40 eV) beyond the edge onsets. If the sample 

is relatively thick (greater than t/mean free path=0.5 was used as the cut off in this 

thesis) then the spectra should also be treated for multiple scattering effects. To 

remove multiple scattering effects, the EEL spectrum needs to be deconvoluted 

from the low-loss region of the EEL spectrum to obtain a single scattering 

 

 

 

 

 

Figure 2.13: Example EELS edges. (a) Ti-L2,3 edge and (b) O-K edge. The L3 and L2 edge (“white 

lines”) are labelled in (a). 

(a) (b) 
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spectrum. There are two commonly used deconvolution procedures: Fourier Log 

and Fourier Ratio. The EELS data presented in Chapter 4 of this thesis was 

acquired on samples below the thickness threshold for treatment of multiple 

scattering effects. However, the EELS data in Chapter 5 was acquired on thicker 

samples (reasons explained within the chapter) and therefore the Fourier Ratio 

method was used.  This procedure is effective in removing multiple scattering but 

usually cannot eliminate the energy broadening of the spectrometer system 

because high-frequency spectral noise becomes amplified during the Fourier 

division [14]. 

 A recently developed method to reduce the noise in EEL spectra is to use 

principal component analysis (PCA), which is a form of multivariate statistical 

analysis. The software package (‘Digital Micrograph Plugin for Multivariate 

Statistical Analysis’ [15]) used in Chapter 5 of this thesis separates the data into 

components of variables in the form of a scree plot. By selecting only the 

components which have high eigenvalues (the noise is represented by an 

exponential decrease of the eigenvalues), the data is reconstructed and the 

resultant EEL spectrum map has a significantly improved signal/noise ratio. 

Similar to EDX, EELS unfortunately has its own limitations, the main one 

being the effect of energy resolution and how this determines the amount of 

information that can be obtained from ELNES analysis. Energy resolution can to 

some extent be improved with thinner samples (t/mean free path< 0.5) but, more 

significantly it can be improved with the use of a cold-FEG (see data in Chapter 

4) or using a monochromator to correct for Cc aberrations.  
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It should be noted that using higher voltages (200 – 400 kV) can in principle 

increase resolution, however, it can also generate beam damage as the probe 

rasters across the sample. If the sample suffers from contamination (e.g. carbon 

build up), the thickness of the sample will rapidly increase deeming the 

additional processing step of removing multiple scattering necessary.  

 

2.9 Nano-Beam Electron Diffraction (NBED) 

The nano-beam electron diffraction technique used in Chapter 5 of this thesis 

involves using a quasi-parallel electron beam whose diameter at full width at half 

maximum (FWHM) is ~2 nm, with a convergence semi-angle of 0.5 mrad. The 

NBED technique [16] consists of rastering the quasi-parallel probe across the 

sample, resembling a combination of STEM and TEM modes, collecting 

diffraction patterns, pixel by pixel on the CCD. The shift of the diffracted spots 

within the diffraction patterns allows the measurement of the lattice parameter 

evolution in the sample and therefore the strain. NBED offers the advantage of 

being able to accurately map lattice parameter changes over a large area 

compared to similar techniques such as GPA, which maps lattice spacing in a very 

localised area of the sample and is more prone to inaccuracies due to thickness 

variations or defects. 

  The aim of NBED is to obtain good spatial resolution (using the small 

beam size), and sharp diffraction spots. Energy filtering (zero-loss) of the 

diffraction patterns with a 10 eV slit has been found to significantly improve the 

signal/ noise ratio creating sharp diffraction spots. An image of the 2 nm sized 
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probe and an example NBED pattern is shown in Figure 2.14. In terms of 

acquisition time, a map of NBED patterns of ~100 pixels with pixel size of ~2 nm 

took ~20 minutes. This may seem quite inefficient however, the strain accuracy 

can be estimated to be 6 x10-4 using this technique [16]. A dedicated script 

developed by CEA-Grenoble was used to process all recorded NBED patterns (see 

results in Chapters 5), detailed in Ref [15]. 

 

 

 

 

 

Figure 2.14: Image of the electron probe used for NBED (a).  NBED pattern of LAO oriented along 

the [010]pc  zone axis (b). 
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2.10 TEM Sample Preparation 

TEM requires an electron-transparent sample with thickness ~<100 nm for 

conventional imaging and even thinner for carrying out high resolution imaging 

or spectroscopy techniques, especially EELS. Generally, for EELS the sample 

thickness should be less than half of the mean free path between plasmon 

scattering events (mfp) where mfp is dependent on the electron energy and is ~100 

nm for metals and semiconductors at 100 keV [12]. For the TEM experiments 

carried out in this thesis, all samples were prepared as lamella (meaning “thin 

layer” in Latin) using a dual-beam (scanning electron microscope & focused ion 

beam) microscope. The focused ion beam microscope and scanning electron 

microscope within a dual-beam microscope will be described in the following 

sections. 

 

2.10.1 Focused Ion Beam (FIB) microscope  

Sample preparation by FIB is nowadays considered a routine procedure. 

However, care must be taken when selecting the operation parameters as to avoid 

as much damage and introduction of artefacts as possible. Thus, the 

instrumentation and procedures are continuously improving. FIB microscopes 

use a liquid metal ion source (LMIS) to produce ions (most commonly Ga+) 

through field emission. The beam of Ga+ ions is focused into an energetic beam 

using a series of electrostatic lenses, each ion has an energy related to the 

accelerating voltage (e.g. a 30 kV extractor will produce ions of 30 keV energy) 
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and the use of apertures can limit the current of the beam from µA to pA. Once 

incident on the sample surface, the Ga+ ions will sputter material from both the 

surface and subsurface region via atomic collisions of the incident ion, shown 

schematically in Figure 2.15 where the Ga+ ions penetration depth, Rp, and lateral 

range, RL, are labelled.  The sputtering process is very useful for fabricating thin 

sheets of electron transparent material (lamellae) suitable for TEM investigation. 

The smallest lamella thickness achievable in modern FIB microscopes (with very 

careful operation) is ~ 10 nm, ideal for single scattering EELS and high resolution  

 

 

 

 

 

 

 

 

 

Figure 2.15: Schematic of the cascade volume created when a Ga+ ion interacts with a crystalline 

material during the FIB milling process. The crystallinity is broken down by atomic collisions with 

the incoming Ga+ ions. Adapted from [17]. 
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experiments. However, caution is necessary when choosing the operating voltage 

and current of the beam to fabricate thin lamellae because the thickness of the 

damaged (amorphised) layer depends heavily on these parameters. Generally, for 

the lamellae fabricated in this thesis, a high extraction voltage (30 kV) and beam 

current (9 nA) was used to mill the initial trenches of the lamella and these 

parameters were lowered in succession until the final stage of “polishing” the 

lamella, where an extraction voltage of 5 kV and beam current of ~71 pA was 

used. In addition, the Ga+ ions can breakdown gases containing Pt or W released 

within the vacuum chamber, allowing site-specific deposition. This is particularly 

useful for depositing a protective layer on the sample which decreases the 

thickness of the damaged layer on the top surface of the lamella. The main 

disadvantage of using FIB microscopes to prepare TEM samples is related to the 

destructive nature of the technique, where even sporadic/irregular imaging of the 

lamella during the milling process can greatly damage the lamella by creating Ga+ 

implantation and crystal amorphisation in the lamella. Therefore, to reduce the 

extent of FIB damage a dual-beam FIB microscope was used to prepare TEM 

samples in this thesis. A dual-beam FIB microscope benefits from having both an 

ion beam microscope for milling and a scanning electron microscope to image the 

lamella in a less destructive manner.  

 

2.10.2 Scanning Electron Microscope (SEM) 

In a similar manner to TEM, a SEM operates by means of an electron gun at the 

top of the column which creates energetic electrons. The electrons are focused 

using a series of electromagnetic (rather than electrostatic in FIB) condenser lenses 



2. Microscopy Techniques 

 

60 

 

to a spot size of ~1 nm on the sample, and the electron beam is rastered across the 

surface during operation. The signals produced by the electron beam-sample 

interactions are summarised in Figure 2.16, with imaging primarily carried out 

by the detection of secondary emitted electrons. The electron energies used for 

SEM (within a dual-beam FIB) are typically around 5 keV meaning that these 

electrons have low energy (in comparison to TEM), only interacting with a small 

interaction volume. The interaction volume can be increased with increased 

operating voltages and when incident on soft (low Z) materials, but in general, 

SEM obtains only surface-specific information from the detected signals. 

 

 

  

 

 

 

 

 

Figure 2.16: Schematic of the interaction volume and signals produced when electrons are incident 

on the surface of a material in an SEM. Imaging is primarily carried out by detecting secondary 

electrons or backscattered electrons. From [18]. 
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2.10.3 Fabrication of TEM lamellae using a Dual-beam FIB 

Microscope 

Preparation of TEM lamellae for preliminary data analysis was carried out using 

a FEI Nova 600 dual beam FIB at QUB. The Nova microscope (shown 

schematically in Figure 2.17) contains two separate columns, one for the ion and 

electron beam, respectively. Due to the design, the columns are separated by an 

angle of 52° but with careful alignment and setting of the sample eucentric height, 

both beams can be focused onto the same point of interest on the sample so that 

simultaneous milling and imaging can take place in a minimal-destructive 

manner. A standard procedure to fabricate TEM lamellae was used on the Nova 

microscope, this involved firstly depositing a W protective strip (~2 µm thick) on 

the surface of the desired site of the bulk sample. This step was followed by the 

milling of deep, wide trenches either side of the W strip, where the depth 

 

 

 

 

 

 

Figure 2.17: Schematic of a dual-beam FIB microscope. The central column (comprising the SEM) 

is separated by the ion beam column (comprising the FIB) by 52°. From [17]. 
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determined the length of the lamella. After continuous milling (stepping down 

the voltage and current approx. every 250 nm) the lamella was ready to be cut 

free at the bottom and sides. The next step involved the delicate transfer of the 

lamella (now sitting free in between the trenches) to a TEM grid using the well-

known ex-situ lift-out procedure [19]. The lamella was removed from the bulk 

sample by using a micromanipulator controlled glass needle (drawn to a fine 

point using a heating source), the electrostatic forces were sufficient to attach the 

lamella to the glass needle before placing it down onto a carbon membrane TEM 

grid.  

Although sufficient for preliminary low magnification TEM investigation, 

the lamellae produced using this procedure (involving ex-situ lift-out) were 

inadequate for high resolution investigation (especially for low extraction voltage 

microscopes like the 100 kV Nion microscope used in Chapter 4). Instead, a 

different procedure which involved using an in-situ micromanipulator was 

considered necessary (these samples were fabricated in Leed’s University (UK) 

and Ernst Ruska-Centre for Microscopy and Spectroscopy of Electrons 

(Germany)). The in-situ technique (meaning that the FIB milling and lift-out 

process both take place within the dual-beam microscope) was used to fabricate 

the lamellae investigated at the following advanced microscopy centres: 

SuperSTEM: The EPSRC National Facility for aberration corrected STEM (UK) 

and Ernst Ruska-Centre for Microscopy and Spectroscopy of Electrons 

(Germany), data presented in Chapters 4 and 5.  

The in-situ technique, summarised in Figure 2.18, involved the removal of 

a thick (~1.5 µm) lamella from the trenches using an Omniprobe needle (made 
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from Pt and micromanipulated using electronics), followed by attachment to a 

specific type of grid to be mounted on; a Cu finger grid with no carbon membrane. 

Once removed from the trenches, the lamella was positioned within touching 

distance from the grid where it was then attached using Pt deposition, and further 

polished until the desired thickness was reached. The benefits of using the in-situ 

fabrication technique include the ability to re-thin the lamella if the desired 

thickness is not reached after the first FIB session (this includes using an argon 

source to give a final gentle clean). The fabricated lamellae are also less 

contaminated by re-deposition when using this technique because the majority of 

the FIB milling takes place outside of the trenches. Additionally, the absence of 

the carbon membrane on the omniprobe TEM grids means that there is less 

contamination during image acquisition (especially in STEM mode where carbon 

build up occurs quite rapidly as the probe is rastered across the sample, especially 

for oxides). 
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Figure 2.18: Example of FIB fabrication of a lamella using the in-situ technique. A Pt strip was 

deposited as a protective layer on the desired site and trenches were milled either side using high 

voltage (30 kV) and current (9 nA) (a). The lamella was tilted to 45° (with respect to the ion beam 

column) so that the bottom and one side of the lamella could be cut free (30 kV and 0.26 nA) (b). 

The in-situ needle was sharpened (milled by FIB) and attached to the free side of the lamella via 

Pt deposition. Once attached, the lamella was cut free on the remaining side and removed from 

the trench using micromanipulators (c). The lamella was brought into contact with the metal leg 

of the TEM grid and attached via Pt deposition. Once attached, the needle was milled free (d). The 

lamella was further milled, lowering the current in subsequent steps to 90 pA at ~200 nm thickness 

(e). The final polishing of the lamella was carried out at 5 kV and 71 pA until the lamella reached 

around ~100 nm thickness. The current was then further reduced to 17 pA until the thickness 

reached below 50 nm (measured from the top-down), some areas appear even thinner (bright 

contrast) in (f). All scale bars represent 10 µm. 

 

(a) (b) (c) 

(d) (e) (f) 
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2.10.4 MEMS chips for in-situ heat cycling experiments 

The in-situ heat cycling experiments carried out in Chapters 3 and 5 of this thesis 

involved the use of MEMS (micro-electro-mechanical systems) chips for TEM. 

Lamellae were prepared using the standard FIB and ex-situ lift-out procedure 

previously described, meaning that the lamellae could be carefully positioned 

over the circular electron-transparent windows, as shown in Figures 2.19a and b.  

Two types of MEMS heating chips were used for the investigations 

presented in this thesis: the in-situ heat cycling experiments on BaTiO3 (Chapter 

3) were carried out on chips produced by Protochips [20], while, the experiments 

on BiFeO3 (Chapter 5) were carried out on chips produced by DENS solutions 

[21]. Both chips operate under the same principles, the passage of current through 

the chip produces heat via Joule heating. In the design of Protochips, the chip 

features a silicon carbide heater (which is integrated into the membrane itself so 

that the heater and sample-support is within a single thin film) with W electrodes 

that allow heating up to 1200 °C. 

The DENS solutions chip has a slightly different design; instead of using a 

semiconductor membrane, it features a metal heater (exact metal not disclosed) 

in the shape of a coil. The heater lines are encapsulated in silicon nitride so that 

the sample is insulated from the heater and a thin carbon membrane coats the 

chip so that the lamella stays in place. Both Protochips and DENS solutions 

benefit from the 4-point-probe measurement system (shown in Figure 2.19c) 

where a voltage is applied to two of the contacts and the other two contacts 

accurately measure the resistance. The well-defined relationship between 

resistance and temperature for a semiconductor-based (Protochips) and metal-
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based (DENS solutions) heating element is shown in Figure 2.19d. Each chip is 

calibrated separately at the final stage of production and a table of resistance vs. 

temperature is provided within the software which operates the MEMS chips. The 

temperature is regulated 3 times per second via the closed-loop feedback from 

the 4-probe design, ensuring accurate temperature control throughout. 

In terms of tilt-ranges available for MEMS heating chips, both companies 

now have holders with double-tilt capabilities available (α and β tilt ~ ±25°). 

However, during the first set of experiments carried out in this thesis (BaTiO3 in 

Chapter 3) only the single-tilt Protochips holder (α ±25°) was available (the 

technique was, and still is, relatively new!). Although the limited tilt range did 

not diminish the impressive heating stability provided during the experiments, 

the ability to tilt the BaTiO3 crystal onto a main zone axis was unfortunately 

severely limited, as will be shown in the discussion of results in Chapter 3. 
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Figure 2.19: MEMS chips for in-situ heating with the TEM. Optical microscope image of the 

Protochips heating chip featuring a silicon carbide membrane heating element with circular holes, 

the lamella was placed over one of the larger circular electron-transparent windows using a glass 

needle (a). Optical microscope image of the DENS solutions heating chip featuring a metal spiral 

heating element which is encapsulated in silicon nitride, the lamella was placed over one of the 

circular electron-transparent windows, the thin layer of carbon which coats the chip kept the 

lamella in place (b). Photograph of a Protochips double-tilt holder with a MEMS heating chip 

inserted [20], four metal contact probes were present: two applied voltage and two measured the 

resistance (c). The typical relationship between resistance and temperature for a semiconductor 

(silicon carbide membrane in (a)) and metal (coils in (b)) heating element (d). Scale bars in (a) and 

(b) represent 20 µm. 

 

 

(a) (b) 

(c) (d) 
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2.11 Other techniques 

2.11.1 Atomic Force Microscopy (AFM) 

Atomic force microscopy (AFM) is a type of scanning probe microscopy (SPM) 

which can provide micron lateral-scale maps of surface topography with 

nanometre resolution [22]. Information is gathered by scanning a metal tip 

(probe) along the surface of the sample using piezo-tube actuators, allowing for 

precise movements in all directions. The position of the probe can be detected 

using a laser spot focused on the probe backside and the reflection is detected by 

a photodiode detector [23]. The AFM can operate in a number of different modes 

due to the dependence of force interactions on the tip-surface separation (e.g. 

contact or non-contact mode). The following modes of AFM were used within the 

work of this thesis: Piezoresponse force microscopy, conductive-Atomic force 

microscopy and Kelvin probe force microscopy. The AFM experiments were 

carried out by collaborators at QUB (special thanks to Dr. A. Douglas, N. Browne 

and D. Edwards) and a brief description of the techniques used will be described 

in the sections which follow. 

 

2.11.1.1 Piezoresponse Force Microscopy (PFM) 

Piezoresponse force microscopy (PFM) is a surface-based technique which is non-

destructive (un-like the sample preparation necessary for TEM) and has been the 

source of the most recent experimental advances in ferroelectric switching of 

domains [24, 25]. PFM works by measuring the (converse) piezoelectric response 
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of the ferroelectric to an applied bias via the deflection of a conductive tip in 

contact with the surface. For imaging domains, the reaction of the probe to the 

forces that the sample imposes on it can be used to form an image of the 

topography of the sample [23]. Noting that ferroelectric domains respond to an 

electric field with a characteristic deformation (strain), in PFM an AC signal is 

applied to the conductive tip (which acts as a movable top electrode) and in the 

simplest case the vertical (z-direction) surface strain is recorded by measuring the 

amplitude and phase of the periodic response of the ferroelectric, transferred to 

the cantilever (shown schematically in Figure 2.20) [26]. 

  

 

 

 

 

 

 

 

Figure 2.20: Schematic of the setup of PFM (a). The ferroelectric material has a bottom electrode 

painted on with Ag paste. An AC voltage is applied to the tip (top electrode) and the domain 

orientation which gives an in-phase response for P+ and out-of-phase response for P- domains are 

recorded relative to the modulated bias (b). The amplitude is independent of the domain 

polarisation, if the size and depth remains the same. From [26]. 

(a) 

(b) 
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2.11.1.2 Conductive-Atomic Force Microscopy (c-AFM) 

Conductive atomic force microscopy (c-AFM) is a mode in AFM that 

simultaneously measures the topography and the electric current flow at the 

contact point of the tip with the surface of the sample. The current is measured 

using a current-to-voltage preamplifier while the topography is measured using 

the cantilever optical system shown in Figure 2.20. The c-AFM is usually operated 

in contact mode so that the tip can be kept at one location while the voltage and 

current is read, or the tip can scan a specific region of the sample under constant 

voltage while the current is measured [27, 28].  

 

2.11.1.3 Kelvin Probe Force Microscopy (KPFM) 

Kelvin probe force microscopy (KPFM) also known as ‘surface potential 

microscopy’ is a noncontact mode in AFM based on the detection of electrostatic 

forces. If the tip encounters a surface charge while scanning, it will begin to 

oscillate. The KPFM is setup with a feedback system to dampen the cantilever’s 

oscillation through the variation of the DC voltage applied. Recording this 

dampening voltage signal gives a direct measure of the surface potential. KPFM 

can therefore create a map of local potential as the tip is rastered across the sample 

surface [29, 30]. 
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2.11.2 Electron Backscatter Diffraction (EBSD)  

Electron backscatter diffraction (EBSD) is a technique used with the scanning 

electron microscope. EBSD provides quantitative microstructural information 

about materials and is ideal for revealing the crystallographic orientation of 

crystals within a bulk material (e.g. the orientation of specific grains within a bulk 

polycrystalline sample) before sample preparation for TEM investigation. EBSD 

was made available (via collaboration with the University of Manchester) during 

the late stages of the TEM studies in this thesis, but the benefits for future studies, 

especially in relation to the study of domains in polycrystalline barium titanate, 

are highlighted in Chapter 3.  

 EBSD works by positioning a flat (highly polished) sample at angle of 20° 

to the electron beam; the SEM is operated at ~20 kV and incident beam currents 

of ~50 nA. When the primary beam interacts with the crystal lattice low energy 

loss backscattered electrons are channelled and are subject to path differences that 

lead to constructive and destructive interference. By placing a phosphor screen a 

short distance from the sample (see schematic in Figure 2.21a) in the path of the 

diffracted electrons, a diffraction pattern can be seen (known as the electron 

backscattered pattern (EBSP)) [31]. The EBSP is in the form of black and white 

Kikuchi lines (previously described in Section 2.2), an example of an EBSP from a 

grain within a polycrystalline BaTiO3 sample is shown in Figure 2.21b. By 

scanning the electron beam across the surface of the sample (which has cm 

dimensions), EBSPs can be collected from each neighbouring grain on the surface 

of the sample and a resultant EBSD map can be created. The EBSD map can be 

colour coded for each grain in terms of its crystallographic orientation using the 
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Euler angle convention [32]. During a measurement, this is the relationship 

between the EBSP detector and the particular point on the sample being measured 

under the beam; an example EBSD map for polycrystalline BaTiO3 is shown in 

Figure 2.21c. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.21: EBSD technique. Schematic arrangement of the sample orientation in the SEM (a). 

From [31]. Example EBSP from a grain of BaTiO3, the main zone axes are labelled (b). Example 

EBSD map created by scanning the electron beam across the surface, collecting EBSPs at each 

point. The map is colour coded in terms of the corresponding Euler angles shown in the bottom 

left (c).  

(a) 

(b) (c) 
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3. Domain compatibility across 

BaTiO₃ grain boundaries 

 

In this chapter a study of domain patterns and compatibility of domains across 

grain boundaries is presented, exploring whether domains within individual 

grains of a polycrystalline ceramic behave in a similar way to single crystals, or 

whether they can couple across grain boundaries in a stress-free manner. The 

arrangement, or pattern, of domains present in a ferroelectric is of great 

significance in determining the properties of a material at the nanoscale [1-6]. For 

instance, the effective piezoelectric coefficients depend upon the fractions of 

different domains types present [7], and enhanced actuation can be achieved by 

engineering specific domain patterns [2]. Polycrystalline ferroics remain in 

widespread use in the technology industry (in actuators and sensors) due to their 

low-cost and fast preparation time scales, on par with higher quality single-

crystal counterparts when possible. However, the intricate domain patterns 
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which form in polycrystals are not well understood and thought to be a difficult 

and unsolved problem at the present [8]. Therefore, it is of high scientific and 

technological importance that a good understanding of domain compatibility 

across grain boundaries is achieved to optimise the use and practical control of 

domain configurations for future technological applications. In this study, 

scanning transmission electron microscopy (STEM) was used to image the 

ferroelastic domain patterns which occur within grains and near grain boundaries 

in lamellae cut from a BaTiO3 ceramic. Moreover, STEM in-situ heat cycling 

experiments were carried out to explore the new domain arrangements produced 

by heating and subsequent cooling of lamellae through TC.  The study within this 

chapter demonstrates that the domain arrangements near grain boundaries, can 

be rationalised in terms of the theory of martensite crystallography. If 

experimentally confirmed assumptions are undertaken, such as if the grains are 

pancake-like, with grain size significantly greater than the lamella thickness, then 

the relaxation of the out-of-plane strain gives rise to an undetermined set of linear 

equations in the volume fractions of domains. Interestingly, additional inequality 

constraints on the volume fractions lead to (non-unique) solutions, demonstrating 

that groups of adjacent grains in lamellae can form compatible stress-free domain 

arrangements across grain boundaries.  

The work in this chapter was carried out in collaboration with Dr. E. 

Prestat and Dr. S. Haigh at the University of Manchester, where STEM in-situ 

heating experiments were performed. Following this set of experiments, the 

analysis of grain boundary domain arrangements in relation to the theory of 

martensite crystallography was carried out in collaboration with Prof. J. Huber 

from the University of Oxford. 
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3.1 Morphology of domains in polycrystalline 

ceramics 

While domain formation in single crystal ferroic materials is relatively well 

understood, the morphology of domains in polycrystalline materials is much 

more complex. In fact, for many years it had been assumed that domain walls 

were confined within grains, and could not penetrate grain boundaries [9]. This 

was fully disproved when evidence of ferroelectric domains was shown 

overlapping adjacent grains in Pb[ZrxTi1-x]O3 [10]. More recently, evidence has 

shown that domains can spontaneously nucleate at grain boundaries and the 

macroscopic polarisation distribution can be correlated across neighbouring 

grains [11]. Gruverman et al. verified this experimentally using piezoresponse 

force microscopy (PFM) [12, 13]. Furthermore, it has been shown that grain 

boundaries can act to pin domain walls [14-17]; x-ray diffraction has shown 

ferroelastic domain wall pinning by intergranular elastic clamping [18]. Arlt et al. 

demonstrated that the width of 90 domains in BaTiO3 ceramics decreases 

proportionately to the square root of the grain diameter, and the dielectric 

constant is partially controlled by 90 domain walls [19]. Meanwhile, global 

dielectric and piezoelectric measurements exhibit decreased domain wall motion 

with decreasing grain size [14, 20, 21]. 

In polycrystalline ceramics, it is expected that neighbouring grains will 

impose constraint upon each-other and this will ultimately affect the final domain 

configuration formed upon cooling through TC. Typically, the constraints on 

grains in randomly oriented bulk polycrystalline ceramics are so severe that 
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stress-free states are unlikely and complex, hence energy minimising patterns 

form [8, 22]. Furthermore, in polycrystalline thin films and lamellae, the out-of-

plane constraints can be relaxed, giving the material even greater freedom to 

adopt a stress-free configuration [23].  

A bulk BaTiO3-based ceramic is shown in Figure 3.1a, with average grain 

size ~4 µm. This ceramic is commercially available as a positive temperature 

coefficient of resistivity (PTCR) material; the functional properties and chemical 

identity of which will be studied in detail in the following chapter. Examples of 

ferroelastic domain patterns near grain boundaries in lamellae cut (via FIB) from 

the bulk ceramic are shown in Figure 3.1b and c; the domain configurations vary 

from high- to low-angle alignment (b-c) across grain boundaries and sectors with 

domains oriented parallel to the grain boundary are also present (b). The 

expectation is that as the lamellae are heated/cooled through TC, the ferroelastic 

domains will rescale in accordance to Kittel’s law [24, 25]. However, apart from  

 

 

 

 

 

Figure 3.1: SEM image of a bulk BaTiO3 ceramic (a). STEM images of lamellae fabricated via FIB 

from the bulk ceramic (b) and (c), displaying varied domain configurations near grain boundaries. 

Domains intersect the grain boundary at high angles (b) and low angles (c). Grain boundaries are 

marked by black dotted lines.  

(a) (b) (c) 
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the rescaling it is of interest to analyse the new domain configuration, under the 

new stress regime (against the original, bulk one) and to investigate where the 

domain nucleation starts from; if the presence of grain boundaries plays a role in 

the nucleation. Hence, the approach utilised here is to study two cases: domains 

coupling across a single grain boundary, and the more complex case of the 

domain configuration within adjacent grains which meet around a junction (or 

pore). This study aims to have the starting point of knowing the static domain 

configuration before moving on to analyse the dynamic one (with heating). 

 

3.2 Domain compatibility across a single grain 

boundary  

 An example of a lamellae containing multiple grains is shown in Figure 3.2a. At 

this stage, the crystallographic orientations of the grains and types of domains 

(polarisation in-plane or out-of-plane) were unknown and deemed necessary 

before domain compatibility could be put to the test. However, it is well 

recognised that 180° domain walls produce negligible contrast in the TEM 

whereas, the change in unit cell orientation across ferroelastic 90° domain walls 

makes them widely accessible for observation. Therefore, the domains observed 

in Figure 3.2a were initially characterised as being the typical 90° type. 

The left grain (labelled ‘1’) was tilted to align the electron beam with the 

<100>pc type directions as can be determined from the diffraction pattern in Figure 

3.2b, and without any further tilting of the lamella a subsequent diffraction  
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(a) 

(b) (c) 

 

 

 

 

 

 

 

 

 

Figure 3.2: TEM BF image of a FIB prepared lamella (a), containing multiple grains and ferroelastic 

90° domains. Corresponding diffraction patterns of grain 1 (b) and grain 2 (c) acquired from the 

designated dashed circles in (a). Domain wall orientations are overlaid (dashed lines) and the 

corresponding splitting of diffraction spots is highlighted (dashed boxes) in (b) and (c).  

 

pattern was acquired from the dashed circle area in grain 2 (as shown in Figure 

3.2c). Analysis of the diffraction patterns was carried out to determine whether 

the domains present in the selected area of each grain are 90° a-c type or a-a type 

structures. The presence of diffraction spot splitting along the orientation of the 

domain walls, which habitat {110}pc planes, was a tell-tail sign that the domains 

in both grains are 90° a-a domain types. The origin of the spot slitting stems from 

the fact that 90° domains have different unit cell orientations and therefore 
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polarisations that are separated by (90°-θ), where θ is dependent on the 

tetragonality as:  

𝜃 = 2 tan−1 (
𝑐

𝑎
) − 90°              (3.1) 

where c and a are the long and short lattice parameters of the tetragonal unit cell, 

respectively [26]. The value of θ measured from the diffraction patterns within 

grains 1 and 2 is 1.2 ± 0.4°. This splitting is further illustrated in Figure 3.3a where 

green and yellow rectangles indicate the diffraction patterns originating from 

each a-domain. A schematic picture is portrayed in Figure 3.3b illustrating the 

real-space vectors which describe the 90° a-a domains shown in Figure 3.3c. It is 

apparent that two real-space vectors in Figure 3.3b, each from different domains, 

have angular separation of θ or 90°±θ and these vectors are of the type <0kl>pc 

and <h0l>pc (where h=±k and k and l ≠0).  The exception is the combination of two 

real-space vectors which lie in the plane parallel to the domain wall, these vectors 

have no angular separation. The same vector traits follow through to reciprocal 

space, as shown in an enlarged version of the diffraction spot splitting in Figure 

3.3d. The specific polarisation direction of each domain cannot be established 

using this technique, however, the two possible directions to which each domain 

is crystallographic constrained are shown schematically in Figure 3.3c; it should 

be noted that the domains could be the other way around. 
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Figure 3.3: Diffraction pattern (a) and schematic representation of one of the 90° domain walls 

separating a-a domains in the STEM image of an area within grain 1 (c).  The domain wall 

orientation is marked by a dashed line and the spot splitting is highlighted by a dashed box in (a). 

Yellow and green rectangles in (a) represent the diffraction patterns from each a-type domain 

shown in (c). The allowed polarisation directions are labelled for each domain in (c). The real space 

vectors shown in (b) are revealed in reciprocal space in an enlarged diffraction pattern (d). The 

schematic (b) was adapted from [26]. 

 

3.2.1 Analysis using theory of martensite crystallography 

The compatibility conditions at a single domain wall are well known from the 

crystallographic theory of martensite [8, 27, 28]. Domain walls with a low energy 

configuration are said to be compatible if they have no net charge (continuity of 

the normal component of electrical polarisation) and no dislocations (continuity 

(a) 

(c) (d) 

(b) 
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of lattice strain) [29]. For a pair of ferroelectric domains i and j with lattice strain 

states εi, εj, and corresponding polarisation vectors pi, pj, the interface normal 

vector n of a compatible domain wall must satisfy: 

𝜺𝑖 − 𝜺𝒋 =
1

2
(𝒂 ⊗ 𝒏 + 𝒏 ⊗ 𝒂)             (3.2) 

(𝒑𝑖 − 𝒑𝑗) ∙ 𝒏 = 0              (3.3) 

Provided a non-trivial vector a exists that satisfies (3.2), there is a compatibility of 

strains. Equation (3.3) ensures continuity of electrical polarisation, giving a 

charge-free domain wall in the absence of electric field or stress. 

To test the compatibility of domains across a grain boundary, an area (1.6 

µm x 1.6 µm) enclosing one of the grain boundaries shown in Figure 3.2a was 

analysed. The area shown in Figure 3.4a is thought to be a reasonable 

representation of the whole grain boundary, considering the grain size displayed 

in the overview of Figure 3.2a. The advantage of using STEM for this next stage 

of the analysis hails from the fact that STEM provides less diffraction contrast 

from bending contours, and is therefore ideal for providing a clearer observation 

of the domain contrast and grain boundary.  

Figure 3.4a displays a STEM image of two sets of a-a domains which 

intersect along the grain boundary between grains 1 and 2. The domain walls are 

orientated at 45° to the local [001] directions as determined from the diffraction 

patterns (Figure 3.4b and c), the separation between local [001] directions was 

measured to be 24° as displayed in the inset of Figure 3.4c. 
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Figure 3.4: STEM image of the grain boundary separating grains 1 and 2 (a). Diffraction pattern 

acquired from the circled area in grain 1 (b) and grain 2 (c). The allowed polarisation directions 

are labelled in (a). The separation between local [001] directions was measured to be 24° as 

displayed in the inset of (c). The scale bar represents 200nm. 

 

 A schematic of the area imaged in Figure 3.4a is depicted in Figure 3.5 for 

ease of analysis using crystallographic theory of martensite. The domains have 

been labelled A-D for clarity and the (x, y, z) coordinates have been aligned with 

respect to grain 1. It can be noted from Figure 3.5 that grain 1 consists of A and B 

domains with about 1 3⁄  being B domains, mostly towards the lower part of the 

image. The A/B domain walls are 45° to the local [001] (and hence the x-axis of the 

chosen coordinates). The grain boundary curves slightly but is about 2° from the 

x-axis. Grain 2 consists of nearly all C domains near the grain boundary, with a 

small quantity <0.1 (fractional volume) of D. The local [001] direction is 24° from 

the x-axis and the C/D domain walls are 45° from the local [001] direction.  

(a) (b) 

(c) 
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Figure 3.5: Schematic of the grain boundary imaged in Figure 3.4a. Domains and local [001] 

directions have been labelled. The (x, y, z) coordinates are aligned with grain 1. 

 

Assuming that both grains are stress-free containing cubic unit cells of BaTiO3 

above TC with lattice parameter a~4.009Å [30] and at room temperature, the unit 

cells have tetragonal structure with a1=3.992Å and c=4.035Å. It can then be 

expected that A and B are compatible domains with c-axis arranged as follows 

(note that they could be the other way around): 

Domain  c-axis    Strain state 

A   [001]   𝛆𝐴 =

[
 
 
 
𝑐−𝑎

𝑎
0 0

0
𝑎1−𝑎

𝑎
0

0 0
𝑎1−𝑎

𝑎 ]
 
 
 

            (3.4) 

B   [010]   𝛆𝐵 =

[
 
 
 
𝑎1−𝑎

𝑎
0 0

0
𝑐−𝑎

𝑎
0

0 0
𝑎1−𝑎

𝑎 ]
 
 
 

            (3.5) 
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Then, 

𝛆𝐴 = [
0.0065 0 0

0 −0.0042 0
0 0 −0.0042

]                                (3.6) 

 𝛆𝐵 = [
−0.0042 0 0

0 0.0065 0
0 0 −0.0042

]                                            (3.7) 

The A/B domain wall has normal: 

𝐧 =
1

√2
[

1
−1
0

]               (3.8) 

The Hadamard Jump condition for compatibility of small strains requires (for 

some s) [31, 32]:  

𝛆𝐴 − 𝛆𝐵 = 𝐧𝐬T + 𝐬𝐧T                          (3.9) 

By inspection, this is true for  

       𝐬 =
0.0107

√2
[
1
1
0
]                               (3.10) 

so, domains A and B can be compatible and stress-free. 

To work out the strains in grain 2 the strain states can be rotated into (x,y,z) 

coordinates with a 24° rotation: 

      𝐑 = [
cos 24° − sin 24° 0
sin 24°     cos 24° 0

0 0 1
]               (3.11) 

therefore,  
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𝛆𝐶 = 𝐑𝛆𝐴𝐑T = [
0.0047     0.0040 0
0.0040 −0.0025 0

0 0 −0.0042
]              (3.12) 

and  

                                   𝛆𝐷 = 𝐑𝛆𝐵𝐑T = [
−0.0025 −0.0040 0
−0.0040     0.0047 0

0 0 −0.0042
]            (3.13) 

The A/C and B/D grain boundary has normal direction: 

𝐧𝐴𝐶 = [
−sin 2°
cos 2°

0
] = [

−0.0349
0.9994

0
]             (3.14) 

And tangent direction: 

𝐭𝐴𝐶 = [
cos 2°
sin 2°

0
] = [

0.9994
0.0349

0
]                                     (3.15) 

The C/D domain wall is at 69° to the x-axis, with normal direction: 

𝐧𝐶𝐷 = [
sin 69°

−cos 69°
0

] = [
0.9336

−0.3584
0

]                      (3.16) 

The condition 

𝛆𝐶 − 𝛆𝐷 = 𝐧𝐶𝐷𝐬T + 𝐬𝐧𝐶𝐷
T                        (3.17) 

solves to give 

𝐬 = [
0.0088
0.0100

0
]                                   (3.18) 
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So, it is confirmed that the C/D domain wall is a compatible stress-free domain 

wall. The question now lies in whether domains A and C are compatible across 

the grain boundary. This would require (for some s): 

𝛆𝐴 − 𝛆𝐶 = 𝐧𝐴𝐶𝐬T + 𝐬𝐧𝐴𝐶
T                        (3.19) 

There is no solution to (3.19), meaning that the A/C grain boundary is stressed. 

It is now of interest to investigate whether some mixture of A/B domains 

can produce an average strain that is compatible with the average strain of the 

C/D domains at the grain boundary. To do this, the stretch at the grain boundary 

due to each type of domain needs to be considered.  

The stretch, e, takes the form: 

𝐭𝐴𝐶 ∙ (𝛆. 𝐭𝐴𝐶)                        (3.20) 

Calculating the stretch for each domain type gives: 

         𝒆𝐴 = 𝐭𝐴𝐶 . (𝛆𝐴. 𝐭𝐴𝐶) =    0.00647           (3.21) 

         𝒆𝐵 = 𝐭𝐴𝐶 . (𝛆𝐵 . 𝐭𝐴𝐶) = −0.00423                              (3.22) 

         𝒆𝐶 = 𝐭𝐴𝐶 . (𝛆𝐶 . 𝐭𝐴𝐶) =    0.00498                               (3.23) 

         𝒆𝐷 = 𝐭𝐴𝐶 . (𝛆𝐷 . 𝐭𝐴𝐶) = −0.00274           (3.24) 

For example, to form a boundary that is on average stress-free, and with equal 

ratios A:B =C:D, the following could be set: 

𝒆𝐴 + 𝑓𝒆𝐵 = 𝒆𝐶 + 𝑓𝒆𝐷                                             (3.25) 
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where f represents the volume fraction. This solves to give f=1.00 

This result may seem a coincidence at first sight, but actually is 

unsurprising since setting f=1.00 produces a mixture of domains with an average 

strain state that is in-plane isotropic. The resulting strain state is hence compatible 

with any rotation of itself in plane. It might well be expected that the grains in 

this example should have formed with roughly equal fractions of A:B and C:D 

domains. This did not happen here. One explanation could be that grain 2 formed 

a large C domain first and then grain 1 formed domains to match this. If this were 

the case, the A:B mixture would form such that 

𝒆𝐴 + 𝑓𝒆𝐵 = 𝒆𝐶            (3.26) 

which solves to give f=0.35, roughly matching the observed A:B ratio. Other 

evidence in support of this interpretation is: 

 𝒆𝐵 and 𝒆𝐶 have opposite sign. The B domains narrow as they approach the 

grain boundary 

 𝒆𝐵 is close to 𝒆𝐷, explaining the formation of D domains across the grain 

boundary to minimise stress. The D domains do not penetrate far into 

grain 2. 

 Considering other possible arrangements of the domains at the grain 

boundary shows that A/D are badly mismatched and B/C are badly 

mismatched. 

It can be concluded that in this example, it is probable that grain 2 formed a large 

C domain on cooling through Tc to the ferroelectric phase, grain 1 then formed a 

mixture of A/B domains to accommodate the imposed strain. The new B domains 
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are mismatched to the C domain at the grain boundary and so a small quantity of 

D domains formed to reduce stress. Overall, the domains observed in this 

example demonstrate a “compatible on average” domain arrangement at the 

grain boundary. 

 

3.3 Compatible domain arrangements in grains 

meeting around a junction 

A more complex situation of interest is the domain microstructure which arises 

in grains which meet around a junction (or pore); which also resembles the more 

common case found in the bulk ceramic. This investigation includes the added 

intricacy of a group of grains with rotation between neighbouring grains varying 

in more than one direction, compared to the investigation in Section 3.2 which 

consisted of only two grains and a rotation only along the x axes.  

 

3.3.1 Problem definition 

A group of N grains i=1….N fit together around a junction in a thin lamella which 

lies in the x-y plane, as shown in Figure 3.6. The grain boundary between pairs of 

grains (i, j) has normal direction 𝐧𝒊𝒋 and tangential direction 𝐭𝒊𝒋 in the plane of the 

lamella. Each grain has its crystallographic axes rotated relative to reference 

(x,y,z) coordinates by rotation matrix 𝐑𝒊 and undergoes a transformation strain 𝜺𝒊  
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Figure 3.6: Schematic of the configuration of grains around a junction. 

 

belonging to the set of stress-free martensitic states, or mixtures of such crystal 

variants (domains). The question of interest is whether the resulting group of 

grains can fit together without stress, and, what pattern of domains will form? 

 

3.3.2 Reduction to linear equations and inequalities 

Of interest is the state where each grain undergoes a transformation strain that is 

uniform on the scale of the grain (though not on finer scales), with the grain 

comprising a mixture of the stress-free transformation strains that correspond to 

the individual crystal variants (domains). Then the transformation strain may be 

written, in the local coordinates of the grain, as: 

𝛆𝑖
′ = ∑ 𝑓𝑖𝑘𝛆𝑘

0
𝑘              (3.27) 

where 𝜺𝑘
0  is the transformation strain of the k th crystal variant and fik is the volume 

of that crystal variant in the i th grain. In reference coordinates, this becomes 
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𝛆𝑖 = ∑ 𝑓𝑖𝑘𝐑𝑖𝛆𝑘
0𝐑𝑖

T
𝑘                        (3.28) 

Where adjacent grains meet, the compatibility condition 

    𝛆𝑖 − 𝛆𝑗 = 𝐚𝑖𝑗⨂𝒏𝑖𝑗 + 𝐧𝑖𝑗⨂𝒂𝑖𝑗           (3.29) 

can be used to ensure continuity of displacement. If equation (3.29) is satisfied by 

choosing some vector aij, then the grain boundary is a compatible interface in the 

stress-free state. While equation (3.29) is suitable for full three-dimensional 

constraint, the case of a thin lamella is less constrained provided that the grains 

are much larger than the lamellar thickness. This is because out-of-plane 

displacements are unconstrained. In fact, only a single displacement component 

is of relevance in the lamellar case: displacement in the plane of the lamella and 

in the direction along the grain boundary. Continuity requires no jump of 

displacement along the boundary as it is crossed. A condition for matching 

displacement components along the boundary is achieved by considering 

equation (3.29) resolved in the tij direction: 

𝐭𝑖𝑗 ⋅ (𝛆𝑖 − 𝛆𝑗) ⋅ 𝐭𝑖𝑗 = 𝐭𝑖𝑗 ⋅ (𝐚𝑖𝑗⨂𝐧𝑖𝑗 + 𝐧𝑖𝑗⨂𝐚𝑖𝑗) ⋅ 𝐭𝑖𝑗 = 0          (3.30) 

The compatibility conditions for the grains of the lamella become a set of N 

equations of the form 

𝐭12 ⋅ 𝛆1 ⋅ 𝐭12 − 𝐭12 ⋅ 𝛆2 ⋅ 𝐭12 = 0           (3.31) 

and so forth. Defining scalar lijk as the linear strain in grain i along the boundary 

with grain j due to the k th crystal variant,  

      𝑙𝑖𝑗𝑘 = 𝐭𝑖𝑗 ⋅ (𝐑𝑖𝛆𝑘
0𝐑𝑖

T) ∙ 𝐭𝑖𝑗                       (3.32) 
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The N compatibility conditions then take the form 

      ∑ 𝑓𝑖𝑘𝑙𝑖𝑗𝑘 − 𝑓𝑗𝑘𝑙𝑗𝑖𝑘 = 0𝑘             (3.33) 

where only the N pairings (i,j) for which grain boundaries exist are allowed. Note 

that the formulation is readily extended to consider the more general problem of 

a group of grains in a polycrystalline lamella by allowing all (i,j) pairings that 

represent grain boundaries  present in the polycrystalline sample.  For the present 

problem, the equations entailed by (3.33) form a closed chain of connections 

between adjacent grains around a single junction, and ignore any constraint 

external to that group. Since equation (3.33) expresses the compatibility 

conditions explicitly in terms of the volume fractions of the crystal variants, the 

following additional constraints apply to 𝑓𝑖𝑘: 

∑ 𝑓𝑖𝑘𝑘 = 1             (3.34) 

and 

     𝑓𝑖𝑘 ≥ 0                         (3.35) 

Equation (3.34) produces N linear equations, and equation (3.35) is a set of mN 

inequalities in a system with m crystal variants and N grains. Equations (3.33) and 

(3.34) provide 2N linear relations for the mN volume fractions in the individual 

grains. Thus, the system of linear equations is underdetermined except in the case 

m=2. For tetragonal martensites m=3 and so there can exist a space of solutions of 

the form 

      𝑓𝑖𝑘 = ∑ 𝛼𝑗𝑓𝑖𝑘
𝑗𝑁

𝑗=0              (3.36) 
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With 𝛼0 = 1, 𝑓𝑖𝑘
0  a particular solution, and the 𝑓𝑖𝑘

𝑗
 (𝑗 > 0) comprising a basis for 

the solution space. The 𝛼𝑗(𝑗 = 1…𝑁) are arbitrary and provide the N degrees of 

freedom of the solution. By further imposing the inequality constraints, (3.35), the 

𝛼𝑗values may be restricted to those that give feasible volume fractions. Therefore, 

uniqueness of solutions is not guaranteed (and indeed is unlikely in practical 

examples). 

 

3.3.3 Assumptions and approximations 

The compatibility conditions and feasible volume fraction conditions, (3.33) -

(3.35), do not provide a complete description of the problem, and some other 

aspects should be noted. Firstly, the problem has been formulated using the small 

strain, linear, theory. This is adequate for describing the constraint at individual 

boundaries in materials such as BaTiO3, which have spontaneous strain 

magnitudes less than 1%. However, it does not capture the closure condition 

around a junction of grains. This situation is best understood by considering the 

orientation and position of one grain boundary (for example i = N, j = 1) to be 

fixed. Subsequent grain boundaries may translate and rotate relative to their 

reference position. However, on making a complete circuit of the central junction 

of grains, the final grain must meet the initial grain at the fixed initial boundary. 

This constraint could be formulated in terms of a sum over in-plane strain 

components. Alternatively, use of the non-linear version of the theory of 

compatibility will capture the continuity requirement. The closure conditions are 

likely to be of importance in fully three-dimensional examples such as films with 

grain diameter less than the film thickness, or bulk polycrystals. In thin lamellae 
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with large grains, the closure conditions become less significant because 

mismatch can be accommodated by out-of-plane bending or buckling of the 

lamella with relatively low energetic cost. For the present investigation, the full 

closure conditions have been neglected as an approximation. Secondly, it should 

be noted that polar materials such as BaTiO3 will be subject to electrical 

compatibility conditions due to Maxwell’s laws. If the surface is charge-free, for 

example, the average normal component of electrical polarisation will be close to 

zero. Similarly, there can be no jump in the tangential component of electric field 

across each grain boundary. Fuller consideration of these conditions is relatively 

straightforward by extending the description to six tetragonal crystal variants in 

pairs with opposite polarisation. In the present description, this detail has been 

ignored in the expectation that the electrical conditions are less restrictive than 

their mechanical counterparts, and can usually be met by introducing 180° 

domain pairing into the purely mechanical solution. Finally, the assumption of 

macroscopically uniform straining in each grain may be overly restrictive. In 

nature, the system may introduce variations in the pattern of domains within a 

single grain. One simple example would be the division of a single grain into two 

regions, each of uniform strain. Divisions of this type are evident in experimental 

data, but have been neglected for simplicity in the present investigation. 
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3.3.4 Computation of a compatibility solution 

For computation, it is convenient to prepare the linear algebra problem in the 

form  

             𝐋𝐟 = 𝐤;      𝐟 ≥ 0             (3.37) 

Where L is the 2N x mN matrix of coefficients 

           

[
 
 
 
 
 
 
 

𝑙121 ⋯ 𝑙12𝑚 −𝑙211 ⋯ −𝑙21𝑚 0 ⋯ 0
0 ⋯ 0 𝑙231 ⋯ 𝑙23𝑚 −𝑙321 ⋯ 0
⋮   ⋱      

−𝑙1𝑁1 ⋯ −𝑙1𝑁𝑚      𝑙𝑁1𝑚

1 ⋯ 1 0 ⋯ 0  ⋯ 0
0 ⋯ 0 1 ⋯ 1   ⋯ 0
⋮   ⋱     ⋮
0       ⋯ 1 ]

 
 
 
 
 
 
 

            (3.38) 

while f and k are column matrices of length mN and 2N respectively, given by 

             𝒇 =

[
 
 
 
 
 
 
𝑓11

𝑓12

⋮
𝑓1𝑚

𝑓21

⋮
𝑓𝑁𝑚]

 
 
 
 
 
 

,           𝒌 =

[
 
 
 
 
 
0
⋮
0
1
⋮
1]
 
 
 
 
 

             (3.39) 

The first N rows provide the compatibility equations, while rows N+1…2N ensure 

that the volume fractions sum to unity in each grain. Inverting this system of 

equations, including the inequalities in (3.37) can be achieved using active set 

methods, for example using the Matlab function 1sqnonneg. This function seeks 

a solution that satisfies all the inequalities and minimises the norm ‖𝐋𝐟 − 𝐤‖. 

Formulated in this way, the solution is of interest only if the residual is zero, in 
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which case 1sqnonneg identifies an exact solution for the volume fractions in f. 

Minimisers of ‖𝐋𝐟 − 𝐤‖ with non-zero residual do not represent minimum energy 

solutions; they may also violate the overall constraints on volume fractions 

summing to unity. Since the solution may be non-unique, further interrogation of 

the solution space could be achieved by considering the kernel of L, which can be 

computed by the Matlab function null.  

Once a solution in terms of the volume fractions, f, is known, the strains of 

the individual grains are readily reconstructed using (3.28). Of interest in the 

context of experimental images of the lamellae are the orientations and spacing 

of visible domain walls. Non-zero elements of f indicate which crystal variants 

are present and in what proportions. Then, the compatible domain wall 

orientations between these crystal variants can be reconstructed using a local 

version of (3.29): 

      𝛆𝑘
0 − 𝛆𝑙

0 = 𝐚⨂𝐧 + 𝐧⨂𝐚              (3.40) 

where k and l are any two crystal variants present and solving for n gives a 

domain wall normal in local grain coordinates. The solutions are well known for 

most crystal systems; for tetragonal unit cells, they lie in the <110>pc directions. 

Visible lines in the lamella, that are intersections of the domain walls with the x-

y plane of the lamella, are parallel to  

𝒆𝑧 × (𝐑𝑖𝐧)                      (3.41) 

where ez is a unit vector in the z-direction. Their spacing is indicative of the 

volume fractions.  
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To illustrate the calculation, consider a group of four grains meeting at a 

junction in a BaTiO3 lamella, as experimentally shown in the STEM image of 

Figure 3.7a (and schematically shown in Figure 3.7b) with domains clearly visible. 

The STEM image of this junction was acquired with the grain labelled ‘3’ oriented 

along the [131] zone axis. Since this grain has been imaged with the electron beam 

parallel to a direction which is not one of the main crystallographic axes (e.g. 

<100>), projection effects have resulted in non-90° angles between domains [33, 

34]. Projection effects are also apparent in the other grains (‘1’, ’2’ and ‘4’) of this 

image (domain angle discrepancies of ± 5-10°) since the electron beam was not 

parallel to a main zone axis for any of these grains on image acquisition.  

The three tetragonal strain states in this example can be represented by: 

𝛆1
0 = [

1 0 0

0 −
1

2
0

0 0 −
1

2

] ;   𝛆2
0 = [

−
1

2
0 0

0 1 0

0 0 −
1

2

] ;    𝛆3
0 = [

−
1

2
0 0

0 −
1

2
0

0 0 1

]       (3.42) 

The orientations of the grains can be represented using Euler angles (𝛼, 𝛽, 𝛾)i 

where angle 𝛼 specifies a first rotation about the z-axis, producing (x’,y’,z’),  𝛽 

specifies a second rotation about the y’-axis, producing axes (x’’,y’’,z’’), and 𝛾 

specifies a third rotation about the x’’-axis. Then rotation matrices Ri are given by 

𝐑𝑖 = [
cos𝛼 − sin 𝛼 0
sin 𝛼    cos 𝛼 0

0 0 1
] [

cos 𝛽 0 − sin 𝛽
0 1 0

sin 𝛽 0     cos 𝛽
] [

1 0 0
0 cos 𝛾 − sin 𝛾
0 sin 𝛾    cos 𝛾

]     (3.43) 

The example shown in Figure 3.7 has approximate Euler angles as listed in Table 

1. The Euler angles were approximated based on tilting each individual grain near  
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Figure 3.7: Experimental example of a grain junction. STEM image of four grains surrounding a 

pore (a), with grain 3 on zone axis, features marked with arrows can be ignored (from the carbon 

membrane). Schematic of the junction with coloured grains (1-4) and ferroelastic domains 

illustrated (b). Diffraction patterns for grain 2 (c), grain 1 (d), grain 3 (e) and grain 4 (f), with the 

nearest zone axis labelled in the top right, reference kikuchi lines and diffraction spots are overlaid 

in yellow. 

(c) (d) 

(e) (f) 

(a) (b) 

10-1 
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to a zone axis (as shown in the diffraction patterns in Figures 3.7c-f). It should be 

noted however, that the ability to tilt the grains onto the centre of a zone axis was 

severely limited by the tilting capabilities of the TEM holder, a single-tilt in-situ 

heating holder was used for the imaging of this grain junction example (heating 

investigation to follow in Section 3.4); since no double-tilt was available at the 

time. The closest zone-axis for each grain was confirmed by overlaying reference 

kikuchi lines and corresponding diffraction spots onto each diffraction pattern, 

displayed in yellow in Figures 3.7c-f. It would be of interest however, to use EBSD 

prior to FIB milling of future lamellae, in this way the precise Euler angles could 

be obtained. 

𝐆𝐫𝐚𝐢𝐧 𝜶 (°) 𝜷(°) 𝛄(°)
𝟏 0 0 0
𝟐 0 0 135
𝟑 30 0 0
𝟒 90 90 0

 

                                  Table 1: Euler angles used for the example lamella in Figure 3.7. 

 

The grain boundaries in Figure 3.7 are at angles of 90°, 150°, 275° and 0° 

respectively, measured from the x-axis. Hence 

 𝐭12 = [0.0000  1.0000  0.0000]T;        𝐭23 = [−0.8660  0.5000  0.0000]T ;   

 𝐭34 = [ 0.0872 − 0.9962  0.0000]T;   𝐭41 = [1.0000  0.0000  0.0000]T;         
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Using Matlab, the element matrix elements of L were generated as: 

−0.5000 1.0000 −0.5000 0.5000 −0.2500 −0.2500 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.6250 −0.3125 −0.3125 0.1250 −0.6250 0.5000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.2321 0.7321 −0.5000 0.5000 0.4886 −0.9886

−1.0000 0.5000 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.5000 1.0000 −0.5000
1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 1.0000

 

The solution satisfying the compatibility conditions generated the volume 

fractions, f: 

𝐆𝐫𝐚𝐢𝐧 𝐕𝐚𝐫𝐢𝐚𝐧𝐭 𝟏 𝐕𝐚𝐫𝐢𝐚𝐧𝐭 𝟐 𝐕𝐚𝐫𝐢𝐚𝐧𝐭 𝟑
𝟏 0.686 0.314 0.000
𝟐 0.372 0.628 0.000
𝟑 0.785 0.215 0.000
𝟒 0.000 0.686 0.314

 

Note that all four grains have two crystal variants present and so can form 

domain walls. Using equations (3.40) and (3.41), the domain walls were calculated 

as lines in the lamella oriented along the directions shown in (x, y) coordinates in 

Table 2, and illustrated in Figure 3.8a.  

 

𝐆𝐫𝐚𝐢𝐧  𝐕𝐢𝐬𝐢𝐛𝐥𝐞 𝐝𝐨𝐦𝐚𝐢𝐧 𝐰𝐚𝐥𝐥 𝐝𝐫𝐞𝐜𝐭𝐢𝐨𝐧𝐬 [𝐱, 𝐲]  
𝟏    [0.707,−0.707]   [0.707, 0.707]
𝟐   [−0.577,−0.816]  [−0.577,0.816]
𝟑    [0.966,−0.259] [0.259, 0.966]
𝟒   [−0.707, 0.707]   [−0.707,−0.707]

 

              Table 2: Domain wall intersections with the plane of the lamella 
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Figure 3.8: Solution of domain wall directions (black dashed lines) for the grain junction 

calculation (a). Schematic of experimental lamella example (b) repeated from Figure 3.7b for ease 

of comparison. 

 

3.3.5 Discussion of the compatibility solution and 

comparison to the experimental example 

The calculation here presented provides a good approach for satisfying the 

compatibility conditions in a group of twinned grains around a junction. 

Comparing the fractional volume of crystal variants f, with the experimental 

image shows good agreement. For example, grain 3 has a calculated 80% 

fractional volume of one crystal variant (resembling the purple domain type in 

Figure 3.8b) and 20% of the other crystal variant (grey domains). Due to the 

relatively simple grain rotations used in the calculation, the domain wall 

directions in the solution, Figure 3.8a, do not match perfectly with the 

experimental domain walls shown in Figure 3.8b. The discrepancies in domain 

(a) (b) 
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wall directions are ~20° about the x-axis. The largest discrepancy occurs in grain 

3 with one of the domain wall directions misaligned by 45°. This is unsurprising 

for several reasons, firstly, the Euler angles used in the calculation were 

approximated because EBSD measurements were not available for the 

experiment. Secondly, the experimental image was acquired with grain 3 (the 

largest grain) on zone axis whereas the calculation effectively sees grain 1 on zone 

axis, with the domain walls of the neighbouring grains calculated as directions in 

the lamella oriented along the (x, y) coordinates. Thirdly, in the experimental 

example there is a large rotational twist in the grain boundary which neighbours 

the domain walls with the highest angular discrepancy (the grain boundary 

between grains 2 and 3), this artefact was not taken into account in the simplified 

calculation.  

In a polycrystalline ceramic, a grain can produce two distinct strains along 

its two constrained boundaries, and has the freedom to vary these by having 

multiple domains. There is of course no constraint to have a uniform strain state 

over the whole grain. A simple way in which the polycrystalline ceramic can 

enhance its ability to satisfy the compatibility constraints without stress is by the 

splitting of grains into multiple sectors with different domain patterns in each 

sector (as demonstrated in Figure 3.8b). The compatibility solution can then take 

the advantage of the additional degrees of freedom to vary the volume fractions 

and domain pattern across the family of grains. It is worth noting that this lamella 

is relatively unconstrained, compared to the bulk. Therefore, a lamella removed 

from the bulk may reorganise its domain structure during a heating and cooling 

cycle to give a lower energy state. Many configurations may be possible due to 

the undetermined nature of the problem. Active set solution methods in this grain 
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junction calculation typically first seek a solution without using the inequality 

constraints, and proceed by invoking any inequalities that are violated by this 

solution. Hence, the result of using 1sqnonneg typically has at least some volume 

fractions set to zero: this is advantageous in that it represents a solution with 

relatively few crystal variants present and hence few domain walls, consistent 

with minimisation of domain wall energy. The existence of solutions suggests that 

such lamellae may adopt states nearly free of self-stress. 

To conclude, the problem of satisfying the compatibility conditions in a 

group of twinning grains around a shared junction has demonstrated that in the 

case of a lamellar polycrystal, the relaxation of out-of-plane constraint gives rise 

to an undetermined set of linear equations in the volume fractions of crystal 

variants. Additional inequality constraints on the volume fractions lead to (non-

unique) solutions, indicating that groups of twinned grains in lamellae can form 

stress-free domain patterns. Since the constraint is much less than that of the bulk, 

a reorganisation of the bulk domain structure during heating and cooling of a 

lamella extracted from the bulk is likely.  

 

3.4 Domain reorganisation on heat cycling 

through Tc 

The grain junction lamella shown in Section 3.3 was investigated in-situ, availing 

of live STEM imaging to observe the domain reorganisation during heating and 

cooling through Tc. Figure 3.9 shows selected frames from the first heat cycle 
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where the lamella was heated from room temperature to 210°C (higher than Tc to 

ensure a full transition to the paraelectric phase) and back to room temperature. 

The Tc for this ceramic is ~160°C, this is higher than normal for BaTiO3 (~120°C) 

due to an addition of Pb, most commonly added to commercial ceramics to raise 

the Tc [35].  

Determination of domain type (whether it be a-a or a-c) is less straight forward 

for crystal orientations such as the [131] zone axis of grain 3; most likely domains 

within this grain will have a component of polarisation both in-plane and out-of 

plane of the lamellar face. The initial state of grain 3 prior to heat cycling (Figure 

3.9a) shows a microstructure in which ferroelastic domains exist with two domain 

wall orientations, one spanning the length of the grain along <101>pc directions 

and the other along <112>pc directions (shown in the top corner of grain 3). The 

most likely explanation for this microstructure is that, at the initial phase 

transition cooling through Tc (during the processing of the ceramic), polarisation 

nucleated in different sites of the lamella, and the domains then grew laterally 

until they met. Adjacent domains with orthogonal polarisation impose elastic 

stress on each other, providing the driving force for the splitting into smaller 

twins. 

The first heat cycle carried out was continuous in nature ranging from 

25°C-210°C-25°C at 1°C per second. Important features to notice in the heat cycle 

frames from Figure 3.9 (mainly focusing on grain 3 (large left grain) because it is 

on zone axis and therefore provides the best domain contrast) include the 

reconfiguration of the bright contrast domains which span the length of grain 3. 

Focusing on these domains, which have domain walls along <101>pc directions, it  
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Figure 3.9:  STEM images from the 1st heat-cycle: 25°C-210°C-25°C (1°C/sec). Temperature is 

labelled in the top left (a)-(h). Features marked with arrows in (a) can be ignored. Scale bar=500nm. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 



3. Domain compatibility across BaTiO₃ grain boundaries 

 

108 

 

is firstly noticeable that as the temperature is raised the domains begin to 

disappear from the centre of the grain (beginning ~120°C in Figure 3.9b). These 

domains continue to disappear away from the centre of the grain (Figure 

3.9c)until the ceramic lamella has fully transitioned to the paraelectric phase 

(Figure 3.9d). On cooling back to room temperature through Tc, these domains 

begin to propagate at a higher density from the top grain boundary spanning 

along the length of the grain (Figures 3.9e,f and g) until they reach the lower grain 

boundary (between grains 3 and 4). A small section of these domains fail to 

propagate the whole length of the grain, where this happens the domains are met 

by another set (or bundle) of domains with domain walls oriented along <112>pc 

directions (approximately perpendicular to the pore). The complete 

reconfiguration of domains before and after this heat cycle is shown in Figure 3.10 

along with schematic images for ease of interpretation. 

Domain reconfiguration in the other grains (1,2 and 4) displays a similar  

doubling in density of the bright contrast ferroelastic domains (bright in STEM 

image but grey in schematic) after cooling through Tc. This domain 

reconfiguration can be rationalised in terms of the obvious alterations in 

geometry and relaxation of out-of-plane constraint from cutting this lamella from 

the bulk ceramic. Most likely, the bright contrast domains have a larger 

component of polarisation in-the-plane of the lamellar surface allowing the 

annihilation of a large proportion of the dark contrast domains which likely have 

a larger out-of-plane component in comparison. 
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Figure 3.10: STEM images of before (a) and after (b) the first in-situ heat cycle shown in Figure 

3.9. Schematics for ease of interpret show before (a) and after (b) the heat cycle. Scale bars 

represent 500nm.  

 

The periodicity of the bright contrast domains was further investigated in 

Figure 3.11 where the domain width was measured in relation to position along 

the linescan shown in blue before (Figure 3.11a) and in red after the first heat-

cycle (Figure 3.11b). The linescan was positioned so that the domain width could 

be measured starting at the junction (pore) and ending at the centre of grain 3. It 

can be assumed that the area nearest to the pore is much thinner than the rest of 

the grain [36, 37] and therefore provides a thickness gradient transitioning to the 

(a) (b) 

(c) (d) 
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centre of the grain. With this in mind, the relation between domain width and 

position along the linescan shown in Figure 3.11c can be rationalised in terms of 

the thickness gradient observations made by Mc Gilly et al. [38]  where if the 

thickness gradient is perpendicular to the orientation of the domain walls (which  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.11: STEM magnified image of grain 3 before (a) and after (b) the first heat cycle. Relation 

between width of the bright contrast domains (domain walls along <101>pc directions) and 

position from the junction (pore) (c). Scale bars represent 500nm. 

 

(a) (b) 

(c) 
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in Figure 3.11 it is) the domain width (w) increases continuously in a linear 

fashion, consistent with Kittel’s relation [24]: 

𝑤𝑚𝑖𝑛 = √𝛾
𝑑

𝑈
     (3.44) 

where the electrostatic charge is considered as a surface energy density, U, the 

domain wall energy density is 𝛾 and the thickness of the lamella is d. 

The reconfiguration of domains on cycling through Tc was further 

investigated by varying the speed of the ramp and de-ramp of temperature. 

Figure 3.12a shows the domain reconfiguration at the grain boundary between 

grains 3 and 4 after a relatively quick but continuous heat-cycle: 25°C-210°C-25°C 

(8°C/sec). Two things are noticeable when comparing Figure 3.12a with the after 

image of the first heat cycle in Figure 3.10b. Firstly, in grain 3, more of the domains 

which span the length of the grain fail to propagate as far as the lower grain 

boundary between grains 3 and 4. Instead, a group of domains with 

perpendicular domain walls (along <112>pc directions) propagate towards what 

appears to be a dislocation (circled in yellow).It is well known that dislocations 

can act as pinning sites for domain wall motion under the application of electric 

field [39] and therefore, some insight into this observed phenomenon may be 

gained by considering the thermodynamics of domain wall motion by 

dislocations, analogous to reported modelling of domain wall pinning by the 

application of electric field and shear stress [40]. The second thing to notice in 

Figure 3.12a is that in grain 4, the favourable domain wall orientation has changed 

after this heat cycle. The fact that grain 4 occupies an approx. 90° sector means 

that it can produce two distinct strains along its two constrained grain boundaries 
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Figure 3.12: STEM images of domain reconfiguration after the 2nd in-situ heat-cycle (a): 25°C-

210°C-25°C (8°C/sec). Domain reconfiguration in the area marked by a red box in (a) after the 3rd 

heat-cycle (b): 25oC–200oC (10°C/sec) - wait 10sec - 200oC–25oC(175°C/sec). Scale bars represent 

100nm. 

 

and has a wider freedom to vary these by having multiple favourable domain 

arrangements. In contrary, grains which occupy either narrow, or near 180° (like 

grain 3), sectors are likely to adopt one favourable domain arrangement to 

maximise its change in axial strain over a small rotation, and therefore this 

domain arrangement does not vary significantly after subsequent heat-cycles.   

 A third type of heat-cycle was carried out in which the temperature was 

ramped up to 200°C continuously (10°C/sec) and then 10 seconds were waited 

before the temperature was ramped down to room temperature in a very rapid 

quench (175°C/sec). The effect of this hasty transition through Tc back to room 

temperature meant that the condition of the lamella surface deteriorated quite 

rapidly (carbon contamination build up) but also, interesting areas of domain 

bundles like that shown in Figure 3.12b were created in several locations 

(a) (b) 
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throughout grains 1-4. These complex domain bundles bear resemblance to the 

superdomains observed by McGilly and McQuaid et al. [26, 41]. It is probable that 

the quick quench of the cooling within this heating cycle lead to multiple 

nucleation sites of ferroelastic domains, leading to attractively intricate bundle 

patterns were groups of domains intersected.  

 

3.5 Conclusion 

While domain configurations in polycrystalline ceramics have been reported 

previously, as of yet, there has been no explicit rationalisation for how compatible 

domain patterns arise at grain boundaries or any such prediction, or calculation, 

of compatible domain arrangements likely to form. Consequently, the results 

within this chapter represent an advance in understanding in ferroelastic domain 

formation and compatibility in polycrystalline ferroics. The analysis using theory 

of martensite crystallography of a single grain boundary demonstrated that the 

domains intersecting the grain boundary do on average arrange themselves in a 

compatible and stress-free manner. This result spurred on the identification and 

creation of a computational calculation which solved for a compatibility solution 

of domain wall orientations and domain fractional volumes likely to form within 

grains arranged around a junction (or pore). The investigation was expanded by 

carrying out STEM in-situ heating experiments which explored the rescaling and 

reconfiguration of ferroelastic domains on heat-cycling through TC. It was shown 

that the domain density increased after the first heat-cycle through TC and the 

presence of more intricate domain bundles increased when the temperature was 
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cooled back to room temperature in a quick quench-like fashion. Overall, it is 

thought that the results within this chapter offer an advancing insight into the 

nature of ferroelastic domains coupling across grain boundaries within 

polycrystalline ceramics.  
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4. Relating domain structure to 

chemical heterogeneity and 

ceramic functionality  

 

In this chapter interest is directed towards the relation between domain structure, 

chemical heterogeneity and the functional properties exhibited by the 

polycrystalline ferroelectric under investigation. In functional ceramics, the 

processing conditions can often lead to chemical heterogeneity or strain effects 

which understandably can have an impact on the resulting ceramic performance. 

The polycrystalline ferroelectric under investigation here is a BaTiO3-based 

ceramic displaying a positive temperature coefficient of resistivity (PTCR) effect. 

Despite being of wide commercial use (in devices such as self-regulating heaters 

and smart fuses), the orders of magnitude increase in resistance that can be seen 

in BaTiO3-based ceramics on heating through TC, is far from well understood [1]. 

Current understanding hinges on the role of grain boundary resistance that can 

be modified by polarisation discontinuities which develop in the ferroelectric 
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state [2], and the magnitude of the switch appears to be optimised through trial 

and error changes in the processing conditions [3, 4]. Given the polydomain 

nature of the ceramic under investigation, as discussed in the previous chapter, 

and the fact that it is commercially available as a PTCR, a full chemical analysis 

relating the domain structure to the functionality was considered of interest. 

 This experimental study begins by showing a direct visualisation of 

resistive grain boundaries, which has rarely been attempted [5-7], using Kelvin 

probe force microscopy. Following this, aberration-corrected scanning 

transmission electron microscopy and electron energy loss spectroscopy reveals 

new evidence of Pb-rich grain boundaries associated with an increased local 

polarisation in the domains adjacent to the grain boundaries. The clarity of the 

results shown here validate the link between optimised PTCR performance and 

high local polarisation at grain boundaries, and suggests a novel route towards 

engineering devices where an interface layer of higher spontaneous polarisation 

could lead to vastly enhanced PTCR functionality. 

This chapter features work carried out in collaboration with Prof. Q. 

Ramasse and Dr. D. Kepaptsoglou at SuperSTEM: The EPSRC National Facility 

for Aberration Corrected STEM, as well as KPFM data courtesy of Dr. A. Douglas 

at QUB and is published in ‘Applied Physics Letters Materials’ as: 

“Mapping grain boundary heterogeneity at the nanoscale in a positive 

temperature coefficient of resistivity ceramic” 

K. M. Holsgrove, D. M. Kepaptsoglou, A. M. Douglas, Q. M. Ramasse, E. Prestat, S. J. 

Haigh, M. B. Ward, A. Kumar, J. M. Gregg and M. Arredondo 

APL Materials, 2017, 5(6), 066105. 
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4.1 Overview of the PTCR effect   

The Positive Temperature Coefficient of Resistivity (PTCR) effect is a property 

found in polycrystalline materials which produce a switch from a low resistance 

semiconducting state to a higher state of resistance in response to either 

internal/external heating (Figure 4.1). Understandably, this effect has found 

extensive applications in sensing technologies such as self-regulating heating 

elements, current sensors and sensors for the detection of air flow, liquid level 

and temperature changes [8]. Among the various materials exhibiting a PTCR 

effect to date, the most favoured material group is BaTiO3-based compounds 

where the temperature at which this switch in behaviour occurs, near the 

ferroelectric-paraelectric Curie transition temperature (Tc), and the magnitude of 

the switch can be controlled and optimised via the addition of different dopants 

and/or changes in the processing conditions [3, 4]. 

 

 

 

 

 

Figure: 4.1: Demonstration of the PTCR effect in a BaTiO3-based ceramic. The resistivity jumps by 

around four orders of magnitude when the ceramic is heated through the tetragonal (ferroelectric) 

to cubic (paraelectric) phase transition temperature, Tc. Adapted from [9]. 
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Over the past 50 years, research on the PTCR effect has focused on 

compositional and structural issues that govern the electrical properties [1, 10]. It 

was identified quite early that the effect is dominant in polycrystalline samples 

[11], with rich microstructures and an equally interesting domain structure 

embedded within grains, and several models have been proposed to explain the 

observed experimental behaviour [2, 12-14]. The most accepted among these 

models is the Heywang-Jonker model [1, 2, 12], which states that the presence of 

a potential barrier at the grain boundaries is responsible for enhanced resistivity 

of the boundary in comparison to the grain interior (see Figure 4.2a). The 

Heywang-Jonker model also considers the ferroelectric nature of the material (see 

Figure 4.2b) and postulates that the spontaneous polarisation below Tc, or more 

appropriately the polar discontinuity arising from domain structures, effectively 

lowers the potential barrier in the vicinity of the grain boundary, thus lowering 

the resistivities below Tc. As the material undergoes the ferroelectric-paraelectric 

transition, domains disappear and with no influence of polarisation, depletion 

regions and resistive barriers at the grain boundaries are restored leading to a 

high resistance state. The polarisation discontinuity at the boundary and its 

origin, particularly from the underpinning ferroelectric domain structure, have 

been an ongoing topic of debate in BaTiO3-based PTCR ceramics [10, 15].  

To investigate the ferroelectric nature and the local resistivity of grain 

boundaries, a commercially available PTCR ceramic composed of BaTiO3-PbTiO3-

CaTiO3 (BaTiO3-PbTiO3-CaTiO3) was examined. The percentage concentrations 

are 68%, 20% and 12% respectively, with an average measured grain size diameter 

of 4µm. It is common to add Pb to BaTiO3 PTCR ceramics to modify the Tc for 
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relevant applications [16], while Ca is employed to achieve refinement of grains 

[17]. 

 

 

 

 

 

 

Figure 4.2: Heywang-Jonker model. Schematic of the potential barrier band structure at the grain 

boundary (a), after Heywang [12]. Schematic of domains, below Tc, lowering potential barriers 

along the grain boundary due to certain orientations of polarisation (Ps), after Jonker [2]. 

 

4.2 Observation of ferroelectric-ferroelastic 

domains in a BaTiO3-based PTCR ceramic 

The domains in this ceramic were observed via both PFM and low magnification 

TEM as an initial study. The PFM data in Figure 4.3 shows the presence of a rich 

microstructure of ferroelectric-ferroelastic stripe domains which have random 

orientational variation from grain to grain. This implies that the polarisation 

change across grain boundaries is highly inhomogeneous and varies from 0 to 2x  

(a) (b) 
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Figure 4.3: PFM imaging of ferroelectric-ferroelastic domains. A 10µm x 10µm scan of topography 

(a) and its derivative (b) of a polished BaTiO3-PbTiO3-CaTiO3 sample. The scale bar represents 2 

µm and the dashed lines in (b) mark the grain boundaries. The lateral PFM of amplitude (c) and 

phase (d), along with the vertical PFM of amplitude (e) and phase (f), show an intricate series of 

domains at the surface of each grain. Domains are clear in the derivative of topography. In both 

sets of PFM scans, 2 volts AC was applied, with the PFM amplitude scale of the lateral signal 

ranging from 0V to 4V, and 0V to 1V for the vertical. Figure courtesy of A. Douglas, more data 

can be found here [18]. 

 

spontaneous polarisation (Ps), corresponding with polar orientations varying 

from being parallel with to perpendicular to the grain boundary. 

The intricate domain structure inside the grains is also noticeable in the 

STEM images of Figure 4.4, where a cross-sectional lamella containing multiple 

grains and grain boundaries was prepared via focused ion beam. Here, the grain 

in the centre (coloured purple in Figures 4.4a and b) was tilted to align the electron 

beam with <100>pseudocubic (pc) directions, as shown in the diffraction pattern (Figure 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 
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(a) (b) 

(c) 

4.4c) acquired from the region highlighted by a dashed-circle in Figure 4.4a. The 

fine-scale domains within this grain can be identified as being 90° a-a domains  

  

 

 

 

 

 

 

 

 

 

 

Figure 4.4: STEM imaging of ferroelectric-ferroelastic domains. Multiple grains (green, purple and 

blue) separated by grain boundaries (a) and (b). Electron diffraction pattern (c) acquired from the 

dashed circle (representing selective area aperture) in (a) with the electron beam oriented along 

the [100] (by symmetry could be [010]) zone axis. Occupation of the fine scale domain walls along 

{110}pc planes and splitting of the diffraction spots in (c) allows determination of the domains to 

be 90° a-a domain type. Additional ferroelectric-ferroelastic domains from overlapping grains 

(variants marked by red dots in (a) and (b)) add to the complexity of the rich polydomain 

microstructure observed within this ceramic. Scale bars represent 500nm. 
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due to the sharp domain walls occupying {110}pc planes and the appearance of 

spot splitting, as demonstrated in Chapter 3, representing the crystal structure 

alteration brought about by the creation of ferroelectric-ferroelastic domains [19]. 

Strikingly though, in Figures 4.4a and b there appears to be additional domain 

variants present (those marked by red dots), domains with domain walls which 

do not occupy {110}pc planes and whose domain wall widths appear to be broadly 

projected along this particular electron beam orientation. Mostly likely, these 

domains are originating from overlapping neighbour grains which were 

unknowingly included in the lamella during the FIB milling process, and like all 

ferroelastic domains are highly sensitive to STEM imaging.  

The domain variants displayed in both the STEM and PFM images reveal 

a complex arrangement of ferroelectric-ferroelastic domains present in a small 

subset of what is a random orientational bulk ceramic. It is expected therefore, 

that a large range of polar discontinuities will be present at the grain boundaries 

based on the polydomain microstructure and the random nature of the grain 

boundary-crystallite orientations observed here. 

 

4.3 Local resistivity of grain boundaries 

The role of grain boundaries in enhanced PTCR behaviour has been strongly 

deliberated in previous studies; most of the experimental evidence is based on 

macroscopic studies such as impedance spectroscopy, which allows the 

interpretation of grain-boundary resistivity in terms of equivalent circuit 

diagrams [6, 7]. However, the use of large electrodes during macroscopic 
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investigations precludes the exact determination of the grain boundaries’ role in 

the PTCR effect due to an averaging of their behaviour. It would appear obvious 

therefore that the cleanest way to gain experimental insight into the electrical 

behaviour of these elements would be to investigate them at a local scale, 

especially in a lateral geometry where the boundaries themselves form elements 

of the conduction circuit. 

In this context, nanoscale studies aimed at visualisation of local resistivity 

or potential barriers at grain boundaries using scanning probe microscopy based 

techniques were carried out on the ceramic. Typically, the ceramic has relatively 

low bulk resistivity at room temperature (10-100 Ωcm) increasing by up to 4 

orders of magnitude, on heating through Tc. Kelvin probe force microscopy 

(KPFM), a non-contact scanning probe microscopy technique was employed to 

establish the local resistivity of the grain boundaries. KPFM was performed on 

samples prepared from bulk by cutting and polishing using diamond paper and 

a colloidal silica solution. Figure 4.5a shows the resulting topography for the 

KPFM experiment, grain boundaries are highlighted with black dashed lines in a 

schematic of the scanned structure (Figure 4.5b) allowing for ease of reference. 

Au electrodes were sputtered, forming an inter-electrode gap of 80μm, to allow 

the application of an in-plane electric field whilst measuring the change in 

potential across the surface of the material.  

During the experiment -10V DC was applied from the right electrode, with 

respect to the KPFM image, and in the 15µm region scanned a change in potential 

of roughly 1.5V DC was observed. Typically, when a lateral electric field is 
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applied to a material with homogeneous electrical properties the change in 

potential is linear but in this ceramic, the potential map in Figure 4.5c illustrates  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5: KPFM investigation of a polished BaTiO3-PbTiO3-CaTiO3 sample.  Topography of the 

surface for the KPFM experiment (15x5µm), with Au electrodes placed parallel to the vertical scan 

direction (a). Schematic of the scanned area (b). Potential map acquired by applying -10V across 

the surface of the sample, measured using KPFM (c) and negative gradient of the potential map 

(d). Figure courtesy of A. Douglas. 

(a) 

(b) 

(c) 

(d) 
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that there are distinct areas of non-linear change. To elucidate the exact location 

of the largest change in electrostatic potential, the negative gradient of the 

potential (electric field) along each horizontal scan line was calculated. Figure 

4.5d reveals that the largest drop of potential occurs at the grain boundaries, a 

result which confirms that these interfaces are indeed much more resistive than 

the bulk (interior) of the grain.  

 The maximum height of the barrier at the grain boundaries can be 

estimated using the potential gradient differences inferred by KPFM mapping. 

Using a series resistance model, the ratio of the resistivities of the grain boundary 

(𝜌𝑏) and the grain (𝜌𝑔) is given by the ratio of the potential derivatives observed 

at them. The average value of this ratio as observed in Figure 4.5d is ~4. Using the 

Boltzmann distribution, the ratio of the resistivities at the grain and grain 

boundary can be expressed in terms of the barrier height (𝐸𝑏), Fermi energy (𝐸𝐹), 

carrier density in the grain (𝑛𝑔) and carrier density at the grain boundary (𝑛𝑏), as 

shown below: 

   
𝜌𝑏

𝜌𝑔
=

𝑛𝑔

𝑛𝑏
= 

𝑒
−

𝐸𝑐−𝐸𝐹
𝑘T

𝑒
−

𝐸𝑐+𝐸𝑏−𝐸𝐹
𝑘T

= 𝑒
𝐸𝑏
𝑘T                    (4.1) 

which implies, 

 

 𝐸𝑏 =  𝑘T ln (
𝜌𝑏

𝜌𝑔
) =𝑘T ln(4) = 35.2 meV (at room temperature)             (4.2) 

This value of the barrier height at the grain boundary is estimated to be ~ 35 meV 

which is well within the range of thermal activation at room temperature. Overall 

the presence of resistive grain boundaries is consistent with models proposed for 

the electrical structure of the grains using impedance analysis [20] and other 
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techniques [5, 21]. While this result is almost expected based on various models, 

local measurements showing resistive boundaries at room temperature with an 

applied electric field in this lateral geometry have hitherto not been carried out 

directly. The concentration of potential contours at the grain boundaries provides 

direct evidence towards the existence of resistive boundaries and highlights them 

as the clear regions of interest. To further investigate the nature of these regions, 

their structural and chemical identity was studied on the atomic scale, using high 

resolution TEM techniques.  

 

4.4 Elemental mapping of grain boundaries 

Several studies have hinted towards chemical diffusion and segregation at the 

grain boundaries being linked with enhanced PTCR behaviour, but attempts to 

provide evidence of this chemical heterogeneity have so far been unsuccessful 

[22-24]. Moreover, the most accepted models do not consider links between 

chemical heterogeneity and polarisation discontinuity at grain boundaries [2, 12]. 

Therefore, there is an evident need to investigate the chemical distribution at the 

grain boundaries in these complex microstructures, and the modification of 

potential barriers while preserving the original domain structure at the interface. 

As a first approach to study the chemical distribution electron energy loss 

spectroscopy (EELS) elemental maps were acquired. An overview of a typical 

specimen, a focused ion beam cross-section, containing several randomly 

oriented grains is shown in Figure 4.6a, with grain boundaries marked by white 

dashed lines. Representative boundaries, such as that in Figure 4.6b between 
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grains oriented in directions close to the [110] and [210] zone axes, were chosen. 

EELS maps were acquired on an aberration corrected Nion UltraSTEM 100 at 

SuperSTEM: The EPSRC National Facility for aberration corrected STEM. Rather 

than aligning the specimen along one of the main crystallographic axes, it was 

carefully oriented in the microscope to align the grain boundary parallel to the 

electron beam (edge-on, to unambiguously reveal the chemical changes across the 

boundary without projection effects). The microscope was operated in STEM 

mode at 100kV, equipped with a cold field emission gun and a Gatan Enfina 

spectrometer. A dispersion of 1 eV/channel was used to simultaneously acquire 

the Pb-M4, Ba-M4,5, Ti-L2,3, Ca-L2,3 and O-K edges; the resulting effective energy 

resolution was limited by the detector point spread function. The convergence 

and collection semi-angles were 32 and 37 mrad, respectively. The estimated 

t/mfp value was 0.29 (t~30nm (lamella thickness)), based on the integration of zero 

loss and plasmon peaks from low loss EELS data acquired immediately following 

the core-loss EELS acquisitions; consequently, it was deemed unnecessary to treat 

the data for multiple scattering effects and no further data processing was 

applied. Figures 4.6c-g reveal intensity maps (coloured and normalised to [0 1] 

for clarity) for the Pb-M4,5, Ba-M4,5, Ti-L2,3, Ca-L2,3 and O-K EELS edges respectively. 

These maps were produced by integrating the intensity of the ionisation edges at 

each pixel over a suitable energy window (typically 40eV) beyond the edge onsets 

after subtraction of the continuous decaying background using a power law 

model. 

The most striking feature of the EELS maps is the segregation of Pb, most 

obvious within a 10-15 nm region spanning across the grain boundary (Figure 

4.6c), whilst Ba appears to be depleted within the same length scale (Figure 4.6d). 
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Meanwhile, elemental maps for the remaining elements (Ti, Ca and O) indicate a 

homogeneous chemical distribution (Figures 4.6e-g). The Pb segregation and Ba 

depletion observed here can be assumed to be attributed to A-site substitutions 

within the ABO3 perovskite structure. Grain boundaries are well known for their  

 

  

 

 

 

 

 

 

 

 

 

Figure 4.6: Chemical distribution across grain boundaries. Bright field TEM overview of various 

grains used for STEM-EELS analysis, where a polydomain structure can be seen within each grain 

(a). HAADF image of a single grain boundary where the bottom grain is tilted on zone axis (b). 

The grain boundary shows a dark contrast and is marked by a white dashed line. EELS elemental 

maps for Pb-M4 (c) Ba-M4,5 (d) Ti-L2,3 (e) Ca-L2,3 (f) and O-K (g), respectively. 

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

(g) 
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disordered nature, formed by structural defects or dislocation cores [25], and Pb 

being more volatile could be attracted to these defective (and highly strained) 

areas during sintering [26], hence explaining the chemical heterogeneity observed 

here. It should be noted that the extent of Pb segregation could differ from one 

grain to another due to each grain developing slightly different strain gradients 

during the sintering process [27]. An example of this is observed in Figure 4.6c, 

where more segregation of Pb is observed in the top grain. Other grain boundaries 

were analysed, with different neighbouring grain orientations and relative tilt 

angles, all demonstrating similar results. 

 

4.5 Electronic structure across grain boundaries  

As previously mentioned, PTCR ceramics have rich microstructures that are 

highly sensitive to chemistry and processing conditions, making them complex 

ceramics to analyse. Previous studies have shown rich structural heterogeneity 

between grains, where grain boundaries with high lattice disruption and 

incoherency are a common feature [10]. This lattice disruption makes high 

resolution imaging of grain boundaries quite challenging, including direct 

mapping of the polarisation across them. However, another approach to access 

similar information is to study the local electronic structure through a detailed 

analysis of the Ti-O octahedral distortions. Hence, to determine the effect that 

chemical heterogeneity has on the electronic structure across the grain boundary, 

atomic-scale EELS measurements were carried out and more specifically, the 

electron-energy loss near-edge fine structure (ELNES) of the acquired spectra was  
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examined for changes indicative of electronic structure reconfiguration, focusing 

on the Ti and O signals.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: ELNES for O-K and Ti-L2,3 edges. High resolution HAADF image of a single grain 

boundary (a) where spectra have been extracted from highlighted numbered regions. For clarity, 

only selected spectra are shown here but the full range can be seen in Figure 4.8. O-K edge (b) and 

Ti-L2,3 edge (c) extracted from positions 1, 8, 10 and 12. 

(a) (b) 

(c) 
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The Ti and O ELNES contain key information about octahedral distortions 

within the crystal structure as EEL spectra reflect the density of unoccupied states 

of the material, and can thus be used to identify changes in valence and atomic 

bonding [28-30]. Figure 4.7a is a high resolution high-angle annular dark-field 

(HAADF) image containing the grain boundary shown in Figure 4.6, where EEL 

spectra have been extracted from 25 positions. Each extracted spectrum spans 

over an average of eight unit cells, parallel to the interface. A dispersion of 0.2 

eV/channel was used to acquire simultaneously the Ti and O edges resulting in 

an effective energy resolution of 0.58eV. The O-K edge shown in Figure 4.7b is 

perhaps the most challenging edge to characterise in oxides due to its multiple 

peaks that originate from the oxygen bonding to both A and B-site cations; 

however even subtle differences in the peaks represent a change in the chemistry 

and in the electronic structure [31].  

The most striking feature observed here is a gradual shift in the peak 

marked with an asterisk. This peak is recognised to arise from the hybridisation 

of the O-2p orbitals with states attributed to the A-site cation [32], making it 

possible to distinguish a chemical transition in the A-site (Ba, Pb and Ca). The 

largest shift of this peak occurs on approaching the grain boundary, leading to a 

spectrum shape which has a remarkable resemblance to the O-K edge of bulk 

PbTiO3 [32]. This shift confirms how the bonding nature of oxygen is altered as a 

function of the change in the A-site chemistry between the more BaTiO3-like bulk-

of-grain regions compared to the PbTiO3-like grain boundary regions. To rule out 

any orientation effects influencing the ELNES the same area was measured twice, 

once with the bottom grain tilted onto zone axis, and once with the top grain tilted 

onto zone axis; similar features were seen either side of the grain boundary. For 
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completeness, spectra from both sides of the grain boundary in Figure 4.7 are 

presented in Figure 4.8. 

Furthermore, we investigate changes in the crystal and electronic structure 

along the grain boundary by analysing the Ti-L2,3 edge, associated to the Ti-O 

octahedral distortions. The splitting of the L2,3 edge due to spin-orbit coupling is 

attributed to electron excitations from the Ti-2p3/2 (L3 edge) and 2p1/2 (L2 edge) states 

into unoccupied Ti-3d states near the Fermi level [31, 33, 34]. Due to the octahedral 

symmetry of the coulomb potential the L3 and L2 edges are each split into two 

further peaks representing the molecular orbitals eg and t2g, where the separation 

is known as the crystal field splitting (CFS) [35]. The lower energy t2g orbitals point 

toward the faces of the TiO6 octahedron (xy, xz and yz) whereas, the eg higher 

energy orbitals point toward corners containing O anions (𝑑𝑥2−𝑦2  and 𝑑𝑧2 ). It is 

well accepted that in a cubic symmetry crystal (e.g. SrTiO3) [36, 37] the energies 

of the orbitals in the eg peak are degenerate, presenting a single sharp peak. 

However, for a tetragonal symmetry (e.g. BaTiO3, PbTiO3), the eg peak shows a 

clear splitting due to the breaking of degeneracy. Given that the EELS signal is 

highly sensitive to the subtle changes in the TiO6 octahedron, we can expect a 

change in the Ti-L2,3 edge between the BaTiO3-like bulk-of-grain regions 

compared to the PbTiO3-like grain boundary regions. The Ti-L2,3 spectra (Figure 

4.7c) show significant trends on approaching the grain boundary, such as a 

decrease in ratio between the t2g and eg peaks, and a broadening of the eg peak, 

most obvious when comparing the spectrum from within the grain (position 1) 

and the grain boundary (position 12). Due to the energy resolution in experiment, 

the splitting of the eg peak is not easily resolved, however it is well established 

that this splitting effect is observed as an eg peak broadening [32, 36, 38]. 
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Figure 4.8: EEL spectra for both sides of a grain boundary, located around position 12 in (a), 

demonstrating symmetry in ELNES features.  HAADF of single grain boundary (a). Ti L2,3 edge 

(b); double sided arrows demonstrate the broadening of the L3-eg peak towards the grain 

boundary. O K edge (c); the asterisk marks the large peak shift on approaching the grain 

boundary.  

As the eg peak broadens the CFS is reduced and an inverse relationship 

between CFS and the average Ti-O bond length is established [37, 39]. Due to the 

(a) (b) 

(c) 
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clear chemical inhomogeneity in this ceramic and the intrinsic change in 

symmetry between BaTiO3, PbTiO3 and CaTiO3, the CFS is expected to change [31, 

32, 37]. It has been shown that bulk BaTiO3 has a higher CFS compared to bulk 

PbTiO3 [36, 38], and therefore a quantitative analysis of the CFS across the grain 

boundary was carried out. The contribution from CaTiO3 can be disregarded 

since the Ca content is constant. Figure 4.9 displays the CFS trend of the L3 edge 

for each of the spectra positions in Figure 4.8. The CFS estimate of the L3 edge is  

 

 

 

 

 

 

 

 

 

Figure 4.9: CFS of Ti-L3 edge spanning 25 nm across the grain boundary presented in Figure 4.8. 

CFS was calculated by fitting Gaussian curves to the eg and t2g peak and measuring the centre-to-

centre displacement, as exemplified in the left inset. Position markings are in reference to those in 

Figure 4.8. Schematics of octahedral distortion are depicted for the BaTiO3-like and PbTiO3-like 

regions in the right inset. 
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more accurate than that for the L2 edge, due to a more accurate pre-edge 

background fitting and higher signal levels, and therefore only the former is 

shown in Figure 4.9. The CFS was calculated by fitting Gaussians to the respective 

peaks and measuring the centre-to-centre displacement (see left inset in Figure 

4.9 as an example) with sub-pixel accuracy. From these measurements, a decrease 

in CFS is clearly observed approaching the grain boundary. The decrease in CFS 

(Δ 0.14 eV) confirms a tetragonal distortion of the TiO6 octahedron, and points 

towards an enhanced noncentrosymmetric position of the Ti cation from the 

lowering of energy of the 𝑑𝑧2 orbitals [37], represented by L3-eg peak broadening. 

Thus, a transition between a BaTiO3-like grain interior and a PbTiO3-like grain 

boundary region has been further determined by a decrease in CFS.  

The Ti valence state was also examined over various datasets by measuring 

the L3/L2 ratio. The method used followed that of D. H. Pearson et al. [29] which 

involves the isolation and normalisation of the L2,3 intensities via an accurate 

background subtraction followed by the creation of a stepped continuum 

function using a double arctangent function, and subsequent integration of the 

edges over a suitable energy window (~5eV). Figure 4.10 displays two examples 

where the L3/L2 ratio was measured across the grain boundary shown in Figure 

4.8 in two different locations (a few µm apart). Small changes in the L3/L2 ratio 

were observed; however, a variation from the characteristic Ti4+ oxidation state of 

BaTiO3, PbTiO3 and CaTiO3 at the grain boundary was determined to be 

inconclusive since the L3/L2 ratio changes lay within the measurement error. The 

error was approximated by varying the integration energy window-width and 

continuum intensities systematically. The lack of evidence for a Ti valence change 

is not a surprising result given the complicated chemistry of this ceramic. 
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Figure 4.10: Ti L3/L2 ratio transitioning across the grain boundary in Figure 4.8. The L3/L2 ratio was 

measured at two different positions (a) and (b); the grain boundary is labelled by the interface 

between the two blocks of colour (representing grains), and the grains on zone axis (Z.A) and off 

zone axis are labelled.  

 

4.6 Relating the chemical heterogeneity to polar 

discontinuities at grain boundaries 

Even though BaTiO3 and PbTiO3 share a similar perovskite structure, they show 

drastic differences in spontaneous polarisation, BaTiO3 having a magnitude of 26 

µC/cm2 and PbTiO3 > 50 µC/cm2 [40]. Therefore, it can be expected that PbTiO3-

like grain boundaries will have a higher net polarisation normal to the grain 

boundaries compared to the more BaTiO3-like grain interior, creating a localised 

polarisation gradient. According to the modified Heywang-Jonker model [10], the 

barrier potential observed at the grain boundary is given by: 

𝜙 = 
𝑒2𝑛𝑠

2−(𝛥𝑃𝑛
2+𝛥𝑃𝑧

2)

8 𝜀𝑟𝜀0𝑛0
                                       (4.3) 

(a) (b) 
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where ns is the concentration of surface acceptor states, no is the concentration of 

charged species in the depletion layer, ΔPn is the component of spontaneous 

polarisation normal to the grain boundary and ΔPz represents the polarisation 

generated due to stresses at the grain boundaries as considered by Kulwicki and 

Purdes [14]. Crucially, it is the square of these changes in polarisation that matters 

in determining the effective grain boundary barrier height. Hence, for the same 

magnitude of polarisation discontinuity, the expected alteration in overall barrier 

potential would be the same irrespective of whether head-to-head (H-H) or tail-

to-tail (T-T) domain configurations were present. 

 The reason why the magnitude of the polar discontinuity is accounted for 

in equation (4.3) would appear to be subtle: the barrier potential will vary across 

the area of the grain boundary and hence it will increase in some domains and 

decrease in others. However, the majority of the current will flow across the 

lowest barrier regions [2]. Therefore, the effective barrier across the grain 

boundary will be dominated by the lowest values of barrier potential and the 

regions of raised barrier height will be bypassed by the current. This is analogous 

to the net resistance in a bank of parallel resistors being dominated by the lowest 

individual resistant value. Polar discontinuities in polydomain grain boundaries 

will hence always act to lower the effective barrier across the boundary as a 

whole, resulting in the “−(∆𝑃)2 ” term in equation (4.3). Certainly, this analogy is 

only the case for ceramics which are strongly polydomain in nature. The PFM and 

STEM images in section 4.2 show that this is unquestionably the case for this 

ceramic. 
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Furthermore, the presence of a PbTiO3-like phase approaching the grain 

boundary will contribute an increased magnitude of polarisation compared to the 

bulk, and hence further bring down the potential barrier at the grain boundary. 

In turn, this decrease in the potential barrier will result in a reduction of the 

resistivity as described by the equation:  

ρ = 𝐴exp (
𝜙

𝑘T
)                                                         (4.4) 

Upon undergoing the ferroelectric to paraelectric phase transition at Tc, where the 

spontaneous polarisation no longer exists, depletion regions and resistive barriers 

at the grain boundaries are restored leading to a high resistive grain boundary 

state. Thus, the existence of a PbTiO3-like phase would suggest an enhanced 

spontaneous polarisation at the boundary, fully justifying the existence of the 

optimised PTCR effect in this commercially available ceramic. 

 

4.7 Conclusion 

Nanoscale microscopy techniques have been employed to establish the link 

between chemical heterogeneity and spontaneous polarisation across grain 

boundaries in a BaTiO3-based commercially available PTCR ceramic: BaTiO3-

PbTiO3-CaTiO3. A segregation of Pb and a corresponding depletion of Ba near 

grain boundaries was observed. Furthermore, a decrease in CFS suggestive of 

octahedral distortion was identified via changes in Ti-L2,3 and O-K ELNES features 

approaching the grain boundary, thus revealing a more PbTiO3-like region within 

10-15nm from the grain boundary. This work links the chemical and electronic 
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heterogeneity of the studied PTCR ceramic to the changes in potential barrier at 

the grain boundary, theorised by the Heywang-Jonker model. The results shown 

here have been evaluated on a specific ceramic composition but are relevant to 

the general family of polydomain PTCR ceramics [41]. The central idea that a 

confined interfacial region, with higher spontaneous polarisation that reduces the 

grain boundary barrier potential, augments electronic transport and enhances the 

magnitude of resistivity jump at Tc is novel by itself. While inferring an insight 

into the mechanistic origin of the reduction in potential barrier at grain 

boundaries in the low temperature ferroelectric phase, this idea also offers a novel 

route towards engineering PTCR ceramics in which an interface layer of higher 

spontaneous polarisation could be created to produce better performing PTCR 

devices. 
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5. Polymorphs reversed by 

external stimuli in mixed-phase 

BiFeO₃ thin films  

 

In this chapter polymorphs within mixed-phase BiFeO3 thin films are explored 

both structurally and dynamically under the application of external stimuli. The 

perovskite BiFeO3 has become subject to intense investigation over recent years 

with initial interest surrounding the room temperature magnetoelectric 

multiferroic properties seen in thin films [1]. Not long after, it was experimentally 

confirmed that epitaxially strained BiFeO3 has other fascinating properties, such 

as, a strikingly high spontaneous polarisation (~150µC/cm2) [2], above band-gap 

photovoltaic properties [3] and domain walls that, at least in some orientations, 

behave as pseudo-2D sheet conductors [4]; all while being an environmentally 

benign lead-free material. Additionally, research into the effect that epitaxial 

constraint (from substrate misfit) has on the unit cell structure of BiFeO3 thin films 

has flourished. It was found that under particular epitaxial conditions and at 

specific thin film thicknesses, BiFiO3 can present a mixture of two rather different 
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phases [5]. The coexistence of these two stabilised phases: one being highly-

strained (tetragonal-like ‘T’ phase) and the other being more relaxed 

(rhombohedral-like ‘R’ phase), and the fact that they are separated by a strain-

driven morphotropic phase boundary opens the door to a plethora of 

opportunities to tune the plasticity of thin films; the relative proportion of T and 

R polymorphs should be able to alter in a continuous manner in response to 

external stimuli, making a reversible switching process highly desirable. 

To date, researchers have successfully demonstrated local transformations 

from R to T phase through the application of localised electric field [6] and heat 

[7]. On the other hand, a recent report using scanning probe-based stress-induced 

T to R phase transformations in the reverse sense to that seen when applying 

electric fields has been observed [8]; analogous to studies of stress-induced 

switching of nanodomains in ultrathin (<5 nm) films of BaTiO3  [9]. These findings 

point towards the viability of reversible control between phases and raises the 

question of whether dual control can be gained by combining different 

applications of external stimuli.  

In this chapter, the as-grown native mixed-phase state is firstly 

characterised using TEM techniques. Following this, the thermal activation phase 

transformation is explored through in-situ STEM heat-cycling experiments 

demonstrating a growth of the highly-strained T phase above 400°C. In a more 

controllable nature, via an AFM tip, a combinatorial approach demonstrates 

switching of the native mixed-phase state to a pure T phase state by applying 

electric field, and back again to a mixed-phase state by the nucleation of R 

polymorphs using localised stress. The combinatorial approach involving stress-
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induced writing and electric field mediated reading of these polymorphs has 

potential for a mechanical-write-electrical read memory device. However, for 

such a technological device to be achieved, a quantitative thermodynamic 

framework based on the dynamics of phase switching under external stimuli 

needs to be developed. In addition, a complete knowledge of the crystal structure 

post-application of external stimuli is essential. In this chapter, energy-based 

effective Hamiltonian simulations demonstrate the phase competition under the 

application of electric-field and stress, directly compared to experimental data. 

Furthermore, a detailed TEM investigation of cross-sectional lamellae prepared 

from pre-written AFM regions reveals the unit cell structure and evolution of 

strain across stress-written polymorphs, allowing a direct comparison to the 

native mixed-phase state. 

This chapter features work carried out by N. Browne and D. Edwards at 

QUB (AFM: experiments and analysis), Hamiltonian simulations by Prof. L. 

Bellaiche at University of Arkansas and FEFF calculated EEL spectra by Dr. M.S. 

Moreno at Bariloche Atomic Centre. Work within this chapter has resulted in the 

following manuscripts currently under preparation: 

1. “Deterministic reversible control over symmetry states in mixed-phase 

BiFO3 using electrical bias and uniaxial stress towards piezoresistive 

applications” 

D. Edwards, N. Browne, K. M. Holsgrove, A. Naden, S. O. Sayedaghaee, B. Xu, 

S. Prosandeev, D. Wang, D. Mazumdar, A. Gupta, S.V. Kalinin, M. Arredondo, R. 

G. P. McQuaid, L. Bellaiche, J. M. Gregg, A. Kumar 
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2. “Atomic structure of native and stress-written phases in mixed-phase BiFO3 

thin films” 

K. M. Holsgrove, M. Duchamp, M.S. Moreno, N. Bernier, N. Browne, D. 

Mazumdar, J. M. Gregg, A. Kumar, and M. Arredondo 

 

5.1 The native mixed-phase state  

The room-temperature bulk phase of BiFeO3 (BFO) is classed as rhombohedral 

(point group R3c) [10], with unit cell lattice parameter of 3.965Å and ferroelectric 

polarisation along [111]pc directions [11]. In this study BFO was grown epitaxially 

on (001)-oriented LaAlO3 (LAO) substrates with bottom LaSrMnO3 (LSMO) or 

LaSrCoO3 (LSCO) electrodes of 5 nm thickness. Details of the sample preparation 

have been reported elsewhere [12]. The compressive misfit strain (-4.4 %) 

imposed upon the BFO thin film by the LAO substrate (LAO is also rhombohedral 

at room temperature but has a smaller unit cell lattice parameter of 3.79 Å) allows 

the structural alteration of BFO into two different phases. The highly-strained 

phase (known as the ‘T’ phase) exhibits a tetragonal-like P4mm symmetry with a 

c/a ratio of ~1.2. The Fe displacement towards one of the apical oxygens along 

[001]pc results in fivefold oxygen coordinated Fe, owing to an enhanced 

polarisation roughly 1.5 times that of bulk BFO [13]. The more relaxed phase 

(known as the ‘R’ phase) resembles more to the rhombohedral R3c bulk BFO 

parent phase with a c/a ratio of ~1.08. The unit cell structure of the R phase 

includes octahedrally coordinated Fe, a ferroelectric distortion consisting of ionic 
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displacements along the [111]pc axis, and antiferrodistortive rotations of the FeO6 

octahedra around [111]pc. 

 The native mixed-phase state in a 35 nm thick BFO thin film can be 

observed in the low-magnification STEM image of Figure 5.1a where the contrast 

variation between individual polymorphs can be used to identify the different 

phases. The unit cell structure of the R and T phase is shown schematically along 

with the schematic polarisation directions (black arrows) in Figures 5.1b and c, 

respectively. Identification of which polymorph contrast corresponds to the R 

phase (and the T phase) is routinely characterised by diffraction or HRTEM [14].  

 

 

 

 

 

 

 

 

 

Figure 5.1: STEM-DF image of mixed-phase BFO in the native state (a). Schematic unit cell 

structure and polarisation directions of the R (b) and T (c) phases. (b) and (c) from [15]. 

(a) 

(b) (c) 
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Figure 5.2: HRTEM image of a boundary between a R polymorph and T polymorph (a). 

Corresponding FFTs for R (b), T (c) and the boundary between R/T (d).  

 

Figure 5.2a shows a HRTEM image of an R and T polymorph separated by a 

morphotropic phase boundary. The site specific fast Fourier transforms (FFTs) 

from the R phase (Figure 5.2b) and T phase (Figure 5.2c) display the structural 

identity of the respective unit cells. The FFT selected across the boundary (Figure 

5.2d) highlights the reflections circled in blue and orange corresponding to the R 

and T phase, respectively. The reflection circled in yellow also belongs to the T 

phase, it is a half-integer spot in the FFT pattern, indicative of a unit cell doubling 

within the image plane [7]. 

 The R and T phases can be further characterised by analysing their local 

strain. Figure 5.3 shows the strain analysis of the respective phases in their native 

state using geometrical phase analysis (GPA), based on the HRTEM image shown 

 

(a) (b) 

(c) 

(d) 
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Figure 5.3: Local strain by GPA analysis. HRTEM image of several R and T polymorphs (a). εyy 

strain (along [001]pc) (b), εxy shear strain (c) and εxx strain (along [100]pc) (d). Scale bar in (a) 

represents 10 nm. 

 

in Figure 5.3a. The strain was mapped out with respect to the LAO substrate, for 

εyy: along the thin film [001]pc direction (shown in Figure 5.3b), εxy: the shear strain 

(shown in Figure 5.3c) and εxx:  along the [100]pc direction (shown in Figure 5.3d).  

It can be confirmed that the T phase has an enormous εyy strain (22 %) compared 

to the R phase (8 %). Whereas, both T and R phases have low εxx strain values, (-2 

% and 0.3 % respectively). The shear strain demonstrates moderate values (±10 

%) at the T/R and R/T boundaries respectively. 

Typically for thin films grown epitaxially, the interface between the thin 

film and substrate, or in this case the two interfaces between BFO-LSMO-LAO, 

(a) (b) 

(c) (d) 
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Figure 5.4: STEM-HAADF image of a representative BFO-LSMO-LAO interfacial area. 

Corresponding EDX maps for: Bi-Lα (b), Fe-Kα (c), La-Kα (d), Al-K (e), Mn-Kα (f), Sr-Kα (g) and 

O-Kα (h). Scale bars represent 3 nm. 

 

can be prone to dislocations or chemical diffusion [16]. To investigate the nature 

of the BFO-LSMO-LAO interfaces, high resolution STEM images were acquired 

(example shown in Figure 5.4a) along with corresponding EDX maps for: Bi-Lα 

(b), Fe-Kα (c), La-Kα (d), Al-K (e), Mn-Kα (f), Sr-Kα (g) and O-Kα (h). In Figure 

5.4 (and all similar data acquired on the BFO native state) no dislocations or 

chemical diffusion was observed either at the BFO-LSMO-LAO interfaces or at 

the R/T boundaries.  

(a) (b) 

(d) 

(h) (f) (g) 

(e) (c) 
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5.1.1 Effect of thin film thickness 

Due to the presence of a morphotropic phase boundary (and hence plasticity) of 

mixed-phase BFO it should be possible to tweak the R:T phase ratio in several 

ways. An obvious way exists at the growth stage: varying the thin film thickness 

[17, 18]. Figure 5.5 demonstrates the R: T phase ratio transformation between a 35 

nm thick and 80 nm thick BFO thin film. It is apparent that the density of the 

highly-strained T phase has decreased in the 80 nm thick thin film (Figure 5.5b 

and d) compared to the 35 nm thick thin film (Figures 5.5a and c). By increasing 

the thin film thickness, the thin film has become more relaxed (i.e. less constrained 

by the epitaxial strain imposed by the LAO substrate) and in doing so the ratio of 

the phases has been altered so that the more relaxed R phase is in a more stable 

position, with a higher density of polymorphs. It should be noted that of course 

the TEM sample preparation can further affect this ratio by relaxing the thin film.  

 

 

 

 

 

 

Figure 5.5: Schematic of the T to R phase ratio for a 35 nm thick (a) and 80 nm thick (b) thin film. 

STEM-DF image of the 35 nm thick (c) and 80 nm thick (d) thin film. Scale bar represents 100 nm. 

(a) 

(c) 

(b) 

(d) 
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It was found that an ideal lamella thickness was 80 nm; at this thickness, the 

polymorph ratio of the lamellae was comparable to that observed by AFM, so that 

the results obtained by TEM could be representative of the bulk sample. 

 

5.1.2 Proposed external-stimuli applications 

The other way to tune and switch the phases in mixed-phase BFO, is through the 

application of external stimuli. Figure 5.6 presents a schematic overview of the 

external stimuli applied to mixed-phase BFO in the following sections (5.2 and 

5.3): heat-cycling and a combination of electric field and stress. The questions to 

be answered are: (i) is the phase switching fully reversible? (ii) if so, how does the 

new mixed-phase state compare to the native mixed-phase state? 

 

 

 

 

 

 

 

Figure 5.6: Schematic overview of the external stimuli applications investigated in the sections to 

follow: heat cycling and a combination of electric field and localised stress. 
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5.2 Application of heat 

The expected thermal phase transitions, from literature, involve a first-order 

transition from the mixed-phase state to a polar T state at ~400 °C [7, 14, 19], and 

a melting point of BFO (observed in bulk BFO) at around 900 °C [20]. The phase 

transition of interest in this investigation is that of the mixed-phase state to a polar 

T state in an 80 nm thick mixed-phase BFO thin film. Figure 5.7a displays a high-

resolution STEM image of an area of native BFO at room temperature (23 °C). In 

the middle of the image there is a T polymorph (dark contrast) surrounded by 

two larger R polymorphs.  

 The in-situ heating experiment began at room temperature, capturing an 

area with two needle shaped T polymorphs (bottom of Figure 5.7b). The images 

above the 23 °C panel display the dimensional change in the two T polymorphs 

as the thin film was heated up to 460 °C and back to room temperature, where a 

clear lateral growth of the T polymorphs can be observed. The temperature was 

changed in 5 minute intervals allowing the thin film time to stabilise before 

raising/lowering the temperature further. Figure 5.7c summarises the heat-cycle 

results in a plot of T polymorph width (measured half-way down the T 

polymorph on the right hand-side of the image) and percentage area occupied by 

the T polymorphs within the image, as a function of temperature. The results 

demonstrate that as the thin film was heated, the T polymorphs began to grow 

laterally across the thin film width at ~250 °C. The T polymorphs continued to 

grow until 460 °C when the percentage area occupied by the T polymorphs had 

increased by ~8 %. At 460 °C the sample began to degrade due to bismuth seeping 

out (observed by the presence of a large bubble at the top of the thin film image 
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Figure 5.7: STEM-HAADF image of an area before the in-situ heat cycling experiment began (a). 

Images acquired throughout the heat-cycle at temperatures: 23 °C, 130 °C, 230 °C, 320 °C, 380 °C, 

430 °C, 460 °C, 360 °C, 180 °C and 23 °C (b). Evolution of T polymorph width (measured half-way 

down the right hand-side T polymorph in the images of (b)) and percentage area occupied by the 

T polymorphs in the area of thin film imaged, as a function of temperature (c).  

 

labelled 460 °C) and therefore the temperature was thereafter decreased to 360 °C, 

180 °C and back to 23 °C. On cooling back to room temperature, the width of the 

T polymorphs decreased (as shown in Figure 5.7c) however, a full transformation 

back to the original polymorph width was not achieved. The lack of full 

reversibility under the application of heating is believed to be influenced by the 

(a) (b) 

(c) 
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initial phase ratio of the thin film: due to the relatively large thin film thickness 

(80 nm) the R phase was the most stable, dominating ~90 % of the thin film. 

Therefore, the thermal energy gained in the heat-cycle was not enough to 

transform the dominant R phase into a dominant T phase state. Instead, a small 

expansion in the width of the T polymorphs was observed but the thin film stayed 

primarily in an R phase state. In recent reports, a fully reversible thermal 

transformation was observed in BFO thin film thicknesses of 35 nm [19] and 40 

nm [7] where the phase ratio of R:T was closer to 50:50 in the native state. This 

confirms the proposed conclusion that the initial phase ratio is crucial for a fully 

reversible thermal phase transformation between a mixed-phase state and polar 

T state. It also important to notice the limiting factor of temperature; it could be 

that a higher temperature would have promoted a full transformation but not 

without degrading the sample, thus compromising the results. For the 

experiments which follow, a thinner thin film (ranging from 35-50 nm thickness) 

is investigated using more controllable applications of external stimuli: electric 

field and stress. 

 

5.3 Application of E-field and stress 

To experimentally demonstrate how electric fields and localised stress can be 

used to alter the mixed-phase native state in a reversible and complementary 

manner a 50 nm thick BFO thin film was studied. To illustrate the change in phase 

behaviour, Figure 5.8 shows the AFM topography of a 2.5 µm x 2 µm region 

(white dashed box) in the native state (Figure 5.8a), after the application of local 
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bias (Figure 5.8b) and localised stress (Figure 5.8c). In the native state, it can be 

seen that the initial microstructure comprises of an approximately equal phase 

ratio of R:T. The dark contrast needle-like structures correspond to the R phase 

within a T phase matrix. Application of -4 V dc bias through a conducting AFM 

probe (Figure 5.8b) triggers switching of the ferroelectric polymorph structure 

into a locally T phase dominated region. Subsequent application of a force of 750 

nN (corresponding to an estimated 1.8 GPa of stress) to the same area, causes the 

affected region to again become inundated with needle-like polymorphs 

comprising of the R phase. PFM response (amplitude x cos(phase)) images 

confirm the ferroelectric nature of the native (Figure 5.8d), electrically-written 

(Figure 5.8e) and mechanically-written (Figure 5.8f) regions. Crucially, the   

 

 

 

 

 

 

 

Figure 5.8: Topography of the native mixed-phase state (a). Topography after -4 V dc from the 

AFM tip was applied to a 2 µm x 2 µm region (white dashed box) (b) and subsequent tip-

application of a 750 nN loading force to the same region (c). PFM response (amplitude x 

cos(phase)) of the native (a), electrically-written (b) and stress-written (c) region. 

(a) (b) (c) 

(d) (e) (f) 
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observed transformation behaviour is seen to be reversible with further 

applications of electric field and stress. It would seem, therefore, that the next 

challenge to overcome in this investigation involves the controllable competition 

between T and R dominated phases by appropriate choice of electric field or stress 

application, to fully exploit the transformation plasticity. Two requirements must 

be met for achieving control of the resulting phase competition under electric field 

and stress: firstly, a predictive theoretical analysis of the alterations in mixed 

phase microstructure under applied stimuli needs to be developed. Secondly, 

these predictions should be directly compared to experiments to assess their 

validity.  

 

5.3.1 Predicting the phase competition  

Density functional calculations and phase field simulations have previously been 

used to suggest that a critical misfit strain separates the T and R phases in 

epitaxially strained BFO thin films [15, 21, 22]. The dependence of heterophase 

polydomains in epitaxial BFO thin films on misfit strains, determined by the 

substrates, has been investigated in the theoretical framework of elastic domains 

[23]. Along similar lines, density functional calculations have been used to 

evaluate competition between two phases with increasing misfit strains [24]. 

These calculations can predict the equilibrium mixed phase states that develop 

but the extent to which external field variables and their combinations can alter 

the phase distribution has not yet been analysed. To this end, the first-principles-

based effective Hamiltonian technique developed by Prosandeev et al. [20] was 

used to consider the energy of separate cells of the T phase and R phase under the 
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influence of different variables. The simulations calculate the energy of each 

phase at 10 K as a function of misfit strain (the simulations worked best at low 

temperatures but are considered to be representative of room temperature BFO 

since no thermal phase transition occurs within this temperature range [20]) 

demonstrating a competition between the two phases in a BFO thin film under 

external stimuli, shown in Figure 5.9a. 

  

 

 

 

 

 

 

Figure 5.9: Effective Hamiltonian energy curves as a function of misfit strain under varying 

electric field and uniaxial stress applied along the [001]pc axis (a). The black line corresponds to a 

constant misfit strain of -4.4 %, equivalent to BFO on LAO, with the red and blue dots highlighting 

the energy of the T phase and R phase, respectively. The overlaid colour on the energy curves 

corresponds to the stresses or fields under which the energy curves were calculated. Schematic 

illustration of the unit cell transformation from T phase to R phase under stress (b) and R phase 

to T phase under field (c). Example of a common tangent which can be drawn between the R phase 

and T phase energy curves, along which it is energetically favourable for the two phase to co-exist 

(d). Figure courtesy of D. Edwards. 

(a) 

(b) 

(c) 

(d) 
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At the highest misfit strains, the calculations confirm that the highly-

strained T phase has lower energy (as expected) and is thus stabilised, while at 

intermediate strains the energy of the two phases becomes comparable leading to 

a coexistence of the two phases. The energy curves were then calculated under 

varying combinations of applied stress and electric field to estimate the phase 

competition under the different external stimuli. For the studied film grown on 

(001)-LAO, the energy of the T and R phases are in relative proximity, with the R 

phase slightly lower when no external fields are applied. Under applied stimuli 

the calculations are seen to agree with the experimental results observed in Figure 

5.8, reproducing the observed stabilisation of T phase by electrical writing and R 

phase by mechanical writing. 

 To understand how the behaviour in Figure 5.9a can be appreciated 

qualitatively, the terms that formulate the Hamiltonian were considered in the 

situation of applied stress (Figure 5.9b) and electric field (Figure 5.9c). The 

application of uniaxial stress (σ3) along the [001]pc direction of the film results in 

an increase of the total energy by a term of the form |σ3 S3|, where S3 corresponds 

to the strain component along the [001]pc direction of the simulated cell. In this 

case, the R phase becomes the energetically favoured state due to its smaller axial 

ratio in comparison to the T phase. In an analogous manner, under an applied 

electric field E, the energy (Etot) is reduced by a term of the form P.E, where P 

refers to the polarisation. As T phase possesses higher spontaneous polarisation, 

the increase in P from the R phase to the T phase results in a net reduction in total 

energy and therefore stabilises T phase under applied electric field.  
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 An appealing feature of these calculated energy curves is that they can also 

enable prediction of the relative phase occupancy under varied values of electric 

field and stress. For this prediction, guidance was given by the study of solid 

solutions where common tangents to free energy curves are employed to identify 

regions of chemical composition where phases coexist to lower the overall free 

energy [25] The mechanical lever rule can then be applied to estimate the relative 

amounts of each phase for a given composition as done in Chen at al. [24]. Similar 

approaches have also been used to calculate the fraction of phases within the 

morphotropic phase boundary region of PZT [26, 27]. For the present study, the 

relative proportion of R and T phase can be calculated by drawing a common 

tangent for each pair of energy curves (Figure 5.9d) and then applying the lever 

rule, in the form 

                                                      𝑆𝑖 = 𝑥𝑇𝑆𝑇 + 𝑥𝑅𝑆𝑅 ,                                                               (5.1) 

where 𝑆𝑖 is a strain value chosen between limiting values of  𝑆𝑡 and  𝑆𝑟 (the strains 

where the tangent intersects the energy curves) and 𝑥𝑇 and 𝑥𝑅 are the fractional 

phase populations (summing to unity). The calculations were expanded to a 

broader range of applied stresses, electric fields and misfit strains where each set 

of energy curves allows estimation of the mixed phase population under the 

chosen set of variables. The results are depicted graphically in the form of a 3D 

diagram with three axes defined by misfit strain, uniaxial stress and electric field 

respectively, as shown in Figure 5.10a. Note that the stress and electric field are 

external variables that can be manipulated freely while the misfit strain remains 

fixed by choice of the substrate. Every point in this diagram represents the relative 

proportion of the R phase for the selected variables. The limiting cases seen at the  
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Figure 5.10: 3D diagram predicting the continuous variation in the proportion of R phase with 

misfit strain, electric field and uniaxial stress (a).  Discrete slices at selected values of constant 

misfit strain (b). Figure courtesy of D. Edwards.  

 

two extremes of the diagram which predict mostly R phase at low values of misfit 

strain and high stress while mostly T phase is expected to dominate at large misfit 

strains and large electric fields. Discrete 2D sections of the diagram taken 

perpendicular to the vertical axis, shown in Figure 5.10b, map the relative phase 

distribution for constant values of misfit strain and represent the behaviour 

predicted for the mixed phase microstructures when grown on different 

substrates. For the specific case of a 50 nm thick BFO thin film grown on LAO, a 

mixed phase microstructure with 52 % R and 48 % T phases is expected.  

This model makes clear predictions that the mixed-phase population, and 

therefore its associated functionality; can be manipulated by applying external 

fields: the proportion of R phase can be subsequently reduced to a predicted 33 % 

through application of an electric field of 4×108 Vm-1, or conversely increased to 

70 % under 4 GPa of uniaxial stress. The diagram thus clearly illustrates the 

(a) (b) 
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flexible nature of the strain enabled morphotropic-like phase boundary in BFO 

where each variable can be used as an effective handle to control population of 

the phases; application of uniaxial stress is seen to cause a monotonic increase in 

the proportion of R phase, while conversely, increasing electric field causes a 

monotonic increase in the proportion of T phase. 

 

5.3.2 Direct comparison between experimental and 

theoretical predictions of phase competition 

The theoretical predictions were put to the test by making a direct comparison to 

experimentally observed phase population ratios for a 50 nm thick thin film, 

under a set of uniaxial stress and electric field values. Figure 5.11a shows a large 

representative area of the native thin film (18 μm x 18 μm) chosen and further 

subdivided into a grid (3 μm x 3 μm squares) such that the initial phase 

proportion within each square sub-region was similar. Starting from one end, the 

electric field and uniaxial stress were increased in discrete steps from one sub-

region to the next along the two axes of the grid and the resulting topography of 

each square sub-region was recorded (as shown in Figure 5.11b). The topography 

for each sub-region was numerically analysed and the resulting R phase content 

was estimated. Under initial examination, high levels of new R phase polymorphs 

as well as enlargement of pre-existing polymorphs are observed under large 

uniaxial stress (and zero applied electric field), as evident in the enlarged 

topographic region shown in Figure 5.11c. For intermediate values of stress and 

electric fields, monotonic competition between the two phases is experimentally 
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observed and is consistent with the theoretical predictions. However, under 

further increased electric field, the effect of applied stress appears to diminish 

until the resulting topography becomes mostly T phase dominated (Figure 5.11d). 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11: Topography BFO before (a) and after (b) carrying out the dual control experiment 

where varying levels of stress and electric field were applied simultaneously in a (3 µm x 3 µm) 

step-wise fashion. Highlighted panels are enlarged in (c) and (d) with the experimental values of 

stress and electric field labelled. Numerical estimations of the R phase population resulting in an 

experimental map with stress and electric field applied values along the two axes (e), and 

corresponding theoretical predictions (f). Figure courtesy of D. Edwards. 

(a) (b) 

(c) 

(e) (f) 

(d) 
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The R phase proportional results are plotted on a 2D grid plot in Figure 

5.11e where the stress is stepwise varied between 0 and 1.2 GPa and the electric 

field is increased simultaneously in steps between 0 to 2x108 Vm-1. This plot is 

then compared to the theoretical estimates calculated from effective Hamiltonian 

calculations for a similar range of variables, shown in Figure 5.11f.  A good overall 

match between the experiments and energy based analysis is observed in the two 

plots compared directly in Figures 5.11e and f. The comparison is especially 

effective in evaluating monotonic increase in the proportion of R phase in the 

intermediate regions of electric field and stress. The good correlation between 

theory and experiment is promising for the general validity of this approach in 

evaluating dual control of such mixed phase polymorphs. 

 It should be noted that the experimental estimates of local applied stress 

are made by assuming a certain tip radius and can potentially deviate from the 

actual values due to tip contact area variations. Similarly, while surface area based 

estimations of R/T phase content may differ slightly from volume estimations [5], 

it is expected that such discrepancies are small and scale consistently with each 

variable. Inevitably, deviations may also occur due to factors governed by kinetics 

such as polymorph wall propagation and potential barriers to polymorph 

nucleation. This may go some length to explain why applied stress appears to be 

ineffective in stabilizing the R phase when a high electric field is simultaneously 

applied; and also, the strongly non-linear increase in T phase observed with 

electric field. On the other hand, achieving a fully R phase thin film with increased 

stress can be rationalised as being prohibited by the need for the film to dislocate 

from the substrate and relax to a bulk rhombohedral state. One of the 

observations worth mentioning is that, as expected from a pure thermodynamics 
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perspective, the removal of local stresses from the film does not revert the film 

back to its previous T state (no change observed over several days). Thus, the 

stress induced mixed phase with enhanced R phase exists in a state of pseudo-

equilibrium (it is metastable) and is expected to relax back given sufficient 

excitation. Some of these deviations can be accounted for through both scaling 

and more precise estimates of field values, as well as constraining the analysis to 

intermediate ranges of the applied variables. Nonetheless, the good overall 

agreement between the experimental observations and theoretical calculations 

demonstrates obvious potential for the approach of controlling phase competition 

under externally applied electric field and stress. 

 

5.3.3 Stress mediated control of the conductive states 

Demonstration of wall conductivity in thin films of BFO (grown on SrTiO3 

substrates) was first realised by Seidel et al. in 2009 [4] and since then researchers 

have been keen to find and control conducting interfaces in other systems as a 

means of incorporating such structures in functional devices [28-34]. Conducting 

atomic force microscopy (c-AFM) measurements following both electrical-writing 

and local stress application were carried out through the application of a dc bias 

below the coercive threshold of the BFO thin film studied here, the results are 

presented in Figure 5.12. AFM topography of the native mixed-phase state can be 

seen in Figure 5.12a, likewise the topography of the electrically-written and stress-

written state in Figures 5.12b and c, respectively. Comparison of the conductive 

response following the application of electric field (Figure 5.12d) and local stress 

(Figure 5.12e) shows evidence of negligible current registered within the 



5. Polymorphs reversed by external stimuli in mixed-phase BiFeO₃ thin films 

 

169 

 

electrically driven T-phase (T’), while substantially increased current is observed 

in the regions of newly formed R-phase polymorphs nucleated following 

localised stress application. Importantly, the magnitude of this increased current 

extends beyond the conventional values that would be associated with the 

accumulation of leakage current over such a localised region. Furthermore, the 

increased current is unique to the stress-written R-phase (R’) since negligible 

currents were observed for the native as-grown film. This therefore suggests that 

the R-phase in the as-grown film is distinct from that in stress-written regions. 

Moreover, it is likely that the enhanced conductivity is mediated between the R’ 

and T’ polymorphs since enhanced current has previously been observed in 

similar interfacial systems [35, 36]. The discovery of enhanced conductivity in the 

stress-written regions raises the question as to how the crystal structure compares 

between the native and the stress-written mixed-phase state, and whether the 

localised strain distribution has been altered.  

 

 

 

 

 

Figure 5.12: AFM topography of a native mixed-phase BFO state (a), after application of -4 V DC 

electric field (b) and after 750 nN of tip-induced force (c) Corresponding c-AFM measurements of 

the electrically-written (d) and stress-written (e) states. Figure courtesy of N. Browne. 

(a) (b) (c) 

(d) (e) 



5. Polymorphs reversed by external stimuli in mixed-phase BiFeO₃ thin films 

 

170 

 

In other words, where does the stress-written enhanced conductivity originate 

from? To answer this, a detailed TEM investigation was considered crucial. 

 

5.4 Revealing the stress-written mixed-phase 

For a detail investigation of the crystal structure of the stress-written mixed-phase 

state, cross-sectional lamellae were prepared from pre-written AFM regions in a 

35 nm thick BFO thin film. An example is shown in Figure 5.13 where a 6 µm x 6 

µm region was poled from the native mixed-phase state (Figure 5.13a) to a ‘T’ 

state (Figure 5.13b) by applying -5 V DC electrical bias, followed by the 

application of 800 nN of tip-induced force within a 3 µm x 3 µm region (Figure 

5.13c) via an AFM tip, for the creation of stress-written R’ polymorphs. These 

electrically-written and stress- written regions were then located using the SEM 

(Figure 5.13d), followed by the careful FIB preparation of a lamella which 

enclosed all three regions (native mixed-phase, electrically-written T state and 

stress-written mixed-phase). A schematic of the lamella Pt-strip position prior to 

milling is shown in Figure 5.13e along with an SEM image of the prepared lamella 

indicating the three regions of interest in Figure 5.13f. 

A typical native region of a lamellae described in Fig. 5.13 displaying R and T 

polymorphs is shown in the STEM image of Figure 5.14a, where the bright 

contrast corresponds to the T phase (while dark contrast represents R). Two 

stress-written regions are displayed in Figures 5.14b and c, where R and T 

polymorphs are also present. The most obvious difference when comparing the  
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Figure 5.13: AFM topography of the native mixed-phase state (a), after application of -5 V dc 

electric field (b) and after 800nN of tip-induced force (c) SEM image of the electrically-written and 

stress-written regions identified for lamella preparation (d). Schematic of the lamellae Pt-strip 

position, the grey, yellow and red boxes refer to the AFM scanned, electrically-written and stress-

written regions, respectively (e). SEM image of the prepared lamella with the three regions of 

interest indicated (f). Scale bars represent 3 µm. 

  

three regions is the mixed-orientation of R’ polymorphs in the stress-written 

regions compared to the one-directional R polymorphs in the native region (trend 

verified across various lamellae). Furthermore, the density of the R’ nucleated 

polymorphs in the stress-written regions (Figure 5.14b and c) differ from each 

other and from that typical of the native mixed-phase state (Figure 5.14a). The 

stress-written region in Figure 5.14b is heavily dominated by R’ polymorphs 

compared to the more evenly distributed phases present in the stress-written 

region of Figure 5.14c. Given the enhanced conductivity that was observed in 

stress-written R’/T’ interfaces in the c-AFM data (Figure 5.12), it was initially  

(a) (b) (c) 

(d) (e) (f) 
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(a) 

(b) 

(c) 

 

 

 

 

 

 

 

Figure 5.14: STEM-DF image of a typical native region (a), and observed stress-written regions (b) 

and (c) showing density and orientational differences between the native R polymorphs and the 

stress-written R’ polymorphs. Red and white dashed boxes refer to areas investigated in Figures 

5.15 - 5.17 to follow. Scale bars represent 50 nm. 

 

thought that the stress-written interfaces could contain dislocations whereby 

oxygen vacancies (a common source of conduction [37, 38]) are prone to exist. A 

HRSTEM image of the stress-written area marked by a red dashed box in Figure 

5.14c is displayed in Figure 5.15, where no evidence of interfacial dislocations or 

other structural defects can be observed.  

For a detail structural analysis, the unit cell structure of the native (R and 

T) and stress-written (R’ and T’) phases was studied using nano-beam electron 

diffraction (NBED), a diffraction based technique that can be further used to 

measure strain. NBED (as described in Chapter 2) offers the advantage of being  
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Figure 5.15: HRSTEM image of the stress-written R’ and T’ polymorphs located within the red 

dashed box of Figure 5.14c. The R’/T’ interfaces are marked by dashed white lines. 

 

able to accurately map lattice spacing variation over a large area compared to 

similar techniques such as GPA, which maps lattice spacing in a very localised 

area of the specimen based on a high-resolution image. NBED patterns were 

acquired for areas within the native and stress-written regions of Figure 5.14, 

highlighted by the white dashed boxes.  The processed out-of-plane and in-plane 

NBED maps (interpolated linearly for presentation purposes only) for the 

corresponding native and stress-written regions are shown in Figure 5.16 and 

Figure 5.17, respectively, where the colour bar refers to the lattice spacing (in Å) 

using the LAO substrate as reference. Notable differences across the regional 

lattice spacing maps include sharper R’/T’ interfaces in the out-of-plane lattice 

spacing (less green/yellow intermediate pixels) of the stress-written region in  
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Figure 5.16: Out-of-plane lattice spacing NBED maps for the native (a) and stress-written (b) and 

(c) regions highlighted by white dashed boxes in Figures 5.14, using the LAO substrate as 

reference. Scale bars represent 50 nm.  

 

 

 

 

 

 

 

Figure 5.17: In-plane lattice spacing NBED maps for the native (a) and stress-written (b) and (c) 

regions highlighted by white dashed boxes in Figures 5.14, using the LAO substrate as reference. 

Scale bars represent 50 nm. 

(a) 

(b) 

(c) 

(a) 

(b) 

(c) 
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Figure 5.18: c/a ratio NBED maps for the native (a) and stress-written (b) and (c) regions 

highlighted by white dashed boxes in Figures 5.14, as well as an electrically-written region (d), 

using the LAO substrate as reference. Line profiles extracted from the horizontal line of pixels 

marked by black arrows (e). Scale bars represent 50 nm. 

 

Figure 5.16c. Additionally, the in-plane spacing for this stress-written region 

(Figure 5.17c) displays larger values (dark orange) in the R’ phase.   

The out-of-plane and in-plane lattice spacing can be summarised in c/a 

ratio maps for the different regions, shown in Figure 5.18. In this way, the 

tetragonality of the respective phases can be more easily compared. Figures 5.18a, 

b and c show the corresponding native and stress-written regions from Figures 

(a) 

(b) 

(c) 

(d) 

(e) 
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5.16 and 5.17, while a region which was electrically poled into the ‘T’ state is 

shown in Figure 5.18d for completeness. The line profile plot in Figure 5.18e 

compares the c/a ratio across the various regions, extracted from the horizontal 

line of pixels marked by a black arrow in the respective maps of Figure 5.18. The 

electrically-written region shows the expected c/a ratio of the highly-strained T 

state (~1.2) while the stress-written regions have a varied c/a ratios corresponding 

to differences in R’ and T’ phases. The stress-written region (b) appears to have 

more comparable values to the native region: the c/a ratio of the R’ phase is ~1.1 

and the T’ phase is ~1.2 (disregarding the edge of the T’ polymorph shown around 

160 nm). However, the c/a ratio of the stress-written region (c) appears to have on 

average a slightly larger c/a ratio for the T’ phase ~1.22 as well as a much lower 

c/a ratio (and hence tetragonality) for the R’ phase ~1.06. 

 

5.4.1 Evolution of strain across stress-written boundaries 

It is now clear that the newly formed R’ and T’ phases can exhibit significantly 

different lattice parameters, mostly in-plane, compared to their native 

counterparts. To investigate the influence that the modified phases have on the 

interfacial strain (across R’/T’), strain gradient maps were created. The in-plane 

(εxx) strain gradient maps for areas within the native region and latter stress-

written region (showing the most significant variance in in-plane lattice spacing 

from the native state) are shown in Figure 5.19. STEM images of the native (Figure 

5.19a) and stress-written (Figure 5.19b) regions display the areas (highlighted by 

white dashed boxes) where strain gradient maps (Figures 5.19c and d) were 

extracted from. Line profiles of the strain gradients were extracted approximately  
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Figure 5.19: STEM images of mixed-phase BFO in a native (a) and stress-written (b) state. NBED 

maps of in-plane strain gradients for the native (c) and stress-written (d) regions highlighted 

within (a) and (b). Line profiles extracted approx. 10 nm from the BFO surface for the native (e) 

and stress-written (f) in-plane strain gradients. 

 

10 nm from the BFO thin film surface (Figures 5.19e and f) to compare the 

evolution of strain across the respective R/T (and R’/T’) phases. Maximal strain 

gradients can be seen at the boundaries between the two phases with average in- 

plane strain gradients at the stress-written (R’/T’ and T’/R’) boundaries ~40 % 

higher than those at the native (R/T and T/R) boundaries. It is clear therefore that 

the newly formed R’ polymorphs, created via localised stress with an AFM tip, 

have given rise to in-plane strain gradients of almost double the magnitude of 

those observed in the native state. A plausible explanation for the enhanced 

(a) (b) 

(c) (d) 

(e) (f) 
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conductivity observed in the stress-written phases (Figure 5.12) is therefore an 

interfacial strain-mediated effect arising from the increased strain gradients. It is 

possible that the increased interfacial strain causes a localised decrease in the 

bandgap [39, 40], leading to increased conduction similar to the Schottky effect.  

 

5.4.2 Electronic structure of the stress-written mixed-phase 

To gain more understanding into the atomic and electronic structure of the stress-

written R’ and T’ phases, EELS was performed at the O-K and Fe-L2,3 edges. 

During EELS acquisition the electron beam was scanned across the entirety of 

both native (Figure 5.20a) and stress-written (Figure 5.20b) regions ensuring that 

all possible FeO6 environments were measured; the stress-written region is 

exactly that which is displayed in Figure 5.19b. The data was treated using 

principal component analysis (PCA), a well-established technique for reducing 

noise in EEL spectra [41]. The O-K edge of the native R and T phases (measured 

as the integral of spectra from the respective polymorphs) in Figure 5.20c can be 

divided into two regions, a pre-peak region from 530 – 537 eV and a post-edge 

peak from 538 – 548 eV which contain the expected native spectral features [13, 

42]: the pre-peak spectral shape is similar for R and T, this peak has been 

identified as originating from the hybridisation between the O 2p and Fe 3d states. 

Here, at an energy resolution of 1.5eV, the subtle sub-peaks within the pre-peak 

have not been resolved, however, this does not pose any limitation to our analysis 

because the protruding differences between the O-K edge for the R and T phases 

are known to arise in the post-edge peak. Within the post-edge peak there are two 

sub-peaks at ~541.5 eV (labelled A) and ~543.5 eV (labelled B), these peaks  
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Figure 5.20: STEM-DF images of a native (a) and stress--written (b) region. O-K edge for the R and 

T phases within the native (c) and stress--written (d) regions, all spectra were normalised to the 

height of the pre-peak. FEFF calculated O-K edge for the corresponding R(R’) and T(T’) phases in 

the native (e) and stress-written (f) regions. Schematics of the BFO unit cells [15] used for the FEFF 

calculations (g) with in-plane lattice parameters labelled. Bi atoms are dark blue, Fe atoms are red 

and oxygen atoms are yellow in colour. Scale bars represent 25 nm. 

 

(a) (b) 

(c) (d) 

(e) (f) 

(g) 
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originate from transitions of hybridised O p-Bi p orbitals. Considering that the 

native R and T phases have different Fe coordination (the R phase being 

octahedrally coordinated and the T phase having fivefold oxygen coordinated 

Fe), it is no surprise that the post-edge peak is different for the R and T phase. The 

native R phase shows evidence of both sub-peaks A and B whereas the native T 

phase shows only a sub-peak A. 

The O-K edge for the stress-written R’ and T’ phases can be seen in Figure 

5.20d. Again, the pre-peak looks similar for both R’ and T’ phases but the most 

striking variance, when comparing these to the O-K edge of the native spectra in 

Figure 5.20c, occurs in the post-edge peak. The post-edge peak for the stress-

written R’ and T’ phases no longer has the same spectral differences that we saw 

in the native post-edge peak. Instead, the post-edge peak of the T’ phase looks 

strikingly similar to the post-edge peak of the R’ phase. To better understand the 

relation between possible changes in the crystal structure and the variation 

observed between the O-K edge of the native and stress-written spectra, a range 

of O-K edges were calculated using the program FEFF [43].  The BFO models used 

for the calculations are those modelled by A. Hatt and N. Spaldin [15], ranging in 

in-plane lattice parameter increments of 0.02Å from a highly-strained BFO unit 

cell (in-plane lattice parameter = 3.71 Å) to an extremely low strain unit cell (in-

plane lattice parameter = 3.93 Å).  

The calculated O-K edge for the native R and T phase are shown in Figure 

5.20e, which qualitatively confirm the experimentally observed spectral features 

in Figure 5.20c. Figure 5.20f displays the calculated O-K edges which best match 

the experimentally observed stress-written R’ and T’ phases in Figure 5.20d. The 
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unit cell schematics corresponding to the BFO models used for the calculated R, 

T, R’ and T’ O-K edges are shown in Figure 5.20g. Observing the unit cell 

schematics, two things can be inferred: (i) the tetragonality of the unit cell 

decreases with increasing in-plane lattice parameter and (ii) the 

antiferrodistortive rotations of the FeO6 octahedra around the [001]pc and [011]pc 

axes changes drastically as a function of in-plane lattice parameter: the [001]pc 

rotation which is not present at the native T phase (a = 3.71 Å) is present at the T’ 

phase (a = 3.73 Å), and the  [011]pc rotation increases with in-plane lattice 

parameter [15].  Further analysis of the calculated spectra, indicate that the O-K 

edges for the R and R’ calculated phases have very little (if any) difference. 

Whereas, the T and T’ calculated phases (displayed in Figure 5.20f) show 

dramatically different post-edge peaks: the T’ post-edge peak (using the BFO 

model which is still highly-strained but with larger antiferrodistortive rotations 

of the FeO6 octahedra, labelled T’ in Figure 5.20g) resembles more to that of the 

R’ post-edge peak, which in turn resembles the experimental T’ and R’ post-edge 

peaks. 

It would appear that the application of localised stress to nucleate R’ 

polymorphs into the electrically poled T phase (creating R’ polymorphs with 

increased in-plane lattice parameter) has consequently altered the FeO6 octahedra 

of the neighbouring T phase (termed T’ after stress). Note that this does not 

necessarily mean that the stress-written T’ phase has an increased in-plane lattice 

parameter (like the T’ model in Figure 5.20g); in fact the opposite was found to be 

true in the NBED data: the T’ phase in-plane lattice spacing was reduced by ~0.1 

Å. However, the EELS calculations do point towards increased octahedra 

rotations around the [001]pc and [011]pc axes in the T’ phase. 
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To gain more insight into the position of the O columns in the stress-

written region, BF-STEM images were acquired. Figure 5.21a shows a contrast 

coloured BF-STEM image acquired from within the stress-written region of 

Figure 5.20b. The R’ phase is blue in colour while the T’ phase is yellow/orange. 

A white dashed box encloses an R’/T’ boundary, enlarged in Figure 5.21b, with 

the simultaneously acquired HAADF image in Figure 5.21c. The two smaller 

white dashed boxes (labelled 1 and 2) in Figure 5.21a enclose an enlarged BF-

STEM image of the R’ and T’ phases, respectively, with the corresponding BFO 

unit cell schematics from Figure 5.20 overlaid. The oxygen column positions show 

good agreement to the Fe coordination given by the overlaid R’ and T’ models. 

Furthermore, a bright contrast can be seen along the R’/T’ boundary in the BF 

image of Figure 5.21b, this type of contrast change is known to relate to areas 

which are highly strained and/or have some degree of mistilt; confirming the high 

strain-gradients observed previously by NBED at the R’/T’ boundaries. 

 The Fe-L2,3 edge was also investigated as it is well known that 

changes in the Fe L3/L2 ratio can be a signature of oxygen vacancies or valence 

change [42], which as previously mentioned are a common feature of highly 

strained interfaces [36, 44]. Figure 5.21d shows the Fe-L2,3 edge extracted from the 

T’ phase (labelled as probe position 1 in Figure 5.21c), the R’ phase (probe position 

7) and approximately the centre of the R’/T’ boundary (probe position 4). The Fe-

L2,3 edge corresponds to excitations from the Fe 2p electrons (2p63d5) into empty Fe 

3d states (2p53d6) giving the “white-lines” at 710 eV (L3) and 723 eV (L2). The L3 and 

L2 peaks show some variation in spectral features for the different phases, as can 

be seen in Figure 5.21d. These spectral changes are suggestive of the different Fe  
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Figure 5.21: STEM-BF image of a stress-written region (a), including enlarged BF images extracted 

from the white dashed boxes showing the oxygen columns positions in the R’ and T’ phases, the 

corresponding BFO unit cells from Figure 5.20g have been overlaid. BF (b) and corresponding 

HAADF (c) images of the R’/T’ interface extracted from the large white dashed box in (a). Fe-L2,3 

edge extracted from the T’ phase (position 1 in (c)), the R’ phase (7 in (c)) and approximately the 

centre of the R’/T’ boundary (4 in (c)) in (d). L3/L2 ratio measured across the R’/T’ boundary (e), 

corresponding to the probe positions 1-7 in (c). Unmarked scale bars represent 1 nm. 

(a) 

(b) (c) 

(d) (e) 
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coordination (the R’ phase being octahedrally coordinated and the T’ phase 

having fivefold oxygen coordinated Fe). In Figure 5.21e, the L3/L2 ratio is 

displayed for positions 1-7 in Figure 5.21c. A stepped continuum function under 

L3 and L2, using a double arctangent function, was used to accurately subtract the 

background and continuum to give an accurate estimate of the true L3/L2 ratio 

without the influence of multiple scattering effects [45].  The L3/L2 ratio trend 

shows a sharp drop at the R’/T’ boundary (lowest at probe position 4) which 

resembles previous reports of conducting R/T interfaces in Ca-doped BFO thin 

films [36] but has also been reported in (assumingly non-conducting) native R/T 

boundaries in mixed-phase BFO thin films [42]. The Fe-L2,3 edge was also 

calculated using FEFF, however, the calculated L2 intensity showed a higher 

intensity than experiment for all phases meaning that the L3/L2 ratio could not be 

accurately measured.  

It is proposed based on the evidence at hand, that the Fe L3/L2 drop at the 

boundary may be purely due to the abrupt change in strain state between the T’ 

and R’ phases.  At this stage, there is no solid evidence to prove or disapprove the 

existence of oxygen vacancies or a valence change at the R’/T’ boundaries. Further 

investigations at higher energy resolution will need to be carried out, however, 

this adds the complication of requiring a thinner specimen for EELS acquisition; 

which in turn generates the risk of altering the density and strain state of the BFO 

phases by relaxation of the thin film [44, 46]. Therefore, no longer resembling the 

initial configuration of the bulk. 
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5.5 Conclusion 

In this chapter, the as-grown native BFO mixed-phase state was characterised 

using TEM/STEM techniques. Following this, the thermal activation phase 

transformation was explored through heat-cycling STEM experiments 

demonstrating a lateral growth of the highly-strained T phase above 400°C, 

although a fully reversible process was not observed.  In a more controllable 

nature, via an AFM tip, a combinatorial approach demonstrated reversible 

switching of the native mixed-phase state to a pure T phase state by applying 

electric field, and back again to a mixed-phase state by the nucleation of R 

polymorphs using localised stress. Energy-based effective Hamiltonian 

simulations demonstrated phase competition under the application of electric-

field and stress, directly comparable to experimental data. The stress-written 

phases were investigated via c-AFM which showed enhanced conductivity at the 

R’/T’ boundaries. Furthermore, a detailed TEM investigation of cross-sectional 

lamellae prepared from pre-written AFM regions revealed that the stress-written 

R’/T’ boundaries have higher in-plane strain gradients (due to alterations of the 

R’ and T’ unit cells) compared to the native R/T boundaries, rationalising the 

enhanced conductivity as a strain mediated effect. The control demonstrated by 

the application of external-stimuli to mixed-phase BFO, and the improved 

understanding of the phase morphology before and after external-stimuli 

application, serves as a motive to achieving broad implications for tuning mixed-

phase BFO functional behaviour in a wider range of technologically notable 

applications. Beyond mixed-phase ferroelectrics, reversible control employing 



5. Polymorphs reversed by external stimuli in mixed-phase BiFeO₃ thin films 

 

186 

 

electrical bias and nanoscale stress to create piezoresistive capacitor type devices 

looks promising. 
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6. Summary, conclusions and 

future work 

 

In this chapter the research presented in this thesis is summarised and 

conclusions are presented. Additionally, ideas for future work are suggested. 

 

6.1 Summary and conclusions 

The aim of the research carried out in this thesis was to investigate domain 

dynamics as a function of applying different stimuli in one of the most used and 

studied ferroelectric materials, which is currently used for a variety of devices: 

polycrystalline BaTiO3 ceramics, along with one of today’s most promising and 

interesting ferroelectric materials for device applications: mixed-phase BiFeO3 

thin films. The investigations primarily used a variety of TEM techniques 

accompanied by relevant theory and AFM techniques. 
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 For the study on the polycrystalline BaTiO3 ceramic, the objective was to 

further understand the link between domains coupling across adjacent grains and 

to explore the domains’ configuration (and re-ordering) as a function of applying 

external stimuli, such as heating through TC. Specifically, two examples were 

explored in a static matter as first instance: the case of domains coupling across a 

single grain boundary, and the more complex case of the domain configuration 

within adjacent grains which meet around a junction (or pore), where FIB 

lamellae were fabricated. The analysis focuses on ferroelastic domains, mainly a-

a type domains, where the theory of martensite crystallography demonstrated 

that in the case of domains sharing a single grain boundary, the domains on 

average arranged themselves in a compatible and stress-free manner. This study 

concluded that most likely the large dominant domain variant (named C) formed 

in one grain on cooling through TC and a mixture of domain variants (A and B) 

formed in the neighbouring grain to accommodate the strain imposed by variant 

C. Since the new B domain variants mismatched the stretch of the C domain at 

the grain boundary, a small quantity of D domains needed to be formed to reduce 

stress, giving an overall elastically compatible arrangement. 

 For the study of adjacent grains arranged around a junction, a 

computational calculation was created, given the complexity of the case. The 

computational example demonstrated that the relaxation of the out-of-plane 

constraint gives rise to an undetermined set of linear equations which can be 

solved for compatible domain wall orientations and volume fractions of domains, 

indicating that groups of adjacent grains can form stress-free domain patterns. A 

good agreement was found between the experimental data and the solved 

fractional volume of domains by the computational model. It should be noted that 
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the discrepancies in domain wall orientations were rationalised as mainly due to 

the estimated Euler angles used in the calculation. Since the overall constraint in 

a polycrystalline lamella is much less than that of the bulk, re-configuration of the 

bulk domain structure during heating and cooling through TC was hypothesised. 

STEM in-situ heating cycle experiments demonstrated that this was indeed the 

case; it was shown that the domain density increased (more than doubled) after 

the first heating-cycle through TC and the presence of more intricate domain 

bundles increased when the temperature was cooled back to room temperature 

in a less continuous quench-like fashion. This type of domain density scaling is 

expected considering Kittel’s law; however, the most interesting aspect of this 

study lies in observing the nucleation site of the domains (originating mostly at 

the grain boundary) on cooling through TC, the change in favourable domain 

orientation (which changed from grain to grain) and the domain configuration 

changes (including bundle domains) throughout the heating cycles (where the 

temperature ramping seemed to make a difference).  

 The investigated BaTiO3 ceramic was further explored with focus on the 

ceramic’s functionality, that being a positive temperature coefficient of resistivity 

(PTCR) effect, related to the ferroelectric nature and chemical heterogeneity of the 

ceramic. The study began by using KPFM to show a direct visualisation of the 

resistive grain boundaries. Aberration-corrected STEM and EELS revealed new 

evidence of a grain boundary PbTiO3-like region (spanning across ~ 10 - 15nm), 

in other words a Pb rich grain boundary, which was associated with an increased 

local polarisation in the domains adjacent to the grain boundaries. The chemical 

and electronic heterogeneity of the ceramic was linked to the changes in potential 

barrier at the grain boundary, theorised by the Heywang-Jonker model. It was 
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inferred that the confined PbTiO3 rich grain boundary region would have a higher 

spontaneous polarisation (than BaTiO3), thus reducing the grain boundary barrier 

potential further below TC, and therefore augmenting electronic transport and 

enhancing the magnitude of resistivity jump at TC, and so justifying the optimised 

PTCR effect exhibited by this commercially available ceramic.   

 The second part of the experimental work in this thesis focuses on the 

investigation of polymorph reversibility in BiFeO3 thin films by application of 

external stimuli. The as-grown native BiFeO3 mixed-phase state was first 

characterised using a variety of TEM/STEM techniques, identifying the 

polymorphs (corresponding to different phases) known as T and R. The highly-

strained T phase and relaxed R phase were characterised, and the influence of 

thin film thickness on the ratio of T:R phases was explored, confirming that as the 

thin film thickness is increased, the density of the relaxed R phase (resembling 

bulk BiFeO3) increases. Following this, the thermal activation phase 

transformation was investigated by the application of heat-cycling in the STEM 

experiments; demonstrating a significant lateral growth of the highly-strained T 

phase above 400°C, although a fully reversible process was not observed and 

higher temperatures could not be explored due to sample degradation.  For a 

more controllable experiment an AFM tip was used in a combinatorial approach, 

which demonstrated reversible switching of the native mixed-phase state to a 

pure T phase state by applying electric field, and back again to a mixed-phase 

state by the nucleation of R domains using localised stress. Energy-based effective 

Hamiltonian simulations demonstrated phase competition under the application 

of electric field and stress, directly comparable to experimental data. The stress-

written phases (R’ and T’) were investigated via c-AFM which showed enhanced 
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conductivity at the R’/T’ boundaries. Furthermore, detailed TEM investigation of 

cross-sectional lamellae prepared from pre-written AFM regions revealed that the 

newly stress-written R’ and T’ phases differ slightly in structure from the native 

phases and more importantly, the R’/T’ boundaries have higher in-plane strain 

gradients (due to alterations of the R’ and T’ unit cells, primarily the R’ unit cells 

having a reduced c/a ratio) compared to the native R/T boundaries, rationalising 

the enhanced conductivity as a strain mediated effect. 

 

6.2 Future work  

The work presented in Chapter 3 of this thesis, investigating domains in 

polycrystalline BaTiO3, involved the understanding of domain compatibility 

across grain boundaries and the reorganisation of domains as a function of heat-

cycling through TC. It would be of interest to expand these experiments to a wider 

set of lamellae involving different neighbouring grain rotations and different 

heating/cooling rate cycles. For a more comprehensive study, work should be 

directed to gain complete knowledge of the Euler angles between neighbouring 

grains in order to achieve a more accurate solution in the computational 

compatibility calculation. Furthermore, given the chemical heterogeneity of the 

studied PTCR ceramic, and considering the role that this could have in the local 

polarisation and domain pattern, future work should include a study on pure 

BaTiO3, for comparison purposes. It would be important to discern between a 

more general phenomenon caused by elastic conditions and the effect caused by 

the presence of segregates such as PbTiO3. Work has already been started to  
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Figure 6.1: SEM image of a polycrystalline pure BaTiO3 ceramic (a) and corresponding EBSD map 

(b) showing the out-of-plane grain orientation in the form of a colour map with the main zone 

axes corresponding to the most extreme colours (red, green and blue). Scale bar represents 10 µm. 

 

investigate a pure BaTiO3 ceramic and plans have been made to carry out further 

investigations at the University of Manchester in the coming months. Figure 6.1 

shows an EBSD map where lamella with known grain orientations will be cut 

from.  

The work presented in Chapter 4, chemical analysis of the grain boundary 

region, could be further improved by attempting to map the local polarisation 

across the grain boundary. This would involve using specialised techniques such 

as negative spherical aberration (NCSI), which requires an extremely thin lamella 

(~10 nm thick) cut from a suitable orientation ([100] or [010] zone axis). This is 

however, not a trivial task considering how difficult FIBing moderate thickness 

lamella from a polycrystalline sample can be, due to grain boundary preferential 

milling; and the intrinsic disordered nature of the grain boundaries. 

The final experimental chapter focused on polymorph reversibility in 

mixed-phase BiFeO3 thin films. It was shown that the highly-strained T phase 

(a) (b) 
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grew by the application of heat, however, a fully reversible transition between the 

mixed-phase and polar T state was not observed. Since full reversibility has only 

been reported previously (mostly using AFM) for specific thin film thickness, and 

hence T:R ratio, potential future work would be to investigate a range of different 

thin film thicknesses using in-situ TEM to determine how the initial T:R ratio 

affects the thin film’s ability to switch as a function of heating; while 

simultaneously characterising the strain and possible structural changes in the 

phases. Similarly, since it was demonstrated that mixed-phase BiFeO3 thin films 

can be reversibly switched between a mixed-phase state and a polar T state using 

electric field and localised stress via AFM; it would be of interest to repeat these 

experiments using the recently available in-situ TEM biasing holder and an in-

situ TEM nano-indenter holder to avail of live imaging and characterisation of the 

BiFeO3 phases whilst applying the respective external stimuli.  An in-situ TEM 

experiment using a nano-indenter to apply localised stress was attempted, 

however, due to time constraints and some initial difficulties involved with this 

new technique, the right configuration for the experiment has yet to be explored.  

 

 

 


