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Abstract

One of the most promising approaches for complex technical systems analysis

employs ensemble methods of classification. Ensemble methods enable a reli-

able decision rules construction for feature space classification in the presence

of many possible states of the system. In this paper the novel techniques based

on decision trees are used to evaluate power system reliability. In this work a

hybrid approach based on random forests models and boosting model is pro-

posed. Such techniques can be applied to predict the interaction of increasing

renewable power, storage devices and intelligent switching of smart loads from

intelligent domestic appliances, storage heaters and air-conditioning units and

electric vehicles with grid to enhance decision making. This ensemble classifica-

tion method was tested on the modified 118-bus IEEE power system to examine

whether the power system is secured under steady-state operating conditions.
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1. Introduction

Assessment of security of bulk electric power systems is expected to become

an issue in modern power engineering due to the continued growth in renewable

energy generation and the future decentralization and electrification of heating,

transport and smart domestic loads in the future smart grid. Trends towards5

liberalization and the need to expand electricity transmission due to increasing

energy demand and generation expansion will result in power grid operating

electrical networks at critical conditions, close to admissible security limits [1,

2, 3, 4, 5, 6, 7, 8].

In such conditions unforeseen excess disturbances, weak connections, hidden10

defects of the relay protection system and automated devices, human factors as

well as a great amount of other factors can cause a drop in the system security

or even the catastrophic accidents.

An analys of methods for the assessment of security and voltage stability

of electric power system shows that the existing traditional approaches cannot15

be effectively applied online and real time conditions because of their compu-

tation complexity. For example, load flow calculation for the assessment of the

aftermath of a system component fault, which underlie the classical approach

to the assessment of security in electric power systems does not seem to be fully

implemented due to complex modeling of the corresponding protections.20

Most energy management systems (EMS), for example Siemens, ABB, AREVA

etc., use one or more security assessment predictors such as sensitivity matrix,

security indicators, distribution factors, fast decoupled load flows etc to reduce

the computational effort of the security assessment. These analytical techniques

are also usually time consuming and therefore are not always suitable for real-25

time applications. Moreover, these methods can suffer from the problem of

misclassification or/and false alarm, for example in the cases of the ”bad data”

problem, cyber attackes, serious system topology changes etc. Despite the EMSs

wide development, the decision making and onus is usually still with the exper-

tise of the grid operators. However, as the number of market participants,30
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renewable power sources, storage devices and smart loads increase in the power

system both at the transmission (and distribution) level the decision making

will become ever more complex [9, 10].

One of the effective solutions to this problem is the use of a combination

of traditional approaches on the basis of security indices and machine learning35

algorithms, such as artificial neural networks (ANNs), support vector machine

(SVM) and decision trees (DTs) [11, 12, 13, 14, 10]. The main idea here lies

in an intelligent model learning to independently determine the current value

of an assumed indicator on the basis of input data, thus identifying the current

state of power system. As studies by Wehenkel [15] and Diao [16] show such a40

modified approach makes it possible to neutralize the drawbacks of traditional

algorithmic approaches owing to the original properties of the machine learning

technologies [17].

Among machine learning algorithms, some DT algorithms [18], especially

those of the ”white box” nature, have gained increasing interest because not45

only do they provide the results of security assessment but they also reveal

the principles learned by DTs for security assessment. These principles provide

useful decision-making information required to make remedial action against

recognized insecure conditions. Moreover, ensemble methods based on DT,

such as random forest, boosting-based models, enable reliable decision rules for50

feature space classification in the presence of many possible states of the power

system. This research employs the ensemble methods based on DTs. The

calculations involved modifications of bagging models (Random Forest, Bagged

CART) and boosting models (Stochastic Gradient Boosting, AdaBoost).

The paper is organized in 6 sections. Section 1 introduces. Section 2 presents55

the problem statement of security assessment. Section 3 introduces the appli-

cations of ensemble DT-based learning for the security assessment in power

systems. In Section 4, database preparation with due considerations to power

systems with high penetration of wind power generation and other distributed

generation (DG) is described. Then, the feasibility of the ensemble DT-based60

approach is demonstrated in Section 6 using an IEEE 118 test power system.
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The concluding remarks are provided in Section 6.

2. Problem Statement

Security is the ability of an electric power system to withstand sudden dis-

turbances without unforeseen effects on the consumers. It is provided by the65

control capabilities of power systems. During operation the required level of se-

curity can be achieved by preventive control actions (before a disturbance) and

emergency control actions (after disturbance). Control in the pre-emergency

condition is mainly responsibility of the Operator in dispatch control. Naturally

there can be situations where decision-making by the dispatch personnel can be70

insufficient to avoid dangerous situations. The complexity of the problem lies

in the fact that most dangerous (pre-emergency) states of electric power system

which lead to large-scale blackouts are unique and there is no single algorithm

(for solving) to effectively reveal such conditions at the time. The problem gets

complicated by the fact that the security limit of electric power system con-75

stantly changes. Therefore fast methods for real time security monitoring are

required to analyze the current level of security and accurately trace the limit

and detect the most vulnerable regions in a power system.

The key idea of the “pre-emergency” control concept is that the voltage

instability following an emergency disturbance which accompanies many system80

emergencies does not develop as fast as the dynamic instability of the power

system [6]. Thus, when a phase of slow emergency development occurs, the

balance between generation and consumption is maintained for a long time

making it possible to detect potentially dangerous states, which appear after

the disturbance in order to make the appropriate preventive control actions [1].85

To monitor if a power system is within its limit, primary measurement tools

such as are SCADA systems and post processing by a state estimator as used

[19]. The ENTSO-E 1 network code on operational security requires each trans-

1the European Network of Transmission System Operators
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mission system operator (TSO) to classify its system according to the system

operating states [20]. Figure 1 shows the different operating states of a power90

system as identified by Liacco [21] and adopted in this work. Kundur et al [22]

describes power system stability concisely, details a precise method of classifi-

cation and explains the real world impications to security and reliability.

PRE-EMERGENCY CONTROL

NORMAL 
Minimise the generation costs by optimising power flows 

according to the market situation

ALARM 
Tradeoff of preventive vs 

corrective control

EMERGENCY 
(CORRECTABLE)

Overloads, undervoltages, 
underfrequency... 

Preventive 
control

Emergency control 
(corrective)

EMERGENCY 
(NON-CORRECTABLE)

Cascading effects, blackouts 

Protections

 Islands 
Load shedding

RESTORATIVE
Resynchronization, load pickup, 

power supply restoration

S
E
C

U
R
E

IN
S
E
C

U
R
E

A
S
E
C

U
R
E

EMERGENCY CONTROL

Control and/or protective actions 

Foreseen or unforessen disturbances

Figure 1: Operating states and transitions

3. Ensemble Learning for the Security Assessment in Power Systems

3.1. Ensembles methods of classifications95

A great many studies show that the effective solution to this problem can

be found on the basis of machine learning methods which normally include
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artificial neural networks, decision trees, ensemble (committee) models, etc.

These studies are summarised and discussed in Zhou et al [23].

The ability to solve the problem is related to the capability of the method to100

fast detect images, patterns (i.e. typical samples) and learning/generalization,

which is important to identify instability boundaries at high speed.

One of the advanced approaches to analyse complex technical systems is

ensemble methods of classification. This method makes it possible to form

reliable decision rules of classification for a set of potential system states. In105

this approach the key idea is to build a universal classifier of power system states,

which is capable of tracing dangerous pre-emergency conditions and predicting

emergency situations based on certain system security indices. In this case the

detection of dangerous operation patterns is not effective without considering

probable disturbance/faults, whose calculation lead to a considerable increase110

in the computational complexity and a potential decrease in the accuracy for

basic algorithms. This leads to need to find a way to improve the accuracy of

the classifier of power system states. One of such methods is the creation of

ensembles of the classification models and their training.

One of the first most general theory of algorithmic ensembles was pro-115

posed in the algebraic approach by Zhuravlev [24]. According to Zhuravlev

[24] the composition of N basic algorithms ht = C(at(x)), t = 1, . . . , N is

taken to mean a superposition of algorithmic operators at : X → R, of a

correction operation F : RN → R and decision rule C : R → Y such as

H(x) = C (F(a1(x), . . . , aN (x))), where x ∈ X, X is a space of objects, Y is120

a set of answers, and R is a space of estimates.

Later Valiant and Kearns [25] were the first question whether or not a weak

learning algorithm can be strengthened to an arbitrary accurate learning al-

gorithm. This process was called boosting. Schapire [26] developed the first

provable polynomial-time boosting algorithm. It was intended to convert weak125

models into strong model by constructing an ensemble of classifiers. The main

idea of the boosting algorithm is a step-by-step enhancement of the algorithm

ensemble. One of the popular implementations of this idea is Schapire’s Ad-
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aBoost algorithm, which involves an ensemble of decision trees [27].

Another approach to the classification and regression problems using the130

ensembles was suggested by Breiman [28]. This approach is an extension of the

bagging idea. According to this idea, a collective decision can be obtained by

using an elementary committee method which classifies an object according to a

decision of most of the algorithms. Unlike the boosting method bagging is based

on parallel learning of base classifiers. One of the progressive bagging-based135

approaches is the method called Random Forest [29]. Later there appeared the

most effective modifications of both Random forests and boosting algorithms

such as Extremely Randomized Trees [30], Oblique Random Forests [31] and

Stochastic Gradient Boosting [32].

In the studies on security assessment there are many approaches oriented140

to the construction of models on the basis of decision trees. These studies are

described by Panasetsky et al [1]. These models use both off-line (periodically

updated) and on-line methods. Single trees are easily interpretable, yet do

not always result in the required accuracy when approximating complex target

relationships. Therefore, it is considered reasonable to use compositions.145

3.2. Applications in power system security assessment

Several applications involving ensemble DTs have been addressed in real-

time transient stability prediction and assessment, voltage security monitoring

and estimation, loss of synchronism detection and timing of controlled separa-

tion in power systems [15, 16, 18, 33]. A recent approach has combined DT150

with another data mining tool for prediction performance improvement in the

field of dynamic security controls [34]. Vittal et al [16] presented an online

voltage security assessment scheme using PMUs and periodically updated DTs.

The proposed tree-based model are trained offline using detailed voltage secu-

rity analysis conducted and updated every hour by including newly predicted155

system conditions for robustness improvement. Sadeghi at al [13] proposed the

AdaBoost algorithm as a new approach in security assessment by classifying

pre-fault data of power system. The main benefits of using AdaBoost are a
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higher accuracy compared to other machine learning approaches and the ability

to display effects of different features in the security assessment problem.160

Liu et al [35] proposed a random forest-based approach for online power sys-

tem security assessment. The results are showed high accuracy in the presence

of variance and uncertainties due to wind power generation and other dispersed

generation units. The performance of this approach was demonstrated on the

operational model of western Danish power system with the scale of around 200165

lines and 400 buses. Kamwa et al [36] demonstrated the effectiveness of the

random forest-based approach in a PMU predictive assessment of catastrophic

power system events. To demonstrate the greatest generalization capability of

the methodology, a single Random Forest is shown to have a 99.9% reliability

on a large data set containing a mix of 90% instances from the Hydro-Quebec170

grid and 10% instances from a nine-area test system.

3.3. The problem of confirmation bias

Optimizing a machine learning-based model for security assesment often

requires experimentation and tuning. Often, researchers compare their own fa-175

vorite algorithm, for which they are presumably expert, with a set of competing

methods, which they discover while doing the comparative study. For this rea-

son, the compared algorithms often represent the state of the art only for the

favorite method, and under such conditions highly biased conclusions may be

reached. The analysis of many studies showed that we could not suggest that180

one particular kind of predictive model would be more appropriate than others

[37].

Since the best security model depends on the problem and the data, the

engineer must search a very large set of feasible options to find the best model.

In operational dispatch management, however, the time is strictly limited. Strict185

time constraints do not permit much time for experimentation. Researchers

tend to deal with this problem by settling for sub-optimal models, arguing that

obtained models need only be good enough, or defending use of one technique
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above all others. As power grids grow more complex, realizations of power

system parameters more quickly changing, these tactics become ineffective.190

The key to overcoming these challenges is to use automated modeling tech-

niques. To find the best security assesment model, we need to be able to search

across techniques and to tune parameters within techniques. Potentially, this

can mean a massive number of model train-and-test cycles to run; we can use

heuristics to limit the scope of techniques to be evaluated based on characteris-195

tics of the response measure and the predictors.

Therefore, we started from the premise that almost every method (model)

may be useful within some restricted context, and summarize the respective

strengths and limitations of the various methods so as to highlight their com-

plementary possibilities. Therefore, the power system security assessment tool200

was developed based on the multi-model machine learning-based approach. In

the paper, we propose an automated security assesment technique in order to

predict alarm states in power systems based on the caret package in open source

R.

4. An Automated Ensemble DT-based Technique for Security Assess-205

ment

Ensemble methods enable a reliable decision rules for feature space classifi-

cation in the presence of many possible states of the system to be build. In this

paper, an automated technique based on ensemble DTs learning is proposed for

online power system security assessment (Fig. 2).210

4.1. Test pattern

Specifically, ensemble DT models are first trained off-line using the cross-

validation. For each candidate tuning parameter combination, an ensemble DT

model is fit to each resampled data set and is used to predict the corresponding

held out samples. The resampling performance is estimated by aggregating the215

results of each hold-out sample set. Resampling methods try to inject variation

into the system to approximate the model’s performance on future samples.
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These performance estimates are used to evaluate, which combination(s) of the

tuning parameters are appropriate. Once the final tuning values are assigned,

the final model is refit using the entire training set. The “optimal” model from220

each ensemble DT technique is selected to be the candidate model with the

largest accuracy or the lowest misclassification cost.

Performance estimator
(the largest accuracy, the lowest misclassification cost

Training and tuning (cross-validation)

DT1 model (i)
 .

DT1 model (k)

DT2 model (i)
 .

DT2 model (k)

DTn model (i)
 .

DTn model (k)

DT1 Model
(optimal)

DT2 model
(optimal)

DTn model
(oprimal)

Final DT-based model

Security status

Quasi-dynamic power system simulation 

Data generation

Data collection New dataset

Voltage, loads, power flow, L-index etc. Feature 
attributes

Input: Feature attributes, Target: L-index

MATLAB

PSAT

JAVA objects

R 
environment

 

Caret 
package

Figure 2: The basic method of the proposed idea.

The primary principle of the approach lies in the ensemble DT method of

classification to automatically make a sufficiently accurate assessment of the

power system conditions according to the criterion secure/insecure based on the225

significant classification attributes of a power system state, for example active

and reactive power flows, bus voltage, etc. A great amount of such attributes

are obtained from randomly generated data samples consisting of a set of really

possible states of the electric power system. Depending on the ensemble method

applied each decision rule will be trained by its subsampling according to the230
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bagging and boosting principles. The final decision on the classification of any

power system state is made by the generalized classifier according to different

principles of simple majority voting, weighted voting or by choosing the most

competent decision rule.

1 2 3 m...
Training Set 

(state variables)

ω1 ...Selection Bias ω2 ω3 ωm 

1 2 3 n...

Drawn with 
replacement

hi

Pi

Change bias 
such that 
the next 

boot strap 
set is made 
of harder 
problems

Hypotheses i

Predictor i

Training 
Set 

For i=1 to t

h1 h2 h3 ht...

ω1 ω2 ω3 ωt ...

Weighted Voting

Test 
Obser-
vation

Error

P
Final classification 
(security status)

1 2 3 m...Training Set 
(state variables)

h1 h2 h3 ht...

P1 P2 P3 Pt ...

Voting

Test 
Observa

tion

P

1 2 n...
Boot Strap 1

Boot 
Strap 
Set

Hypotheses

Predictions 

Simulator of power system (quasi-dynamic modelling) 

Boosting Bagging

1 2 n...
Boot Strap 2

1 2 n...
Boot Strap t Boot Strap 

Seti

Figure 3: A general scheme of the assessment of potential power system security, using com-

positional models.

4.2. The Use of L-index in the Problem of Security Assessment235

In this study L-index is used because it is one of the effective indices from

this group, as a target indicator of system stability when training an ensemble

DT model. The L-index is proposed by Kessel and Glavitsch in [38] as an

indicator of impeding voltage stability. Starting from the subsequent analysis of

a power line equivalent model, a voltage stability index based on the solution to240

power flow equations is developed. The L-index is a quantitative measure for the
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estimation of the distance of the actual state of the system to the stability limit.

The L-index describes the stability of the entire system with the expression:

L = max
j∈αL

(Lj) (1)

where αL is a set of load nodes. Lj is a local indicator that determines the

buses which can be sources of collapse. The L-index varies in a range between245

0 (no load) and 1 (voltage collapse) and is used to provide meaningful voltage

instability information during the dynamic disturbances in the system.

Kessel and Glavitsch reformulate the local indicator Lj in terms of the power

as:

L =

∣∣∣∣∣1 +
U̇0j

U̇j

∣∣∣∣∣ =

∣∣∣∣∣ Ṡ+
j

Ẏ +∗
jj U

2
j

∣∣∣∣∣ =
S+
j

Y +
jjU

2
j

. (2)

where Y +
jj is transformed admittance, Uj is voltage of the load bus j, S+

j is

transformed complex power, which can be calculated as

Ṡ+
J = Ṡj +

 ∑
j∈αL, i 6=j

Ż∗jiṠi

Ż∗jjU̇i

 U̇j ,

and Ż∗ji, Ż
∗
jj are the off-diagonal elements and leading elements of impedance250

matrix.

Evaluating the L-index as given by (2) each pattern is labeled as belonging

to one of the four classes shown in Table 1.

Security Index Class Category/System State

0 < L− index ≤ 0.3 Normal state

0.3 < L− index ≤ 0.6 Alarm state

0.6 < L− index ≤ 0.8 Emergency correctable state

L− index > 0.8 Emergency non-correctable state

Table 1: Class labels for power security analysis.

The obtained labeling of L-index is based on modelling of many test power

systems schemes with expert evualation different obtained states as normal,255
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dangerous and emergency conditions. The criteria for the system states are

briefly described as follows:

• Normal state implies that all parameters of the power system are main-

tained within specified normal operation limits.

• Alarm state implies that some of the system parameters exceed the spec-260

ified normal limits (for example, bus voltage can exceed 5%, but remain

within 10%). Depending on the operation rules, actions can take place

to bring the system to the normal state.

• Emergency correctable state implies the system is still intact. However,

some system constraints are violated. The system can be restored to the265

normal state (or at least to the alarm state), if suitable corrective actions

are taken.

• Emergency non-correctable state implies that the current situation cannot

be corrected and will lead to major emergency. Control actions, like load

shedding or controlled system separation are used for saving as much of270

the system as possible from a widespread blackout.

The performance indices can communicate contingency severity and thus

the power system security degree by means of indicative colors [39]. These need

to be carefully selected in order to deliver a suggestive message; if remedial

actions are needed, for example. As illustrated in Fig.4, a smoothly changing275

color scale is suitable for that purpose. In this way, the reporting is simple

but indicative, suggesting the alarm level and the expected magnitude of reme-

dial actions for improvement of the condition. In the case where the values of

the indices exceed the specified limits on security and the high probability of

emergency situations that correspond to these values, respective preventive or280

emergency control measures can be formed.
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Figure 4: Visualization of power system security degree based on the L-index

5. Case study

The feasibility of this approach in a proof-of-concept has been demonstrated

on the IEEE 118 power system consisting of more than 118 buses, 54 generators,

and 186 transmission lines2. The base load of this system is about 4242 MW285

and 1438 MVar. An open-source environment R [40] with caret package [41] is

used as the computing environment for the proposed models’ design and testing.

5.1. Data base generation

In the analysis a list of potential power system states for the model learning

is formed using quasi-dynamic modeling with a special program in the MAT-290

LAB environment (Power System Analysis Toolkit) [42]. The load model was

represented by static characteristics depending on voltage. When critical values

of voltage are achieved the load is automatically transferred to shunts. The

method of a proportional increase in load at all nodes of the test system was

optimized for the security analysis in such a way that the initial condition for295

each emergency disturbance is a stable condition closest to it, from those calcu-

lated. Thus, at each stage of an increase in the test scheme load the emergency

events (primary disturbances) are randomly modeled by the N − 1 reliability

principle. The disturbances included losses of generation and connection of a

large consumer at specified nodes. As a result, the database including a set of300

various pre-emergency and emergency states of the test scheme is built.

The database contains not only the data as predictor values, but also the

target values. A set of the obtained system states was used to calculate the

2URL: http://icseg.iti.illinois.edu/ieee-118-bus-system/
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values of global L-index, and on the basis of local indices Lj . As result, we

computed the attribute values and pre-classified based on the L-index the ob-305

tained states as “normal”, “alarm”, “emergency correctable” and “emergency

non-correctable”. These characteristics were applied as class marks for training

and testing the models.

5.2. Estimating Performance For Classification

In this analysis proper performance measurement metrics for classification310

problems are used. The following metrics are used:

• The overall accuracy of a model indicates how well the model predicts the

actual data.

• The Kappa statistic k, takes into account the expected error rate:

k =
O − E
1− E

(3)

where O is the observed accuracy and E is the expected accuracy under

chance agreement.315

5.3. Ensemble DT Training and Performance

All 3000 cases in the created database were treated equally and 1000 cases

(33%) are randomly selected to form a test set. The remaining 2000 ones

(66%)were used to form the learning set. Namely, the following DT-based tech-

niques were tested: boosting models - Stochastic Gradient Boosting (SGB), Ad-320

aBoost (AB) and bagging models - Random Forest (RF)3, and Bagged CART

4. DT models were trained using the cross-validation. For comparison purposes

with other learning techniques, such as Extreme Learning Machine (MLP), Sup-

port Vector Machine (SVM), were also trained and tested using the same ap-

proach.325

3Random Forest by Randomization (Extremely Randomized Trees)
4Conventional Breiman’s non-parametric decision tree learning technique

15



As already discussed, the “optimal” model from each technique is selected

to be the candidate model with the largest accuracy. If more than one tuning

parameter is “optimal” then the function will try to choose the combination

that corresponds to the least complex model. For example, for the Random

Forest, mtry was estimated to be 124 and numRandomCuts = 1 appears to be330

optimal (Fig. 5).
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Figure 5: The relationship between the number of Random Forest technique components and

the resampled estimate of the area under the cross-validation.

Table 2 shows comparison of accuracy achieved by the classification learn-

ing techniques. From Table 2, the comparison indicates that ensemble models

produce more accuracy than the simple ones. For this case study, Random

Forest and AdaBoost models are the “best” performance techniques to detect335

dangerous states in the IEEE 118 test system.

Compared with single DT, an ensemble DT model has the advantage that

it gives each variable the chance to appear in a different context with different

covariates, so as to better reflect its potential effect on the response. The impor-

tance of variables in ensemble modeling is computed to assess the contribution340
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Metrics
Ensemble Methods Single Methods

RF BCART AB SGB SVM MLP Kohonen

Accuracy 99.91 99.74 99.88 99.58 99.83 91.03 96.91

Kappa 99.85 99.56 99.81 99.26 99.70 84.34 94.52

Table 2: Classification accuracy comparison.

of the variables to grow the ensemble model and the relevance of each variable

over all DTs in the ensemble model [35]. Figure 6 shows the relative variable

importance.

Figure 6: Relative variable importance obtained by computing of mean gini index decrease

(where U - voltage of the load bus, P - active power flow, Q - reactive power flow).

5.4. Ensemble DT Performance in the Case of “Corrupted” Data

For comparison purposes the following computational experiements were car-345

ried out to compare the traditional and intelligent approaches. By analogy with

the previous case study, the steady-states database were generated using quasi-

dynamic modeling. All 3000 cases in the created database are treated equally

and 1000 cases (33%) were randomly selected to form a test set. However,

17



the data of a test set were distorted such as 1% of the data was replaced by350

uniformly distributed random values lying within the limits of the changes of

each particular system variables. Such distortions can be caused by a number

of reasons, including the presence of “bad data” in telemetry information, cy-

berattacks, etc. Based on a learning set, approximations of the L-index were

constructed using several machine learning methods, including ensemble DT355

models. Machine learning models were trained using cross-validation. After the

trained models were tested using a “corrupted” test set to determine the value

of the L-index. For clarity, the problem of regression recovery was solved.

As can be seen from Fig. 7, the traditional algorithmic approach based on

the direct calculation of the L-index (according the original approach of Kessel360

and Glavitsch proposed in [38]) leads to a significant distortion of the assesment.

At the same time, as shown in Table 3, all tested intelligent methods show high

accuracy. The Random Forest method shows the best result.
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Figure 7: Comparison results of testing different approaches to IEEE 118 security assessment

using “corrupted” test set.

The feasibility of dealing with missing data was also tested. Taking into
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Table 3: Accuracy of different approaches to IEEE 118 security assessment using ”corrupted”

test set.

Method RMSE Parameters

Random Forest 0.0003 mtry=27

Gradient Boosting 0.0008 n.trees = 150, interac-

tion.depth = 18, shrinkage

= 0.1, n.minobsinnode = 10

Support Vector

Machine

0.0856 sigma = 0.2751288, C = 0.25

Traditional method 0.0935

consideration SCADA malfunctions the corrupted patterns were used to train365

ensemble classification trees. The results showed that the test error rate did not

changed even with 50% gaps (Table 4).

% of gaps time in sec. test error, %

10 0.0123 0.93

30 0.0411 0.93

50 0.0514 0.93

Table 4: Filling the gaps in data.

These test results clearly show faster, better fitting and more efficient re-

sults if the test system model is adapted and updated periodically with new

cases rather than using offline cases as used in Beiraghi and Ranjbar [43] and370

Diao et al [16]. The database can be periodically updated by the new cases

together with the existing cases. Finally, a stronger ensemble model can be cre-

ated immediately with strengthened information of the updated database. This

theoretically means that not alone is less computational time required to iden-

tify a feasible solution but a better optimal solution is also achieved anabling375

the TSO to respond better to power system instability.
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6. Conclusion

The ensemble classification methods were tested on the modified IEEE 118

power system showing that proposed technique can be employed to examine

whether the power system is secured under steady-state operating conditions.380

The experimental studies showed that the ensemble methods can identify key

system parameters as security indicators with high accuracy and, if required,

the obtained security tree-based model can produce an alarm for triggering

emergency control system. Hypothetically, this outlier identification ensemble

method is able to improve the accuracy of power system security assessment to385

even 100%.

However, even in the case of retraining, the complete training of the ensemble

DT model is associated with additional time, which excludes the retraining in

real time. The next stage of this work will involve development of an on-line

ensemble DT method, which updates the existing model, using new data without390

its total restructuring.

A potential security ensemble a DT based system can operate in two modes

for control the power system states: (1) automatic control (closed loop) which

automatically produces the optimal control actions (for example, control the

reactive power sources) when interacting with local automation (automatic un-395

dervoltage protection, multi-agent automation, etc.) without checking the op-

erator’s actions and (2) advisor dispatcher (open loop) which generates control

actions that can then be implemented by the dispatcher (for example, change

the protective relay settings by decreasing the settings with respect to time, in-

creasing sensitivity of startup signals of the emergency control functions through400

the selection of an appropriate group of settings, etc.). Overall this ensemble

DT based system approach shows potential real world opportunities to enhance

and optimize TSO power system stability capabilities. Such an approach will

be invaluable in a future power system with increasing numbers of market par-

ticipants, renewable power sources, storage devices and smart loads both at the405

transmission (and distribution) level.
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