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ABSTRACT

Previous grouped-nonlinearity formulations for Wave Digital Fil-
ter (WDF) modeling of nonlinear audio circuits assumed that non-
linear (NL) devices with memoryless voltage–current characteris-
tics were modeled as voltage-controlled current sources (VCCSs).
These formulations cannot accommodate nonlinear devices whose
equations cannot be written as NL VCCSs, and they cannot accom-
modate circuits with cutsets composed entirely of current sources
(including NL VCCSs). In this paper we generalize independent
and dependent variable choice at the root of WDF trees to accom-
modate both these cases, and review two graph theorems for avoid-
ing forbidden cutsets and loops in general.

1. INTRODUCTION

Along with State Space Modeling [1–4] and Port Hamiltonian Sys-
tems [5–8], the Wave Digital Filter (WDF) [9–15] formalism is
a major approach to Virtual Analog modeling of audio circuits.
In short, the Wave Digital Filter approach reframes an electri-
cal circuit into a tree-like structure that separates electrical ele-
ments from their topological connections, represents each electri-
cal element and topological connection mathematically with ex-
plicit input–output relationships in the (typically voltage or power)
wave domain, discretizes reactive elements (most commonly using
the trapezoidal rule), and resolves delay-free loops in the result-
ing structure by tuning the port resistance parameter of the wave
variable definition at each port in the circuit. For circuits built
entirely out of series and parallel connections, this approach is
entirely modular. Good numerical behavior and incremental pas-
sivity can normally be inherited from passivity of the reference
circuit and the use of wave variables [16]. The original WDF for-
malism could accommodate a single nonlinear electrical element
at the root of the WDF tree [17]; since typical audio circuits rather
contain multiple nonlinear devices, handling multiple nonlinear-
ities is currently a main subject of WDF research. Three recent
approaches to handling multiple nonlinearities involve the resolu-
tion of fictitious delays in non-tree-like structures using techniques
from multidimensional signal processing with convergence guar-
anteed in some cases by the contractive properties of passive cir-
cuit elements [18–21], “dynamic adaptation” of one-port nonlin-
earities which are not at the root [22], or global iterative solution
over a WDF structure [23].

In this paper, we’ll deal with another recent thread in WDF
research starting with [24] that is focused on solving the scattering
matrices of complicated “R-type” adaptors [11] and the applica-
tion of the topological insights of [25] (decomposition of a circuit
graph into an SPQR tree) to generalized formulations for circuits
involving multiple nonlinearities [12,13]. This approach groups all

nonadaptable elements (most importantly nonlinearities) together
at the root of a WDF tree1 and interfaces that multiport root el-
ement to standard WDF subtrees using an R-type adaptor. Rep-
resenting the mathematical relationships in this structure directly
causes a number of delay-free loops in the signal flow graph, which
may be resolved by a variety of methods.

Findings from this thread have enabled WDF simulation of
circuits with complicated non-series/parallel topologies that may
involve absorbed multiport linear elements [11] as well as mul-
tiple non-adaptable linear circuit elements [15] or nonlinear ele-
ments [12] grouped together at the root of a tree structure. These
include audio circuits that were previously out of scope for WDF
modeling: guitar tone stacks, active tone control circuits [11], the
Hammond organ vibrato/chorus [15], circuits using operational
amplifiers (modeled as ideal or using macromodels) [14] or opera-
tional transconductance amplifiers [27], Sallen–Key filters [28,29],
guitar distortion stages [12], transistor [13] and triode [30] ampli-
fiers, the Fender 5F6-A preamp stage [31], the Korg MS-50 Fil-
ter [32], relaxation oscillators [33], and the bass drum circuit from
the Roland TR-808 Rhythm Composer [34].

However, two classes of circuits which may appear to be han-
dled by those techniques on a topological level actually fail for rea-
sons related to the choice of independent and dependent variables
in the constituent equations of the circuits’ nonlinear devices. The
first class of circuits involves nonlinear devices whose constituent
equations are inherently written in a way that is incompatible with
the previous WDF formulation [12]. The second class of circuits
involves forbidden topological combinations of nonlinear devices
with a certain mathematical description and ideal sources. Specif-
ically these are circuits involving:

1. cutsets on the circuit graph composed entirely of nonlinear-
ities with current as the dependent variable and ideal inde-
pendent or controlled current sources; or

2. loops on the circuit graph composed entirely of nonlinear-
ities with voltage as the dependent variable and ideal inde-
pendent or controlled voltage sources.

These restrictions also apply in the context of State Space and Port
Hamiltonian System modeling. In the State Space context, it is
acknowledged that any node with only nonlinearities attached cre-
ates an inconsistent system if they are treated as controlled cur-
rent sources, motivating the development of the Generalized State
Space approach [4]. This is a special case of the restriction that a
circuit may not contain any cutsets composed entirely of devices
with current as the dependent variable. In the Port Hamiltonian
System context, “implicit” formulations which in practice corre-

1Similar to [26], although allowing root topologies other than parallel.
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spond to series combinations of voltage-controlled (controlled cur-
rent) components or parallel combinations of current-controlled
(controlled voltage) components require extensions to the standard
approach [6]. These appear to be two special cases of the cutset
and loop restrictions respectively. It is possible that the broader
topological restrictions may not be widely recognized in audio cir-
cuit modeling since the most common problematic arrangement
of diodes—series combinations of diodes and anti-parallel com-
binations of diodes in series—can be reasonably and intuitively
modeled as a single one-port device in many circumstances [35].

In this paper, we extend a WDF formalism involving grouped
nonlinearities at the root of an SPQR tree [11–13] to accommodate
a wider variety of independent–dependent variable descriptions of
nonlinear elements, enabling simulation of the two problematic
classes of circuits mentioned above. For the first class of circuits,
we exploit the proposed generalization to accommodate whatever
pair of independent–dependent variables is required for each non-
linearity. For the second class of circuits, we explain the mean-
ing of the forbidden topological connections and variable choices
in terms of graph and network theory, give principles for choos-
ing proper independent–dependent variable pairs, and show how
to implement these principles using the proposed generalization.
In this way, the class of problematic circuits which have been ac-
commodated in the State Space and Port Hamiltonian context may
be accommodated in the Wave Digital Filter context as well.

The rest of the paper is structured as follows. §2 outlines the
proposed generalization to the WDF approach. §3 explains the
first problematic class of circuits and how they can be accommo-
dated using the proposed generalization. §4 explains the second
problematic class of circuits and how they can be accommodated
using the proposed generalization. To support a general search for
problematic cutsets and loops, §5 reviews two graph theorems.

2. WDFS WITH GROUPED NONLINEARITIES

In this section we review the method of grouped nonlinearities in
WDFs, simultaneously extending it to handle nonlinearities and
nonadaptable linear circuit elements expressed with a wide variety
of independent and dependent variables.

2.1. Overview

The method of grouped nonlinearities in WDFs is outlined dia-
grammatically in Fig. 1. In this formulation there are five concep-
tual relationships to consider:

• All nonlinearities of the circuit grouped together into a non-
linear multiport element at the root of a tree structure (la-
beled “nonlinearities”). The behavior of the group of non-
linearities is expressed mathematically by yc = f(xc),
where xc is a vector of independent network port variables
and yc is a vector of dependent network port variables.

• A change of variables xc and yc to the vectors of incident
and reflected voltage waves ac and bc (labeled “change
of variables”), the subscript c denoting “converter.”2 This
change of variables is expressed mathematically by the ma-
trix C with partitions C11, C12, C21, and C22.

• A compatibility relationship between ac and bc and “inter-
nal” port wave variables ai and bi, simply enforcing port

2This relates to earlier approaches to interfacing State Space and WDF
systems [36].
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Figure 1: Proposed method signal flow graphs. ae is supplied by

and be delivered to classical WDF subtrees below.

connection criteria between the scattering matrix below and
the multiport nonlinear element yc = f(xc). This is ex-
pressed mathematically by ac = bi and ai = bc.

• Scattering between ai and bi and “external” port wave vari-
ables ae and be. This is expressed mathematically by the
scattering matrix S with partitions S11, S12, S21, and S22.
Because the circuit topology described by this scattering is
usually a complicated R-type topology [25], this is labeled
“R scattering.”

• The rest of the WDF structure which is fed reflected waves
be by the root topology and provides incident waves ae.
The rest of the structure has the form of a standard WDF
“connection tree” [11, 37] and is not shown in the diagram.

These relationships are shown as a vector signal flow graph in
Fig. 1a, where delay-free loops are represented by red dashed ar-
rows. The root is described by the system of equations

yc = f(xc) (1)Nonlinearities
{

xc = C11yc +C12ac (2)
change of variables

{

bc = C21yc +C22ac (3)

ac = bi (4)
compatibility

{

ai = bc (5)

bi = S11ai + S12ae (6)
scattering

{

be = S21ai + S22ae . (7)

Some of the delay-free loops can be resolved using matrix al-
gebra [11], yielding a consolidated version of (1)–(7)

yc = f (xc) (8)

xc = Eae + Fyc (9)

be = Mae +Nyc (10)
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Figure 2: Relaxation oscillator schematic and derivation of Wave Digital Filter structure.

with

E = C12 (I+ S11HC22)S12 , F = C12S11HC21 +C11

M = S21HC22S12 + S22 , N = S21HC21

where I is the identity matrix and H = (I−C22S11)
−1. This

system of equations is shown as a vector signal flow graph in
Fig. 1b; notice that one delay-free loop through F and f(·) still
remains. This delay-free loop can be resolved, e.g., by Newton–
Raphson iteration [13], table lookup / the K method [12, 38], cus-
tom nonlinear solvers [33], or a final matrix inversion in the case
that all nonadaptable elements are linear [15].

2.2. Populating S

To use the method just outlined, matrices S and C must be popu-
lated. S can be found using the techniques of [11], which applies
Modified Nodal Analysis [39] to the R-type topology where in-
stantaneous Thévenin equivalents represent the incident wave at
each port, combining with the WDF wave definition to solve for
S. If the R-type adaptor contains no absorbed non-reciprocal ele-
ments, the method of [40] may be used to solve for S.

2.3. New Considerations for C

In previous work, the nonadaptable root elements were usually
modeled in the Kirchhoff domain by i = f (v).3 This aligns
with standard models for common electrical elements like diodes
(Shockely model), BJT transistors (Ebers–Moll model), and tri-
odes. So, the derivation of the C matrix assumed these Kirchhoff
variables were to be converted to the wave variables ac and bc.

In this work, we generalize that approach so that each entry in
the vector of independent (xc) and dependent (yc) root variables
may be a voltage, current, or wave variable. These may be “mixed
and matched” in two senses. First, it is not required that each non-
linear element have the same independent nor dependent variables.
Second, it is possible to have, e.g., a Kirchhoff variable as an in-
dependent variable and a wave variable as a dependent variable
(provided this still represents a single-valued function). It should
be obvious that the independent and dependent variables at any
port may not be linear combinations of one another.

In general, the relationship between the incident wave an and
reflected wave bn at a port n and two other variables which may

3In [15], they were modeled in the wave domain as b = f (a).

Table 1: t11,n, t12,n, t21,n, t22,n for different dependent and inde-

pendent variables at a port n.

independent variable dependent variable

xn t11,n t12,n yn t21,n t22,n

vn 1/2 1/2 in 1/(2Rn) −1/(2Rn)
in 1/(2Rn) −1/(2Rn) vn 1/2 1/2
an 1 0 bn 0 1

be linear combinations of an and bn is expressed by
[

xn

yn

]

=

[

t11,n t12,n
t21,n t22,n

] [

an

bn

]

. (11)

Solving for xn and bn yields an equation in the form of C
[

xn

bn

]

=

[

c11,n c12,n
c21,n c22,n

] [

yn
an

]

, (12)

where
[

c11,n c12,n
c21,n c22,n

]

=

[

t12,n

t22,n

t11,nt22,n−t12,nt21,n

t22,n
1

t22,n
−

t21,n

t22,n

]

. (13)

The matrix partitions C11, C12, C21, C22 of C are typically
diagonal, with “stamps” along the diagonals determined by the in-
dependent and dependent variables of each nonlinearity. For a root
topology with N nonlinearities they take the form

C11 = diag (c11,1, c11,2, · · · , c11,N ) (14)

C12 = diag (c12,1, c12,2, · · · , c12,N ) (15)

C21 = diag (c21,1, c21,2, · · · , c21,N ) (16)

C22 = diag (c22,1, c22,2, · · · , c22,N ) , (17)

with entries given in terms of xn, yn for each port n by (13).
Values for t11, t12, t21, t22 entries that accommodate voltage,

current, and incident and reflected waves are given in Tab. 1.

2.4. New Considerations for f(·)

The E, M, and N matrix multiplies in Fig. 1b can be computed
with no special considerations. However, the F matrix multiply
and evaluation of the f (·) vector nonlinear function evaluation
form a delay-free loop, or implicit relationship. These can be com-
bined into a zero-finding function

xc = Eae+Ff (xc) → h (xc) = Eae+Ff (xc)−xc . (18)
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Figure 3: Series clipper schematic and derivation of Wave Digital Filter structure.

Table 2: Determinant of (I−C22S11) for different variable choices for series clipper (Fig. 3). Γ = R1 +R2 +R3.

v2 → i2 v2 → b2 i2 → v2 i2 → b2 a2 → v2 a2 → i2 a2 → b2

v1 → i1 0 2R1/Γ 4R1/Γ 2R1/Γ 4R1/Γ 0 2R1/Γ

v1 → b1 2R2/Γ 1 2(R1 + R3)/Γ 1 2(R1 + R3)/Γ 2R2/Γ 1

i1 → v1 4R2/Γ 2(R2 + R3)/Γ 4R3/Γ 2(R2 + R3)/Γ 4R3/Γ 4R2/Γ 2(R2 + R3)/Γ

i1 → b1 2R2/Γ 1 2(R1 + R3)/Γ 1 2(R1 + R3)/Γ 2R2/Γ 1

a1 → v1 4R2/Γ 2(R2 + R3)/Γ 4R3/Γ 2(R2 + R3)/Γ 4R3/Γ 4R2/Γ 2(R2 + R3)/Γ

a1 → i1 0 2R1/Γ 4R1/Γ 2R1/Γ 4R1/Γ 0 2R1/Γ

a1 → b1 2R2/Γ 1 2(R1 + R3)/Γ 1 2(R1 + R3)/Γ 2R2/Γ 1

port 2 variables: x2 −→ y2

po
rt
1

va
ri

ab
le

s:
x
1
−
→

y
1

h (xc) = 0 is solved (i.e., finding a suitable xc) using Newton–
Raphson iteration [13] by first providing an initial guess x(0)

c and
iterating according to

x
(k+1)
c = x

(k)
c − J

(

x
(k)
c

)

−1

f
(

x
(k)
c

)

(19)

where index k is the iteration count and J(·) is the Jacobian opera-
tor. A typical initial guess at time step n is x(0)

c (n) = xc(n− 1);
an alternative is given in [13].

Given a set of incident waves ae on the root, (18) can be solved
using Newton–Raphson iteration [13] to yield xc. yc = f (xc) is
evaluated to find yc, and yc and ae are finally used to find be.

In the new generalized framework, elements of the vectors
of independent root variables xc and dependent root variables yc

may be voltages, currents, or any linear combination. Earlier we
discussed the implications of that for forming C. Of course, this
also affects the definition of f (·).

3. FIRST CLASS OF PROBLEMATIC CIRCUITS

The first class of circuits that require the generalization presented
in this paper are those circuits whose constituent equations are
written in a way that cannot be rewritten in the form ic = f (vc).
These include, e.g., clipping operational amplifier models, clip-
ping operational transconductance amplifier models, analog mul-
tipliers, logic gate models, and one-ports with non-functional v–i
curves, e.g. “s-type” nonlinear one-ports [41].

3.1. Example of First Class

As an example, we consider the family of clipping operational am-
plifiers (op amp) models. Op amps are two-port devices character-

ized by four network variables: vin, iin, vout, and iout. In some
circuits, op amps may exhibit non-ideal voltage clipping behav-
ior, which may be modeled with a tanh (·)-based function [4]. In
some circuits op amps are configured to act as voltage compara-
tors, which may be modeled with a sgn (·)-based function. As
nonlinear two-ports, op amps are modeled by

vout

iin









yc

=
f1(iout, vin)

f2(iout, vin)













= f

(

iout

vin









xc

)

. (20)

Typically we have f2(iout, vin) = 0, but f1(iout, vin) can take a
number of forms, e.g.

clipper: vout = Vmaxtanh (Avin) (21)

comparator: vout = Vmaxsgn (vin) , (22)

where A is the op amp’s gain in the clipper model (100000 is typ-
ical) and Vmax is the op amp saturation voltage in each model.

An example taken from [33] of an audio circuit using an op
amp configured as a comparator is a relaxation oscillator, shown
in Fig. 2a. This circuit is rearranged as shown in Fig. 2b, yielding
the WDF structure in Fig. 2d. The two ports of the nonlinearity are
labeled “in” and “out.” The input variables xc and output variables
yc are defined as in (20). To accommodate this set of independent
and dependent variables which are necessary for the op amp mod-
els just discussed we derive

t11,out =
1

2Rout
, t12,out =

−1

2Rout
, t21,out =

1

2
, t22,out =

1

2

t11,in =
1

2
, t12,in =

1

2
, t21,in =

1

2Rin
, t22,in =

−1

2Rin
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Figure 4: Parallel clipper schematic and Derivation of Wave Digital Filter structure.

Table 3: Determinant of (I−C22S11) for different variable choices for parallel clipper (Fig. 4). ∆ = G1 +G2 +G3 and Gx = 1/Rx.

v2 → i2 v2 → b2 i2 → v2 i2 → b2 a2 → v2 a2 → i2 a2 → b2

v1 → i1 4G3/∆ 2(G2 + G3)/∆ 4G2/∆ 2(G2 + G3)/∆ 4G2/∆ 4G3/∆ 2(G2 + G3)/∆

v1 → b1 2(G1 + G3)/∆ 1 2G2/∆ 1 2G2/∆ 2(G1 + G3)/∆ 1

i1 → v1 4G1/∆ 2G1/∆ 0 2G1/∆ 0 4G1/∆ 2G1/∆

i1 → b1 2(G1 + G3)/∆ 1 2G2/∆ 1 2G2/∆ 2(G1 + G3)/∆ 1

a1 → v1 4G1/∆ 2G1/∆ 0 2G1/∆ 0 4G1/∆ 2G1/∆

a1 → i1 4G3/∆ 2(G2 + G3)/∆ 4G2/∆ 2(G2 + G3)/∆ 4G2/∆ 4G3/∆ 2(G2 + G3)/∆

a1 → b1 2(G1 + G3)/∆ 1 2G2/∆ 1 2G2/∆ 2(G1 + G3)/∆ 1

port 2 variables: x2 −→ y2

po
rt
1

va
ri

ab
le

s:
x
1
−
→

y
1

using the stamps from Tab. 1 and procedure from §2.3. Using (13)
this yields the appropriate C matrix

C =

[

C11 C12

C21 C22

]

=







−Rin 0 1 0
0 −1/Rout 0 1/Rout

−2Rin 0 1 0
0 2 0 −1






.

This choice of C in the proposed general framework enables the
simulation of the relaxation oscillator.4

4. SECOND CLASS OF PROBLEMATIC CIRCUITS

A second class of circuits that require the generalization presented
in this paper are circuits that include cutsets composed entirely
of nonlinearities (and current sources). In circuit theory, it is for-
bidden to have any cutset in a circuit graph composed entirely of
current sources [41]. The presence of a cutset of current sources in
a circuit creates the potential for a violation of Kirchhoff’s current
law: the sum of currents entering a node must equal the sum of
currents leaving that node. A dual restriction is that no loop in a
circuit graph may be composed entirely of voltage sources [41].
The presence of a loop of all voltage sources creates the poten-
tial for a violation of Kirchhoff’s voltage law: the sum of voltages
around any loop in the circuit must equal zero. This is a circuit
theoretic argument but it is also expressed in the mathematics of
the root topology. In the case of violating either the loop or the cut-
set criteria, it appears that in the WDF context the consequence is
that the matrix (I−C22S11) which needs to be inverted is made
singular. Examples will be given in the next section.

4Anti-aliasing and multi-rate methods can be used to improve the sim-
ulation of the relaxation oscillator; these are described in Olsen et al. [33].

To fix this class of circuit, start with the standard choice of
independent and dependent network variables for each nonlinear-
ity. Identify each loop and cutset in the circuit by hand or using
the graph theorems discussed in §5. If any problematic cutsets or
loops exist, choose new dependent variables for some of the non-
linearities that make up that cutset or loop to avoid the issue.

4.1. Examples of Second Class

To discuss these issues, we consider three circuits: the “series
diode clipper” shown in Fig. 3a, the “parallel diode clipper” shown
in Fig. 4a, and the “series–parallel diode clipper” shown in Fig. 5.

Consider the series diode clipper and its WDF structure deriva-
tion shown in Fig. 3. Notice that inside the root topology S1 in
Fig. 3b, we have a node with only diodes connected to it. If the
diodes were written in the form i = f(v), a current-source-only
cutset is created. A remedy for this circuit would be to write either
or both of the diodes in the form v = f(i), or more broadly in
any form that does not have current as the dependent variable. In
Tab. 2, the determinant of matrix (I−C22S11) is shown for the
49 different possible choices of xn and yn at port 1 (diode D1)
and port 2 (diode D2). Notice that for the combinations that are
forbidden according to circuit theory (both diodes with current as
the dependent variable), the matrix which needs to be inverted be-
comes singular (its determinant is 0)—hence the circuit cannot be
simulated using those variables.

It is not always a valid solution to choose voltage as the de-
pendent variable. Consider the parallel diode clipper and its WDF
structure derivation shown in Fig. 4. Notice that inside the root
topology R1 in Fig. 4b there is a loop composed only of diodes.
If the diodes were both written in the form v = f(i), a voltage-
source-only loop is created, (I−C22S11) becomes singular, and
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C2
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vout
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D1

D2
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Figure 5: Series–parallel clipper schematic.

the circuit cannot be simulated. For this circuit, it suffices that one
or both diodes is written in the form i = f(v), or more broadly in
any form that does not have voltage as the dependent variable. In
Tab. 3, the determinant of matrix (I−C22S11) is shown for the
49 different possible choices of xn and yn at port 1 (diode D1)
and port 2 (diode D2). Notice that for the combinations that are
forbidden according to circuit theory (both diodes with voltage as
the dependent variable), the matrix which needs to be inverted be-
comes singular (its determinant is 0)—hence the circuit cannot be
simulated using those variables.

Sometimes it is necessary to choose different variables for
each nonlinearity. For example, consider the series–parallel diode
clipper shown in Fig. 5. Writing all three diodes in the form
i = f(v) creates a current-source-only cutset but writing all three
diodes in the form v = f(i) creates a voltage-source-only loop:
both forbidden cases causing a singular matrix. Here the solution
is that at least one diode is written with current as the dependent
variable to avoid the loop, and that at least one of D2, D3 is written
with voltage as the dependent variable to avoid the cutset.

5. ENUMERATING LOOPS AND CUTSETS ON GRAPHS

In the previous section we discussed circuits whose cutsets and
loops were easily identifiable at a glance. Unfortunately in gen-
eral circuits may be very complex and involve too many loops and
cutsets to enumerate at a glance. To handle problematic circuits
in general it is necessary to examine all loops and cutsets in the
circuit graph and choose the dependent variables of the nonlinear-
ities to avoid current-source-only cutsets and voltage-source-only
loops. Here we review dual graph theorems for enumerating loops
and cutsets in a graph (an alternative to identifying them by vi-
sual inspection as in the previous section) and demonstrate their
application to two circuits discussed in §4.

5.1. Find All Loops in a Circuit

Here we review a theorem for enumerating the set of all loops in
an electrical circuit and give example applications of the theorem
for the parallel diode clipper.

The theorem is stated as follows [42, p. 50]:

1. Let the circuit be represented by a nonoriented, connected
graph G with v vertices and e edges, where each vertex rep-
resents a node in the circuit and each edge represents a one-
port electrical element in the circuit.

2. Choose a tree T on G. Form a set of fundamental loops with
respect to T by reinstating each edge of the cotree T ′ one at
a time to create fundamental loops each involving one edge
and a tree path formed by some or all of the branches of T .
The fundamental loops are represented mathematically by
a matrix Bf where each of the e−v+1 fundamental loops
is a row, and the e edges of G are the columns.

+
−

R1
C1

C2

−

+

vout

vin

D1

D2

(a)

Electr. Edge

vin + R1 e1
C1 e2
C2 e3
D1 e4
D2 e5

(b)

va

vb

vc

e1

e2

e3 e4 e5

(c)

Figure 6: Parallel clipper (a) Schematic, (b) Mapping from circuit

elements to graph edges, and (c) Graph.

3. Form an intermediate matrix B1 by adding to Bf all the
possible ring sums among the rows of Bf . The ring sum of
two sets S1 and S2 is the set S1 ⊕ S2 that has edges in S1

or S2 but not both [42, p. 14].

4. Eliminate redundant rows in B1, i.e. rows that appear more
than once, to form Ba, the loop matrix encoding all valid
loops on G. Redundant rows represent edge-disjoint unions
of loops [42, p. 44].

Now, an example on the parallel diode clipper will illustrate
the application of this theorem.

5.1.1. Parallel Diode Clipper Loops

Consider the parallel diode clipper whose schematic is shown in
Fig. 6a. Using the mapping between electrical component and
graph edges shown in Fig. 6b, a graph G of the parallel clipper
is formed in Fig. 6c. G has 3 nodes {va, vb, vc} and 5 edges
{e1, e2, e3, e4, e5}, i.e., v = 3 and e = 5.

To enumerate all loops on G we choose a tree T = {e2, e3}
and corresponding co-tree T ′ : {e1, e4, e5}. Combining each edge
c ∈ T ′ with other edges chosen from T yields e − v + 1 = 3
fundamental loops {ce1 , ce4 , ce5} encoded in a matrix Bf

va

vb

vc

e1

e2

e3 e4 e5ce1 ce4 ce5 Bf =
1 1 1 0 0
0 0 1 1 0
0 0 1 0 1

















ce1
ce4
ce5

e1 e2 e3 e4 e5

c1
c2
c3

.

We take all possible ring sums among the rows of Bf to find the
intermediate matrix

B1 =

1 1 1 0 0
0 0 1 1 0
0 0 1 0 1
1 1 0 1 0
1 1 0 0 1
0 0 0 1 1
1 1 1 1 1

















































ce1
ce4
ce5

ce1 ⊕ ce4
ce1 ⊕ ce5
ce4 ⊕ ce5

ce1 ⊕ ce4 ⊕ ce5

e1 e2 e3 e4 e5

c1
c2
c3
c4
c5
c6

redundant

.

The last ring sum represents an invalid loop, so it is discarded in
forming Ba. The final loop matrix Ba and graphical representa-
tion of the six loops {c1, c2, c3, c4, c5, c6} is given by
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Figure 7: Series clipper (a) Schematic, (b) Mapping from circuit

elements to graph edges, and (c) Graph.
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e1

e2

e3 e4 e5c1 c2 c3

va

vb

vc

e1

e2

e3 e4 e5c6c4

c5
Ba =

1 1 1 0 0
0 0 1 1 0
0 0 1 0 1
1 1 0 1 0
1 1 0 0 1
0 0 0 1 1









































c1
c2
c3
c4
c5
c6

e1 e2 e3 e4 e5

.

The last loop c6 = {e4, e5} would be composed entirely of voltage
sources if diodes D1 and D2 (edges e4 and e5) are both modeled
in the form v = f(i), as we saw earlier in §4.

5.2. Find All Cutsets in a Circuit

Here we review a theorem for enumerating the set of all cutsets in
an electrical circuit and give an example application of the theorem
to a circuit discussed in §4: the series diode clipper.

The theorem is stated as follows [42, p. 58]:

1. Let the circuit be represented by a nonoriented, connected
graph G with v vertices and e edges.

2. Choose a tree T on G. Form a set of fundamental cutsets
with respect to T by removing each edge of the cotree T ′

one at a time to create fundamental cutsets each involving
one tree edge and some or all of the edges of T ′. The funda-
mental cutsets are represented mathematically by a matrix
Qf where each of the v − 1 fundamental cutsets is a row,
and the e edges of G are the columns.

3. Form an intermediate matrix Q1 by adding to Qf all of the
possible ring sums among the rows of Qf .

4. Eliminate redundant rows in Q1 to form Qa, the cutset ma-

trix encoding all valid cutsets on G.

Now, an examples on the series diode clipper will illustrate the
application of this theorem.

5.2.1. Series Diode Clipper Cutsets

Consider the series diode clipper whose schematic is shown in
Fig. 7a. Using the mapping between electrical component and
graph edges shown in Fig. 7b, a graph G of the parallel clipper
is formed in Fig. 7c. G has 4 nodes {va, vb, vc, vd} and 5 edges
{e1, e2, e3, e4, e5}, i.e., v = 4 and e = 5.

To enumerate all cutsets on G we choose a tree T = {e2, e3, e4}
and corresponding cotree T ′ = {e1, e5}. Removing each edge
k ∈ T with other edges chosen from T ′ yields v − 1 = 3 funda-
mental cutsets {ke2 , ke3 , ke4} encoded in a matrix Qf

va

vb

vc

vd

e1

e2 e4

e5

e3

ke2

ke3

ke4

Qf =
1 1 0 0 0
1 0 1 0 1
0 0 0 1 1

















ke2
ke3
ke4

e1 e2 e3 e4 e5

k1
k2
k3

.

We take all possible ring sums among the rows of Qf to find the
intermediate matrix Q1

Q1 =

1 1 0 0 0
1 0 1 0 1
0 0 0 1 1
0 1 1 0 1
1 1 0 1 1
1 0 1 1 0
0 1 1 1 0

















































ke2
ke3
ke4

ke2 ⊕ ke3
ke2 ⊕ ke4
ke3 ⊕ ke4

ke2 ⊕ ke3 ⊕ ke4

e1 e2 e3 e4 e5

k1
k2
k3
k4
k5
k6
k7

There are no redundancies in Q1, so the final cutset matrix Qa

and seven cutsets {k1, k2, k3, k4, k5, k6, k7} are given by

va

vb

vc

vd

e1

e2 e4

e5

e3

k1

k2

k3

k7

va

vb

vc

vd

e1

e2 e4

e5

e3

k4

k6

k5

Qa =

1 1 0 0 0
1 0 1 0 1
0 0 0 1 1
0 1 1 0 1
1 1 0 1 1
1 0 1 1 0
0 1 1 1 0

















































k1
k2
k3
k4
k5
k6
k7

e1 e2 e3 e4 e5

.

The third cutset k3 = {e4, e5} would be composed entirely of
current sources if diodes D1, D2 (edges e4, e5) are both modeled
in the form i = f(v), i.e., the standard Shockley ideal diode law.

6. CONCLUSION

This paper extended the class of circuits that can be modeled us-
ing Wave Digital Filters with grouped nonlinearities at the root
of a tree [11–15] by generalizing independent/dependent variable
choice for nonlinearities. This accommodates nonlinear devices
(e.g. clipping op amps) which require flexibility in variable choice
as well as circuits with loops composed entirely of nonlinearities
(and ideal voltage sources) or cutsets composed entirely of nonlin-
earities (and ideal current sources).

When possible, choosing reflected waves as the dependent vari-
able for nonlinearities will avoid problematic loops and cutsets. A
circuit theory interpretation of this is that voltage waves “look like”
resistive voltage sources (Thévenin source) or equivalently resis-

tive current sources (Norton sources) [11]. A Thévenin source will
never contribute to a voltage-source-only loop since any loop in-
volving the source will also involve its resistance, and a Norton
source will never contribute to a current-source-only cutset since
any cutset involving it will also involve its resistance.

Future work should explore the potential for root variable choice
to have computational benefits. If there are any computational or
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other benefits of flexibility in dependent variable choice for nonlin-
earities, the insights of this paper could be used in the other WDF
formulations [18–23] which currently use wave variables only but
also currently should not produce problematic cutsets or loops.
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