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Abstract: 18 

Recent work has vastly expanded the known viral genomic sequence space, but the seasonal 19 

dynamics of viral populations at the genome level remain unexplored. Here we followed the 20 

viral community in a freshwater lake for one year using genome-resolved viral 21 

metagenomics, combined with detailed analyses of the viral community structure, associated 22 

bacterial populations, and environmental variables. We reconstructed 8,950 complete and 23 

partial viral genomes, the majority of which were not persistent in the lake throughout the 24 

year, but instead continuously succeeded each other. Temporal analysis of 732 viral genus-25 
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level clusters demonstrated that one fifth were undetectable at specific periods of the year. 26 

Based on host predictions for a subset of reconstructed viral genomes, we for the first time 27 

reveal three distinct patterns of host-pathogen dynamics, where the viruses may peak before, 28 

during, or after the peak in their host’s abundance, providing new possibilities for modelling 29 

of their interactions. Time-series metagenomics opens up a new dimension in viral profiling, 30 

which is essential to understand the full scale of viral diversity and evolution, and the 31 

ecological roles of these important players in the global ecosystem. 32 

Main text: 33 

One of the major challenges in studies of viral dynamics is the absence of a phylogenetically 34 

informative universal marker, analogous to the bacterial 16S or eukaryotic 18S rRNA genes. 35 

To analyse temporal changes of some viral subgroups (e.g. marine T4-like myoviruses or 36 

freshwater cyanomyoviruses), recent studies have used sequencing of amplicons of viral 37 

conserved structural proteins, such as capsid proteins g23 or g20 (Chow & Fuhrman, 2012; 38 

Yeo & Gin, 2015; Wang et al, 2015). However, this approach does not allow assessment of 39 

the dynamics of the whole community. A shotgun metagenomics approach does not share 40 

this limitation and provides a means to study seasonal changes without any a priori 41 

assumptions about the structure of a viral community. Using shotgun metagenomics, some 42 

attempts have been made to study viral dynamics, for example by tracking the temporal 43 

changes of 35 individual de novo assembled viral genomes (Emerson et al, 2012), or by 44 

binning sequencing reads into assemblages (possibly at a viral family level (Bolduc et al, 45 

2015)) to study their temporal stability and/or fluctuations (Bolduc et al, 2015; Emerson et al, 46 

2013). Although these studies have provided much-needed insight into possible scenarios of 47 

viral dynamics, there is still no global picture available of seasonal changes of viral 48 

populations and their links to other factors in an ecosystem. 49 
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Due to the mosaic nature of viral genome organisation, assessment of viral genetic similarity 50 

is a non-trivial task. To tackle this problem, Lima-Mendez et al. in 2008 proposed a method 51 

of reticulate classification of phage genetic relatedness (Lima-Mendez et al, 2008). The 52 

method provides means to subdivide the whole sequence space of viral metagenomics data 53 

into groups approximately corresponding to genus level of taxonomical classification. Since 54 

that time the approach has been successfully used in several studies to gain deeper insight 55 

into phage biology and to connect newly assembled genomes with already known sequences 56 

(Roux et al, 2016; Roux et al, 2015). At the same time, it is well known that sequence 57 

relatedness within characterised viral genera can vary substantially (King et al, 2011), but in 58 

natural environments the genetic variation of newly assembled viral genomes within ‘genera’ 59 

resulting from reticulate clustering has not yet been analysed. 60 

Along with the gaps in knowledge of global viral sequence diversity, there is a lack of 61 

information about the possible variants of bacteria-phage dynamic interactions. To date, a 62 

range of models describing behaviour of some host-pathogen relationships have been 63 

developed. First and foremost, the Kill-the-Winner model (Thingstad, 2000), which assesses 64 

populations’ changes within the framework of the classic Lotka-Volterra model. Recently, 65 

Knowles et al. have noticed discrepancies between the predictions of the model and the 66 

experimentally measured virus and host abundances in natural environments (Knowles et al, 67 

2016), which poses a question about the possible existence of other dynamics of host-68 

pathogen interactions in natural microbial communities. 69 

Here we present a detailed exploration of the structure, seasonal dynamics and functional 70 

potential of the viral community in a temperate freshwater eutrophic lake (Lough Neagh, 71 

Northern Ireland). Our novel data includes 12 viral shotgun metagenomes and 13 bacterial 72 

16S rRNA-amplicon datasets collected over a period of one year (Supplementary Table 1, 73 

Sheet 1). This unique collection of data allowed us to explore the range of interaction 74 
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dynamics of viruses and their hosts in a natural ecosystem. We also investigate the possibility 75 

of functional manipulations of bacteria by phages by analysing auxiliary metabolic genes, 76 

revealing that their functions are clearly different in winter compared to summer. 77 

Material and Methods 78 

Data availability 79 

Raw reads from the Illumina sequencing and sequences of bacterial 16S rRNA gene 80 

amplicons are available for download from the Short Reads Archive (BioProject 81 

PRJNA350258 and PRJNA292054). Annotated viral reads and assembled sequences are also 82 

available on MetaVir and MG-RAST databases (for accession numbers see Supplementary 83 

Table 1, Sheet 1). 84 

Sample collection, processing and sequencing 85 

Lough Neagh is a large eutrophic polymictic shallow freshwater lake located in Northern 86 

Ireland (UK). Water samples were collected from the deepest site in the lake (54°37′06″N, 87 

6°23′43″W) at 12 time points over the period of a year (Supplementary Table 1, Sheet 1) as 88 

described previously (Skvortsov et al, 2016). Some environmental parameters, such as 89 

temperature and pH at 5 m depth were recorded at the collection site and several extra water 90 

samples were taken for chemical analysis (Supplementary Table 5, Sheet 2). Sample 91 

processing steps, DNA extraction, library preparation and sequencing procedures have been 92 

described in detail previously (Skvortsov et al, 2016). Briefly, water samples were filtered 93 

through 0.22 µm filters to obtain a ‘virus-like particle’ (VLP) water fraction, which was 94 

concentrated using 100 kDa filters and treated with DNAse I. Extracted and purified DNA 95 

was used for library preparation with Nextera DNA Sample Preparation kit (Illumina, USA) 96 

and sequenced from both ends with the 600-cycle MiSeq Reagent Kit v3 on MiSeq (Illumina, 97 

USA) at the University of Cambridge DNA Sequencing facility. 98 
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Total DNA (particle sizes more than 0.22 µm) was extracted from 500 ml of water using a 99 

PowerWater DNA Isolation kit (MO BIO, USA). Partial bacterial 16S rRNA gene sequences 100 

were amplified with 909-F/1492-R primers and sequenced on a 454 GS Junior (Roche, USA) 101 

with Lib-L Shotgun chemistry. 102 

Sequencing library processing, assembly and annotation 103 

The Illumina reads were processed with BBMap v 33.54 104 

(http://sourceforge.net/projects/bbmap/) software, and all reads with an average Q-score < 15 105 

or containing Ns were discarded. We applied a two-step assembly strategy. First all 12 106 

libraries were assembled separately using the graph-based assembler IDBA-UD (Peng et al, 107 

2012) (kmer range 20-250, step - 10). Next, all the libraries were combined and assembled 108 

collectively (kmer range 20-1500, step - 10). This allowed us to use all available reads in the 109 

assembly to reconstruct even low-abundance viral genomes as well as to maximise assembly 110 

effectiveness for genomes appearing only in individual libraries. After that, an additional 111 

attempt to elongate the contigs obtained in the two previous steps was made using an overlap-112 

layout-consensus assembler with very strict parameters (CAP3 (Huang & Madan, 1999), 113 

overlap > 2,000bp, percentage of nucleotide identity - 99%). This step also reduced 114 

drastically the number of duplicated sequences. To completely remove duplicates and leave 115 

only the longest assembled contigs, we used the cd-hit (Li & Godzik, 2006) program (-c 0.98 116 

-n 11 -d 0). For subsequent analyses only sequences longer than 7,000bp were retained. To 117 

estimate what part of the viral population this set of contigs represented, reads from all 12 118 

libraries were mapped onto contigs using BBMap (70% of nucleotide identity). 119 

Open reading frames in the assembled contigs were predicted with MetaGeneAnnotator 120 

(Noguchi et al, 2008). For functional annotation, the contigs assembled separately from 12 121 

libraries were uploaded to the MG-RAST (Meyer et al, 2008) and MetaVir (Roux et al, 2014) 122 

servers (please see Supplementary Table 1, Sheet 1 for the accession numbers). The resulting 123 
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functional annotations with SEED Subsystems were downloaded from MG-RAST, 124 

percentages of all categories were calculated for each individually annotated library and were 125 

used in correlation analysis. 126 

Raw reads obtained from the sequencing of 16S rRNA gene amplicons were processed using 127 

the QIIME pipeline v 1.8.0 (Caporaso et al, 2010) with the settings described previously 128 

(Skvortsov et al, 2016). All sequences assigned to the non-bacterial “Unclassified” category 129 

and having similarity to the rRNA genes of chloroplasts were excluded from the subsequent 130 

analysis. 131 

Identification of complete genomes 132 

To detect end overlaps in the assembled contigs, the first 2,000bp of each contig were aligned 133 

against the whole contig’s sequence. A contig was considered complete if a repeat of at least 134 

150bp at its end was detected. 135 

Analysis of contig dynamics 136 

To assess the dynamics of individual viral genomes, the sequencing reads from each library 137 

were mapped onto sequences from the representative dataset using BBMap (percentage of 138 

nucleotide identity – 99, randomly selected best mapping site). The obtained number of reads 139 

mapped on a contig was normalised to the contig length and was additionally divided by the 140 

number of reads in a given library and multiplied by the mean value of the number of reads in 141 

12 libraries. The resulting values were used as proxies of the relative abundances of viral 142 

genomes. To reduce the amount of information on the abundance of 8,950 contigs, peaks of 143 

abundance were determined. Relative abundances which were higher than the mean value of 144 

abundance for a particular genome were considered as belonging to a peak of abundance. A 145 

small fraction of the assembled contigs had two peaks of abundance - at the start of the period 146 

studied and at its end; these were considered as a single peak of abundance spanning the 147 
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winter-early spring period. To visualise the seasonal succession of viral genomes, peaks of 148 

abundance were sorted and plotted using R (http://www.R-project.org/). 149 

Analysis of the detectability of protein-based clusters in the environment by a metagenomics 150 

method 151 

To assess the number of reads in each sequencing library which could potentially belong to 152 

the assembled contigs, all reads from each library were mapped onto contigs with 95% 153 

nucleotide identity. A contig was considered undetectable in a given library if no reads 154 

mapped onto it (coverage = 0.0). We then analysed the protein-based clusters (see below), 155 

and considered a P-VC to be undetectable in a given library if all contigs comprising it were 156 

undetectable in this library. 157 

Clustering 158 

For the clustering of viral contigs, a method developed by Lima-Mendez (Lima-Mendez et al, 159 

2008) et al. was implemented. Briefly, the predicted protein sequences of contigs were 160 

aligned against themselves (‘all-to-all’ protein blast search, threshold of 50 on bitscore) and 161 

protein families were determined with the application of Markov cluster algorithm software 162 

(MCL (Enright et al, 2002), inflation factor 1.2). Next, the pairwise comparison of shared 163 

gene content between contigs was made using a hypergeometric formula, and significance 164 

was calculated with correction for multiple comparisons (threshold of 0 on significance). 165 

After that, the next round of clustering (MCL, inflation factor 1.1) generated groups of 166 

related genomes. The inflation factor controls granularity of final clusters and as we analysed 167 

community structure on two levels of similarity, for protein-based clusters (highest level of 168 

organisation) we adjusted this parameter to maximise sizes of clusters. To obtain the clusters 169 

of contigs sharing nucleotide homology, this method was adjusted and the protein blast 170 

search was replaced by a nucleotide one. Thresholds were also adjusted and more strict 171 

criteria were applied (a threshold value of 5 for significance and an inflation factor of 2 were 172 



8 
 

used for the second round of clustering). We then combined the results of these two 173 

clustering procedures in a single structure. 174 

The third clustering was performed with the combined seeded sequences of isolated viruses 175 

(viral RefSeq, version 9/06/16), contigs assembled from the publicly available metagenomes 176 

and contigs assembled in this study with settings as for the first protein clustering. The 177 

clusters obtained, which included both types of contigs - long contigs of the Lough Neagh 178 

representative dataset, and seeded sequences - were transformed in pairs of long contigs and 179 

similar seeded genomes and assigned to the structure of the viral community generated in 180 

previous clustering procedures. 181 

Assembly of publicly available freshwater metagenomes 182 

Nine freshwater metagenomes were downloaded (Supplementary Table 1, Sheet 2). 183 

Metagenomes were assembled using IDBA-UD (kmer range 20-200, step - 10). Sequences 184 

longer than 10kb were combined and seeded to clustering. 185 

Host-bacteriophage pairs prediction. 186 

The software metaCRT (Rho et al, 2012) was used to predict CRISPR arrays in bacterial 187 

genomes (bacterial NCBI RefSeq, version of 22/08/2016). The sequences of spacers were 188 

collected, aligned against the set of long contigs, and only complete matches of the full length 189 

of spacers to contigs were allowed for the host prediction. Manual curation of predicted hosts 190 

was performed and links which included bacteria present among Lough Neagh OTU were left 191 

(Supplementary Table 3, Sheet 4). 192 

Auxiliary metabolic gene identification 193 

AMGs were considered to be genes that co-localised with ORFs of known viral origin on the 194 

same contig. To that end, contigs from all 12 libraries whose ontological annotation 195 

(Subsystems (Overbeek et al, 2005)) comprised the words “phage”, “terminase” or “capsid” 196 

were selected. Next, all functional annotations assigned to contigs selected in the previous 197 
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step were summarised. The category “Phages, Prophages, Transposable elements, Plasmids” 198 

was removed from the final list of AMGs as it contains structural viral proteins and common 199 

viral enzymes (Supplementary Table 4, Sheet 1). 200 

To assess changes of gene content of reconstructed viral genomes in the environment 201 

throughout the year, we evaluated and weighted the presence of functional categories of the 202 

highest annotation level of SEED Subsystems for these genomes at each sample collection 203 

time point. In order to do this, viral contigs were uploaded to MG-RAST server 204 

(Supplementary Table 1, Sheet 1) for annotation, and annotations of the highest level were 205 

collected for each contig. In each of the sample collection points, each functional annotation 206 

was assigned a weight equal to the relative abundance of the contig that annotated feature 207 

belonged to. Weights of all annotations of each particular functional category were summed, 208 

normalised to the sum of all weights, and clustered with dist/hclust functions of R (Euclidean 209 

distance, Ward clustering method. 210 

Experimental verification of contigs 211 

Experimental validation of the existence of DNA sequences of six contigs was performed 212 

using PCR amplification of specific genome regions and subsequent partial resequencing of 213 

amplicons from forward and reverse primers. The primers were designed with Primer-214 

BLAST (Ye et al, 2012) online software (Supplementary Table 5, Sheet 3 and Supplementary 215 

Figure 1). For PCR amplification the same viral DNA samples were used as for the library 216 

preparation for Illumina sequencing. The 25 µl of PCR mixture included 1 U of DreamTaq 217 

DNA polymerase and its buffer (1x) (Thermo Fisher Scientific, Waltham, MA, USA), 0.2 218 

mmol of each dNTP, 0.3 µmol of each primer and 8-10 ng of DNA template. PCR cycling 219 

conditions were as follows: 1) initial denaturation at 95 oC for 4 min, 2) denaturation at 95 oC 220 

for 30 s, 3) annealing at 60 oC for 30 s, 3) elongation at 72 oC for 7 min, 4) repeat steps 2-4 221 

forty-five times, 5) final extension at 72 oC for 4 min. The full volumes of PCR products 222 
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were loaded on 0.8% agarose gel. The lengths of amplicons were determined using the 223 

GeneRuler 1 kbp DNA ladder (Thermo Scientific) and products of required size were excised 224 

from the gel under UV light. DNA amplicons from agarose gels were extracted with High 225 

Pure PCR Product Purification kit (Roche Diagnostics, Rotkreuz, Switzerland) and 226 

sequenced at the University of Dundee DNA Sequencing and Services Facility.  227 

Visual data exploration 228 

To visualise pairwise genomic homology and similarity we used Easyfig v.2.2.2 (Sullivan et 229 

al, 2011).  230 

The software package Gephi (Bastian et al, 2009) was used to visualise the results of the viral 231 

population clustering. To this end, the list of graphs (filtered pairwise comparisons of contigs 232 

with an estimation of their gene shared content) produced during DNA-based clustering was 233 

filtered in accordance to generated DNA-VCs (during this step all weak connections between 234 

contigs were removed). To the list obtained, graphs of protein clusters without DNA-VCs 235 

within them were added. These graphs were obtained from the protein-based clustering 236 

experiment. After that, a single random contig from each DNA-VCs within a given P-VCs 237 

was additionally connected to an artificial node as well as to all contigs unclustered into 238 

DNA-VCs within the same P-VC. All unique contigs, which remained fully unclustered, 239 

were transformed into a form of self-connected graphs and added to the final list of graphs 240 

which was loaded to Gephi. To generate the picture, the ForceAtlas2 algorithm was used. 241 

Statistical analysis 242 

Wilcoxon-Mann-Whitney test was used to compare highest abundances of two groups of 243 

contigs: with narrow form of peaks of abundances and with wide peaks (U = 8269784.5, p < 244 

0.01). Spearman's rank correlation test was used to assess the strength and direction of 245 

correlations, with a value of rho > 0.5or rho < -0.5 considered as meaningful. Statistical 246 
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analysis was performed in R version 3.2.2 (http://www.Rproject.org/) and using Scipy (van 247 

der Walt et al, 2011) packages for Python.  248 

Results and Discussion. 249 

Succession of viral genotypes in Lough Neagh. 250 

To generate a representative dataset of viral genomic contigs that contains sequences of less 251 

abundant viruses and viruses with pronounced seasonality, we applied a hybrid assembly 252 

approach combining both assembly of individual metagenomic libraries and cross-assembly 253 

(see Methods). The final dataset comprised 8,950 long contigs (≥ 7kb), which accounted for 254 

59.2% of all reads. Among these contigs, 313 were considered to be complete genomes as 255 

they had end overlaps (Supplementary Table 3, Sheet 2). The integrity of several assembled 256 

contigs was verified experimentally using PCR amplification and partial resequencing by 257 

Sanger’s method (Supplementary Figure 1). These contigs were chosen mostly at random, 258 

but included one complete small 7,148bp genome of a putative temperate phage (based on the 259 

similarity of one its ORF with integrases), whose circular form was verified using PCR. 260 

Another one was a contig encompassing a CRISPR array, the accurate assembly of which 261 

was proved with resequencing. 262 

To draw a picture of the annual succession of viruses, we determined the temporal dynamics 263 

of all individual genomic contigs (Fig. 1, Supplementary Table 2, Sheet 1). For visual clarity 264 

in Fig. 1, we have omitted some information and retained only data on abundances which 265 

were higher than the mean value - peaks of abundance. Most viral contigs analysed (85.4%) 266 

had a single peak of abundance during the year, and it was possible to distinguish two main 267 

types - narrow (33% of all contigs) and wide (52%) peaks of abundance. Interestingly, 268 

viruses with narrow peaks of abundance also were among the most abundant genomes in the 269 

community (Wilcoxon-Mann-Whitney test, p < 0.01, see Methods). The detection of peaks of 270 

the same genomes at the beginning and the end of the twelve-month period studied (Fig. 1) 271 
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suggests that this cycle of succession of viral species is annually repeated. After analysis of 272 

dynamic changes in contigs we assessed their presence in the environment during the year. 273 

This study demonstrated that only 39.1% of viruses (3,502 partial genomes) persisted in the 274 

lake throughout the year, while most viruses were undetectable by metagenomics methods at 275 

one or more time points. The characteristics of the dynamic changes in Lough Neagh viral 276 

populations should not be considered specific only to this particular environment; on the 277 

contrary, it is likely to be an instance of a universal phenomenon, reflecting processes 278 

common to different ecosystems on the global scale. For example, in a previous study of 279 

marine myoviruses it was demonstrated that during three consecutive years a number of viral 280 

genomes appeared only once a year at specific seasons and that only 25% of myoviruses 281 

persisted in the environment (Chow & Fuhrman, 2012). A study of viral dynamics in the 282 

hypersaline Lake Tyrell also revealed the presence of two types of viruses – those considered 283 

persistent and those detectable only at specific time points (Emerson et al, 2012; Emerson et 284 

al, 2013). 285 

Structure of the viral community 286 

Next we characterised the structure of the viral community. Reticulate classification of viral 287 

sequences allows estimation of the relatedness of genomes by assessing shared gene content 288 

(Lima-Mendez et al, 2008). This method uses comparisons of amino acid sequences, 289 

allowing grouping of viral genomes which do not necessarily have nucleotide homology 290 

(protein-based viral clusters, P-VCs) into clusters that approximately correspond to viral 291 

genera (Lima-Mendez et al, 2008; Roux et al, 2015; Roux et al, 2016; Paez-Espino et al, 292 

2016). One of the goals of our analysis was to additionally divide assembled genomes within 293 

these clusters into subgroups of homologous sequences. To this end, we modified the method 294 

of reticulate classification and performed a second clustering using comparison of nucleotide 295 

sequences (DNA-based viral clusters, DNA-VCs). As the result of this, the majority of 296 
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contigs were organised into 732 P-VCs (Fig 2, Supplementary Table 3, Sheet 1) consisting of 297 

2 to 696 members, while 1,198 contigs (13.4%) remained as singletons. Within the P-VCs, 298 

sequences were arranged into sub clusters on the basis of sequence homology in DNA-VCs 299 

(1,811 clusters in total, Supplementary Fig 2). The analysis of genome relatedness within this 300 

double-clustered structure showed that the similarity of viral genomes within P-VCs varied, 301 

which additionally characterises the community studied. For example, genomes within P-302 

VC_2 (Fig. 3) were very similar and retained some nucleotide homology across the whole 303 

cluster/viral genus. This could point to the possibility that these viruses underwent gene 304 

reshuffling more often than they accumulated point mutations. By contrast, genomes within 305 

P-VC_20 (Fig. 3) are likely to have evolved under different constraints, as the genomes 306 

detected were more distantly related even in smaller groups (DNA-VCs), retaining only 307 

protein similarity between genomes from different DNA-based clusters. 308 

The temporal dynamics of the clusters adds a new dimension to our understanding of viral 309 

biodiversity. We explored how contigs, the majority of which had distinct seasonality, were 310 

distributed between clusters and found that large P-VCs (with more than 20 partial genomes) 311 

persisted during the year, although they could include DNA-VCs with specific seasonalities. 312 

Thus, although certain genetic variants could appear for short periods only, the group of 313 

viruses they belonged to could be detected throughout the whole year. At the same time, 314 

smaller P-VCs could be abundant only during particular periods of the year (382 of all P-VCs 315 

i.e. 52.2%; 51 of these included more than 4 contigs, Supplementary Table 3, Sheet 1) and 316 

one-third of these (131 P-VCs) were undetectable by metagenomics technologies in other 317 

periods (Methods). Moreover, we found that about one-fifth of all P-VCs (164, 22.4%) were 318 

undetectable at specific time points.  319 

Identification of related sequences among known phages. 320 
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To identify how the de novo assembled contigs were related to known viruses, complete viral 321 

genomes from RefSeq were seeded to a standard reticulate classification (see Methods). We 322 

also included in the analysis 488 long contigs (>10kb) assembled from nine published viral 323 

metagenomes originating from freshwater environments in different continents (Europe 324 

(Roux et al, 2012), North America (Green et al, 2015; Watkins et al, 2015), Africa (Fancello 325 

et al, 2013), Asia (Tseng et al, 2013), Supplementary Table 1, Sheet 2). The fact that only 48 326 

RefSeq viruses were assigned to reconstructed viral genomes (Supplementary Table 3, Sheet 327 

3) and 18 of them included in 19 DNA-VCs from our dataset reveals just how limited 328 

exploration of freshwater viral diversity has been. Among these were 8 species of 329 

Cellulophaga phages, 8 Pseudomonas phages and 7 cyanophages. We also identified one 330 

contig with similarity to an algal virus virophage - Phaeocystis globosa virus virophage 331 

(Supplementary Table 3, Sheet 3). The seeding of long contigs assembled from other 332 

freshwater metagenomes allowed us to determine that 106 of them (21.7%) were related to 333 

the viruses in Lough Neagh (Supplementary Table 3, Sheet 1). In total, 69 DNA-VCs (from 334 

40 P-VCs) recruited contigs from other freshwater environments. One of the P-VCs (P-335 

VC_19) seemed to represent a “core freshwater cluster” of genomes, as it recruited viral 336 

sequences from five freshwater reservoirs from very distant sites: Lough Neagh (British 337 

Isles), Lake Michigan (North America), Lakes Pavin and Bourget (Continental Europe), and 338 

the Feitsui freshwater reservoir in Taiwan (Asia). Several sequences from this “core” cluster 339 

were related to Cellulophaga phage 46:1 (Holmfeldt et al, 2013) (Supplementary Table 3, 340 

Sheet 1). 341 

Although, the method of co-clustering of viral genomes allows to detect more distant 342 

relatives among known sequences, we additionally explored results of reads-mapping 343 

approach of MetaVir pipeline to identify eukaryotic viruses which were less likely to 344 

assemble due to predominance of bacteriophages in the environment. The highest number of 345 
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reads of eukaryotic viruses were assigned to the Phycodnaviridae family of algae viruses 346 

represented by all genera with Chlorovirus as the most abundant one. Among other viruses of 347 

eukaryotic organisms, sequences for several gigantic viruses of family Mimiviridae, such as 348 

amoebic Acanthamoeba polyphaga moumouvirus and flagellate Cafeteria roenbergensis 349 

virus, were found. Sequences related to viruses of vertebrate and invertebrate animals of 350 

families Iridoviridae, Herpesvirales and Poxviridae were detected as well. 351 

Dynamic relationships of viruses and their predicted hosts. 352 

To gain insights into the biology of the reconstructed viruses, we predicted their bacterial 353 

hosts using a sequence-based bioinformatics method of CRISPR matching. In a recent 354 

benchmarking analysis CRISPR matches yielded the highest accuracy (92%) of all tested 355 

bioinformatics approaches designed to link phages to their hosts (Edwards et al, 2016). 356 

Throughout the year we generated structural profiles of the bacterial community using 357 

methods of amplicon-based metagenomics (Methods, Supplementary Figure 3, 358 

Supplementary Table 2, Sheet 2). Among known caveats of this approach is that the 359 

resolution provided by 16S amplicons is not necessarily sufficient to distinguish ecotypes, 360 

which have identical 16S sequences, but different genomes and may demonstrate individually 361 

distinct dynamics in the ecosystem. To link reconstructed phage genomes to their potential 362 

hosts, we identified CRISPR arrays in the complete genome sequences of bacterial species 363 

that were closely related to the OTUs detected in Lough Neagh by using selected bacterial 364 

genomes from the database, and matched those spacers to our reconstructed viral genomes 365 

(see Methods). Hosts were predicted for 225 of the 8,950 reconstructed viral genomes. For 366 

several contigs up to three potential bacterial hosts of different OTUs were assigned (possible 367 

viral generalists), therefore in total we found 260 phage-host pairs (Supplementary Table 3, 368 

Sheet 4). Although the database bacteria were isolated from different locations and have 369 

never been exposed to the Lough Neagh phages, we presumed that their recent ancestors 370 
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were indeed infected by close relatives of these phages, as evidenced by the 100% identical 371 

CRISPR spacers. Viruses tend to be species or strain-specific, and when they do change their 372 

host tropism, they mostly switch to taxonomically very closely related hosts (Popa et al, 373 

2017). This is an indirect approach to predict phage-host pairs, but we believe that it provides 374 

accurate insights into phage-bacteria relationships for the minority of cases where hits were 375 

found.  376 

The contigs with the hosts assigned belonged to 131 DNA-VCs of 97 P-VCs (13.4%). The 377 

analysis of P-VCs showed that, although viruses from a given cluster usually infect a single 378 

dominant bacterial taxonomic group, there were also clusters with predicted hosts from up to 379 

five different classes and two different phyla. This finding supports the idea that, although the 380 

majority of genetically related viruses have a narrow host repertoire, there are also generalist 381 

viruses and viral genera, which can prey on hosts across bacterial taxonomic borders (Malki 382 

et al, 2015, Knowles et al, 2016; Peters et al, 2015, Roux et al, 2016). 383 

We studied dynamic changes in viral contigs and presumed hosts (OTUs) to identify possible 384 

patterns of their interactions in a natural environment. In order to do that, we plotted the 385 

distribution of highest abundance of reconstructed viral genomes in relation to the maximum 386 

of corresponding bacterial abundance (Fig. 4). In accordance with the ‘Kill-the-Winner’ 387 

(KtW) model of host-pathogen relationships (Thingstad, 2000), the dynamics of bacteria and 388 

their viruses are co-dependent, and the peak of abundance of a virus should appear with some 389 

delay after the peak of abundance of its host. The correlational analysis (Spearman’s rank 390 

correlation, rho > 0.5) of relationships of identified viral contig – bacterial OTU pairs 391 

demonstrated that 54 pairs behaved in accordance with the KtW model (20.8%, see Methods) 392 

and the dynamic changes of 28 other phage-host pairs coincided (31.5% in total). But this 393 

plot demonstrates that many viruses peaked before their hosts. We performed correlational 394 

analysis and found that in 43 pairs (16.5%) the increase of viral abundance was indeed 395 
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followed by the increase of host density. To our knowledge, this is one of the few examples 396 

when viral abundance peaks occurring before the peaks of their cognate host have been 397 

observed in natural environment. 398 

Next, we performed an investigation of the existing literature, looking for evidence where 399 

this counter-intuitive pattern may have been registered. Wilson et al. presented time series 400 

data of marine mesocosms where, after addition of phosphorus to the environment, and 401 

before the development of a peak of cyanobacterial abundance as a response, there was a 402 

distinguishable high peak of abundance of viral particles (Wilson et al, 1998). Similarly, in a 403 

time-series study of marine Synechococcus and cyanophage populations, although this 404 

observation was outside the scope of the paper, preceding peaks of viral abundances were 405 

noticeable and were repeated on several occasions over the period studied (McDaniel et al, 406 

2002).  407 

Moreover, this dynamic pattern was modelled for situation of effective defence of prey from 408 

low-offence predators (Cortez & Weitz, 2014). We offer several possible mechanisms of 409 

such defence that might explain the observed dynamics. First, they might be explained by the 410 

development of resistance of bacteria to the phage, for example by acquisition of CRISPR 411 

spacers or modification of their receptor binding proteins, facilitating subsequent expansion 412 

of the bacterial population. However, mechanisms of resistance acquisition can also be due to 413 

super-infection exclusion caused by the switch of phages from the lytic to the temperate state. 414 

Recently, Knowles et al. proposed an extension to the KtW model – the Piggyback-the-415 

Winner (PtW) model, in accordance with which ‘temperateness is favoured at high host 416 

densities as viruses exploit their hosts through lysogeny rather than killing them’ (Knowles et 417 

al, 2016). We might expect that the dynamic pattern identified could be a result of phage-host 418 

interactions in accordance with this PtW model. Moreover, it was recently revealed that some 419 

viruses can communicate with each other via short quorum-sensing peptides, where an 420 
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increase of the peptide concentration causes switch of temperate phages from the lytic to the 421 

lysogenic state (Erez et al, 2017). It is possible that this mechanism could also explain the 422 

“early” loss of viruses from the environment, as observed in our study.  423 

Environmental parameters in Lough Neagh. 424 

To discover as many drivers of viral community changes as possible, we characterised 425 

bacterial community composition and environmental parameters in the lake’s ecosystem 426 

(Supplementary Table 2, Sheet 2 and Supplementary Table 5, Sheet 1). Predominance of 427 

cyanobacteria in eutrophic Lough Neagh was detected in summertime (Supplementary Fig. 428 

3). Comparative analysis of the dynamics of the bacterial populations and changes in physical 429 

and chemical parameters showed that temperature was likely to be the main driver of changes 430 

in the bacterial community under study (Spearman’s rank correlation, rho > 0.5, 431 

Supplementary Table 5, Sheet 1). We also found that, surprisingly, the bacterial community 432 

did not react to changes in phosphorus concentration - the main limiting factor for growth of 433 

microbial populations in freshwater environments (Doering et al, 1995; Correll, 1999). 434 

Apparently, in this eutrophic lacustrine ecosystem the main limiting factor is different, which 435 

is in accordance with previous findings that in Lough Neagh nitrogen loading can have a 436 

stronger long-term impact than phosphorus on lake eutrophication (Buntig et al, 2007).  437 

Viral auxiliary metabolic genes and their changes throughout the year. 438 

Viruses can carry auxiliary metabolic genes (AMGs) that augment their fitness by affecting 439 

host metabolism (Breitbart et al, 2007). As it is not possible to exclude the occurrence of 440 

bacterial genes caused by generalised transduction events and the presence of gene transfer 441 

agents in phage metagenomes, we applied strict criteria for the detection of phage-associated 442 

AMGs. Metabolic genes were considered as AMGs only if they were co-localised on the 443 

same contig with open reading frames (ORFs) having similarity to known phage genes (such 444 

as structural genes, see Methods). Contigs from all 12 assembled libraries were analysed and 445 
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189 phage-associated AMGs were identified (Supplementary Fig. 4, Supplementary Table 4, 446 

Sheet 1). The attribution of AMGs to SEED subsystems showed that freshwater viruses in 447 

Lough Neagh had acquired genes from a wide variety of metabolic pathways, related to 448 

almost all aspects of bacterial life, since genes from 25 out of 30 of subsystems were found in 449 

viral genomes. 450 

To assess how the appearance of various genes (functional categories of SEED subsystems 451 

(Overbeek et al, 2005)) in the viral population depended on the dynamics of the bacterial 452 

community and on environmental parameters, a correlational analysis was performed 453 

(Spearman’s rank correlation, rho > 0.5, Supplementary Table 4, Sheet 2). An increase in 454 

relative abundance of “Genes of temperate phages” in the summer viral community was 455 

detected, supporting findings from previous studies obtained by using different methods 456 

(Knowles et al, 2016; Laybourn-Parry et al, 2007; Palesse et al, 2014). We also identified 457 

correlations between the appearance of genes of “Oxidative stress response regulation” in the 458 

summertime and Cyanobacteria changes and alkalinity fluctuations (Fig 5B). Cyanobacteria 459 

undergo oxidative stress more often than heterotrophic bacteria due to their photosynthetic 460 

ability (Latifi et al, 2009), and it was shown that marine cyanophages can carry genes 461 

involved in photoprotection, such as those encoding high light inducible proteins (Ma et al, 462 

2014). “Oxidative stress response regulation” genes of freshwater viruses identified in this 463 

study included a wide range of molecules guarding living organisms from oxidative damage: 464 

iron and manganese superoxide dismutases, peroxidase, catalase, ferroxidase, rubrerythrin 465 

etc. In contrast with high light inducible proteins of marine cyanophages, which are tightly 466 

connected with photosystem formation and functioning (Komenda & Sobotka, 2016), 467 

antioxidant defence genes of freshwaters are more general and include cytoplasmic, 468 

mitochondrial and chloroplast-associated molecules. Other notable correlations were detected 469 

between the abundance of the Bacteroidetes phylum, the Verrucomicrobiae class and genes 470 
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of “Quorum sensing and biofilm formation” (Fig 5C). The relative abundance of this 471 

functional category did not correlate with any other taxa or any environmental parameter, 472 

suggesting that this type of phage manipulation is specific to these clades. 473 

To further investigate the seasonal dependence of viral functional potential we annotated 474 

separately reconstructed viral genomes on MG-RAST server and clustered functional 475 

annotations, weighted by contig relative abundance in the community (see Methods, Fig. 476 

5A). We identified that reconstructed viral genomes clearly differed in the winter-early spring 477 

and summer-autumn periods by functions, these two groups being largely subdivided in 478 

accordance with calendar seasons. These findings could additionally point to the 479 

specialisation of viruses to their hosts through acquisition of specific AMGs.  480 

Conclusions. 481 

Overall, this study changes our understanding of viral diversity by demonstrating the 482 

transient nature of most viral groups of genomes in an ecosystem. This variation of the whole 483 

metagenomic content of the environment between different seasons/months should also be 484 

considered when assessing the criteria for the sampling completeness of an ecosystem. 485 

Visualisation of the genetic relationships between viruses further characterises the 486 

community as a whole and points to the diversity of evolutionary constraints in a natural 487 

environment. Besides providing much-needed insight into freshwater viral sequence diversity 488 

and ecosystem organisation, our research offers a basis for long-term studies on the stability 489 

of individual viral genomes, on the repeatability of seasonal cycles, and on their interplay 490 

with bacterial host communities. In our study, we analysed only enveloped DNA viruses 491 

existing as viroid particles in the environment. Previous studies have highlighted that viruses 492 

can also subsist inside their host cell for prolonged periods of time, so it will be interesting to 493 

analyse time series of combined free-viroid and induced viromes side-by-side (Maurice et al, 494 
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2011). Moreover, including time-series experiments of RNA viruses can also provide 495 

complementary insight into the dynamics of viral communities in the future. 496 
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 653 

Figure legends. 654 

Figure 1. Succession of 8,950 assembled contigs throughout a year. Each row in the left 655 

panel of the picture presents information about peaks of abundance for individual contigs. 656 

For each library, a dot was placed if the peak of abundance for a particular contig was 657 

attributed to this library; otherwise, an empty space was left. Jitter was applied to distribute 658 

dots belonging to different contigs within a single column. The right panel schematically 659 

depicts dynamic changes in individual contigs to provide illustrations of different observed 660 

cases. Contig identification numbers are specific to this Figure and do not correspond to 661 

contig IDs used elsewhere in the study. 662 

Figure 2. A. An overview of the viral sequence space organisation in the community. Each 663 

dot represents an individual from 8,950 assembled contigs. These contigs can be i) 664 

genetically unique and fully unclustered, ii) clustered into DNA-VCs (middle-size clustering 665 

level), iii) clustered into P-VC being within DNA-VCs or being unclustered within DNA-666 

VCs (large-size clustering level). 667 

The outer ring of light grey dots is constituted by unique individual genomes that are not 668 

members of P-VCs (variant i). Each separate group of dots within the inner circle represents 669 

an individual P-VC (variant iii). All DNA-VCs as well as all unclustered contigs within each 670 

P-VC were joined to an artificial central node. To avoid confusion with colours, larger P-VCs 671 

were arbitrary coloured to provide more information about their inner structure. Contigs 672 

comprising DNA-VCs within P-VCs are coloured either in orange (relatively bigger) or in 673 

dark grey (relatively smaller), while unclustered into DNA-VCs contigs are coloured in 674 

green. By default, a dark grey colour is used for all contigs within other P-VCs.  675 

Three distinct types of clusters are indicated: B. P-VC which includes sequences with 676 

nucleotide homology organised in DNA-VCs, as well as unclustered genomes (mixed type); 677 
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C. P-VC which aggregates (mostly) unclustered in DNA-VCs genomes (contigs within these 678 

clusters have only similarity at the protein level); D. P-VC which comprises mostly DNA-679 

VCs. 680 

Figure 3. Examples of genome relatedness within the double-clustered structure of the 681 

viral sequence space organisation. Full-length nucleotide (a,b) and amino-acid (c) 682 

alignments of representatives from DNA-VCs of two P-VCs are shown on the left side of the 683 

Figure, the degree of homology between aligned fragments is colour-coded. All genomes 684 

presented are complete, if not stated otherwise. The dynamic changes in abundance of these 685 

individual genomes are shown on the right. a. Genomes preserving nucleotide homology 686 

between different DNA-VCs within a single P-VC. Two upper genomes were clustered into 687 

one DNA-VC, while the other 9 genomes belonged to different DNA-VCs within one P-688 

VC_2. b. Genome alignments of three members of DNA-VC-20. c. Genomic map of protein 689 

similarity (tblastx) between three representatives from different DNA-VCs (including DNA-690 

VC_20 from panel b) within a single P-VC_20. These genomic sequences do not have 691 

nucleotide homology. 692 

Figure 4. Positions of the peaks of abundance for 260 viral genomes in relation to 693 

maximum abundance of their predicted host bacteria. The numbers of viruses in groups, 694 

organised by the distance (in sample collection intervals) of their peaks of abundance from 695 

the peaks of abundance of host bacteria, are plotted as black dots (•), while host abundance 696 

maximum is used as a reference point and represented by a dashed line (---). 697 

 698 

Figure 5. A. Clustering of 12 viromes based on functional annotations of 8,950 reconstructed 699 

genomes, weighted by genome's abundance. B. Dynamic changes of relative abundance of 700 

Cyanobacteria (black, rho = 0.6) and “Regulation of oxidative stress response” functional 701 

category genes (red). C. Dynamic changes of relative abundance of the Bacteroidetes phylum 702 
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(blue, rho = 0.68), the Verrucomicrobiae class (black, rho = 0.67) and genes of “Quorum 703 

sensing and biofilm formation” (red) functional category 704 

 705 

Author contributions 706 

L.A.K., T.S. and K.A. designed the study, T.S. processed water samples, K.A. and T.S. 707 

performed bioinformatics analyses of data, K.A., T.S., J.P.Q., J.W.G., C.C.R.A., B.E.D., 708 

Y.M., C.W. and L.A.K. discussed results and wrote and edited the manuscript. 709 

  710 



31 
 

 711 

Legends for supplementary files. 712 

Supplementary Figure 1. Genomic maps of the verified experimentally assembled contigs. 713 

In the middle part of genomic maps, the fragments that were amplified and resequenced from 714 

forward and reverse primers and their overlaps are marked in pink and burgundy, 715 

respectively. Genes above the middle part are located on “plus” chain, below – on the 716 

“minus” chain of DNA. 717 

 Supplementary Figure 2. Quantitative characteristics of generated protein-based 718 

clusters. A. Distribution of numbers of DNA-VC per P-VC. B. Distribution of numbers of 719 

unclustered contigs per P-VC. 720 

Supplementary Figure 3. Dynamic changes in six major bacteria phyla. Relative 721 

abundances of the six most abundant bacteria phyla in the water column of Lough Neagh are 722 

presented. This analysis included an additional sample collected in November 2013. 723 

Supplementary Figure 4. Functional profiling of assembled viral libraries and AMG. The 724 

distribution of functional categories across 12 assembled libraries is shown on the left. For 725 

each category, the mean relative abundance and standard deviation is given. The “Phages, 726 

Prophages, Transposable elements, Plasmids” category (60.3 ± 8.2% of reads) is excluded 727 

from the bar chart. The distribution of AMGs (in this study: functional genes that are co-728 

localised with phage genes) by functional categories is shown on the right. Proportions of 729 

given functional categories are presented. ND – not detected. 730 

Supplementary Table 1. Sheet 1. Metagenomic data sets generated in this study and data 731 

availability. Raw reads and assembled contigs were deposited to SRA, MetaVir and MG-732 

RAST for archival storage and/or analysis. Sheet 2. List of used freshwater metagenomes. 733 

This file includes accession numbers, references, number of assembled long contigs from 734 
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publicly available freshwater metagenomes and number of contigs resembling long genomes 735 

from Lough Neagh. 736 

Supplementary Table 2. Sheet 1. Relative abundance of assembled long contigs. Sheet 2. 737 

Relative abundances of bacterial OTUs. Sheet 3. Percentage of contig length covered by 738 

reads in each library. 739 

Supplementary Table 3. Sheet 1. Summary statistics of viral clusters. For each P-VC, 740 

DNA-VCs are listed and the number of contigs forming the clusters is given. The results of 741 

co-clustering with viral genomes from NCBI RefSeq and contigs assembled from other 742 

freshwater metagenomes are also included. The information about the presence of complete 743 

viral genomes within clusters is provided where available. Sheet 2. Circular genomes 744 

summary. This table contains information about the length of circular contigs and their 745 

similarity to genomes of known bacteriophages. Sheet 3. This table contains information 746 

about which assembled contigs co-clustered with which known viruses from RefSeq 747 

database. Sheet 4. List of predicted host-bacteriophage links. 748 

Supplementary Table 4. Sheet 1. List of identified AMGs. AMGs were grouped in 749 

accordance with SEED Subsystems ontological classification and four levels of grouping are 750 

indicated. Sheet 2. Correlations of appearance of genes with specific functions in the viral 751 

population with changes in environmental parameters and bacterial abundance (Spearman’ 752 

rank correlations, rho > 0.5). 753 

Supplementary Table 5. Sheet 1. Correlations (Spearman’ rank correlations, rho > 0.5 and 754 

rho < -0.5) between changes of bacterial relative abundance and environmental parameters. 755 

Sheet 2. Physicochemical parameters of the lake at the times of sample collection. Sheet 3. 756 

Sequences of primers used for experimental verification of assembled contigs. 757 

 758 

 759 
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