
On the Performance of Cell-Free Massive MIMO with Short-Term
Power Constraints

Interdonato, G., Ngo, H. Q., Larsson, E. G., & Frenger, P. (2016). On the Performance of Cell-Free Massive
MIMO with Short-Term Power Constraints. In 2016 IEEE 21st International Workshop on Computer Aided
Modelling and Design of Communication Links and Networks (CAMAD): Proceedings (pp. 225-230). (Computer
Aided Modelling and Design of Communication Links and Networks (CAMAD): Proceedings).  IEEE . DOI:
10.1109/CAMAD.2016.7790362
Published in:
2016 IEEE 21st International Workshop on Computer Aided Modelling and Design of Communication Links and
Networks (CAMAD): Proceedings

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 IEEE.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/96663628?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/on-the-performance-of-cellfree-massive-mimo-with-shortterm-power-constraints(5f885190-d679-4902-b40b-41a12eccb91b).html


On the Performance of Cell-Free Massive MIMO
with Short-Term Power Constraints

Giovanni Interdonato∗†, Hien Quoc Ngo†, Erik G. Larsson†, Pål Frenger∗
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Abstract—In this paper we consider a time-division duplex
cell-free massive multiple-input multiple-output (MIMO) system
where many distributed access points (APs) simultaneously serve
many users. A normalized conjugate beamforming scheme, which
satisfies short-term average power constraints at the APs, is
proposed and analyzed taking into account the effect of imperfect
channel information. We derive an approximate closed-form ex-
pression for the per-user achievable downlink rate of this scheme.
We also provide, analytically and numerically, a performance
comparison between the normalized conjugate beamforming and
the conventional conjugate beamforming scheme in [1] (which
satisfies long-term average power constraints). Normalized conju-
gate beamforming scheme reduces the beamforming uncertainty
gain, which comes from the users’ lack of the channel state
information knowledge, and hence, it improves the achievable
downlink rate compared to the conventional conjugate beam-
forming scheme.

I. INTRODUCTION

Cell-free massive multiple-input multiple-output (MIMO),
also known as distributed massive MIMO [1], [2], [3], has
the characteristics of a massive MIMO system [4] where the
antennas are spread out over a large area, in a well-planned
or random fashion. These antennas, called access points (APs)
herein, simultaneously serve many users in the same frequency
band. In cell-free massive MIMO, all APs are involved in
coherently serving all users. Due to the network topology, cell-
free massive MIMO has great abilities to spatially multiplex
users and to control the interference [1]. The increased macro-
diversity gain leads to improved coverage probability and
energy efficiency compared to co-located massive MIMO [5].
This comes at the price of higher backhaul requirements and
the need for distributed signal processing. Hence, cell-free
massive MIMO has attracted a lot of research interest recently.

When determining the power allocation to be used in a
cell-free massive MIMO system (and in general for every
wireless system) we need to take into account that power
is constrained by either long-term average power constraints
or short-term average power constraints [6]. For long-term
power constraints, the average is taken over codewords and
channel fading coefficients. By contrast, for short-term power
constraints, the average is just taken over the codewords. Paper
[1] consider cell-free massive MIMO systems with conjugate
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beamforming precoding subject to long-term average power
constraints. To the best of the authors’ knowledge, no analysis
on cell-free massive MIMO subject to short-term average
power constraints is available in literature.

Contributions: We propose a downlink precoding scheme,
named as normalized conjugate beamforming, that satisfies
short-term average power constraint at the APs, and derive an
approximate closed-form expression for the per-user achiev-
able downlink rate of this scheme. Our analysis takes into
account channel estimation errors and the effect of adopting
arbitrary uplink pilots, i.e., pilot contamination. Numerical
results verify the tightness of our approximation. We fur-
ther compare the performance of the normalized conjugate
beamforming with the conventional conjugate beamforming in
[1]. Normalized conjugate beamforming hardens the effective
channel gains at the users, and hence, outperforms the con-
ventional conjugate beamforming when the number of APs is
moderate.

II. SYSTEM MODEL AND NOTATION

Consider a time-division duplex (TDD) cell-free massive
MIMO system, in which M single-antenna APs, distributed
in a wide area, simultaneously serve K single-antenna users
in the same frequency band, and M > K. The K users
are also located at random in the same area. We assume
the hardware calibration is perfect so that the channels are
reciprocal. Reciprocity calibration, to the required accuracy,
can be practically achieved using off-the-shelf methods [7].
A backhaul network connects all the APs with a central
processing unit (CPU), which is responsible of exchanging in-
formation such as payload data and power control coefficients.
Channel state information (CSI) acquisition and precoding are
carried out locally at each AP.

The time-frequency resources are divided into coherence
intervals of length τ symbols. Coherence interval is defined
as the interval during which the channel is approximately
constant. Therefore, we assume that channel is static within
a coherence interval and varies independently between every
coherence interval.

Let gmk be the channel coefficient between the kth user and
the mth AP, defined as

gmk =
√
βmkhmk, (1)



for m = 1, . . . ,M , and k = 1, . . . ,K, where hmk is the
small-scale fading, and βmk represents the large-scale fading.
In cell-free massive MIMO, the large-scale fading coefficients
{βmk} depend on both m and k, since the APs are spread out
in a large area and not co-located as in conventional massive
MIMO systems. They are constant for several coherence
intervals. Furthermore, we assume that the coefficients {βmk}
are estimated a-priori, and known, whenever required. The
small-scale fading is modeled as Rayleigh fading, i.e. the
coefficients {hmk} are i.i.d. CN (0, 1) RVs.

Each coherence interval is divided into three phases: up-
link training, uplink payload data transmission, and downlink
payload data transmission. Since we focus on the downlink
performance of cell-free massive MIMO, the performance
analysis of the uplink payload data transmission phase is
omitted.

A. Uplink Training and Channel Estimation

In the uplink training phase, users synchronously send pilots
to all the APs. Then, based on the received pilot signals,
each AP estimates the channels to all users. The APs use the
channel estimates to perform the signal detection during the
uplink data transmission phase, and to precode the transmitted
symbols during the downlink data transmission phase.

Let τu,p be the number of symbols per coherence interval
spent on the transmission of uplink pilots such that τu,p < τ .
The uplink pilot sequence sent by the kth user is denoted
by √τu,pϕk ∈ Cτu,p×1, where ‖ϕk‖2 = 1. Pilot sequences as-
signed for all users should be pairwisely orthogonal. However,
the maximum number of orthogonal pilot sequences is upper-
bounded by the uplink training duration τu,p which depends on
the length of the coherence interval τ . Adopting orthogonal
pilots leads to inefficient resource allocation when the number
of the users is large or when the coherence interval is short.
For these cases, pilot sequences must be reused among users.
As a consequence, the channel estimate of a given user is
contaminated by interference from other users which share
the same pilot sequences. This is called pilot contamination
[8]. In this work, we consider a general case where the pilot
sequences {ϕk} are arbitrary.

The mth AP receives a linear combination of K uplink
pilots, i.e., a τu,p × 1 vector given by

yup,m =
√
τu,pρu,p

K∑
k=1

gmkϕk + wup,m, (2)

where ρu,p is the normalized signal-to-noise ratio (SNR) of
the pilot symbol and wup,m is the additive noise vector whose
elements are i.i.d. CN (0, 1) RVs. The received signal is
processed locally at the AP side by projecting it on ϕHk as

y̌up,mk = ϕHk yup,m

=
√
τu,pρu,pgmk +

√
τu,pρu,p

K∑
k′ 6=k

gmk′ϕ
H
k ϕk′ + ϕHk wup,m.

(3)

Due to the pilot contamination effect represented by the second
term in (3), performing linear minimum mean-square error
(MMSE) estimation of the channel gmk, based on y̌up,mk, leads
to a suboptimal estimates. This is optimal only in the special
case where any two pilots are orthogonal or the same. The
linear MMSE estimate of gmk given y̌up,mk, is [1]

ĝmk =
E{y̌∗up,mkgmk}
E{|y̌up,mk|2}

y̌up,mk = cmky̌up,mk, (4)

where

cmk ,
√
τu,pρu,pβmk

τu,pρu,p
∑K
k′=1 βmk′ |ϕHk ϕk′ |2 + 1

. (5)

The corresponding channel estimation error is defined as
g̃mk , gmk − ĝmk. Note that, since we use linear MMSE
estimation, the channel estimate ĝmk and the estimation error
g̃mk are uncorrelated. Furthermore, since gmk is Gaussian
distributed, ĝmk in (4) becomes the MMSE estimate of gmk.
As a result, ĝmk and g̃mk are independent. The variance of
ĝmk is denoted by

γmk , E{|ĝmk|2} =
√
τu,pρu,pβmkcmk. (6)

Note that, γmk depends on the large-scale fading and γmk ≤
βmk. If the channel estimation is perfect, then γmk = βmk.

B. Downlink Data Transmission
In the downlink data transmission phase, all M APs use

the channel knowledge acquired during the uplink training
phase and the conjugate beamforming with short-term power
constraint technique to precode the signals intended for the K
users. More precisely, the mth AP transmits the data signal
xm, which is given by

xm =
√
ρd

K∑
k=1

√
ηmk

ĝ∗mk
|ĝmk|

qk, (7)

where qk is the data symbol intended for the kth user satisfying
E{|qk|2} = 1, and ρd is the normalized transmit SNR of
the mth AP. Term ĝ∗mk/|ĝmk| is defined as precoding fac-
tor. Herein, we named this precoding scheme as normalized
conjugate beamforming, in order to distinguish it from the
conventional conjugate beamforming, where the precoding
factor is equal to ĝ∗mk. Compared to the conventional scheme,
the normalized conjugate beamforming just performs a phase-
shift of the data signal.

In (7), {ηmk} represent power control coefficients chosen
to satisfy the transmit power constraint at the mth AP

E{|xm|2} ≤ ρd. (8)

Plugging (7) into (8), we obtain
K∑
k=1

ηmk ≤ 1, for all m, (9)

which represents the short-term average power constraint.1 The

1In contrast, for conventional conjugate beamforming the corresponding
long-term average power constraint is given, in [1], by

∑K
k=1 µmkγmk ≤

1, for all m = 1, . . . ,M , where {µmk} are the power control coefficients.



Rst
k ≈ log2

1 +

ρd
π
4

(
M∑
m=1

√
ηmkγmk

)2

ρd
4
π

K∑
k′ 6=k

M∑
m=1

M∑
n 6=m

√
ηmk′ηnk′γmk′γnk′βmkβnk

βmk′βnk′

∣∣ϕHk′ϕk∣∣2 + ρd

K∑
k′=1

M∑
m=1

ηmk′βmk − ρd
π
4

M∑
m=1

ηmkγmk + 1

 ,

(17)

Rlt
k = log2

1 +

ρd

(
M∑
m=1

√
µmkγmk

)2

ρd

K∑
k′ 6=k

(
M∑
m=1

√
µmk′γmk′

βmk
βmk′

)2

|ϕHk′ϕk|2 + ρd

K∑
k′=1

M∑
m=1

µmk′βmkγmk′ + 1

 , (18)

signal received at the kth user is

rd,k =

M∑
m=1

gmkxm + wd,k

=
√
ρd

M∑
m=1

K∑
k′=1

√
ηmk′gmk

ĝ∗mk′

|ĝmk′ |
qk′ + wd,k, (10)

where wd,k is additive CN (0, 1) noise. User k then detects qk
from rd,k.

III. PERFORMANCE ANALYSIS

In this section we derive an achievable downlink rate as
well as relevant performance indicators like beamforming gain
uncertainty (BU), user interference (UI), and strength of the
desired signal (DS). A tight approximation of the achievable
rate is proposed and computed in closed form.

By definition, an achievable downlink rate for a user is the
mutual information between the observed signal, the partial
knowledge of the channel and the unknown transmitted signal.
Since no downlink training is performed, the users use only
statistical properties of the channels to decode the downlink
data. From (10), the signal received by the kth user can be
rewritten as

rd,k = DSk · qk + BUk · qk +
K∑
k′ 6=k

UIkk′ · qk′ + wd,k, (11)

where DSk, BUk, and UIkk′ reflect the strength of the desired
signal, beamforming gain uncertainty, and inter-user interfer-
ence, respectively, given by

DSk =
√
ρd E

{
M∑
m=1

√
ηmkgmk

ĝ∗mk
|ĝmk|

}
, (12)

BUk =
√
ρd

(
M∑
m=1

√
ηmkgmk

ĝ∗mk
|ĝmk|

−E

{
M∑
m=1

√
ηmkgmk

ĝ∗mk
|ĝmk|

})
, (13)

UIkk′ =
√
ρd

M∑
m=1

√
ηmk′gmk

ĝ∗mk′

|ĝmk′ |
. (14)

Since qk is independent of BUk, the first and the second terms
in (11) are uncorrelated. Furthermore, since qk and qk′ are
independent, the first term is uncorrelated with the third term
as well as the noise (fourth) term by assumption. Therefore,
the sum of the second, third, and fourth terms in (11) can
be treated as an uncorrelated effective noise. Recalling that
uncorrelated Gaussian noise yields a capacity lower bound [9],
we can obtain the following capacity lower bound (achievable
downlink rate) for the kth user:

Rst
k = log2

1 +
|DSk|2

E{|BUk|2}+
K∑
k′ 6=k

E{|UIkk′ |2}+ 1

 .

(15)
Terms DSk and E{|BUk|2} in (15) can be exactly computed
in closed form. However, it is very difficult to obtain a closed
form result for term E{|UIkk′ |2} due to analytically intractable

form of E
{
gmk

ĝ∗
mk′

|ĝ∗mk′ |

}
. To alleviate this difficulty, we use the

first order approximation as in [10]:

E
{
gmk

ĝ∗mk′

|ĝ∗mk′ |

}
≈ E{gmkĝ∗mk′}

E{|ĝ∗mk′ |}
. (16)

In Section IV, we will numerically show that this approxima-
tion is very accurate. By using (16), we obtain an approximate
closed-form expression for the achievable rate given by (15)
as follows.

Proposition 1: With normalized conjugate beamforming, the
achievable rate of the transmission from the APs to the kth
user given in (15) can be approximated by (17) shown at the
top of the page.

Proof: See Appendix A.

The achievable downlink rate for the conventional conjugate
beamforming is given, in [1], by (18) shown at the top of
the page. Note that, the superscripts {st, lt} stand for short-
term, and long-term, respectively, in order to emphasize the
relationship between precoding scheme and power constraint.
In (18), {µmk} define the power control coefficients for the



TABLE I
NORMALIZED VS CONVENTIONAL CONJUGATE BEAMFORMING SCHEME

Normalized conj. beamforming |DSk|2 ρd
π
4

(∑M
m=1

√
ηmkγmk

)2
Conventional conj. beamforming |DSk|2 ρd

(∑M
m=1

√
µmkγmk

)2
Normalized conj. beamforming E{|BUk|2} ρd

∑M
m=1 ηmk

(
βmk − π

4
γmk

)
Conventional conj. beamforming E{|BUk|2} ρd

∑M
m=1 µmkβmkγmk

Normalized conj. beamforming E{|UIkk′ |2} ρd
4
π

∣∣ϕH
k′ϕk

∣∣2 M∑
m=1

M∑
n 6=m

√
ηmk′ηnk′γmk′γnk′βmkβnk

βmk′βnk′
+ ρd

M∑
m=1

ηmk′βmk

Conventional conj. beamforming E{|UIkk′ |2} ρd
∣∣ϕH
k′ϕk

∣∣2( M∑
m=1

√
µmk′γmk′

βmk
βmk′

)2

+ ρd
M∑
m=1

µmk′βmkγmk′

conventional conjugate beamforming scheme. Table I analyt-
ically compares both the precoding schemes by giving the
explicit formulas of each single term forming the effective
SINR in (15).

IV. NUMERICAL RESULTS

Next, we numerically evaluate the impact of the short-
term average power constraint given by (9) on the achievable
downlink rate, coherent beamforming gain, beamforming gain
uncertainty, and user interference due to the channel non-
orthogonality, in a cell-free massive MIMO system. Then,
we compare the performance provided by normalized and
conventional conjugate beamforming precoding schemes.

A. Simulation Scenario and Parameters

We consider a cell-free massive MIMO system with M APs
and K users uniformly spread out at random within a nominal
squared area of size 1×1 km2. In order to simulate a network
with an infinite area and without boundaries, we implement a
wrap-around technique, in which the nominal area is wrapped
around by eight neighbor replicas.

The large-scale fading coefficient βmk is modeled as

βmk = PLmk · 10
σshzmk

10 (19)

where PLmk describes the path loss, and 10
σshzmk

10 is the
shadowing with standard deviation σsh and zmk ∼ N (0, 1).

For all examples, we adopt the three-slope model for the
path loss as defined in [1] and uncorrelated shadow fading.
We also used the following setup: the carrier frequency is 1.9
GHz, the bandwidth is 20 MHz, and the coherence interval
length is τ = 200 symbols. The uplink training duration is
τu,p = K/2. The AP and user antenna height is 15 m, 1.65
m, respectively, and the antenna gains are 0 dBi. The noise
figure for both the uplink and the downlink is 9 dB, and the
radiated power is 200 mW for APs and 100 mW for users.

We assume that the random pilot assignment scheme [1]
is used. More precisely, each user is assigned randomly a
pilot sequence from a pre-defined pilot set which includes τu,p
orthogonal pilot sequences of length τu,p.

We also assume that pilots and data signals are always trans-
mitted with full power, i.e., no power control is performed.

To guarantee a fair comparison between normalized conjugate
beamforming and conventional conjugate beamforming, we
choose the power control coefficients asηmk = γmk∑K

k′=1
γmk′

, for normalized conj. beam.,

µmk = 1∑K
k′=1

γmk′
, for conventional conj. beam.,

(20)

for all k = 1, . . . ,K. With the power control coefficients given
in (20), the powers spent by the mth AP on the kth user are
the same for both schemes.

B. Performance Evaluation

First, we evaluate the tightness of our approximation (16).
Figure 1 shows the cumulative distribution of user interference
term, and the cumulative distribution of the “Approximation
Gap”, which is the absolute value of the difference between
the “Actual” and the “Approximate” values of user interference
term, for M = 100, and K = 40. The “Approximate” curve
is obtained by using the approximate closed-form expression
for term E{|UIkk′ |2}, shown in Table I. The “Actual” curve
is generated by using Monte Carlo simulation. We can see
that our proposed approximation is very accurate with high
probability and the approximation gap is very small compared
to user interference value.

Next, we compare the performances of the normalized and
the conventional conjugate beamforming in terms of: (i) coher-
ent beamforming gain; (ii) beamforming gain uncertainty; and
(iii) user interference due to the channel non-orthogonality,
by using the formulas listed in Table I. Figure 2 illustrates the
cumulative distribution of these three performance factors, for
both the precoding schemes at M = 100, K = 40.

As we can see from the figure, compared with the con-
ventional conjugate beamforming, the normalized conjugate
beamforming provides a lower coherent beamforming gain,
but a lower beamforming gain uncertainty. Moreover, both
the precoding schemes offer a similar effect of user inter-
ference. The coherent beamforming gap is trivially equal to
π/4, corresponding to about 21% at the median point. The
beamforming uncertainty gap is equal to ρd

π
4

∑M
m=1 ηmkγmk

which represents about 75% at the median point.
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Fig. 1. The cumulative distribution of user interference term, and the
cumulative distribution of the approximation gap between the actual and
the approximate values of user interference, for the normalized conjugate
beamforming scheme. Here, M = 100, K = 40.

Fig. 2. The cumulative distribution of the coherent beamforming gain, the
beamforming uncertainty gain, and the user interference, for the normalized
and conventional conjugate beamforming scheme. Here, M = 100, K = 40.

Finally, we compare the performances of the normalized
and conventional conjugate beamforming schemes in terms
of achievable downlink rates. Figure 3 shows the cumulative
distribution of the per-user achievable downlink rates given
by (17) and (18), respectively, with M = 100 and K = 40.
It also emphasizes the accuracy of our approximation by
comparing (15) and (17). In Figure 4, we consider the same
performance metric, but for a cell-free massive MIMO system
with lower density, i.e., M = 50 and K = 10. As we can
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Fig. 3. The cumulative distribution of the per-user achievable downlink rate
for the case of normalized (actual and approximate Rst

k) and conventional
(Rlt
k) conjugate beamforming scheme. Here, M = 100, K = 40.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
Per-User Downlink Rate (bits/s/Hz)

0

0.2

0.4

0.6

0.8

1

C
u
m
u
la
ti
ve

D
is
tr
ib
u
ti
on

Actual Rst
k

(15)

Approximate R
st
k

(17)

R
lt
k

(18)

Fig. 4. The same as Figure 3, but M = 50 and K = 10.

see, the 95%-likely per-user achievable downlink rates of the
normalized and conventional conjugate beamforming schemes
are comparable. However, normalized conjugate beamforming
outperforms the conventional one in terms of median per-
user achievable downlink rate, especially when M = 50, as
shown in Figure 4. Reducing the beamforming uncertainty
gain is one of the the main advantages of normalized conjugate
beamforming scheme over the conventional scheme. When the
number of APs is very large, the channel hardens, and hence,
the beamforming uncertainty gain is small for both schemes.
This is the reason for why there is a modest performance
improvement by increasing M , as shown in Figure 3.

V. CONCLUSION AND FUTURE WORK

In this paper, we analyzed the performance of cell-free mas-
sive MIMO systems with the normalized conjugate beamform-
ing scheme. This scheme satisfies a short-term average power
constraint at the APs where the average is taken only over the



codewords. A tightly approximate closed-form expression for
the achievable rate was derived. Compared to the conventional
conjugate scheme in [1], the normalized conjugate beam-
forming scheme suffers less beamforming gain uncertainty.
As a result, the normalized conjugate beamforming performs
better than the conventional conjugate beamforming when the
number of APs is moderate.

Further work may include studying the max-min power
control and more advanced pilot assignment algorithms. The
downlink beamforming training scheme may also be addressed
following a similar methodology as in [11] with respect to
conventional conjugate beamforming.

APPENDIX

A. Proof of Proposition 1
From (12), and by using gmk , ĝmk + g̃mk where g̃mk and

ĝmk are independent, we have

|DSk|2 = ρd

∣∣∣∣∣E
{

M∑
m=1

√
ηmk

(
|ĝmk|+ g̃mk

ĝ∗mk
|ĝmk|

)}∣∣∣∣∣
2

= ρd

∣∣∣∣∣
M∑
m=1

√
ηmk E{|ĝmk|}

∣∣∣∣∣
2

=
πρd

4

(
M∑
m=1

√
ηmkγmk

)2

.

(21)

In the last equality we have used E{|ĝmk|} =
√
π
2

√
γmk, since

the magnitude of a complex normal RV follows a Rayleigh
distribution.

Similarly, from (13) we have

E
{
|BUk|2

}
= ρdVar

{
M∑
m=1

√
ηmk

(
|ĝmk|+ g̃mk

ĝ∗mk
|ĝmk|

)}

= ρd

M∑
m=1

ηmk

(
E

{∣∣∣∣|ĝmk|+ g̃mk
ĝ∗mk
|ĝmk|

∣∣∣∣2
}

−
∣∣∣∣E{|ĝmk|+ g̃mk

ĝ∗mk
|ĝmk|

}∣∣∣∣2
)

= ρd

M∑
m=1

ηmk

(
E
{
|ĝmk|2

}
+ E

{
|g̃mk|2

}
− |E {|ĝmk|}|2

)
= ρd

M∑
m=1

ηmk

(
βmk −

π

4
γmk

)
. (22)

According to (14), we have

E
{
|UIkk′ |2

}
= ρdE


∣∣∣∣∣
M∑
m=1

√
ηmk′gmk

ĝ∗mk′

|ĝmk′ |

∣∣∣∣∣
2


= ρdE

{
M∑
m=1

M∑
n=1

√
ηmk′ηnk′gmkg

∗
nk

ĝ∗mk′

|ĝmk′ |
ĝnk′

|ĝnk′ |

}

= ρd

M∑
m=1

M∑
n 6=m

√
ηmk′ηnk′E

{
gmk

ĝ∗mk′

|ĝmk′ |

}
E
{
g∗nk

ĝnk′

|ĝnk′ |

}

+ ρd

M∑
m=1

ηmk′E
{
|gmk|2

}
. (23)

Now, we apply approximation (16) to (23). First, we derive

E{gmkĝ∗mk′} = cmk′

(
√
τu,pρu,p

(
ϕHk′ϕk

)∗ E{|gmk|2}
+ E{gmkϕTk′w∗up,m}+

√
τu,pρu,p

K∑
i6=k

ϕTk′ϕ
∗
iE{gmkg∗mi}

)
= cmk′

√
τu,pρu,pϕ

T
k′ϕ
∗
kβmk, (24)

since gmk is a zero-mean RV independent of gmi and wup,m.
Plugging (24) into (16), and in turn (16) in (23), we get

E
{
|UIkk′ |2

}
= ρd

M∑
m=1

ηmk′βmk

+
4ρd

π
τu,pρu,p|ϕHk′ϕk|2

M∑
m=1

M∑
n 6=m

√
ηmk′ηnk′cmk′cnk′βmkβnk√

γmk′γnk′

= ρd

M∑
m=1

ηmk′βmk

+ ρd
4

π

∣∣ϕHk′ϕk∣∣2 M∑
m=1

M∑
n6=m

√
ηmk′ηnk′γmk′γnk′βmkβnk

βmk′βnk′
,

(25)

where in the last equality, we have used (6). Lastly, by
substituting (21), (22), and (25) in (15), we get (17).
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