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Abstract

For a C∗-algebra A and a set X we give a Stinespring-type characterisation of the

completely positive Schur A-multipliers on K(`2(X))⊗ A. We then relate them to com-

pletely positive Herz-Schur multipliers on C∗-algebraic crossed products of the form

A oα,r G, with G a discrete group, whose various versions were considered earlier by

Anantharaman-Delaroche, Bédos and Conti, and Dong and Ruan. The latter maps are

shown to implement approximation properties, such as nuclearity or the Haagerup prop-

erty, for Aoα,r G.

1. Introduction

Schur multipliers, a class of maps generalising the operators of entrywise (Schur) multi-

plication on finite matrices, were first abstractly studied by Grothendieck in his famous
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‘Résumé’ [Gro]. Since then they have played a very important role in operator theory,

the theory of Banach spaces, and operator space theory (for a longer discussion we refer

to the introduction of [MTT], and to Section 5 of [Pis]). In the simplest situation they

arise in the following manner: to a (discrete) set X and a function φ : X × X → C,

one associates an operator Sφ on the space of compact operators on the Hilbert space

`2(X); if the resulting map is (completely) bounded, we call Sφ a Schur multiplier with

symbol φ. A related class of maps is that of the Herz-Schur multipliers associated to a

discrete (or, more generally, locally compact) group G. On one hand, these can be viewed

as the special class of Schur multipliers whose symbol φ : G ×G → C is ‘invariant’. On

the other hand, they form a natural extension of the Fourier multipliers from classical

harmonic analysis; in particular, in this case, the operator Sφ can be viewed as acting on

the reduced group C∗-algebra C∗r (G) of G.

Since the pioneering work of Haagerup, it has been known that the existence of Herz-

Schur multipliers of a particular type encodes various approximation properties of C∗r (G),

see Chapter 12 of [BrO] (it is worth mentioning that the same fact persists for discrete

unimodular quantum groups — see the recent survey [Bra]). An important ingredient

of the proof of such results, which features again in this paper, can be summarised as

follows: if (φi)i∈I is a net of Herz-Schur multipliers on G with certain properties then the

associated operators Sφi
implement an approximation property of C∗r (G); conversely any

family of approximating maps on C∗r (G) can be ‘averaged’ into Herz-Schur multipliers. An

early example of this technique is Lance’s proof [Lan] that a discrete group is amenable

if and only if its reduced group C∗-algebra is nuclear.

Recently both classes of maps discussed above have been generalised to the C∗-algebra-

valued case. In the paper [MTT], written by three authors of the current article, a class

of Schur A-multipliers is identified, where A is a C∗-algebra faithfully represented on

a Hilbert space H. In this ‘operator-valued’ case, the starting point is a function φ,

defined on the direct product X × X, and taking values in the space CB(A,B(H))

of all completely bounded maps from A into the C∗-algebra B(H) of all bounded linear

operators on H. The associated operator Sφ acts from K(`2(X))⊗A to K(`2(X))⊗B(H);

the function φ is called a Schur A-multiplier if the map Sφ is completely bounded. Again,

in the case where X is in fact a discrete group G, the C∗-algebra A is equipped with

an action of G, and the function φ satisfies a natural invariance property with respect

to the action, we are led to a generalisation of Herz-Schur multipliers, this time acting

on the C∗-algebraic crossed product A oα,r G. Such maps have also been studied in

a series of papers by Bédos and Conti (see [BéC] and references therein), where they

are viewed as generalisations of Fourier multipliers. In [MTT] several general properties

and examples of Schur A-multipliers were established; later, in [McK], it was shown

that the completely bounded approximation property of reduced crossed products can

be characterised via the existence of Herz-Schur A-multipliers of a particular type.

The descriptions above imply that the operator-space-theoretic concept of complete

boundedness plays an important role in the theory of Schur and Herz-Schur multipliers.

In the study of approximation properties of C∗-algebras it is well known that a special

role is played by completely positive maps. These are the subject of our paper. We first

characterise, in Theorem 2·6, those functions φ : X × X → CB(A,B(H)) for which

Sφ is a completely positive Schur A-multiplier, calling such φ functions of positive type.

Then we prove Theorem 2·8, a transference-type result: in the case where X is a discrete

group G acting on A by automorphisms, there is a one-to-one correspondence between
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certain ‘invariant’ functions φ : G×G→ CB(A) of positive type, and functions F : G→
CB(A) leading to completely positive Herz-Schur multipliers on the reduced crossed

product Aoα,r G. The latter class of maps is then compared to those studied earlier by

Anantharaman-Delaroche [A-D], Bédos and Conti [BéC], and Dong and Ruan [DoR].

These general results are later applied to show that approximation properties of C∗-

algebraic crossed products can be realised using Herz-Schur A-multipliers, generalising

the corresponding statements for reduced group C∗-algebras (which can be viewed as

‘crossed products with trivial coefficients’), mentioned earlier in this introduction.

The plan of the paper is as follows: after finishing this section by introducing some

general notational conventions, in Section 2 we discuss functions of positive type and

associated completely positive Schur A-multipliers, establishing a Stinespring-type rep-

resentation for the latter. We also introduce the related completely positive Herz-Schur

A-multipliers, which act on reduced crossed products, and compare the resulting class

with those considered earlier by other authors. Section 3 presents a characterisation of

the Haagerup property for the reduced crossed product in terms of the existence of a cer-

tain class of completely positive Herz-Schur A-multipliers; Section 4 solves the analogous

problem for nuclearity.

For C∗-algebras A and B, we denote by A⊗B their minimal/spatial tensor product;

Z(A) stands for the centre of A, while A+ designates the cone of positive elements of

A. Scalar products will be always linear on the left. For Hilbert spaces H and K, we

denote by H ⊗ K their Hilbertian tensor product. We let B(H,K) be the space of all

bounded linear operators from H into K and set B(H) = B(H,H). For a vector space

V , we denote, as usual, by Mn(V ) the space of all n by n matrices with entries in V . For

a map φ : V → W between vector spaces V and W , we let φ(n) : Mn(V ) → Mn(W ) be

the map given by φ(n)((xi,j)i,j) = (φ(xi,j))i,j . For operator spaces X and Y, we denote

by CB(X ,Y) the (operator) space of all completely bounded maps from X into Y. The

paper will rely on acquaintance with basic operator space theory; we refer the reader to

[EfR] and [Pau] for necessary background.

2. Completely positive Herz-Schur multipliers

We recall some notions and results from [MTT]. Let X be a set, H a Hilbert space,

and A ⊆ B(H) a (nondegenerate) C∗-algebra. We write K = K(`2(X)) for the algebra

of all compact operators on `2(X). Set H = `2(X)⊗H; we identify H with the Hilbert

space `2(X,H) of all square summable sequences in H. It was noted in [MTT] that, for

k ∈ `2(X ×X,A), the formula

(Tkξ)(x) =
∑
y∈X

k(x, y)
(
ξ(y)

)
, x ∈ X, ξ ∈ H,

defines a bounded operator on H with ‖Tk‖ ≤ ‖k‖2. The functions k : X ×X → A will

often be referred to as kernels. We let

S2(X ×X,A) = {Tk : k ∈ `2(X ×X,A)}

and note that S2(X ×X,A) is a dense subspace of the minimal tensor product K ⊗ A.

Given a bounded function ϕ : X ×X → CB(A,B(H)) and k ∈ `2(X ×X,A), we write

ϕ · k for the function in `2(X ×X,A) given by (ϕ · k)(x, y) = ϕ(x, y)(k(x, y)), x, y ∈ X.

Note we are using here a different convention to that of [MTT]; see also the comment

before Definition 2·7. We let Sϕ : S2(X ×X,A) → S2(X ×X,B(H)) be the map given
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by Sϕ(Tk) = Tϕ·k; it is clear that Sϕ is linear and bounded with respect to the norm

‖ · ‖2. If Sϕ is completely bounded, when S2(X × X,A) is equipped with the operator

space structure arising from its inclusion into K ⊗ A, the function ϕ is called a Schur

A-multiplier. We denote the algebra of all Schur A-multipliers on X × X by S(X,A).

For ϕ ∈ S(X,A), we write ‖ϕ‖m = ‖Sϕ‖cb.

We note that if in the above paragraph the map ϕ(x, y) : A → B(H), for x, y ∈ X,

is only assumed to be bounded (as opposed to completely bounded), then the complete

boundedness of the map Sϕ : S2(X × X,A) → S2(X × X,A) implies that ϕ(x, y) is in

fact completely bounded.

Let ϕ ∈ S(X,A). Then the map Sϕ has a (unique) completely bounded extension

to a map on K ⊗ A, which we denote in the same way. The following result, with the

additional assumptions that the set X be countable and the C∗-algebra A be separable,

was established in [MTT] as a special case of Theorem 2.6 therein. An inspection of the

proof shows that these assumptions are not needed when X is a discrete set endowed

with counting measure.

Theorem 2·1. Let X be a set, H a Hilbert space, A ⊆ B(H) a C∗-algebra, and ϕ :

X ×X → CB(A,B(H)) a bounded function. The following are equivalent:

(i) ϕ is a Schur A-multiplier;

(ii) there exist a Hilbert space K, a non-degenerate ∗-representation ρ : A→ B(K), and

bounded functions V,W : X → B(H,K) such that

ϕ(x, y)(a) = V (x)∗ρ(a)W (y), x, y ∈ X, a ∈ A.

Moreover, if (i) holds true then the functions V and W in (ii) can be chosen so that

‖ϕ‖m = supx∈X ‖V (x)‖ supy∈X ‖W (y)‖.

Suppose that ϕ ∈ S(X,A). The map Sϕ : K⊗A→ K⊗B(H) has a canonical extension

to a map from B(`2(X))⊗A into the weak* spatial tensor product B(`2(X))⊗̄B(H), which

we now describe. Let ρ, V and W be as in Theorem 2·1 (ii). Fix T ∈ B(`2(X))⊗A and

write T = (ax,y)x,y, where ax,y ∈ A, x, y ∈ X. Since ρ is completely bounded, we have

that ρ(∞)(T )
def
= (ρ(ax,y))x,y defines a bounded operator on `2(X)⊗H. Letting V (resp.

W ) be the diagonal operator from `2(X) ⊗ H into `2(X) ⊗K with entries V (x) (resp.

W (y)), we set

Φ(T ) = V ∗ρ(∞)(T )W. (2·1)

We have that Φ(T ) = (V (x)∗ρ(ax,y)W (y))x,y and thus Φ agrees with the map Sϕ on

K⊗A. In the sequel, if needed we will use the same symbol, Sϕ, to denote the mapping

Φ. Note that the mapping Φ coincides with the restriction to B(`2(X)) ⊗ A of the map

E ◦ S∗∗ϕ , where S∗∗ϕ : B(`2(X))⊗̄A∗∗ → B(`2(X))⊗̄B(H)∗∗ is the second dual of Sϕ and

E : B(`2(X))⊗̄B(H)∗∗ → B(`2(X))⊗̄B(H) is the canonical projection, whose existence

follows from the fact that B(H) is a dual Banach space.

Recall that a kernel k : X × X → A is called hermitian if k(x, y)∗ = k(y, x) for all

x, y ∈ X, and that k is called positive definite if(
k(xi, xj)

)
i,j
∈Mn(A)+, for all x1, . . . , xn ∈ X and all n ∈ N.

Proposition 2·2. Let k ∈ `2(X × X,A) be a hermitian kernel. The operator Tk is

positive if and only if k is positive definite.
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Proof. Suppose that k is positive definite and ξ ∈ `2(X,H) is finitely supported, say

supp(ξ) = {x1, . . . , xn}. Then

〈Tkξ, ξ〉 =
∑
x∈X

〈∑
y∈X

k(x, y)ξ(y), ξ(x)

〉
=

n∑
i,j=1

〈k(xi, xj)ξ(xj), ξ(xi)〉 ≥ 0.

Since the H-valued functions with finite support are dense in `2(X,H), we conclude that

the operator Tk is positive.

Now suppose that Tk is positive. Let ξ1, . . . , ξn ∈ H and x1, . . . , xn ∈ X. Define

ξ ∈ `2(X,H) by letting

ξ(x) =

{
ξi x = xi;

0 otherwise.

Then ∑
i,j

〈k(xi, xj)ξj , ξi〉 = 〈Tkξ, ξ〉 ≥ 0,

so k is positive definite.

Definition 2·3. A bounded function ϕ : X × X → CB(A,B(H)) will be called of

positive type if, for any x1, . . . , xm ∈ X and any ap,q ∈ A, p, q = 1, . . . ,m, such that

(ap,q)p,q ∈Mm(A)+, we have that(
ϕ(xp, xq)(ap,q)

)
p,q
∈Mm(B(H))+.

Remark 2·4. If we only assume that each ϕ(x, y) is bounded then being of positive

type implies the complete boundedness of ϕ(x, y) for all x, y ∈ X. The latter statement

follows by arguments similar to those in the proof of Theorem 2·6 below.

Lemma 2·5. Suppose that a bounded function ϕ : X×X → CB(A,B(H)) is of positive

type.

(i) If x1, . . . , xm ∈ X and Cp,q ∈ Mn(A), p, q = 1, . . . ,m, are such that (Cp,q)p,q ∈
Mmn(A)+, then (

ϕ(xp, xq)
(n)(Cp,q)

)
p,q
∈Mmn(B(H))+; (2·2)

(ii) If k ∈ `2(X ×X,A) is a positive definite kernel then ϕ · k is such, too.

Proof. (i) Letting Cp,q = (ap,qi,j )ni,j=1, we have that (ap,qi,j )p,i,q,j ∈ Mmn(A)+. Set yp,i =

xp, p = 1, . . . ,m, i = 1, . . . , n. Then(
ϕ(xp, xq)

(n)(Cp,q)
)
p,q

=
(
ϕ(yp,i, yq,j)(a

p,q
i,j )
)
p,i,q,j

∈Mmn(A)+.

(ii) is straightforward from the definitions.

The following theorem provides a characterisation of those Schur A-multipliers ϕ for

which Sϕ is completely positive.

Theorem 2·6. Let X be a set, H a Hilbert space, A ⊆ B(H) a non-degenerate C∗-

algebra, and ϕ : X×X → CB(A,B(H)) a bounded function. The following are equivalent:

(i) ϕ is of positive type;

(ii) ϕ is a Schur A-multiplier, Sϕ is completely positive as a map from K⊗A to K⊗B(H),

and ‖Sϕ‖cb = supx∈X ‖ϕ(x, x)‖cb;
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(iii) there exists a Hilbert space K, a non-degenerate ∗-representation ρ : A → B(K),

and a bounded function V : X → B(H,K), such that

ϕ(x, y)(a) = V (x)∗ρ(a)V (y), x, y ∈ X, a ∈ A.

Further, if these conditions hold then the canonical extension of Sϕ to B(`2(X))⊗̄B(H)

is also completely positive.

Proof. (i)⇒(ii) Let ϕ : X × X → CB(A,B(H)) be of positive type and assume that

ki,j ∈ `2(X ×X,A), i, j = 1 . . . , n, are such that T = (Tki,j )i,j is a positive operator. Let

[n] = {1, . . . , n}, Y = [n]×X and k : Y ×Y → A be given by k(i, x, j, y) = ki,j(x, y). After

identifying `2(Y,H) with Cn⊗`2(X,H), and B(`2(Y,H)) with Mn(B(`2(X,H)), we have

that T = Tk. By Proposition 2·2, k is positive definite. Let ψ : Y × Y → CB(A,B(H))

be given by ψ(i, x, j, y) = ϕ(x, y) for all i, j ∈ [n] and all x, y ∈ X. We claim that ψ is

of positive type. Indeed, let m ∈ N, x1, . . . , xm ∈ X, and (ai,p,j,q)i,p,j,q ∈Mnm(A)+. Set

Cp,q = (ai,p,j,q)i,j ∈Mn(A). By Lemma 2·5 (i),

(ψ(i, xp, j, xq)(ai,p,j,q))i,p,j,q = (ϕ(n)(xp, xq)(Cp,q)) ∈Mmn(B(H))+.

By Lemma 2·5 (ii), ψ · k is positive definite. In addition, (Tϕ·ki,j )i,j = Tψ·k, and an-

other application of Proposition 2·2 shows that (Tϕ·ki,j )i,j ∈ Mn(B(H))+. Thus, Sϕ is

completely positive on S2(X ×X,A).

Set C = supx∈X ‖ϕ(x, x)‖cb. Let E ⊆ X be a finite set, say |E| = m. We view `2(E)⊗H
as a subspace of `2(X) ⊗ H, and Mm ⊗ A ≡ S2(E × E,A) ⊆ S2(X × X,A). The map

Sϕ leaves S2(E × E,A) invariant and, by the previous paragraph, its restriction Sϕ,E
to the latter space is completely positive. Let (ei)i∈I be an approximate unit in A. It

is easy to check that the family (ẽi)i∈I , where ẽi is the ‘diagonal function’ constantly

equal to ei, is an approximate unit in the C∗-algebra S2(E × E,A). Since each of the

maps ϕ(x, x) is completely positive, and for a completely positive map on a C*-algebra

its completely bounded norm can be expressed as the limit of the norms of the images

of an approximate unit (as follows from Stinespring theorem for non-unital completely

positive maps, see for example Appendix A of [NeS]), we have

‖Sϕ,E‖cb = lim
i∈I
‖Sϕ,E(ẽi)‖ = lim

i∈I
max
x∈E
‖ϕ(x, x)(ei)‖ = max

x∈E
‖ϕ(x, x)‖cb ≤ C.

Since the spaces (S2(E×E,A))E⊆X form an upwards directed net dense in S2(X×X,A),

where the indexing set of all finite subsets of X is given the inclusion order, we conclude

that Sϕ is completely bounded on S2(X×X,A) and ‖Sϕ‖cb ≤ C. Since the map ϕ(x, x) is

a compression of Sϕ, we have that ‖ϕ(x, x)‖cb ≤ ‖Sϕ‖cb, x ∈ X, and hence ‖Sϕ‖cb = C.

On the other hand, the density of S2(X × X,A) in K ⊗ A implies that the matricial

cones of K ⊗ A are closures of the corresponding cones of S2(X ×X,A). It follows that

Sϕ : K ⊗A→ K⊗A is completely positive.

(ii)⇒(iii) follows the steps of the proof of [MTT, Theorem 2.6], using the Stinespring

theorem instead of the Haagerup-Paulsen-Wittstock theorem. We leave the detailed ver-

ification to the interested reader.

(iii)⇒(i) Let x1, . . . , xm ∈ X and ap,q ∈ A be such that C = (ap,q)p,q ∈ Mm(A)+.

Letting V = ⊕mp=1V (xp), we have that

(ϕ(xp, xq)(ap,q))p,q = ((V (xp)
∗(ρ(ap,q))V (xq))p,q

= V ∗ρ(m)(C)V ∈Mm(B(H))+.
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The last statement follows from the representation (2·1), taking into account that in

the case Sϕ is completely positive we may choose V = W .

We fix a discrete group G, a Hilbert space H, a non-degenerate C∗-algebra A ⊆ B(H),

and a homomorphism α : G → Aut(A); we thus have that (A,G, α) is a C∗-dynamical

system. We let `1(G,A) be the ∗-algebra of all summable functions f : G→ A. We write

H = `2(G)⊗H and identify H with `2(G,H). We denote by λ : G→ B(H), t→ λt, the

unitary representation of G given by λtξ(s) = ξ(t−1s), s ∈ G, ξ ∈ H, and write λ0
t for

the corresponding left regular unitary acting on `2(G). Thus, λt = λ0
t ⊗ I. We also let

π : A→ B(H) be the ∗-representation given by π(a)ξ(s) = αs−1(a)(ξ(s)), s ∈ G, a ∈ A.

We note the covariance relation

π(αt(a)) = λtπ(a)λ∗t , a ∈ A, t ∈ G. (2·3)

The pair (π, λ) gives rise to a ∗-representation π̃ : `1(G,A)→ B(H) such that

π̃(f) =
∑
s∈G

π(f(s))λs, f ∈ `1(G,A). (2·4)

(Note that the series on the right hand side of (2·4) converges in norm for every f ∈
`1(G,A).) The reduced crossed product Aoα,r G is defined by letting

Aoα,r G = π̃(`1(G,A)),

where the closure is taken in the operator norm of B(H). Note that, after identifying A

with π(A), we may consider A as a C∗-subalgebra of Aoα,r G.

Identifying H with ⊕s∈GH, we associate to every operator x ∈ B(H) a corresponding

matrix (xs,t)s,t∈G, where xs,t ∈ B(H) (we use the standard identification: for ξ, η ∈ H
and s, t ∈ G we have 〈x(δt ⊗ ξ), δs ⊗ η〉 = 〈xs,tξ, η〉). Note that if x ∈ Aoα,r G then the

diagonal of its matrix coincides with (αt−1(ax))t∈G for some ax ∈ A. This in particular

implies that the transformation E that maps x to ax is a conditional expectation from

Aoα,rG onto A. We also consider the maps Et : Aoα,rG→ A given by Et(x) = E(xλ∗t );

note that Ee = E . Thus, to every operator x ∈ A oα,r G, one can associate the family

(at)t∈G ⊆ A, where at = Et(x); we write x ∼
∑
t∈G π(at)λt, although the series is formal

and no convergence is assumed. We note that

αt(E(x)) = E(λtxλ
∗
t ), t ∈ G, x ∈ Aoα,r G. (2·5)

The latter equality is straightforward in the case x =
∑
s∈F π(as)λs for a finite subset

F ⊆ G, and follows by continuity for a general x ∈ A oα,r G. Similarly, we can check

that for any x ∈ Aoα,r G and p, q ∈ G, we have xp,q ∈ A and

xp,q = αp−1(xe,qp−1). (2·6)

Finally note that, as is well-known, the construction of the reduced crossed product

does not depend (up to a ∗-isomorphism) on the choice of the initial faithful embedding

A ⊆ B(H).

If F : G → CB(A) is a bounded map and f ∈ `1(G,A), let F · f ∈ `1(G,A) be the

function given by

(F · f)(t) = F (t)(f(t)), t ∈ G.

Recall [MTT] that F is called a Herz-Schur (A,G, α)-multiplier (or simply a Herz-Schur
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multiplier if the dynamical system is clear from the context) if the map SF , given by

SF (π̃(f)) = π̃(F · f), f ∈ `1(G,A),

is completely bounded. If F is a Herz-Schur multiplier, then the map SF has a (unique)

extension to a completely bounded map on Aoα,r G, which will be denoted in the same

way.

For a bounded function F : G→ CB(A), let N (F ) : G×G→ CB(A) be the function

given by

N (F )(s, t)(a) = αs−1(F (st−1)(αs(a))), s, t ∈ G, a ∈ A.

It was shown in [MTT] that N is an isometric injection from the algebra of all Herz-

Schur (A,G, α)-multipliers into the algebra of all Schur A-multipliers. We note that in

[MTT] a different (but similar) convention was used for defining N (F ); however we

found that for the purposes of positivity the definition given above is more natural.

Definition 2·7. Let (A,G, α) be a C∗-dynamical system. A Herz-Schur (A,G, α)-

multiplier F will be called completely positive if the map SF : A oα,r G → A oα,r G is

completely positive.

Theorem 2·8. Let F : G→ CB(A) is a bounded function. The following are equiva-

lent:

(i) F is a completely positive Herz-Schur (A,G, α)-multiplier;

(ii) the function N (F ) is of positive type;

(iii) N (F ) is a Schur A-multiplier and SN (F ) is completely positive.

Moreover, if (i) holds then ‖SF ‖cb = ‖SN (F )‖cb = ‖F (e)‖cb.

Proof. (i)⇒(ii) Let n ∈ N, ai ∈ A and si ∈ G, i = 1, . . . , n. Using (2·3), we obtain

(π(αsi(a
∗
i aj))λsis−1

j
)ni,j=1 = (λsiπ(a∗i aj)λ

∗
sj )ni,j=1 ∈Mn(Aoα,r G)+,

and hence

X
def
= (λsiπ(αs−1

i
(F (sis

−1
j )(αsi(a

∗
i aj))))λs−1

j
)ni,j=1

= (π(F (sis
−1
j )(αsi(a

∗
i aj)))λsis−1

j
)ni,j=1 ∈Mn(Aoα,r G)+.

Letting Λ ∈ Mn(A oα,r G) be the diagonal matrix with diagonal entries (in this order)

λs−1
1
, . . . , λs−1

n
, we have that

(π(αs−1
i

(F (sis
−1
j )(αsi(a

∗
i aj)))))

n
i,j=1 = ΛXΛ∗ ∈Mn(Aoα,r G)+.

Since every positive matrix in Mn(A) is the sum of matrices of the form (a∗i aj)i,j , we

have that N (F ) is of positive type.

(ii)⇒(iii) follows from Theorem 2·6.

(iii)⇒(i) It suffices to show that SN (F )(π(a)λs) = π(F (s)(a))λs for all a ∈ A and

s ∈ G. Let a ∈ A and s ∈ G. Writing (bp,q)p,q∈G for the A-valued matrix of π(a)λs, we

have that

bp,q =

{
αp−1(a), if pq−1 = s;

0 otherwise.
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Thus, SN (F )(π(a)λs) = (cp,q)p,q∈G, where

cp,q =

{
N (F )(p, q)(αp−1(a)), if pq−1 = s;

0 otherwise;

that is, SN (F )(π(a)λs) = π(F (s)(a))λs.

Finally, the equalities involving the norms follow from [MTT, Theorem 3.8] and The-

orem 2·6.

Corollary 2·9. Let ϕ : G×G→ CB(A) be a Schur A-multiplier. The following are

equivalent:

(i) Sϕ is completely positive and leaves Aoα,r G invariant;

(ii) ϕ = N (F ) for some completely positive Herz-Schur (A,G, α)-multiplier F : G →
CB(A).

Proof. (i)⇒(ii) The fact that Sϕ leaves A oα,r G invariant shows that if s ∈ G then

for every a ∈ A there exists b ∈ A such that

ϕ(p, q)(αp−1(a)) = αp−1(b), whenever pq−1 = s.

Thus, the function (p, q) → αp(ϕ(p, q)(αp−1(a))) depends only on pq−1. Set F (s)(a) =

αp(ϕ(p, q)(αp−1(a))), where p, q ∈ G are such that pq−1 = s. Then F : G → CB(A) is

well-defined and N (F ) = ϕ. Since Sϕ is completely positive, F is a completely positive

Herz-Schur (A,G, α)-multiplier.

(ii)⇒(i) follows from Theorem 2·8.

Remarks 2·10. (i) It follows from Theorem 2·6 that if F : G→ CB(A) is a bounded

function such that the function N (F ) is of positive type then F is automatically a Herz-

Schur (A,G, α)-multiplier.

(ii) Suppose that F : G→ CB(A) is a Herz-Schur (A,G, α)-multiplier. The positivity of

the map SF : Aoα,r G→ Aoα,r G does not imply its complete positivity. This becomes

evident if one considers the case where G = {e} and A is any C∗-algebra that admits

positive maps that are not completely positive (e.g. A = Mn for n ≥ 2).

We next compare the notion of completely positive Herz–Schur (A,G, α)-multipliers to

other similar notions that can be found in the literature. Let (A,G, α) be a C∗-dynamical

system.

• Let us call a function T : G × A → A, which is linear in the second variable,

positive definite in the sense of Bédos-Conti, or BC positive definite, if for any

n ∈ N, any s1, . . . , sn ∈ G, and any a1, . . . , an ∈ A, the matrix(
αsi
(
T (s−1

i sj , αs−1
i

(a∗i aj))
))n
i,j=1

is a positive element ofMn(A). This definition was given by Bédos and Conti [BéC,

Definition 4.7] in the more general case of a twisted C∗-dynamical system; here

we consider only the trivial twist and have simplified the definition accordingly.

• Let us call a function h : G→ Z(A) positive definite in the sense of Dong-Ruan,

or DR positive definite, if, for any n ∈ N and any s1, . . . , sn ∈ G, the matrix(
αsj
(
h(s−1

i sj)
))n
i,j=1



10 A. McKee, A. Skalski, I. G. Todorov, L. Turowska

is a positive element ofMn(A). This definition was given by Dong and Ruan [DoR,

p. 436]; only centre-valued functions are considered because this is a necessary

condition for such a map to be a ‘multiplier’ of the reduced crossed product in

the sense of [DoR].

• Let us call a function ϕ : G → A α-positive definite, if for any n ∈ N and any

s1, . . . , sn ∈ G the matrix (
αsi
(
ϕ(s−1

i sj)
))n
i,j=1

is a positive element of Mn(A). This definition was given in [A-D, Définition 2.1],

and used in [BéC, p. 3].

We comment on how the above notions compare to Definition 2·7; we will not consider

DR positive definiteness since it is similar to α-positive definiteness.

One can easily show that a function T : G×A→ A, which is linear in the second vari-

able, is a completely bounded multiplier of (A,G, α) in the sense of Bédos–Conti [BéC]

if and only if the function

FT : G→ CB(A); FT (t)(a)
def
= T (t, a), t ∈ G, a ∈ A,

is a Herz–Schur (A,G, α)-multiplier. Let n ∈ N, s1, . . . , sn ∈ G, and a1, . . . , an ∈ A; then(
αs−1

i

(
T (sis

−1
j , αsi(a

∗
i aj))

))n
i,j=1

=
(
αs−1

i

(
FT (sis

−1
j )
(
αsi(a

∗
i aj)

)))n
i,j=1

=
(
N (FT )(si, sj)(a

∗
i aj)

)n
i,j=1

.

This implies that T is BC positive definite if and only if FT is a Herz–Schur (A,G, α)-

multiplier of positive type, since any positive matrix in Mn(A) is a sum of matrices of

the form (a∗i aj)
n
i,j=1.

Now suppose that ϕ : G→ Z(A) is α-positive definite. Let Fϕ : G→ CB(A) be given

by

Fϕ(t)(a) = ϕ(t)a, t ∈ G, a ∈ A.

Let n ∈ N, s1, . . . , sn ∈ G, and (ai,j) a positive matrix in Mn(A); then(
N (Fϕ)(si, sj)(ai,j)

)n
i,j=1

=
(
αs−1

i

(
Fϕ(sis

−1
j )
(
αsi(ai,j)

)))n
i,j=1

=
(
αsi
(
ϕ(sis

−1
j )
)
ai,j

)n
i,j=1

,

which is positive as the Schur product of a positive matrix in Mn(Z(A)) and a positive

matrix in Mn(A) (as follows from an elementary calculation; note that the argument

would not be valid for general A-valued maps). Conversely, if N (Fϕ) is a Herz-Schur

(A,G, α)-multiplier of positive type then, since the matrix in Mn(A) with all entries

equal to 1A is positive, we have for any n ∈ N and any s1, . . . , sn ∈ G,

0 ≤
(
N (Fϕ)(si, sj)(1A)

)n
i,j=1

=
(
αs−1

i

(
ϕ(sis

−1
j )
))n
i,j=1

,

which shows that ϕ is an α-positive definite function.

We finish this section by exhibiting a class of examples of positive Herz-Schur (A,G, α)-

multipliers.
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Proposition 2·11. Let F be a finite subset of G and Φ ∈ CB(A). The map hF : G→
B(A), given by

hF (s)(a) =
∑

p∈F∩sF
αp ◦ Φ ◦ α−1

p (a), a ∈ A,

is a Herz-Schur (A,G, α)-multiplier with ‖ShF
‖cb ≤ |F |‖Φ‖cb. Moreover, hF is a com-

pletely positive Herz-Schur (A,G, α)-multiplier if the map Φ is completely positive.

Proof. We have

N (hF )(s, t)(a) = αs−1(hF (st−1)(αs(a))) =
∑

p∈F∩st−1F

αs−1p(Φ(αp−1s(a)))

=
∑

p∈(s−1F )∩(t−1F )

αp(Φ(α−1
p (a)))

=
∑
p∈G

χs−1F (p)αp(Φ(α−1
p (a)))χt−1F (p)

(here we denote by χE the characteristic function of a set E). As αp ◦Φ ◦ α−1
p is a com-

pletely bounded map on A for each p ∈ G, there exist a Hilbert space Hp, ∗-representation

πp : A→ B(Hp) and bounded operators Vp,Wp ∈ B(H,Hp) such that

(αp ◦ Φ ◦ α−1
p )(a) = V ∗p πp(a)Wp, a ∈ A,

and ‖αp ◦ Φ ◦ α−1
p ‖cb = ‖Φ‖cb = ‖Vp‖2 = ‖Wp‖2.

Let ρ = ⊕p∈Gπp : A → B(⊕p∈GHp), and V (s),W (s) : H → ⊕p∈GHp be the column

operators given by V (s) = (χs−1F (p)Vp)p∈G and W (s) = (χs−1F (p)Wp)p∈G. The latter

are bounded operators with norms

‖V (s)‖ =

∥∥∥∥∥∥
∑

p∈s−1F

V ∗p Vp

∥∥∥∥∥∥
1/2

≤ |F |1/2‖Φ‖1/2cb

and

‖W (t)‖ =

∥∥∥∥∥∥
∑

p∈t−1F

W ∗pWp

∥∥∥∥∥∥
1/2

≤ |F |1/2‖Φ‖1/2cb .

Moreover,

N (hF )(s, t)(a) = V (s)∗ρ(a)W (t), s, t ∈ G.

Hence, by Theorem 2·1, N (hF ) is a Schur A-multiplier with ‖N (hF )‖m ≤ |F |‖Φ‖cb.

By [MTT, Theorem 3.8], hF is a Herz-Schur (A,G, α)-multiplier. If Φ is completely

positive then we can choose Vp = Wp and hence V (s) = W (s) for every s ∈ G. In

this case, by Theorem 2·6 and Theorem 2·8, hF is a completely positive Herz-Schur

(A,G, α)-multiplier.

3. The Haagerup property

In this section we let A be a unital C∗-algebra, whose identity will be denoted by 1A,

equipped with a faithful tracial state τ . We denote by L2(A, τ) the completion of A with

respect to the norm ‖a‖2,τ := (τ(a∗a))1/2. We say that a map Φ : A→ A is L2-bounded

if there exists a constant C > 0 such that ‖Φ(a)‖2,τ ≤ C‖a‖2,τ for every a ∈ A. If this
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happens, there exists a (unique) bounded operator TΦ : L2(A, τ) → L2(A, τ) with the

property that TΦ(a) = Φ(a) whenever a ∈ A. An L2-bounded map Φ will be called L2-

compact if TΦ is compact. An application of the Cauchy-Schwarz inequality shows that

a unital completely positive map Φ satisfying the condition τ ◦Φ ≤ τ is L2-bounded and

that TΦ is a contraction.

The following definition is due to Dong [Don].

Definition 3·1. The pair (A, τ), where A is a unital C∗-algebra and τ is a faithful

tracial state on A, is said to possess the C∗-algebra Haagerup property if there exists a

net (Φi)i∈I of unital completely positive maps on A such that
(i) τ ◦ Φi ≤ τ for all i ∈ I;

(ii) Φi is L2-compact for all i ∈ I;

(iii) ‖Φi(x)− x‖2,τ → 0, for all x ∈ A.

Let (A,G, α) be a C∗-dynamical system, where the group G is discrete, A has a faithful

tracial state τ , and α is τ -preserving. Following Dong [Don], we will consider the reduced

crossed product Aoα,r G endowed with the induced trace τ ′, given by

τ ′(x) = τ(E(x)), x ∈ Aoα,r G.

Lemma 3·2. Let F : G → CB(A) be a completely positive Herz-Schur (A,G, α)-

multiplier such that τ ◦ F (e) ≤ τ and F (e)(1A) = 1A. Then F (t) is L2-bounded and

TF (t) is a contraction, for each t ∈ G.

Proof. Set ϕ = N (F ); for s, t ∈ G, a ∈ A we have ϕ(s, t)(a) = αs−1(F (st−1)(αs(a))).

Since ϕ is of positive type, it is hermitian. Thus, if s, t ∈ G and b ∈ A, we have

ϕ(t, s)(b∗) = ϕ(s, t)(b)∗, that is,

αt−1(F (ts−1)(αt(b
∗))) = αs−1(F (st−1)(αs(b)))

∗, s, t ∈ G, b ∈ A.

Letting a = αt(b) and using the fact that α is a homomorphism, we obtain

F (ts−1)(a∗) = αts−1(F (st−1)(αst−1(a)))∗,

and so

F (r)(a∗) = αr(F (r−1)(αr−1(a)))∗, r ∈ G, a ∈ A;

the latter identity can also be rewritten as

F (r)(a)∗ = αr(F (r−1)(αr−1(a)∗)), r ∈ G, a ∈ A. (3·1)

Fix a ∈ A and let a1 = 1A and a2 = a∗. In (2·2), set m = 2, n = 1, x1 = e, x2 = t,

ap,q = apa
∗
q , p, q = 1, 2. Since ϕ is of positive type, we have(

F (e)(1A) F (t−1)(a)

αt−1(F (t)(αt(a
∗))) αt−1(F (e)(αt(a

∗a)))

)
∈M2(A)+.

Since F (e)(1A) = 1A, and αt is unital and completely positive,(
1A αt(F (t−1)(a))

F (t)(αt(a
∗)) F (e)(αt(a

∗a))

)
∈M2(A)+;

writing b = αt(a
∗), we have(

1A αt(F (t−1)(αt−1(b∗)))

F (t)(b) F (e)(bb∗)

)
∈M2(A)+.
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In view of (3·1), (
1A F (t)(b)∗

F (t)(b) F (e)(bb∗)

)
∈M2(A)+

and hence

F (t)(b)F (t)(b)∗ ≤ F (e)(bb∗).

It follows that

‖F (t)(b)‖22,τ = τ(F (t)(b)∗F (t)(b)) ≤ τ(F (e)(bb∗))

≤ τ(bb∗) = τ(b∗b) = ‖b‖22,τ ,

for every b ∈ A; thus, F (t) is L2-bounded and TF (t) is a contraction.

In view of Lemma 3·2, condition (i) in the following definition implies that Fi(s) is

L2-bounded, s ∈ G, i ∈ I, and hence it makes sense to formulate conditions (ii) and (iii)

in the subsequent definition.

Definition 3·3. Let (A,G, α) be a C∗-dynamical system, where the group G is dis-

crete, A has a faithful tracial state τ , and α is τ -preserving. We say that (A,G, α, τ)

has the Haagerup property if there is a net (Fi)i∈I of completely positive Herz-Schur

(A,G, α)-multipliers such that

(i) Fi(e) is unital and τ ◦ Fi(e) ≤ τ , i ∈ I;

(ii) Fi(t) is L2-compact, t ∈ G;

(iii) the function s→ ‖TFi(s)‖ vanishes at infinity, i ∈ I;

(iv) ‖Fi(t)(a)− a‖2,τ → 0 for all t ∈ G and all a ∈ A.

We note that, in the case A = C, Definition 3·3 reduces to the definition of the

Haagerup property for the group G.

Let Φ be a bounded linear map on Aoα,rG, and hΦ : G→ B(A) be the function given

by

hΦ(s)(a) = E(Φ(π(a)λs)λ
∗
s). (3·2)

The next proposition can be found in [BéC]; for convenience of the reader we include a

proof.

Proposition 3·4. If Φ is a completely positive map on A oα,r G then hΦ is a com-

pletely positive Herz-Schur (A,G, α)-multiplier.

Proof. By Stinespring’s Theorem, there exist a Hilbert space K, an operator V : H →
K and a ∗-representation ρ : Aoα,r G→ B(K) such that

Φ(x) = V ∗ρ(x)V, x ∈ Aoα,r G.

Using (2·5), we have

N (hΦ)(s, t) = αs−1(hΦ(st−1)(αs(a))) = αs−1(E(Φ(π(αs(a))λst−1)λ∗st−1))

= αs−1(E(Φ(λsπ(a)λs−1λst−1)λ∗st−1))

= E(λs−1Φ(λsπ(a)λt−1)λtλs−1)λs))

= E(λs−1Φ(λsπ(a)λt−1)λt))

= E(λ∗sV
∗ρ(λs)ρ(π(a))ρ(λt)

∗V λt)).
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Letting V (s) = ρ(λs)
∗V λs, s ∈ G, we obtain

N (hΦ)(s, t) = E(V (s)∗ρ(π(a))V (t))), a ∈ A, s, t ∈ G.

It follows that hΦ is a function of positive type.

We will denote by L2(τ) (resp. L2(τ ′)) the Hilbert space L2(A, τ) (resp. L2(A oα,r
G, τ ′)). For t ∈ G, let L2

t (τ
′) be the closure, in the norm ‖ · ‖2,τ ′ , of the subspace

Lt := {π(a)λt : a ∈ A} (3·3)

of L2(τ ′).

Lemma 3·5. The following statements hold true.
(i)We have an orthogonal decomposition

L2(τ ′) = ⊕t∈GL2
t (τ
′). (3·4)

(ii)For each t ∈ G, the map a→ π(a)λt extends to an isometry Vt from L2(τ) to L2(τ ′),

such that Vt(L
2(τ)) = L2

t (τ
′).

(iii)Let Pt the orthogonal projection of L2(τ ′) onto L2
t (τ
′). Then the map V ∗t Pt : L2(τ ′)→

L2(τ) satisfies

V ∗t Pt(z) = E(zλ∗t ), z ∈ Aoα,r G.

Proof. (i) and (ii). If a, b ∈ A and s, t ∈ G then

〈π(a)λs, π(b)λt〉 = τ ′(λ∗tπ(b∗a)λs) = τ ′(π(b∗a)λst−1) = τ(E(π(b∗a)λst−1)).

It follows that Ls ⊥ Lt whenever s 6= t, and that the map a → π(a)λt extends to a

unitary from L2(τ) onto L2
t (τ
′). The claim follows from the fact that ∪t∈GLt is total in

L2(τ ′).
(iii) follows after a simple check for z = π(a)λs, combined with the continuity of the

involved maps.

In the next lemma, we use Lemma 3·5 to identify L2(τ ′) with ⊕t∈GL2(τ).

Lemma 3·6. Let F : G → CB(A) be a completely positive Herz-Schur (A,G, α)-

multiplier such that τ ◦ F (e) ≤ τ and F (e)(1A) = 1A. Then SF is L2-bounded and

TSF
= ⊕t∈GTF (t). In particular, TSF

is a contraction.

Proof. Clearly, SF leaves the space Lt, defined in (3·3), invariant. After identifying

L2
t (τ
′) with L2(τ) by Lemma 3·5, we have that the restriction of SF to Lt coincides

with F (t). By Lemma 3·2, ⊕t∈GTF (t) is a well-defined contraction. Since TF coincides

with the latter operator on a dense subspace, we conclude that SF is L2-bounded and

TSF
= ⊕t∈GTF (t).

Lemma 3·7. Let (Fi)i∈I be a net of completely positive Herz-Schur (A,G, α)-multipliers

such that Fi(e) is unital and τ ◦ Fi ≤ τ for each i. The following are equivalent:
(i) ‖SFi(x)− x‖2,τ ′ → 0, x ∈ Aoα,r G;

(ii) ‖Fi(t)(a)− a‖2,τ → 0 for all t ∈ G and all a ∈ A.

Proof. For s ∈ G and a ∈ A we have, by Lemma 3·5 (ii),

‖π(Fi(s)(a))λs − π(a)λs‖2,τ ′ = ‖Fi(s)(a)− a‖2,τ , i ∈ I.

The equivalence now follows easily from Lemma 3·6 and the fact that, by Lemma 3·6,

‖TSFi
‖ ≤ 1 for all i ∈ I.
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Now we can characterise the Haagerup property for Aoα,r G.

Theorem 3·8. Let (A,G, α) be a C∗-dynamical system, where the group G is discrete,

A has a faithful tracial state τ and α is τ -preserving. The following are equivalent:

(i) (A,G, α, τ) has the Haagerup property;

(ii) (Aoα,r G, τ ′) has the C∗-algebra Haagerup property.

Proof. (i)⇒(ii) Let (Fi)i∈I be a net of completely positive Herz-Schur (A,G, α)-

multipliers satisfying conditions (i)–(iv) of Definition 3·3. Since Fi(e)(1A) = 1A, the

map SFi is unital. By definition, SFi is completely positive. By Lemma 3·6, TSFi
is a

compact contraction for all i ∈ I. By Lemma 3·7, (TSFi
)i∈I converges to the identity

operator in the strong operator topology.

(ii)⇒(i) Let (Φi)i∈I be a net associated with the C∗-algebra Haagerup property of

Aoα,rG as in Definition 3·1. Write Fi = hΦi
, i ∈ I. By Proposition 3·4, Fi is a completely

positive Herz-Schur (A,G, α)-multiplier. Since Φi is unital, Fi(e)(1A) = 1A. Moreover, if

a ∈ A+ then

(τ ◦ Fi(e))(a) = τ(E(Φi(π(a)))) = τ ′(Φi(π(a))) ≤ τ ′(π(a)) = τ(a);

that is, τ ◦ Fi(e) ≤ τ , i ∈ I.

Fix t ∈ G and a ∈ A. By the Cauchy-Schwarz inequality (see e.g. [Pau, Proposition

3.3]),

‖Fi(t)(a)‖22,τ = τ
(
E(Φi(π(a)λt)λ

∗
t )
∗(E(Φi(π(a)λt)λ

∗
t )
))

≤ τ
(
E
(
(Φi(π(a)λt)λ

∗
t )
∗(Φi(π(a)λt)λ

∗
t )
)

= τ ′
(

(Φi(π(a)λt)λ
∗
t )
∗(Φi(π(a)λt)λ

∗
t )
)

= ‖Φi(π(a)λt)‖22,τ ′

= ‖TΦi
(π(a)λt)‖22,τ ′ .

Since TΦi
is compact,

{Φi(π(a)λt) : ‖π(a)‖2,τ ′ ≤ 1}

is a relatively compact set. Since ‖π(a)‖2,τ ′ = ‖a‖2,τ , a ∈ A, it follows that the subset

{Fi(t)(a) : ‖a‖2,τ ≤ 1} of L2(τ ′) is relatively compact, and hence Fi(t) is L2-compact,

i ∈ I.

Letting Pt : L2(τ ′)→ L2
t (τ
′) be the orthogonal projection, we have that

TFi(t) = V ∗t PtTΦi
PtVt; (3·5)

indeed, for a ∈ A, by Lemma 3·5 (iii), we have

TFi(t)(a) = Fi(t)(a) = hΦi
(t)(a) = E(Φi(π(a)λt)λ

∗
t )

= V ∗t PtΦi(π(a)λt) = V ∗t PtTΦi
(π(a)λt) = V ∗t PtTΦi

PtVt(a).

Since Vt is an isometry, TΦi
is a compact operator, and Ps →s→∞ 0 in the strong

operator topology, we have that ‖TFi(t)‖ →t→∞ 0. On the other hand, identity (3·5)

and the uniform boundedness of the net (TFi(t))i∈I show that TFi(t) →i id in the strong

operator topology, and the proof is complete.

The following result is well-known (see for example [Men]); we next show how one can

deduce it quickly from our Theorem 3·8.
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Corollary 3·9. Let (A,G, α) be a C∗-dynamical system, where the group G is dis-

crete, A has a faithful tracial state τ and α is τ -preserving. Assume that (A oα,r G, τ ′)
has the C∗-algebra Haagerup property. Then G has the Haagerup property and (A, τ) has

the C∗-algebra Haagerup property.

Proof. By Theorem 3·8, there exists a net (Fi)i∈I of positive Herz-Schur (A,G, α)-

multipliers satisfying the conditions of Definition 3·3. Set

Ti = Fi(e), i ∈ I,
ϕi(s) = τ(Fi(s)(1A)), i ∈ I, s ∈ G.

The fact that the net (Ti)i∈I yields the C∗-algebra Haagerup property for A is a direct

consequence of Definitions 3·1 and 3·3. It thus suffices to check that (ϕi)i∈I is a net of

normalised positive definite functions on G vanishing at infinity and converging pointwise

to 1. The fact that ϕi is normalised is immediate from the unitality of Fi(e), i ∈ I. If

s ∈ G then

|ϕi(s)| = | 〈Fi(s)(1A), 1A〉2,τ | ≤ ‖1A‖2,τ‖TFi(s)‖‖1A‖2,τ = ‖TFi(s)‖,

and property (iii) in Definition 3·3 shows that ϕi(s)→ 0 as s→∞. Further,

|ϕi(s)− 1| = | 〈Fi(s)(1A)− 1A, 1A〉2,τ | ≤ ‖1A‖2,τ‖Fi(s)(1A)− 1A‖2,τ

and so, by condition (iv) in Definition 3·3, ϕi(s)→ 1. Finally, the positive definiteness of

ϕi can be checked by a standard matrix computation: given n ∈ N, s1, . . . , sn ∈ G and

µ1, . . . , µn ∈ C, we have

n∑
k,l=1

µkϕ(s−1
k sl)µl = τ ′

 n∑
k,l=1

µkSFi
(λs−1

k sl
)µlλs−1

l sk


= τ ′

 n∑
k,l=1

µkλskSFi(λs−1
k sl

)µlλs−1
l

 ,

where we used the trace property of τ ′. Now note that

n∑
k,l=1

µkλskSFi
(λs−1

k sl
)µlλs−1

l

coincides with the operator[
µ1λs1 · · · µnλsn

]
S

(n)
Fi

(
[λs−1

k sl
]nk,l=1

) [
µ1λs1 · · · µnλsn

]∗
,

which is positive since S
(n)
Fi

is so.

Remarks 3·10. (i) Note that the converse of Corollary 3·9, i.e. the statement that

if (A, τ) has the C∗-algebra Haagerup property and G has the Haagerup property then

(Aoα,rG, τ ′) has the C∗-algebra Haagerup property, which was claimed to hold in [Men],

is false: for example, both SL(2,Z) and Z2 have the Haagerup property but Z2oSL(2,Z)

does not (see the references given in [BrO, pg. 359, 374]). The error originates in the

earlier article [You]: the maps Φn considered at the beginning of Section 2 of [You] need

not be completely positive.

(ii) Dong and Ruan [DoR] study a Hilbert module version of the Haagerup approxi-

mation property for crossed products and show that the relevant approximating maps
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— which are required to be module maps — can always be constructed via multipliers

associated to maps of the form F (g)(a) = h(g)(a) (g ∈ G, a ∈ A), where h : G→ Z(A).

It is clear that the A-modularity condition on the maps SF , together with the positivity

requirement, force F to be of the type described above, making the potential class of

approximants much narrower compared to the one considered here. On the other hand,

as the approximation property of Dong and Ruan requires only the compactness of the

maps SF with respect to A, and not as Hilbert space operators, the conditions on the

multipliers they study do not involve any trace on A, which we need to impose in order

to obtain the genuine C∗-algebra Haagerup property.

4. Nuclearity

In this section, we provide a characterisation of the nuclearity of A oα,r G in terms of

Herz-Schur (A,G, α)-multipliers. Recall that a C∗-algebra B is called nuclear if, for any

other C∗-algebra A, the algebraic tensor product A�B admits a unique C∗-norm. It is

well-known (and due to Choi, Effros, and Kirchberg, see Theorem 3.8.7 in [BrO]) that

B is nuclear if and only if there exist a net (ki)i∈I of natural numbers and completely

positive contractions ϕi : B → Mki(C) and ψi : Mki(C) → B (which moreover can be

assumed to be unital) such that ‖(ψi ◦ϕi)(x)−x‖ → 0 for every x ∈ B. Let F(B) denote

the set of linear maps on B of finite rank; note that [ChE] shows that B is nuclear if

and only if there exists a net of completely positive contractions in F(B) approximating

the identity map on B pointwise in norm.

Definition 4·1. A C∗-dynamical system (A,G, α), where G is a discrete group and A

is a C∗-algebra, will be called nuclear if there exists a net (Fi)i∈I of completely positive,

finitely supported, Herz-Schur (A,G, α)-multipliers, such that

(i) ‖Fi(e)‖cb ≤ 1 for all i ∈ I,

(ii) Fi(s) ∈ F(A) for all s ∈ G and all i ∈ I, and

(iii) ‖Fi(s)(a)− a‖ →i∈I 0 for all s ∈ G and all a ∈ A.

For the next lemma recall the definition of the maps hΦ from (3·2).

Lemma 4·2. (i) Let (Fi)i∈I be a net of completely positive Herz-Schur multipliers of

(A,G, α) such that supi ‖Fi(e)‖ < ∞. Then ‖Fi(s)(a) − a‖ →i∈I 0 for all s ∈ G and

a ∈ A if and only if ‖SFi
(x)− x‖ →i∈I 0 for all x ∈ Aoα,r G.

(ii) If (Φi)i∈I is a net of bounded linear maps on Aoα,rG such that ‖Φi(x)−x‖ →i∈I 0

for every x ∈ Aoα,r G then ‖hΦi
(s)(a)− a‖ →i∈I 0 for every a ∈ A and every s ∈ G.

Proof. (i) Assume that ‖Fi(s)(a)− a‖ →i∈I 0 for all s ∈ G and a ∈ A. Since

‖SFi
‖cb = ‖SFi

(1)‖ = ‖Fi(e)(1A)‖

and supi ‖Fi(e)‖ < ∞, it suffices to show that ‖SFi
(x) − x‖ →i∈I 0 whenever x =∑

s∈E π(as)λs for a finite set E ⊆ G. But, in this case,

‖SFi
(x)− x‖ =

∥∥∥∥∥∑
s∈E

π(Fi(s)(a)− a)λs

∥∥∥∥∥ ≤∑
s∈E
‖Fi(s)(a)− a‖ →i∈I 0.

Conversely, suppose that ‖SFi
(x) − x‖ →i∈I 0 for all x ∈ A oα,r G. Then for fixed

s ∈ G and a ∈ A, we have

‖Fi(s)(a)− a‖ = ‖SFi
(π(a)λs)− π(a)λs‖ →i∈I 0.
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(ii) Assume that ‖Φi(x)− x‖ →i 0 for all x ∈ Aoα,r G. Then

‖hΦi(s)(a)− a‖ = ‖E(Φi(π(a)λs)λ
∗
s)− E((π(a)λs)λ

∗
s)‖

≤ ‖Φi(π(a)λs)− π(a)λs‖ →i∈I 0.

We are now ready to state and prove the main result of this section.

Theorem 4·3. Let G be a discrete group and (A,G, α) be a C∗-dynamical system.

The following are equivalent:

(i) (A,G, α) is nuclear;

(ii) Aoα,r G is nuclear.

Proof. (ii)⇒(i) Assume that the C∗-algebra B := A oα,r G is nuclear. Then there

exist a net (ki)i∈I ⊆ N and unital completely positive maps ϕi : B → Mki(C) and

ψi : Mki(C)→ B such that ψi ◦ ϕi →i∈I idB in point-norm topology. Let

B0 =

{∑
s∈F

π(as)λs : F ⊆ G is finite, as ∈ A, s ∈ F

}
.

We first show that there exists a net ψ̃i : Mki(C)→ B of completely positive contractions

such that the range of ψ̃i is in B0 and ψ̃i ◦ ϕi → idB in the point-norm topology.

Since ψi is completely positive, and the matrix (Ep,q)
ki
p,q=1 ∈ Mki(Mki(C)) is positive,

where {Ep,q : p, q = 1, . . . , ki} is the canonical matrix unit system of Mki(C), we have

(ψi(Ep,q))
ki
p,q=1 ∈ Mki(B)+. As Mki(B0)+ is dense in Mki(B)+, given εi > 0, i ∈ I,

εi →i∈I 0, there exists a matrix (bip,q)
ki
p,q=1 ∈Mki(B0)+ such that

‖(ψi(Ep,q))kip,q=1 − (bip,q)
ki
p,q=1‖ < εi/k

3
i .

Let ψ′i : Mki(C)→ B be the map given by

ψ′i((λp,q)
ki
p,q=1) =

ki∑
p,q=1

λp,qb
i
p,q.

By Choi’s Theorem [Pau, Theorem 3.14], ψ′i is completely positive; moreover,

|‖ψ′i‖cb − 1| = |‖ψ′i(1)‖ − ‖ψi(1)‖| ≤ ‖ψi(1)− ψ′i(1)‖

≤
ki∑
p=1

‖ψi(Ep,p)− bip,p‖ ≤ εi/k2
i .

Thus, ‖ψ′i‖cb →i∈I 1.

Let ψ̃i = ψ′i/‖ψ′i‖cb. Then ψ̃i is a completely positive contraction. Moreover, for each

p, q = 1, . . . , ki, we have

‖ψi(Ep,q)− ψ̃i(Ep,q)‖ ≤ ‖ψi(Ep,q)− ψ
′
i(Ep,q)‖+ |1− ‖ψ′i‖cb|‖ψi(Ep,q)‖

‖ψ′i‖cb

≤
(
εi
k3
i

+
εi
k2
i

)
/‖ψ′i‖cb,
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and estimating very roughly we obtain for every matrix x = (λp,q)
ki
p,q=1 ∈Mki(C)

‖(ψi − ψ̃i)((λp,q)p,q)‖ =

∥∥∥∥∥
ki∑

p,q=1

λp,q(ψi − ψ̃i)(Ep,q)

∥∥∥∥∥
≤

ki∑
p,q=1

|λp,q|‖(ψi − ψ̃i)(Ep,q)‖

≤
(
εi
k3
i

+
εi
k2
i

) ki∑
p,q=1

|λp,q|
‖ψ′i‖cb

≤
(
εi
ki

+ εi

)
‖(λp,q)p,q‖
‖ψ′i‖cb

,

giving

‖ψi − ψ̃i‖ ≤
2εi
‖ψ′i‖cb

.

Hence, for each x ∈ B,

‖(ψ̃i ◦ ϕi)(x)− x‖ ≤ ‖(ψ̃i − ψi) ◦ ϕi(x)‖+ ‖ψi ◦ ϕi(x)− x‖

≤ ‖ψ̃i − ψi‖‖x‖+ ‖(ψi ◦ ϕi)(x)− x‖ →i∈I 0.

Let Φi = ψ̃i ◦ ϕi and hi = hΦi
, i ∈ I. Note that, as the rank of Φi is finite,

there exists a finite set Fi ⊆ G such that, for each s ∈ G and a ∈ A, we have

Φi(π(a)λs) =
∑
t∈Fi

π(at)λt. By Proposition 3·4, hi is a completely positive Herz-Schur

(A,G, α)-multiplier such that ‖hi(e)‖cb ≤ 1. As hi(s)(a) = E(Φi(π(a)λs)λ
∗
s), and the

range of Φi is finite dimensional, so is the range of hi(s) for each s ∈ G, i ∈ I. Further,

as for any s, t ∈ G we have E(π(at)λtλ
∗
s) = at for s = t and zero otherwise, we obtain

that hi is finitely supported (on the set Fi). Moreover,

‖hi(s)(a)− a‖ = ‖E((Φi(π(a)λs)λ
∗
s))− E(π(a)λsλ

∗
s)))‖ →i∈I 0

for all a ∈ A and all s ∈ G.

(i)⇒(ii) Let (Fi)i∈I be a net satisfying the conditions of Definition 4·1. By Theorem 2·8,

the map Φi on Aoα,r G, given by

Φi

(∑
s∈E

π(as)λs

)
=
∑
s∈E

π(Fi(s)(as))λs,

where E ⊆ G is finite, is completely positive and ‖Φi‖cb = ‖Fi(e)‖ ≤ 1. As Fi is finitely

supported and Fi(s) ∈ F(A) for each s ∈ G, the range of Φi is finite dimensional. Since

‖Φi(x)− x‖ →i∈I 0 for x =
∑
s∈E π(as)λs with E a finite set, the uniform boundedness

of the net (Φi)i∈I shows that ‖Φi(x)−x‖ →i∈I 0 for every x ∈ Aoα,rG. Thus, Aoα,rG
is nuclear.

Remark 4·4. It follows from the above theorem that if (A,G, α) is a nuclear C*-

dynamical system then A is nuclear. This can be seen directly: the net (Fi(e))i∈I is a

sequence of completely positive, contractive, finite rank maps on A converging pointwise

to the identity.

We now indicate how to express the proof of the result given by Brown and Ozawa [BrO,
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Theorem 4.3.4] on amenable actions and nuclearity of the reduced crossed product in our

language. Assume for simplicity that A is a unital C∗-algebra with identity 1A.

Definition 4·5. We say that an action α of a discrete group G on a unital C∗-algebra

A is amenable if there exists a net (Ti)i∈I of finitely supported functions Ti : G→ Z(A)+

such that
∑
i∈I Ti(t)

2 = 1A and∥∥∥∥∥∑
s∈G

(Ti(s)− αt(Ti(t−1s)))∗(Ti(s)− αt(Ti(t−1s)))

∥∥∥∥∥→i∈I 0,

for every t ∈ G.

Corollary 4·6. Assume that G is a discrete group acting amenably on a unital, C∗-

algebra A. Then Aoα,r G is nuclear if and only if A is nuclear.

Proof. The forward implication follows from the existence of conditional expectation

from Aoα,r G onto A, and does not require amenability of the action (see Remark 4·4).

Assume that A is nuclear and the action of G on A is amenable. We will show that if

(Φj)j∈J is an approximating net of unital completely positive maps for A and (Ti)i∈I is

a net as in Definition 4·5 (where Ti is supported on Fi), then the maps Fi,j(s) (i ∈ I, j ∈
J, s ∈ G), given by

Fi,j(s)(a) =
∑
p∈G

Ti(p)αp(Φj(α
−1
p (a)))αs(Ti(s

−1p)), a ∈ A,

yield Herz-Schur multipliers providing the completely positive finite rank approximations

for Aoα,r G. Note that the summation above is in fact over the finite set Fi ∩ sFi.
We first show that Fi,j is a completely positive Herz-Schur (A,G, α)-multiplier. For s,

t ∈ G and a ∈ A, we have

N (Fi,j)(s, t)(a) =
∑
p∈G

αs−1(Ti(p)αp(Φj(α
−1
p (αs(a))))αst−1(Ti(ts

−1p)))

=
∑
p∈G

αs−1(Ti(p))αs−1p(Φj(α
−1
s−1p(a)))αt−1(Ti(ts

−1p)))

=
∑
p∈G

αs−1(Ti(sp))αp(Φj(α
−1
p (a)))αt−1(Ti(tp))).

As each Φj is a unital completely positive map on A ⊆ B(H), there exist Hilbert spaces

Hp,j , ∗-representations πp,j : A → B(Hp,j), and bounded operators Vp,j ∈ B(H,Hp,j),

such that

αp(Φj(α
−1
p (a))) = V ∗p,jπp,j(a)Vp,j , p ∈ G, j ∈ J, a ∈ A.

Moreover,

‖αp ◦ Φj ◦ α−1
p ‖cb = ‖Φj‖cb = ‖Vp,j‖2 = 1.

Let ρj := ⊕p∈Gπp,j and let Vi,j(s) : H → ⊕p∈GHp,j be the column operator given by

(Vp,jαs−1(Ti(sp)))p∈G. We then get

N (Fi,j)(s, t)(a) = Vi,j(s)
∗ρj(a)Vi,j(s)
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with

‖Vi,j(s)‖2 =

∥∥∥∥∥∥
∑
p∈G

αs−1(Ti(sp))
∗V ∗p,jVp,jαs−1(Ti(sp))

∥∥∥∥∥∥
≤

∥∥∥∥∥∥
∑
p∈G

αs−1(Ti(sp))
2

∥∥∥∥∥∥ =

∥∥∥∥∥∥
∑
p∈G

Ti(p)
2

∥∥∥∥∥∥ = 1.

By Theorems 2·6 and 2·8, Fi,j is a completely postive Herz-Schur (A,G, α)-multiplier.

Furthermore,

Fi,j(e)(a) =
∑
p∈Fi

Ti(p)αp(Φj(α
−1
p (a)))Ti(p)

and, since each Φj is a unital completely positive map,

‖Fi,j(e)‖cb = ‖Fi,j(e)(1A)‖ ≤

∥∥∥∥∥∥
∑
p∈G

Ti(p)
2

∥∥∥∥∥∥ = 1.

Since Φj ∈ F(A), we have that Fi,j(s) ∈ F(A) for all s ∈ G, i ∈ I and j ∈ J . Finally,

‖Fi,j(s)(a)− a‖ = ‖
∑

p∈Fi∩sFi

Ti(p)αp(Φj(α
−1
p (a)))αs(Ti(s

−1p))− a‖

≤ ‖
∑

p∈Fi∩sFi

Ti(p)αs(Ti(s
−1p))‖‖αp(Φj(α−1

p (a))− α−1
p (a))‖

+ ‖
∑

p∈Fi∩sFi

Ti(p)αs(Ti(s
−1p))− 1A)‖‖a‖.

The latter converges to zero for any s ∈ G by [BrO, Lemma 4.3.2].
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