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DARE: Data-Access Aware Refresh via Spatial-Temporal
Application-Resilience on Commodity Servers

Charalampos Chalios1, Giorgis Georgakoudis1, Konstantinos Tovletoglou1, George
Karakonstantis1, Hans Vandierendonck1 and Dimitrios S. Nikolopoulos1

Abstract
Power consumption and reliability of memory components are two of the most important hurdles in realizing exascale
systems. DRAM scaling projections indicate that with significant increase in DRAM capacity and density comes a
significant performance and power penalty, due to the conventional use of pessimistic refresh periods catering for
worst-case cell retention times. Recent approaches relax those pessimistic refresh rates only on “strong” cells, or build
on application-specific error resilience for data placement. However, these approaches cannot reveal the full potential
of a relaxed refresh paradigm shift, since they neglect additional application resilience properties related to the inherent
functioning of DRAM.
In this paper, we elevate Refresh-by-Access as a first-class property of application resilience. We develop a complete,
non-intrusive system stack, armed with low cost Data-Access Aware Refresh (DARE) methods, to facilitate aggressive
refresh relaxation and ensure non-disruptive operation on commodity servers. Essentially, our proposed access-aware
scheduling of application tasks intelligently amplifies the impact of the implicit refresh of memory accesses, extending
the period during which hardware refresh remains disabled, while limiting the number of potential errors, hence their
impact on an application’s output quality. The stack, implemented on an off-the shelf server and running a full-fledged
Linux OS, captures for the first time the intricate time-dependent system and data interactions in presence of hardware
errors, in contrast to previous architectural simulations approaches of limited detail. Results demonstrate that by
applying DARE it is possible to completely disable hardware refresh, with minor quality loss that ranges from 2%
to 18%, which is far less than the recent approaches based on only spatial properties for data placement.

Keywords

1 Introduction

Power consumption and system resilience are two of the
most important challenges towards exascale computing.
Projections (Bergman et al. (2008); Giridhar et al. (2013))
show that the memory subsystem will contribute up to
30% of the power budget in exascale systems because of
technology scaling of DRAM devices. Besides increasing
power, scaling the memory capacity will increase the
likelihood of errors, challenging the reliability of system
operation. Clearly, solutions must address both the need for
reduced power consumption and system resilient operation
to be acceptable.

The ever increasing need for memory capacity is driving
the aggressive scaling of Dynamic Random-Access Memory
(DRAM), which will continue to play a key role by offering
higher density than static RAMs (SRAM) and lower latency
than Non-Volatile Memory (NVM). However, aggressive
DRAM scaling is hampered by the need of periodic refresh
cycles to retain the stored data, the frequency of which
is conventionally being determined by the worst case
retention time of the most leaky cell. Such an approach
might guarantee error free storage, but its viability as the
parametric variations are worsening and the resultant spreads
in retention time increase are in doubt for future designs. In
fact, it is becoming apparent that most of the cells do not
require frequent refresh and designing for the worst case

leads rather to a large waste of power and throughput that
may reach up-to 25-50% and 30-50% respectively, in future
32Gb-64Gb densities (Liu et al. (2012)).

Recent approaches (Liu et al. (2012); Venkatesan et al.
(2006)) have exploited the spatial characteristics of non-
uniform retention of DRAM cells to relax DRAM refresh
rates. These methods aim at enabling error-free DRAM
storage by grouping rows into different retention bins and
applying a high refresh rate only for rows of low retention
times. However, such multirate-refresh techniques require
intrusive hardware modifications which are costly, hence
hinder their use. Equally important is that error-free storage
by these approaches may be impossible to achieve in
practice, since the retention time of cells changes over
time (Qureshi et al. (2015)). Therefore, methods that relax
the refresh rates of DRAM should be aware that errors are
unavoidable and must be mitigated.

While it is possible to deal with errors in DRAM with
error correcting schemes (Qureshi et al. (2015)), these
may incur significant power consumption, negating the
gains from using relaxed refresh rates. A more viable
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alternative is to mask errors, acknowledging the inherent
error-resilient properties of many real world applications.
Recent studies (Sampson et al. (2011); Chippa et al.
(2013)) have revealed numerous error-resilience properties
of applications, such as probabilistic input data processing,
iterative execution patterns that resolve or mitigate errors,
algorithmic smoothing of the impact of errors, or user
tolerance to small deviations in output quality. These error-
resilience properties provide opportunities to relax the
DRAM refresh cycles without concern about the resulting
faults, at least on some application data.

A limited number of studies (Liu et al. (2011); Raha
et al. (2015)) have attempted to leverage application error-
resilience to relax DRAM refresh rates. Invariably, these
studies build on the concept of data criticality to allocate
them on either of two different memory domains; one
being refreshed at the conventional worst-case rate and the
other at a relaxed one. Such methods, hereto referred to as
Criticality-Aware Data Allocation (CADA), have exhibited
that application-resilience can relax refresh rates, but are still
limited in three key aspects: (i) they fail to identify and
make use of the inherent ability of applications to refresh
memory by accessing their own data, a property that we call
Refresh-by-Access, (ii) they have not employed systematic
ways to modulate the classification of data into criticality
domains, and (iii) they were implemented and evaluated in
simulation, thus ignoring the implications of the full system
stack, in particular the time-dependencies that exist between
data accesses and cell retention. All those limitations result
in missing additional opportunities for aggressive refresh
relaxation while reducing the impact of potential errors.

Interestingly, Ghosh and Lee (2007) predict that integrat-
ing DRAMs in 3D die-stacks will exacerbate the refresh-
related overheads and propose a hardware solution that
accounts for the implicit refreshes due to regular memory
accesses. By tracking memory accesses, refresh skips those
memory rows that have been recently accessed. Neverthe-
less, this approach requires intrusive and costly modifica-
tions to the DRAM memory controller, with space overhead
increasing linearly with the size of DRAM memory.

In this paper, we overcome the limitations of CADA
by elevating Refresh-by-Access as a first-class property
of application-resilience to develop non-intrusive, software
methods for Data-Access Aware Refresh (DARE). DARE
facilitates refresh relaxation on commodity servers and
software stacks without intervention in existing hardware.
We present an experimental prototype where we quantify for
the first time the potential benefits of DARE standalone or
in combination with other schemes, while comparing it to
conventional approaches on a real server-grade system stack.
Our contributions are summarized as follows:

• We identify and systematically exploit Refresh-by-
Access to improve application-resilience and enable
aggressive relaxation of DRAM refresh-rate, beyond
what is achievable by existing techniques that
rely on spatial access properties. Importantly, such
an approach helps us reduce errors and enable
applications that frequently access memory to operate
with acceptable output quality, even when they
allocate their data in memory domains without refresh.

• We introduce DARE, a novel and non-intrusive
technique that facilitates implicit Refresh-by-Access,
thus improves application resilience. Furthermore,
DARE minimizes the number of errors under
aggressively relaxed refresh-rates. It does so by
reordering the execution of application tasks, based
on their data read and write access patterns,
while considering the retention characteristics of the
underlying variably-reliable memory domains. Also,
the task reordering if DARE improves upon existing
CADA-only methods by systematically moderating
and increasing the amount of data that can be stored
in memory domains with relaxed refresh-rates.

• We realize a non-intrusive and complete system
stack that integrates DARE and captures for the first
time the time-dependent system and application data
interactions in a system with relaxed DRAM refresh.
We present a system that achieves non-disruptive
operation of the whole system. The stack achieves
non-disruptive operation of the whole system under
relaxed DRAM refresh rates, enabling to compare and
combine application-resilience techniques, including
CADA, DARE, and application-level error mitigation,
to evaluate their efficacy for the first time on a
complete system.

• We evaluate the proposed method using a variety of
multimedia, signal processing and graph applications
on a commodity system with server-grade DDR3
DRAM chips. Our findings demonstrate that it is pos-
sible to extend refresh cycles by orders of magnitudes
compared to the DDRx standard specifications of auto-
refresh, or completely disable refresh, while achieving
better output quality compared to existing CADA
schemes. DARE achieves this without hardware mod-
ifications and with imperceptible performance effects.

The rest of the paper is organized as follows. Section
2 describes the typical DRAM organization and refresh
operation, while it discusses the related work and motivates
the proposed work. Section 3 presents the proposed
approach, while Section 4 discusses its implementation.
Section 5 describes the executed benchmarks and presents
the evaluation results. Finally conclusions are drawn in
Section 6.

2 Background and Motivation

2.1 DRAM Organization and Refresh
Operation

Figure 1 shows the organization of a DRAM based memory
subsystem. In modern architectures there is one on-chip
DRAM controller per CPU, attached to one or more memory
channels, which can operate independently for maintaining
high bandwidth utilization. Connected to each channel can
be one or more Dual Inline Memory Modules (DIMMs),
which consist of one or more ranks. Each rank is a set
of DRAM chips that operate in unison to complete one
memory operation. Note that each DRAM chip consists of
one or more banks, each of which has a dedicated control
logic, so that multiple banks can process memory requests
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in parallel. Finally, banks are organized in two-dimensional
arrays of rows and columns of DRAM cells, which are
composed of one access transistor and a capacitor that holds
the information in the form of electric charge.

Figure 1. DRAM Organization

Due to the DRAM design, the charge of the capacitor of
a cell leaks gradually and may lead to a complete loss of
the stored information. The time interval during which the
information stored in a DRAM cell can be retrieved correctly
is called the retention-time TRET of that cell. To maintain the
integrity of the data stored cells, the charge of each capacitor
must be periodically restored.
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Figure 2. Power and performance overheads on current and
future DRAM technologies (Liu et al. (2012))

Auto-Refresh: Modern memory architectures employ
the so called auto-refresh operation, where the memory
controller periodically issues a refresh command that triggers
the DRAM device to refresh one or more rows per bank
depending on its size. During Auto-Refresh (AF), a DRAM
bank cannot serve any request and all rows in a rank
remain unavailable during refresh. This causes performance
loss and consumes significant power refreshing every row.
According to the DDR3 specification (JEDEC (2010, 2013)),
all rows of the DRAM must be refreshed at least once
in a period of TREFW = 64 ms. For this, the DRAM
controller needs to send on average one refresh command
every TREFI = 7.8 us, which means that within a TREFW

period, it issues 8192 refresh commands. As the density
of DRAM devices increases, the number of rows that
need to be refreshed with every refresh command grows.

Therefore, the duration of one refresh operation (TREFC)
needs to increase proportionally. As a consequence, the
power consumption and the throughput loss incurred because
of refreshing is expected to increase considerably in future
DRAM generations, as depicted in Figure 2.

2.2 Pessimism of Auto-Refresh Operation
Recent studies on custom FPGA boards have shown that the
retention time of cells varies considerably across and within
a DRAM chip. Typically, only a very small number of cells
needs to be refreshed once every TREFW = 64 ms (Bhati
et al. (2016); Kinam Kim and Jooyoung Lee (2009); Liu et al.
(2013); Jung et al. (2016b)). To verify this observation on
typical server environments, we have performed experiments
on various 8GB DDR3 DIMMs of a premium vendor, using
our experimental prototype and a memory tester with random
and uniformly-distributed data patterns designed to detect the
retention time of DRAM bit-cells. The details of the memory
tester will be discussed in a following section. Figure 3a
shows the spatial distribution of the retention time for one
of the DIMMs, where it is evident that around 80% of the
cells have a retention time of 5 sec or more, far higher than
the 64 ms minimum assumed by the DDRx specification.

Going one step further, Figure 3b plots the CDF of bit-
errors on all the 8GB DIMMs of our system, by aggressively
relaxing the refresh period from the conservative 64 ms to
5 sec and up-to 60 sec. Interestingly, even though in our
experiments the refresh period is relaxed from 78× (5sec) to
937× (60sec), the cumulative bit error rate (BER) stays low,
ranging from less than 10−9 to about 10−5. Selecting the
appropriate refresh period depends on the number of errors
that is considered to be acceptable for applications running
on the system. Furthermore, the system needs to guarantee
that those errors do not affect any critical system data and
lead to catastrophic failures, an issue which we address in
this work.

Commercial DRAMs target a BER ranging from 10−12

to 10−9 when operating under conservative refresh (Nair
et al. (2013)). Even under this common scenario, our results
indicate that within our server the refresh rate can be relaxed
at least by 78× (5sec) if we are prepared to adopt a BER
of 10−9. This indicates that insisting on a fixed refresh
rate of 64 ms is extremely pessimistic and wastes power
and throughput. Accepting a BER of 10−9, or even higher,
may allow aggressive relaxation of the refresh-rate but this
highly depends on the impact that these errors have on the
correctness and output quality of applications.

2.3 Related Work on Relaxing Refresh-Rate
and Open Issues

Recent schemes have tried to exploit the non-uniform
retention time of DRAM cells for relaxing the refresh
rate, either by: (i) targeting very low memory BER by
selectively applying retention-aware refresh on “bad” or
“good” performing cells, or (ii) by allowing a higher memory
BER and permitting errors to be masked by the resilient data
portions of the application.

Multirate-Refresh: Techniques that preserve low
BERs (Liu et al. (2012); Venkatesan et al. (2006); Bhati
et al. (2015); Cui et al. (2014); Jung et al. (2016a);
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Figure 3. Retention Time Characterization on a Commodity Server with Server-Grade DRAMs

Mukundan et al. (2013); Nair et al. (2014)), which we
refer to as multirate-refresh, group rows into different bins
based on an initial retention time profiling. This approach is
similar to the one we apply in our server to select a higher
refresh rate for rows belonging to the lower retention bin.
However, such approaches are highly intrusive since they
assume fine grain control of the refresh-rate, i.e., at the level
of the row. Such schemes have been abandoned in modern
DDRx technologies due to their high cost. Furthermore,
such schemes are deemed impractical since they neglect
the fact that the retention time of each cell depends on the
stored data and can change at runtime (Han et al. (2014);
Qureshi et al. (2015)). Therefore, their essential profiling
step cannot be accurate and some cells may be refreshed
at a inadequate refresh-rate. This in practice will lead to
errors, which may in turn affect system data and result in
catastrophic system failures. One can try to address those
errors and minimize their impact on the system or the output
quality through error-correcting codes (Lin et al. (2015);
Qureshi et al. (2015)). However, this will essentially negate
any power gains realized out of the relaxed refresh.

Refresh-by-Access: Ghosh and Lee (2007) identify the
potential of implicit refreshes through memory accesses to
DRAM. Their approach is hardware oriented and builds
timers within the memory controller that keep track of the
memory rows that have been recently accessed, in order
to avoid needless refresh operations to them. However
inspiring, their work requires modifications to the DRAM
controller and incurs a significant space overhead that grows
linearly with the size of DRAM, since they keep one 3-bit
counter for every memory row in the DRAM. Moreover, they
focus in designing an error-free DRAM operation, neglecting
the additional savings that we can achieve if we take into
account the inherent resilience of applications.

Error-Resilient Techniques: Another viable solution for
addressing the potential errors is to mitigate their effect
at the application layer, by exploiting inherent application-
resilience properties. Recent studies (Chippa et al. (2013);
Sampson et al. (2011)) revealed error-resilient properties
of numerous applications, including the processing of
probabilistic data, iterative structure which allows averaging
of the impact of any error, or user tolerance to small
deviations in output quality. A very limited number of
works have utilized such a paradigm in DRAMs (Liu

et al. (2011); Raha et al. (2015)). These works employ
exclusively Critical-Aware Data Allocation (CADA) on
different memory domains with variable reliability.

Notably, Flikker (Liu et al. (2011)) is the most
representative case of CADA in the literature. The Flikker
framework assumes the separation of the memory into
two domains, the reliability of which is controlled by the
refresh rate. CADA techniques ensure that critical portions
of program data are stored on the reliable domain (using
the conservative refresh rate), while the rest are stored on
a less-reliable domain (with a relaxed refresh rate). They
provide a way to execute an application on top of potentially
unreliable memory without crashing, and obtain a result with
acceptable quality using domain specific knowledge for each
application.

Our approach builds on top of CADA techniques and
provides a systematic way, that does not require application-
specific knowledge, to reduce the number of errors even
further, by amplifying implicit refresh due to memory
accesses. This way, our method increases the potential
power and resilience gains by both enabling more aggressive
reduction on the refresh rate and reducing the impact of
errors to the application.

2.4 Refresh-by-Access
Every access to the memory naturally opens accessed
rows and consequently restores the stored charge in the
capacitor of DRAM cells, thus incurring an implicit refresh
operation. We call this property Refresh-by-Access and it
significantly reduce the number of manifested errors under
relaxed refresh rates, thus improve application resilience
and system reliability. As we demonstrate in this paper,
devising techniques to harness Refresh-by-Access yields
more aggressive DRAM refresh relaxation than CADA for a
wide range of applications. Studying such a property requires
the use of real DRAMs and cannot take place on simulators,
since, to the best of our knowledge, there are no models
that jointly capture the time-dependent relation between
accesses, DRAM retention time and system interactions.

The efficacy of Refresh-by-Access depends on the
temporal properties of the application-specific access
patterns. To better understand these properties, we execute
two different applications (DCT, Sobel) on an off-the-shelf
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server using server-grade DRAMs, the details of which
are discussed in a later section. The results are shown
on Figure 3b, contrasting the expected BER versus the
one perceived at the application-level. We observe that the
inherently frequent memory accesses of each application
result in a much lower number of errors than the number
assumed at each relaxed refresh point. The impact of
this outcome is two fold: (i) it shows that in practice
Refresh-by-Access help to limit the number of manifested
errors that need to be tolerated by the application, and
(ii) the behavior of an application on a real system will be
completely different that the one observed on simulators, as
the latter do not capture the impact of Refresh-by-Access.

Therefore, solutions based on CADA may demonstrate
completely different efficacy than the one shown in current
simulation based evaluations.

The question that remains open is how to intelligently
exploit such a temporal property, in isolation or in
combination with other methods that exploit spatial
properties of cell retention, and how to properly evaluate
and capture all the time dependent interactions on a real and
complete system stack.

3 The DARE Approach

In this section, we present the DARE approach by
formalizing the refresh-by-access property and developing
our access-aware scheduling scheme. The objective of
the proposed method is to facilitate the refresh-by-access
effect, thus minimize the number of manifested errors, by
reordering the execution of application tasks, hence memory
access patterns. This way, DARE improves the resilience of
application even under aggressively relaxed refresh rates.

3.1 Refresh-by-Access Memory Model
The probability of error of a program variable is analogous to
the time data in its memory location stay non-refreshed and
the type of access to that variable, a read or a write. Reading
a variable consumes its data, hence obsoletes that memory
location, while writing a variable updates the data in the
memory location to be consumed later, either in the program
or as the output. Consuming the data propagates the error to
the application and this is the key distinction between a read
and a write access. Reading a variable means its memory
location is vulnerable to errors due to non-refresh periods
before it is accessed. By contrast, writing a variable means it
is vulnerable to errors after its memory location is updated,
when this variable is actually consumed. We illustrate the
time-dependent manifestation of errors and type of access
interactions through a simple example.

Figure 4 shows timelines of memory access events of
program variables. Rx denotes a read access to variable
x and Wx denotes a write access. Time is quantized as
an ordered set of access intervals for illustration. In this
example, an application accesses two variables, namely a
and b, and those variables are stored in variably-reliable
memory within the time interval Tstart to Tend. During
this time, errors may appear due to lack of refresh.
However, re-ordering memory accesses, while respecting
data dependencies, reduces the probability of error. We show

this by presenting two different, but both valid, schedules of
memory accesses.

In Schedule A, the application accesses, hence implicitly
refreshes, variables a and b, at times T3, T5 and T8. The
vulnerability to errors for read accesses is determined by the
duration between the start of non-refreshed operation and
up to the time the read operation happens. By contrast, for
write accesses, the vulnerability to errors is determined by
the time the write occurs and up to the time the non-refreshed
operations ends. For modeling vulnerability, we calculate the
error-prone time interval for each read and write memory
access. For read access, this interval is equal to the time data
are consumed, that is Tread − T<start>, whereas for write
accesses it is equal to T<end> − Twrite which is the non-
refresh interval after which written data may be consumed.
These vulnerability intervals by memory access characterize
Schedule A in terms of how likely it is for an error to
propagate to the application.

However, the vulnerability to errors can be reduced by
scheduling the operations of the program differently, re-
ordering memory accesses at different times. Schedule B
shows such a re-ordering, by swapping Rb with Wa so that
reading variable b occurs earlier, whereas writing variable a
is pushed later in time. Comparing the vulnerability intervals
between those schedules, shows that Schedule B reduces
the time data stay non-refreshed before they are consumed,
thus it reduces the probability an error propagates to the
application.

Notably, re-scheduling the operations in the program
must observe data dependencies and program semantics.
Instruction-level parallelism and task-level parallelism are
well-known (Hennessy and Patterson (2003)) mechanisms
for re-ordering operations. However, they have been so
far used for increasing performance by improving memory
locality. DARE proposes re-ordering at the level of tasks
and although optimizing for memory locality may appear
contradictory to re-ordering for minimizing errors, we
describe further in the paper how we address this issue and
demonstrate minimal performance impact.

Schedule A

Tstart Tend

Ra RbWa

T8T5T3

Schedule B

Tstart Tend

Ra Rb Wa

T8T5T3

T3 - Tstart = 3

Tend - T5 = 6 

T8 - Tstart = 8

T3 - Tstart = 3

T5 - Tstart = 5 

Tend - T8 = 3

Figure 4. Example of harnessing Refresh-by-Access in order
to reduce the Expected Number of Errors

3.2 Access-Aware Scheduling
We formulate an optimization criterion and an associated
scheduling policy to minimize the time that data remain in
memory without refresh. We purposely derive a scheduling
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policy that has low complexity, rather than one that
exhaustively covers all possible scenarios, in order to
demonstrate the key contribution of this paper, namely
that refresh-by-access can be tuned on a relevant set of
applications.

We assume a bag-of-tasks model to describe task-level
parallelism in applications. Note that the model is general
enough to captures both, parallel DO-ALL loops and data-
level parallelism. Also, an applications can potentially
contain multiple consecutive regions, each one matching the
bag-of-tasks model independently.

Going into more details, let an application consists of n
tasks t1, . . . , tn. Each task reads a set of memory locations
denoted by Ri for task ti. It writes to a set of memory
locations denoted by Wi. Note that the bag-of-tasks model
implies that there are no overlaps between any two write sets
and between a pair of read and write sets. Otherwise, the
tasks would incur data races. For the purpose of this work,
we consider only the read and write sets stored in variably-
reliable memory. Accesses to data stored in maximum-
reliable memory have no impact on the scheduling problem.

Furthermore, we assume that the average retention time
is higher than the execution time of a task, such that all of
the read and write sets remain valid by the end of the task.
Such a minimum retention time is realistic, typically even for
the nominal refresh rate. We now formulate the scheduling
criterion:

min
T1,...,Tn

 ∑
i:Ri 6={}

E(Ti − Tstart) +
∑

i:Wi 6={}

E(Tend − Ti)


(1)

where Ti is the time when task ti executes, {} is the empty
set and E(T ) is the probability of bit errors when data is
residing in variably-reliable memory for a time period T . The
E(·) function is characterized in Section 2. For the purposes
of the scheduling algorithm, it suffices to know that it is a
monotonically increasing function, which implies that E(T )
is minimized by minimizing T .

We propose a scheduling policy that optimizes Equation 1
by distinguishing three classes of tasks, depending on
whether the read or write sets are empty or non-empty. Tasks
that only read data in variably-reliable memory (Wi = {})
should be executed as soon possible to minimize Ti − Tstart.
Likewise, tasks that only write data in variably-reliable
memory (Ri = {}) should be executed as late as possible
to minimize Tend − Ti. The remaining tasks either read and
write variably-reliable memory, or do not access it all. These
tasks are executed after the read-only tasks and before the
write-only tasks.

It is common that all tasks are similar in applications
matching the bag of tasks model as they correspond to
iterations of the same loop. This is also the case in our
applications, including the data-dependent graph analytics
case. In particular, tasks have similar execution times and
equally large read and write sets. Under these assumptions,
interchanging tasks within each of the three groups does
not further improve the optimization criterion. For example,
Figure 5 shows how DARE will reorder tasks in order
to minimize errors of Sobel, based on the optimization
criterion. Sobel tasks transform an image in order to
emphasize its edges. With Default schedule Ti − Tstart = 2

for the read set of the third task, and Tend − Ti = 1 for the
write set of the second task. DARE scheduling reduces both
those values to zero time units, minimizing the T .

Sobel

Sobel

Sobel

T1

T2

T3

Variably-
Reliable 
Domain

Maximum 
Reliability 
Domain

0 1 2 3

T1 T2 T3

Default Schedule

T3 T1 T2

DARE Schedule

Ri

Ri

Wi

Wi

Figure 5. Default and DARE scheduling

Note that an access to a single bit in memory refreshes the
whole row of the DRAM bank where that bit is located. As
such, accesses to one bit, word or variable may cause others
to be refreshed as well. It is possible to model these effects.
All interactions between variables can be captured given
precise knowledge of the memory locations of variables and
knowledge of the mapping of virtual addresses to ranks,
banks and rows in DRAM. However, we need not model
the memory system in this level of detail, as it is irrelevant
for our applications, and we believe for many others as
well. The reason is that tasks typically access data that
are laid out sequentially and, moreover, those data are
sufficiently voluminous to span multiple DRAM rows. Under
these conditions, accidental refresh of DRAM through “false
sharing” has negligible potential.

The access-aware schedule can be extended to parallel
execution by prioritizing the execution order of tasks
following the three groups of tasks. Whether those tasks are
executed sequentially, as explained above, or in parallel bears
no impact. Note however that parallel execution reduces
execution time. This way, it reduces the probability of errors
even further.

4 Realizing DARE on a Commodity Server

As we discussed, to capture the time-dependent interactions
between memory accesses and retention time, which have
been neglected by existing approaches, and evaluate DARE
it is essential to implement it on a real, complete system
stack. This section discusses the proposed implementation
of DARE on a commodity server with the required
modifications on the Linux OS, for ensuring seamless
operation under relaxed refresh, while enabling the
allocation of data on variably-reliable memory domains.
Note that the detailed modifications that we present depend
on the available hardware, e.g, the granularity at which
memory refresh is controlled. However, in any case, all steps
and especially the changes on the software stack can be
followed to realize DARE on any commercial system.
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4.1 Hardware Platform
Our platform is based on a dual-socket commodity server.
Each socket hosts an Intel R© Xeon E5-2650 (Sandy Bridge)
processor, featuring an integrated memory controller (iMC)
to control the DRAM device attached to the socket. The
iMC exposes a set of configuration registers (Intel (2012))
to control DRAM refresh to: (i) define the period TREFI for
sending refresh commands per DRAM channel, (ii) enable
or disable refresh for the entire DRAM.

1 software_refresh(refresh_period)
2 {
3 while (true) {
4 enable_refresh()
5 // wait 64ms to refresh once the whole

memory
6 msleep(64ms)
7 disable_refresh()
8 // sleep for the remaining target refresh

period
9 msleep(refresh_period - 64ms)

10 }
11 }

Figure 6. Software refresh controller

The register controlling TREFI has a 15-bit field for
setting the period. This limits the maximum period to
336ms up from the nominal value of 64ms. Even though
this is a 5.2× increase, it is still conservative, considering
that memory cells have retention times of several seconds.
Instead, we opt for a software refresh mechanism that we
devise and implement in order to set the refresh-rate at
any arbitrary value. The software refresh controller, shown
in pseudocode in Figure 6, uses the iMC register interface
to enable or disable refresh periodically for emulating a
hardware refresh. The software refresh runs as a kernel
thread with high priority, independently for each memory
domain in the system.
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Figure 7. Hardware and software setup for variably-reliable
memory

In our hardware configuration, each iMC controls a single
memory domain attached to the CPU socket, thus reliability
domains are aligned to sockets and NUMA (Non-Uniform

Memory Access) domains (Figure 7). DRAMs attached to
different CPU sockets may have different refresh periods
to implement memory domains with a variable degree of
reliability. In our dual-socket system, the first memory
domain is deemed reliable with the nominal refresh applied,
while the second one is the variably-reliable one, with a
configurable refresh. We elaborate on the next section on this
organization, driven by the fact that critical data need to be
stored and accessed reliably.

Hardware error detection and correction codes (ECC) are
a common mechanism employed in DRAMs to improve
the bit error probability of the memory. In our testing
platform, it is necessary to disable ECC, since detection of an
uncorrectable error triggers the System Management Mode
(SMM) of the CPU and interferes with our experimentation.
SMM is a special, privileged CPU mode that suspends
execution of other modes, including the operating system,
to execute firmware code that typically reboots the machine
to avoid catastrophic failures. However, disabling ECC has
the advantage of enabling us to study the worst-case scenario
effects of reduced refresh rate operation. Using ECC would
capture and correct most of the errors that occur when
relaxing the refresh requirements. Evaluating the potential
power and performance overhead of the ECC is out of the
scope of this paper and it is left for future work.

Before going into the details of the changes on the
software stack, we would like also to propose some useful
extensions to the hardware interfaces, motivated by our
implementation. Although, memory controllers already have
an interface to control refresh per-channel, the range of
values of TREFI is very conservative, up to 336ms. As
we have shown experimentally, most memory cells have
retention times of seconds. A straightforward extension is
to allow larger values for refresh, which in the case of
the iMC translate to larger bit-width for the configuration
register, possibly with no other extensions in hardware logic.
Also, providing an interface to control refresh per-DIMM, or
even per-rank, can unlock more opportunities for fine-grain,
selective refreshing.

4.2 Software Stack
In this section we discuss the software platform architecture
for enabling variably-reliable memory operation. This
includes modifications to the Linux operating system to
ensure crash-free system operation, and a system API
to control refresh and data allocation on variably-reliable
memory. The hardware view of the OS is the one shown in
Figure 7. In this setup, the physical address space is divided
in two reliability domains. The Reliable memory domain
contains memory locations that are always refreshed with
the nominal refresh period. On the other hand, the Variably-
reliable memory domain contains memory locations for
which the refresh rate can be relaxed at runtime.

In a similar fashion to reliability domains, software
characterizes data as critical or non-critical. Operating
system kernel data are critical, since even a single error
in them may result in a catastrophic failure at the system
level. At the application level, data pertaining to the code
and stack sections of applications are extremely vulnerable
to errors too, i.e., errors in them can lead to an illegal
instruction exception or a segmentation fault which is
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catastrophic for the application. As a result, those data are
critical too. Moreover, static data, allocated at load time,
are deemed critical too. This is to avoid changing the
system loader and to simplify programming abstractions
for allocating data on the variably-reliable memory. Our
software platform design provides an API to the programmer
for selecting the criticality of dynamic memory allocations
on the heap, similarly to other approaches (Liu et al. (2011)).
Critical data are always allocated from the reliable memory
domain, whereas non-critical data allocate from the variably-
reliable memory. Figure 7 also depicts our software platform
architecture.

4.2.1 Linux Kernel Modifications and Interface to
Variably-Reliable Memory We modify the Linux kernel
in order to create the software abstractions for the
two reliability domains. This means rendering the kernel
reliability-aware for the memory domains and exporting a
userspace interface to applications for allocating memory
either from the reliable or the variably-reliable domain.

For our implementation, we build on the preexisting
concept of memory zones (Love (2010)) that the Linux
kernel uses to group pages of physical memory for different
allocation purposes. Existing Linux system typically include
a DMA zone for data operations of DMA devices, a Normal
zone for virtual addresses directly mapped to physical ones
and in 32-bit systems a High memory zone for pages that
go through memory translation to map to physical pages.
At the kernel-level, the page allocation interface includes
zone modifier flags to indicate the zone the kernel allocates
pages from. For example, when a kernel component needs
memory from the DMA zone, it request an allocation using
the GFP DMA flag.

Moreover, allocation from memory zones follows some
priority orderings. For example, when pages from the
Normal zone are requested, and the request cannot be
satisfied by the free pages of the Normal zone then the
allocator is allowed to fall back to free pages of the DMA
zone. However, allocations from the DMA zone cannot fall
back to the Normal zone.

We define a new zone, namely the variably-reliable zone,
additionally to the DMA and Normal zones used on our
platform. The size of the variably-reliable zone is defined at
boot time, by kernel boot arguments denoting the start and
end address of the physical address space of variably-reliable
memory. In our testing platform, the variably-reliable zone
pools pages from the second NUMA domain, which has
a relaxed refresh rate to be the variably-reliable memory.
Nonetheless, the zone extension we propose is generic
enough to allow any subset of the physical address space to
be part of the variably-reliable zone. Moreover, allocations
from the variably-reliable zone may fall back to the reliable
zone in case variably-reliable memory is depleted, but not
vice versa. The in-kernel page allocator requests a page from
the variably-reliable zone using the GFP VRELmodifier flag,
any other allocation will be exclusively served by the rest,
reliable memory zones.

For the userspace interface, we extend the mmap system
call for dynamic memory allocation with a new flag, namely
VM VREL, which instructs the kernel that the requested

memory can be allocated to physical pages of the variably-
reliable zone. For the actual allocation, we extend the
kernel’s page fault handler, so that virtual pages flagged
as VM VREL map to physical page frames of the variably-
reliable zone. Note that the VM VREL is valid only for heap
allocations, otherwise ignored, to ensure that code, stack
and static data during application loading are always stored
reliably.

Lastly, we expose a system interface to set the
refresh period on the variably-reliable memory
domain. For our setup, we extend the sysfs kernel
interface to have a refresh period entry in
millisecond for each NUMA domain under its respective
/sys/devices/system/node/nodeX device tree.
Setting the refresh period entry of a NUMA domain
changes the refresh period of the software refresher kernel
thread for this domain – the special value 0 means no
refresh at all. A similar interface is usable even if reliability
domains are decoupled from the NUMA architecture, by
adding memory domain proxies in the device tree. Notably,
the sysfs interface is at the system level, thus it needs
administrator privileges to be set. We do not envision this
interface to be used by application programmers but rather
from system administrators. The presented modifications
allow to plugin DARE on any Linux based system.

5 Evaluation
In this Section, we evaluate the efficacy of the DARE
approach on minimizing the manifestation of errors and
compare it with CADA only techniques. For performing
the evaluation, we use the hardware and software platform
presented previously and carefully select a range of
applications from various domains with different error-
resilient properties. Note that both DARE and CADA are
evaluated for the first time on a real system. Therefore, our
evaluation campaign reveals interesting results and shows
how the time dependencies affect application error-resilience
and the true performance of DARE and CADA schemes. For
each benchmark, we use CADA as the baseline technique
to customize data allocation and augment it with DARE,
amenable to the specific characteristics of each application.
For experimentation, we vary the percentage (PR) of data
stored in reliable memory, using conventional refresh,
to create different vulnerability scenarios. Moreover, the
variably-reliable memory domain operates with no refresh
at all, to test the efficacy of error-resilience techniques at
the extreme. For each experiment configuration we quantify
the output quality in terms of the related metric for each
benchmark and measure the time overhead of the applied
technique. Each experiment is repeated 10 times and present
the average of the results across runs. The compiler used
is GCC version 4.8.5. Finally, we discuss the impact of
our approach on power and performance for current and
future DRAM densities and to compare the gains between
approaches under fixed, iso-quality comparisons.

5.1 JPEG and Discrete Cosine Transform
(DCT)

JPEG is a widely used application for image compression
based on DCT, composed of two parts: (i) compression,
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Figure 8. Comparison of application resilience techniques for DCT using variably-reliable memory without refresh

during which DCT is applied on the input image and
its output is then quantized and stored on memory, and
(ii) decompression, during which the stored compressed
image in the form of quantized coefficients is dequantized
and reconstructed using inverse DCT (IDCT). In the
experiments, the input of DCT is a grid of 64× 64 image
tiles, while each image is 512× 512 pixels. The memory
consumption of the DCT output, to which we focus, amounts
to 8GB.

low
freq

high 
freq

8x8 DCT
more
critical

less
critical

Figure 9. Data criticality within an 8× 8 DCT block

CADA It was shown (Karakonstantis et al. (2010)) that in
DCT some coefficients, i.e., low-frequency ones, are more
significant for determining the output quality than the rest,
high-frequency ones. This means DCT is resilient when
errors manifest in high-frequency coefficients, since their
impact on output quality is limited. The application of CADA
to DCT is straightforward in this case. The input image
is set as critical data, thus stored in the reliable memory,
together with the low-frequency coefficients of each of the
8× 8 DCT computation blocks that constitute our kernel.
Figure 9 shows the location of the critical coefficients within
a DCT block. The lowest frequency, top left coefficient is
the most critical and criticality reduces significantly, moving
towards the bottom right part of the block. Each task in our
experiments reads a 8× 8 block of the reliable stored input
image, computes the DCT coefficients for a row and stores
them to an output array. There is not an exact threshold to
how many of the top rows need to be stored reliably to
decisively affect output quality. For experimentation, we vary
this threshold, translated as the percentage of the output data
stored reliably, to investigate its impact on quality. For a
given output quality, the more data stored in the variably-
reliable memory, the less the power consumption due to
relaxing refresh on larger parts of memory.

DARE Following our task model, all tasks read from
the reliable memory but depending on the threshold for

storing rows reliably, some of them write their output on
the variably-reliable memory. Note that DARE reorders the
execution of tasks schedule to ensure that tasks writing
on variably-reliable memory execute as late as possible, to
minimize manifested errors from relaxed refresh execution.

Quality Metric The quality metric for DCT is the Peak
Signal-to-Noise Ratio (PSNR), calculated by comparing the
original to the reconstructed image. For the tiled images
input, we take the minimum PSNR among all tiles in the grid
to perform a worst-case analysis.

Results Figure 8 shows results on the number of errors
and output quality, varying PR ratios to 25%, 50% and
75% of the data store in the variably-reliable memory.
Note that a PR of 0%, meaning all data are stored in the
reliable memory, does not utilize the inherent error resilient
properties; whereas a PR of 100%, meaning all data are
stored in the variably-reliable memory, cannot clearly show
the effects of DARE since all tasks read and write variably-
reliable data, hence no reordering is meaningful.

Figure 8a shows the number of manifested errors in
case CADA-only applies versus augmenting CADA with
DARE. DARE reduces the number of errors, up to an
order of magnitude when 25% of the data are stored in
the variably-reliable memory. Figure 8b depicts the quality
as a percentage of the maximum PSNR achievable when
refresh is enabled. Notably, the combination of CADA and
DARE improves quality consistently, up to 8% in case
of PR=25%. From another point of view, CADA+DARE
achieves the same quality as CADA, but by storing a larger
portion of data in variably-reliable memory, hence enabling
relaxed refresh operation on a larger part of memory. An
iso-quality comparison fixing the target PSNR to 90% of
the best possible shows that CADA achieves this target
by having at most 25% of the data versus 50% of the
data for CADA+DARE stored in variably-reliable memory.
Importantly, CADA+DARE saves more power compared to
CADA-only, by enabling to store more data to the variably-
reliable domain. Indicatively, Figure 8c shows power savings
for the PSNR 90% iso-quality target for current, 1Gb,
memory technology and future, 128Gb, technology. Power
savings project to be up to 28% by combining CADA+DARE
techniques compared to about 14% of CADA-only.
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5.2 Sobel filter
Sobel is an image processing filter that is used frequently
in edge detection applications. Similar to DCT, the input
consists of a grid of 200× 200 images, each 512× 512
pixels, while the output is a grid of the same dimensions,
resulting in a total memory consumption of 20GB.

CADA For Sobel, we relax criticality for both the input
and the output data, allocating parts from both data sets to
variably-reliable memory. In contrast to DCT, there is no
a priori algorithmic property to indicate which parts of the
input or output are more significant in determining the output
quality. For this reason, we randomly select data to store
in the variably-reliable domain using a uniform distribution.
Moreover, experiments vary the amount of data stored in
the variably-reliable memory, to show the impact on output
quality in relation to the application resilience techniques.

DARE In order to compute one pixel (i, j) of the output
image, a task reads the (i, j) and all the neighboring pixels of
the input image. As a result, to compute and write out the i-th
row of the output image, a task reads rows i− 1, i and i + 1
from the input. Depending on the randomly selected data
allocation, a task may only read or only write or both read
and write data in the variably-reliable domain. Following the
principle of DARE scheduling, tasks that read from variably-
reliable memory execute first, followed by tasks that both
read and write on it, while write-only tasks execute last, to
minimize the expected number of manifested errors.

Quality Metric The output quality is quantified in terms
of the PSNR between the output image from relaxed
refresh operation and the reference output produced with
full reliability enabled. In our evaluation we report the
minimum PSNR across image tiles for performing a worst-
case analysis.

Results Figure 10 shows the results for Sobel. The PR
ratios allocated on the variably-reliable memory are 25%,
50% and 75% of the aggregated input and output data.
Applying CADA+DARE reduces consistently errors and
improves the PSNR of the output compare to CADA-only.
Under an iso-quality comparison, setting the target PSNR
to 35dB, CADA achieves this target by having at most
25% of the data stored in the variably-reliable memory,
whereas CADA+DARE achieves that even when 75% of the
data stored in the variably-reliable memory. As with DCT,
CADA+DARE significantly improves application resilience,
enabling to relax data criticality to a greater extent than
CADA alone, thus allowing to minimize the data that need
to be stored reliably. Figure 10c shows the power savings
for the existing and future memory technologies under an
iso-quality comparison of CADA versus CADA+DARE,
setting PSNR equal to a minimum 35dB target. Savings
reach up to 35% in future DIMMs, leveraging the ability of
CADA+DARE to place more data on the variably-reliable
domain, thus requiring less reliable memory, compared to
18% of CADA-only techniques.

5.3 Pochoir Stencil Algorithms
We demonstrate DARE resilience techniques on stencil
algorithms extending the Pochoir stencil compiler (Tang
et al. (2011)). Pochoir optimizes the computation of

stencil iterations using a cache-oblivious divide-and-conquer
strategy. The algorithm decomposes the space-time iteration
domains using trapezoidal shapes, to improve memory
locality. In terms of memory consumption, Pochoir allocates
two large array data structures to store the previous and
current values of physical quantities to compute each grid
point.

For experimentation, Pochoir simulates a 2-dimensional
heat dissipation problem with mirroring boundary condi-
tions. Moreover, we vary the grid size (spatial dimensions)
from 14K to 30K.

CADA In stencil algorithms no errors are tolerable.
This is because errors propagate to neighboring grid
points, violating the algorithm’s correctness and convergence
criteria. Thus, criticality-aware data allocation techniques
are unable to enable error resilience from data placement.
However, refresh-by-access resilience techniques can relax
data criticality, as we discuss next.

Refresh-by-Access The data values stored at the grid
points are refreshed regularly due to the iterative execution
of the algorithm, reading and writing those points. In case the
problem size is small, less than the retention time of memory,
this iterative read and write refresh is sufficient to execute
error-free.

However, for larger problem sizes, the effectiveness of
the refresh-by-data access diminishes because the default
Pochoir decomposition favors memory locality, updating
the same set of grid points at later time steps before
computing another set. This computation strategy delays
accessing grid points in the space domain, hence reduces the
implicit refresh-by-access. Next, we discuss how the DARE
technique applies to Pochoir to facilitate refresh-by-access.

DARE Our modified version of Pochoir performs time-
cuts crossing the full spatial domain at regular intervals to
enable refresh-by-access. Figure 11 shows this computation
strategy. All trapezoids below ∆ti are visited before the
algorithm proceeds to later time steps to trade cache locality
for error-resilient operation. Nevertheless, the time-cut
interval ∆ti is tunable to incur the least possible performance
loss while ensuring correctness, we demonstrate this in our
results.

Quality Metric Due to the fact that stencil algorithms are
not resilient to errors, the quality metric is measured as the
percentage of correct runs over the total number of runs of
the program.

Results Figure 12 shows the results by contrasting the
original to DARE computation decompositions for various
problem sizes. The original version of the Pochoir stencil
compiler is intolerable to errors. Scaling the problem size
to more than 18K results in almost none correct runs. By
contrast, the DARE version of Pochoir tolerates more errors
and has a smooth degradation as the problem size grows.
Notably, the overhead in execution time for the DARE
decomposition is less than 4%, averaged across grid sizes.

6 Conclusions
This paper exposed and systematically exploited refresh-by-
access as another key property of application resilience to
enable aggressive relaxation of DRAM refresh. We proposed
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DARE, a novel, non-intrusive method that facilitates refresh-
by-access to reduce the number of manifested errors
under aggressively relaxed or even completely turned-off
refresh. We realized DARE on a complete system stack
of an off-the shelf server, to capture for the first time
the time-dependent system and data interactions, which is
infeasible on existing simulators. The developed system
stack is a key instrument to compare and combine multiple
techniques for DRAM refresh relaxation, including DARE
and CADA techniques. Experimentation results, for a variety
of applications with different resilience characteristics, show
that is possible to eliminate refresh completely while
avoiding avoid catastophic failures and having acceptable
output quality as a result of our DARE techniques. Such

benefits come with imperceptible performance overhead and
with minor output quality degradation that ranges from from
2% to 18%, which is in all cases much less than CADA-only
schemes.
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