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Abstract 25 

This study assessed the metabolic and neuroprotective actions of the sodium glucose co-transporter-26 

2 inhibitor dapagliflozin in combination with the GLP-1 agonist liraglutide in dietary-induced 27 

diabetic mice. Mice administered low-dose streptozotocin (STZ) on a high fat diet received 28 

dapagliflozin, liraglutide, dapagliflozin-plus-liraglutide (DAPA-Lira) or vehicle once-daily over 28 29 

days. Energy intake, body weight, glucose and insulin concentrations were measured at regular 30 

intervals. Glucose tolerance, insulin sensitivity, hormone and biochemical analysis, dual-energy x-31 

ray absorptiometry densitometry, novel object recognition, islet and brain histology were examined. 32 

Once-daily administration of DAPA-Lira resulted in significant decreases in body weight, fat mass, 33 

glucose and insulin concentrations, despite no change in energy intake. Similar beneficial metabolic 34 

improvements were observed regarding glucose tolerance, insulin sensitivity, HOMA-IR, HOMA-β, 35 

HbA1c, and triglycerides. Plasma glucagon, GLP-1 and IL-6 levels were increased and 36 

corticosterone concentrations decreased. DAPA-Lira treatment decreased alpha cell area and 37 

increased insulin content compared to dapagliflozin monotherapy. Recognition memory was 38 

significantly improved in all treatment groups. Brain histology demonstrated increased staining for 39 

doublecortin (number of immature neurons) in dentate gyrus and synaptophysin (synaptic density) 40 

in stratum oriens and stratum pyramidale. These data demonstrate that combination therapy of 41 

dapagliflozin and liraglutide exerts beneficial metabolic and neuroprotective effects in diet-induced 42 

diabetic mice. Our results highlight important personalised approach in utilising liraglutide in 43 

combination with dapagliflozin, instead of either agent alone, for further clinical evaluation in 44 

treatment of diabetes and associated neurodegenerative disorders.  45 

 46 

Keywords: dapagliflozin; diabetes; GLP-1; glucagon; liraglutide  47 

 48 

Page 2 of 40



 3

Introduction 49 

Type 2 diabetes mellitus (T2DM) is a metabolic disorder that arises due to a complex array of 50 

molecular defects manifesting in dysregulated insulin secretion, impaired insulin action, or both. 51 

Since the pathophysiology of T2DM is multifaceted and involves a range of biochemical 52 

mechanisms, there is no single therapy can effectively manage all aspects of the disorder (Zaccardi 53 

et al. 2016). Moreover, as T2DM and obesity levels are increasing at an alarming rate, more 54 

effective therapies and innovative treatment strategies are urgently needed to control glycaemia, 55 

reduce body weight and decrease the risk of micro- and macrovascular complications (da Rocha 56 

Fernandes et al. 2016). The previous two decades have witnessed a surge in the number of new drug 57 

classes such as glucagon-like peptide-1 (GLP-1) agonists, dipeptidylpeptidase-4 (DPP4) inhibitors 58 

and sodium-glucose-cotransporter-2 (SGLT2) inhibitors (Bailey et al. 2016). Although these agents 59 

may be used as monotherapies, it is becoming increasingly apparent that successful and cost 60 

effective management of T2DM requires development of safe combination therapies with distinct 61 

and complementary mechanisms of action. 62 

The kidneys play a pivotal role in regulating glucose homeostasis as most of the glucose 63 

filtered by the glomerulus is reabsorbed (Gerich et al. 2001). In healthy subjects, the high capacity, 64 

low-affinity SGLT2, reabsorbs approximately 90% of glucose in S1 segment of proximal tubules 65 

(Hediger & Rhoads 1994, Han et al. 2008). Under conditions of chronic hyperglycaemic, SGLT2 is 66 

up regulated and this enhances glucose reabsorption and worsens glycaemia (Rahmoune et al. 67 

2005). Dapagliflozin, a highly selective and potent oral inhibitor of SGLT2, reduces reabsorption of 68 

filtered glucose leading to increased glucosuria and improvement in glycaemic control (Vivian 69 

2015). Although actions of dapagliflozin appear to be independent of insulin secretion, dapagliflozin 70 

improves insulin sensitivity, most likely as a result of sustained reduction in hyperglycaemia, 71 

alleviation of glucose toxicity and weight reduction through enhanced caloric loss (Macdonald et al. 72 
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2010, Mudaliar et al. 2014, Merovci et al. 2015, Millar et al. 2016). Beneficial actions of 73 

dapagliflozin are, to some extent, limited by unrestrained hepatic glucose production (Bonner et al. 74 

2015). Thus, inhibition of hepatic glucose output by stimulation of insulin secretion as well as 75 

inhibition of glucagon secretion may significantly enhance therapeutic efficacy of SGLT2 76 

inhibition. 77 

GLP-1 agonists are well established as effective agents to treat patients with T2DM due to a 78 

range of beneficial actions including weight loss, induction of satiety, inhibition of gastric emptying, 79 

stimulation of insulin secretion and inhibition of alpha cell function (Bailey et al. 2016). In addition, 80 

GLP-1 agonists exert effects at other extra pancreatic sites (Renner et al. 2016), with notable 81 

neuroprotective actions in animal models of diabetes-obesity, Alzheimer’s disease (AD) and 82 

Parkinson’s disease (PD) (Ashraghi et al. 2016, Tramutola et al. 2017). Liraglutide (Victoza) is a 83 

highly effective long-acting GLP-1 agonist that shares 97% sequence homology with human GLP-1 84 

(Knudsen et al. 2000). Structural modifications include amino acid substitution of Lys34 with Arg, 85 

and addition of lipophilic C16 acyl moiety at position 26 via gamma-glutamyl linker (Madsen et al. 86 

2007). These structural changes provide liraglutide with enhanced pharmacokinetic profile and 87 

significantly prolonged half-life, thus facilitating once-daily injection (Agersø et al. 2002). This 88 

prolonged bioactivity has been attributed to non-covalent reversible albumin binding, ability of 89 

liraglutide to self-aggregate and form heptamers in solution, and stability to the enzyme DPP4 90 

(Knudsen et al. 2000, Madsen et al. 2007, Li et al. 2016). 91 

Given the need for more personalised treatment strategies for patients with T2DM and the 92 

unique mechanism of action of dapagliflozin and liraglutide, we hypothesised that combining both 93 

drugs would provide additive metabolic and neuroprotective outcomes. We chose to administer a 94 

GLP-1 agonist rather than DPP-4 inhibitor as DPP-4 inhibitors act to prevent degradation of a 95 

number of regulatory peptides including GLP-1 (Bailey et al. 2016). As such, HF mice on 96 
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background low-dose STZ were treated with dapagliflozin or liraglutide as monotherapy and 97 

combination therapy for 28 days. Effects on glucose tolerance, insulin sensitivity, body weight, 98 

hormones, memory and learning, islet and brain histology were assessed. 99 

 100 

Materials and methods 101 

Animals  102 

Male NIH Swiss mice (aged 8-10 weeks) purchased from Harlan (Oxon, UK) were kept at 22±2ºC 103 

with 12:12 h light/dark cycle. Mice had free access to high fat diet (45% AFE Fat; Product Code 104 

824053; Special Diet Services, Witham, UK; total energy 26.15 kJ/g). An additional group of mice 105 

had free access to standard rodent chow (Teklad Global 18% Protein Rodent Diet; Product Code 106 

2018S; Harlan, UK; total energy 13.0 kJ/g). All animals had free access to drinking water and no 107 

adverse effects were observed during the entire experimental study. All experiments were performed 108 

according to the Principles of Laboratory Animal Care (NIH publication no. 86-23, revised 1985) 109 

and UK Home Office Regulations (UK Animals Scientific Procedures Act 1986). 110 

 111 

Experimental design  112 

Mice commenced high fat diet on day -28 and subsequently received STZ (Sigma-Aldrich, Dorset, 113 

UK) prepared in sodium citrate buffer (pH 4.5) on day -14 (50 mg/kg; i.p.) and day -7 (50 mg/kg; 114 

i.p.). Mice that displayed a blood glucose concentration greater than 13 mmol/l were recruited into 115 

the study. On day 0, mice commenced drug treatments for 28 days as follows: Group 1 (HF control) 116 

– high fat mice administered saline vehicle (0.9% wt/vol; p.o.; o.d.); Group 2 (dapagliflozin) – high 117 

fat mice administered dapagliflozin (1 mg/kg; p.o.; o.d.; Selleck Chemicals; Stratech Scientific Ltd., 118 

Suffolk, UK; Catalog number S1548-SEL);  Group 3 (DAPA-Lira) – high fat mice administered 119 

dapagliflozin (1 mg/kg; p.o.; o.d.) plus liraglutide (25 nmol/kg; i.p.; o.d.;  GL Biochem Ltd., 120 
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Shanghai, China); Group 4 (Lira) - high fat mice administered liraglutide (25 nmol/kg; i.p.; o.d.); 121 

Group 5 (lean control) – lean mice administered saline vehicle (0.9% wt/vol; p.o.; o.d.). All 122 

treatments administered at 14:00 h and mice remained on respective diet for study duration. The 123 

rationale for choosing 1 mg/kg dapagliflozin (p.o.) and 25 nmol/kg liraglutide (i.p.) in this study was 124 

based on previously published literature (Moffett et al. 2014, Millar et al. 2016). Energy intake, 125 

body weight, glucose and insulin concentrations were measured every 3 to 4 days. At the end of the 126 

study, glucose tolerance (18 mmol/kg; p.o.; at 10:00 h in 12 h-fasted mice), insulin sensitivity (25 127 

U/kg bovine insulin; i.p.; at 10:00 h in non-fasted mice), novel object recognition task, dual-energy 128 

x-ray absorptiometry (DEXA) scanning, lipids, hormones/biomarkers, islet and brain histology were 129 

performed.  130 

 131 

Biochemical and DEXA analyses  132 

Blood samples were collected as indicated in Figures from tail vein of conscious mice into chilled 133 

fluoride/heparin micro-centrifuge tubes (Sarstedt, Numbrecht, Germany) and centrifuged at 13,000g 134 

for 30 s (Beckman Instruments, Galway, Ireland). Glucose concentrations were measured using 135 

Ascencia Contour Blood Glucose Meter (Bayer Healthcare, Newbury, UK) and plasma/pancreatic 136 

insulin determined using modified dextran-coated charcoal RIA (Flatt & Bailey 1981). HOMA-IR 137 

and HOMA-β were determined from calculations as described previously (Gault et al. 2015). Lipids 138 

(total-cholesterol – CH200; and triglycerides – TR210) and ALT (AL1205) were measured using 139 

enzymatic kits from Randox Laboratories (Crumlin, UK). Plasma corticosterone (ab100712) and IL-140 

6 (ab108821) were measured using enzymatic kits from Abcam (Cambridge, UK) and analysed with 141 

SOFTMAX PRO Software Version 5.2 on Flexstation 3 (Molecular Devices, Sunnyvale, CA, USA). 142 

Glucagon and total GLP-1 were measured by ELISA (EZGLU-30K and EZGLP1T-36K, 143 

respectively; Millipore, UK). HbA1c was determined with a commercially available kit (HB-3058; 144 
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Chirus Limited, Watford, UK). Percentage fat and lean mass were measured using DEXA 145 

densitometry (Piximus Densitometer, USA) as described previously (Millar et al. 2016).  146 

 147 

Assessment of learning and memory  148 

Open field and novel recognition tests were performed as described previously (Lennox et al. 2014). 149 

Briefly, mice were placed in an arena and motor activity (speed and path length), anxiety (grooming 150 

events) and exploration (rearing events) recorded over 5 min period. Twenty-four hours later, mice 151 

were placed back into the same arena and a novel object recognition task was conducted comprising 152 

a 10 min acquisition phase (followed by a 3 h rest in the home cage) followed by test trial where 153 

mice could explore familiar and novel object for 10 min. Time spent exploring familiar or novel 154 

object was expressed as recognition index (RI) calculated as time (t) spent exploring novel object 155 

divided by time spent exploring both objects (A + B) x 10. RIB = tB/t(A + B) x 100 normalises all 156 

data for statistical comparison (Lennox et al. 2014). 157 

 158 

Immunohistochemistry and image analysis  159 

Mice were perfused with PBS transcardially as described previously (Parthsarathy et al. 2013). 160 

Pancreatic tissue was excised for immunohistochemistry, measurement of insulin/glucagon content 161 

and gene expression. For determination of pancreatic insulin and glucagon content, pre-weighed 162 

pancreatic tissue was washed thoroughly in ice-cold PBS, homogenised in acid ethanol solution 163 

(ethanol/0.7 M HCl; 3:1 ratio) and extracted overnight at 4°C. Insulin content was measured by 164 

insulin radioimmunoassay and glucagon content determined by ELISA (EZGLU-30K; Millipore, 165 

UK). For histology, pancreatic tissues were fixed in 4% paraformaldehyde for 48 h at 4°C, 166 

processed using automated tissue processor (Leica TP1020, Leica Microsystems, Nussloch, 167 

Germany) and embedded in paraffin wax. Immunohistochemistry was performed as described 168 
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previously (Moffett et al. 2015). Following primary antibodies used: mouse monoclonal anti-insulin 169 

antibody (ab6995, 1:1000; Abcam), guniea-pig anti-glucagon antibody (PCA2/4, 1:400; raised in-170 

house), rabbit polyclonal anti-GLP-1 antibody (XJIC8, 1:200; raised in-house) and mouse 171 

polyclonal anti-IL-6 details (PM626, 1:200; ThermoFisher Scientific). Secondary antibodies used as 172 

appropriate: Alexa Fluor 488 goat anti-guinea pig IgG – 1:400, Alexa Fluor 594 goat anti-mouse 173 

IgG – 1:400. Slides were viewed under FITC filter (488 nm) or TRITC filter (594 nm) using 174 

fluorescent microscope (Olympus BX51) and DP70 camera adapter system. Brain processing and 175 

immunostaining were performed as described previously (Parthsarathy et al. 2013). Briefly, 40 176 

micron thick coronal sections of brains at anatomical regions -2 to -3 bregma were stained for young 177 

immature neurons (anti-doublecortin, 1:200 dilution, sc-8066, Santa Cruz Biotechnology) and 178 

synaptic density (anti-synaptophysin, 1:200 dilution, Abcam, ab-7837).  179 

 180 

Image analysis 181 

Alpha and beta cell area were analysed in a blinded manner using Cell^F image analysis software 182 

(Olympus Soft Imaging Solutions, GmbH) and expressed as µm2. Briefly, fluorescent images were 183 

captured using digital camera and closed polygon tool in Cell^F used to analyse alpha cell and beta 184 

cell area. Pixel area was converted to µm2 and plotted in Prism. To quantify cell proliferation and 185 

neurogenesis, DCX-labelled immature neurons were counted in sub granular zone of dentate gyrus. 186 

Minimum of seven coronal sections per animal were counted using 40 x objective of bright field 187 

microscope (Olympus BX51) and plotted as average number of positive cells per section. 188 

Synaptophysin staining was analysed with Image J (NIH, USA) software using corrected O.D. 189 

method (McClean et al. 2011). Briefly, following adjustment for optimum resolution, calibration for 190 

optical density was performed using Kodak No. 3 step tablet (Tiffen, Kodak) and calibration curve 191 

obtained as described in Image J software. Using 10 x magnification objective, image for each area 192 
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of interest was obtained per section (4-5 sections per mouse brain) with digital camera. Area of 193 

interest comprised hippocampus and cortex that included polymorphic layer, granular cell layer, 194 

molecular layer, stratum radiatum, stratum pyramidal, stratum oriens, interior and exterior cortical 195 

layers. Images were converted to 8-bit grey scale and pixel density obtained from three small 196 

randomly selected squares per layer converted to O.D. using calibration curve. Average O.D values 197 

for each layer were subtracted from average O.D values of granular cell layer (GCL) and corrected 198 

O.D. plotted. 199 

 200 

Gene expression  201 

mRNA extracted (Tripure Isolation Reagent; Roche Diagnostics, UK), quantified and purity 202 

determined using nanophotometer (Implen, Munich, Germany). cDNA synthesized using 203 

Transcriptor First Strand cDNA Synthesis Kit (Roche Diagnostics) and gene expression analysis for 204 

insulin and glucagon performed on whole pancreas by qPCR using Light Cycler 480 Probes Master 205 

(Roche Diagnostics) according to manufacturer's instructions (Gault et al. 2015). HPRT and beta-206 

actin were used as internal control for normalisation. PCR conditions were 95ºC for 10 min, 207 

followed by cDNA amplification for 50 cycles with 95ºC denaturation for 10s, 60ºC annealing for 208 

30 s and 72ºC elongation for 10s followed by cooling period of 30 s at 40 °C. Relative quantification 209 

using 2-∆∆CT method used to calculate differences between groups (Livak & Schmittgen 2001). 210 

 211 

Statistical analyses  212 

Results were analysed using Prism (GraphPad Software Inc., USA) and data expressed as mean ± 213 

S.E.M. For metabolic data, statistical analyses were performed using one-way ANOVA followed by 214 

Student-Newman-Keuls post-hoc test. For novel object recognition and immunohistochemistry, 215 

statistical analyses were carried out using unpaired Student’s t-test (non-parametric, with two-tailed 216 
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p values and 95% confidence interval) and one-way ANOVA with Bonferroni post-hoc test. Groups 217 

of data were considered to be significantly different if p<0.05.  218 

 219 

Results 220 

Effects of DAPA-Lira on body weight, energy intake, glucose and insulin concentrations  221 

Compared to HF controls, DAPA-Lira treatment resulted in significant time-dependent decrease in 222 

body weight (p<0.001; Fig. 1A). Importantly, body weights for DAPA-Lira and dapagliflozin 223 

groups were reduced despite no reduction in energy intake (Fig. 1B). Liraglutide-treated mice 224 

displayed reduced cumulative energy intake (p<0.05-p<0.001; Fig. 1B) compared to HF controls. 225 

DAPA-Lira treatment resulted in time-dependent decrease (242%; p<0.001) in glucose 226 

concentrations compared to HF controls, dapagliflozin or liraglutide alone (157-172%; p<0.01) on 227 

day 28 (Fig. 1C). All treatments exhibited progressive time-dependent increase in insulin but no 228 

significance was detected between HF groups, except DAPA-Lira treated mice which exhibited 229 

lower levels on day 28 (p<0.01; Fig. 1D).  230 

 231 

Effects of DAPA-Lira on glucose tolerance, insulin response to glucose, insulin sensitivity, 232 

HbA1c and plasma glucagon 233 

Mice treated with DAPA-Lira for 28 days exhibited significant reduction (37-47% decrease; p<0.01) 234 

in glucose concentrations (individual time-course for up to 120 min) compared with dapagliflozin or 235 

liraglutide alone (Fig. 2A). This was further corroborated by significantly reduced glucose AUC120 236 

values (37-52% decrease; p<0.001; Fig. 2B). As shown in Fig. 2C, all treatment groups 237 

demonstrated increased insulinotropic response, with DAPA-Lira mice exhibiting significantly 238 

higher AUC90 values (1.1-1.4-fold increase; p<0.01-p<0.001) compared to dapagliflozin or 239 

liraglutide alone (Fig. 2D). Similarly, all treatment groups displayed marked improvement in insulin 240 
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sensitivity compared to HF controls following administration of exogenous insulin (p<0.05; Fig. 241 

3A-B). DAPA-Lira treated mice also displayed marked reduction (73% lower; p<0.05) in HOMA-242 

IR compared to dapagliflozin or liraglutide alone (Fig. 3C). Furthermore, mice treated with DAPA-243 

Lira had a significantly improved HOMA-β index compared to dapagliflozin (53% increase; 244 

p<0.01) or liraglutide (13% increase; p<0.05) alone (Fig. 3D). All treatment groups had significantly 245 

(p<0.001) reduced HbA1c values compared to HF controls with DAPA-Lira treated mice exhibiting 246 

improved HbA1c (19-26% reduction; p<0.001) compared to dapagliflozin or liraglutide alone (Fig. 247 

3E). Dapagliflozin and DAPA-Lira groups had significantly increased plasma glucagon 248 

concentrations (24-33%; p <0.001) compared to HF controls, whereas liraglutide group exerted a 249 

33% reduction in plasma glucagon (p<0.001) compared to DAPA-Lira treated mice (Fig. 3F). 250 

 251 

Effects of DAPA-Lira on body composition and lipids 252 

DEXA analysis revealed that all treatment groups exhibited significant reduction (37-42% decrease; 253 

p<0.05-p<0.001) in percentage fat mass compared to HF controls (Fig. 4A). No significant 254 

differences were noted between DAPA-Lira and liraglutide or dapagliflozin. Similarly, no 255 

significant differences were observed in lean mass for any groups tested (Fig. 4B). Compared with 256 

HF controls, all treatments significantly decreased triglycerides (p<0.5-p<0.001; Fig. 4C). DAPA-257 

Lira reduced triglycerides (71-87% decrease; p<0.01-p<0.001; Fig. 4C) to a greater extent than 258 

either liraglutide or dapagliflozin alone. No significant differences between HF groups in terms of 259 

total cholesterol was observed (Fig. 4D). 260 

 261 

Effects of DAPA-Lira on terminal organ weight, hormones and biomarkers 262 

Administration of DAPA-Lira and dapagliflozin resulted in a significant reduction in inguinal 263 

adipose weight (p<0.05; Fig. 5A). Liver and pancreatic weights were not significantly different in 264 
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any of the HF groups (Fig. 5B and 5C). Total plasma GLP-1 concentrations were significantly 265 

increased in all treatment groups (p<0.001) compared to HF controls with DAPA-Lira group 266 

displaying increased levels of total GLP-1 (12-18% increase; p<0.01-p<0.001) compared to 267 

liraglutide or dapagliflozin alone (Fig. 5D). No significant differences were noted in ALT levels in 268 

HF mice (Fig. 5E). Both dapagliflozin and DAPA-Lira treatment groups displayed significantly 269 

elevated (1.0-fold; p<0.01-p<0.001) plasma IL-6 levels compared to HF controls (Fig. 5F). 270 

Liraglutide only treated mice displayed reduced (48% decrease; p<0.001) IL-6 levels compared to 271 

DAPA-Lira treatment (Fig. 5F). All treatment groups resulted in significant reduction (33-43% 272 

decrease; p<0.05) in corticosterone concentrations compared to HF controls (Fig. 5G). 273 

 274 

Effects of DAPA-Lira in novel object recognition task 275 

During test trial, no significant difference was noted in the recognition index (RI) for the HF group 276 

indicating that they could not discriminate between novel and familiar object thereby exhibiting 277 

impaired cognition (Fig. 6A). All treatment groups and lean control group displayed significantly 278 

increased RI (1.1-1.3-fold; p<0.01-p<0.001) when exposed to novel object compared to HF controls, 279 

thus highlighting preference to explore novel versus familiar object (Fig. 6B-6F). Open field 280 

assessment revealed no effect of any treatments on motor activity (speed and path length), anxiety 281 

(grooming events) and exploration (rearing events) (data not shown). 282 

 283 

Effects of DAPA-Lira on islet morphology, pancreatic hormone content and mRNA gene 284 

expression 285 

As shown in Fig. 7A, beta cell area was significantly increased (p<0.05) in liraglutide treated mice. 286 

Mice treated with dapagliflozin alone exhibited marked increase (p<0.01) in alpha cell area 287 

compared to HF controls (Fig. 7D). In contrast, DAPA-Lira or liraglutide alone did not affect alpha 288 
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cell area (Fig. 7D). Islets of HF mice exhibited substantial staining for IL-6 in beta cells and GLP-1 289 

in alpha cells with no appreciable differences between various treatment groups (images not shown). 290 

Both DAPA-Lira and liraglutide markedly increased (1.4-1.6 fold; p<0.05) pancreatic insulin 291 

content compared to HF controls (Fig. 7B). Liraglutide treatment also significantly decreased (23% 292 

reduction; p<0.001) glucagon content while both DAPA-Lira and dapagliflozin led to significant 293 

increases compared to HF controls (21-28% increase; p<0.01-p<0.001; Fig. 7E). A similar pattern to 294 

changes in pancreatic insulin and glucagon content were observed in pancreatic mRNA expression 295 

of insulin and glucagon (Fig. 7C and 7F). 296 

 297 

Effects of DAPA-Lira on neurogenesis and synaptic density 298 

Representative micrographs of doublecortin and synaptophysin staining are shown in Fig. 8A-8E. 299 

Mice treated with DAPA-Lira, dapagliflozin or liraglutide displayed increased number of immature 300 

neurons in the dentate gyrus (44-69% increase; p<0.01-p<0.001; Fig. 8F) compared to HF controls 301 

as indicated by increased number of DCX-positive cells. Significantly higher levels of 302 

synaptophysin expression were demonstrated in all treatment groups in stratum oriens layer (88-303 

113% increase; p<0.01; Fig. 8J) compared to HF controls. DAPA-Lira treatment also improved 304 

synaptophysin expression in stratum pyramidale layer (50% increase; p<0.05; Fig. 8I), though no 305 

differences in polymorph layer (Fig. 8G) and stratum radiatum (Fig. 8H) were observed. 306 

 307 

Discussion 308 

Given the increase and diversity of new antidiabetic drugs in the clinic, there is now a great 309 

opportunity to offer a more patient-centered tailored or personalized approach to therapeutic 310 

intervention. In this study, we examined the efficacy of combination therapy using the SGLT2 311 

inhibitor dapagliflozin and the long-acting GLP-1 agonist liraglutide. In addition to assessing 312 
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metabolic outcomes, we also examined potential neuroprotective benefits of combination therapy on 313 

learning and memory, especially since recent evidence has shown that GLP-1 agonists may reduce 314 

cognitive decline in diabetes-obesity (Gault et al. 2010, Porter et al. 2013). 315 

We chose to use a rodent model of diabetes combining low-dose STZ and high fat feeding to 316 

promote obesity, insulin resistance and hyperglycaemia (Srinivasan et al. 2005, Islam & Wilson 317 

2012). This rodent model has been used previously and serves as a suitable means to evaluate 318 

potential drug intervention (Bhat et al. 2013, Millar et al. 2016). A small dose of STZ was combined 319 

with high fat feeding to inflict sub-lethal damage to beta cells which when combined with high fat 320 

feeding gave a more rapid and pronounced diabetes phenotype with elevation in blood glucose 321 

concentrations. SGLT2 inhibitors act by reabsorbing glucose so it is useful to study therapeutic 322 

effects when glucose levels are significantly raised. In contrast to liraglutide, DAPA-Lira 323 

combination therapy over 28 days did not affect energy intake. This is an important observation as 324 

several studies suggested that energy intake is increased following SGLT2 inhibitor therapy 325 

(Devenny et al. 2012, Nagata et al. 2013). As expected, all treatments resulted in reduced body 326 

weight, which in the case of dapagliflozin most presumably reflects energy loss via urinary glucose 327 

excretion (Scheen & Paquot 2014). SGLT2 inhibitors induce a significant and durable weight loss in 328 

patients with T2DM (Bailey et al. 2015). 329 

Consistent with previous studies, monotherapy with dapagliflozin or liraglutide decreased 330 

glucose concentrations both in terms of non-fasting concentrations and following an oral glucose 331 

challenge. Moreover, DAPA-Lira combination therapy resulted in a more pronounced glucose-332 

lowering effect that is most likely achieved through increased urinary glucose excretion (Bailey et 333 

al. 2016) and enhanced beta cell function. Interestingly, dapagliflozin monotherapy was also 334 

associated with enhanced glucose-induced insulin secretion and HOMA-β, which could be due to 335 

improved metabolic control and reversal of beta cell glucotoxicity, a potential direct effect on beta 336 
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cells and possible involvement of effects on other hormones such as GLP-1 as observed with less 337 

selective SGLT2 inhibitors (Zambrowicz et al. 2013). Indeed, plasma GLP-1 concentrations were 338 

significantly increased in all treatment groups at the end of the study but most notably in the group 339 

receiving DAPA-Lira combination therapy. This may well point to enhanced alpha cell GLP-1 340 

production, which has been observed previously in pregnancy and situations of beta cell stress 341 

(Moffett et al. 2014, Vasu et al. 2014). Interestingly, IL-6 which has been implicated in islet 342 

processing of proglucagon to GLP-1 via increased expression of PC1/3 (Ellingsgaard et al. 2011) 343 

was markedly increased in beta cells of all HF groups. 344 

All treatment groups exhibited improved insulin sensitivity and improved HOMA-IR. These 345 

changes in insulin sensitivity may be ascribed to weight reduction and alleviation of glucose toxicity 346 

(Macdonald et al. 2010). Of particular note is the observation that DAPA-Lira combination therapy 347 

markedly reduced HbA1c, which was significantly lower than either dapagliflozin or liraglutide 348 

alone. Importantly, no episodes of hypoglycaemia were observed in treatment groups following 349 

fasting for OGTT or during the insulin tolerance test, however measurement of circulating ketones 350 

would have been informative. Taken together, DAPA-Lira combination therapy was associated with 351 

improved glucose-lowering and greater reduction in body weight (compared to liraglutide alone), 352 

without observable effects on energy intake, suggesting that combination of dapagliflozin and 353 

liraglutide is a very powerful approach to management of glycaemia. 354 

Consistent with previous studies, high fat fed mice exhibited dyslipidaemia and obesity 355 

(Podrini et al. 2013). DEXA scanning revealed that fat mass was significantly reduced in all 356 

treatment groups with tendency to be lower in groups treated with dapagliflozin and this was further 357 

corroborated by significantly decreased adipose tissue mass. In T2DM patients, body weight loss 358 

induced by dapagliflozin is mainly due to reduction in visceral and subcutaneous fat mass (Bolinder 359 

et al. 2012). Importantly, decreases in fat mass were not associated with changes in lean mass. High 360 
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fat mice displayed elevated triglyceride concentrations that were significantly improved in all 361 

treatment groups but especially in DAPA-Lira combination group. This could be due to function of 362 

improved glycaemia and greater weight reduction in this group. No significant changes in plasma 363 

total cholesterol were noted in any of the treatment groups. Although not measured in this study, 364 

relatively small clinically insignificant increases in both LDL- and HDL-cholesterol have been 365 

observed in patients on dapagliflozin therapy (Matthaei et al. 2015). As expected, HF mice exhibited 366 

increased liver weight and ALT concentrations characteristic of non-alcoholic fatty liver disease 367 

(Ganz et al. 2014). Whilst all treatments tended to reverse negative effects towards that of healthy 368 

controls, more detailed analyses investigating effects on hepatic triglyceride content, plasma and 369 

liver oxidative stress would be useful. 370 

Mice treated with dapagliflozin, either alone or in combination with liraglutide, displayed 371 

elevated levels of IL-6. IL-6 has been shown to stimulate insulin from beta cells, glucagon from 372 

alpha cells and GLP-1 secretion from both intestinal L and pancreatic alpha cells (Ehses et al. 2007, 373 

Ellingsgaard et al. 2008, 2011). Increase in GLP-1 production is thought to occur via differentiation 374 

of the alpha cell through proglucagon transcription and enhanced PC1/3 expression (Ellingsgaard et 375 

al. 2008, 2011). Furthermore, SGLT2 inhibition promotes glucagon secretion from alpha cells in 376 

healthy mice (Bonner et al. 2015) and increases GLP-1 concentrations in patients (Ferrannini et al. 377 

2014). More recent studies have suggested that dapagliflozin stimulates GLP-1 and IL6 secretion 378 

from pancreatic islets (Timper et al. 2016). In the present study, dapagliflozin increased plasma 379 

GLP-1, glucagon and IL-6, perhaps pointing to an important role for IL6 in beneficial action of 380 

dapagliflozin. Indeed, we have recently demonstrated increased expression of PC1/3 in αTC1.9 cells 381 

treated with dapagliflozin (unpublished observations). Measures of additional circulating cytokines 382 

(e.g. TNFα and IL-1β) would provide insight as to whether this reflects a specific effect on IL-6, or 383 

a more generalized heightened inflammatory state. The increase in plasma IL-6 following 384 
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dapagliflozin therapy is particularly interesting and further studies exploring its role are clearly 385 

warranted. Importantly, mice treated with liraglutide alone displayed decreased plasma glucagon 386 

with no change in IL-6 concentrations. 387 

Pancreatic immunochemical staining revealed that mice treated with dapagliflozin exhibited 388 

a significant increase in alpha cell area. This was accompanied by reduction in pancreatic insulin 389 

content and increases in both proglucagon gene expression and pancreatic glucagon content. These 390 

observations are broadly in line with metabolic insulin and glucagon data and further confirm an 391 

important effect of dapagliflozin on the alpha cell (Bonner et al. 2015). As expected, liraglutide 392 

treatment was associated with enhanced beta cell area and increased insulin content and this was 393 

accompanied by significant decrease in gene expression and pancreatic glucagon content 394 

(Schwasinger-Schmidt et al. 2013). Interestingly, alpha cell area was not affected in mice receiving 395 

DAPA-Lira combination therapy with both insulin gene expression and hormone content increased, 396 

suggesting that the liraglutide component countered some of the alpha cell promoting properties of 397 

dapagliflozin, which would be beneficial in a longer-term treatment regimen. We did not see tight 398 

correlation between the various parameters (percentage islet cells, hormone content and basal 399 

hormone levels) because many different factors influence these parameters. For example, if cell 400 

synthesizes hormone it is not just leaked out into the blood but is stored in vesicles that are regulated 401 

on minute-to-minute basis by prevailing blood glucose plus myriad of other factors. 402 

We and others have previously shown that high fat feeding in rodents causes detrimental 403 

effects in brain regions associated with learning and memory (Greenwood & Winocur 2005, 404 

Stranahan et al. 2008a, Gault et al. 2010). Furthermore, growing evidence indicates that diabetes 405 

and obesity increase the risk of developing neurodegenerative disorders, such as Alzheimer’s 406 

disease (Rani et al. 2016). More recently, GLP-1 agonists (and DPP4 inhibitors) have been shown to 407 

reduce cognitive decline associated with diabetes-obesity (Groeneveld et al. 2016). The present 408 
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study evaluated learning and memory using well-established novel object recognition task, which 409 

exploits ability of a rodent to explore a novel object over a familiar object (Abbas 
et al. 2009). As 410 

expected, HF mice could not discriminate between familiar and novel object when compared to 411 

healthy controls (Gault et al. 2015). However, all HF treated mice displayed significantly improved 412 

recognition memory, which was not attributable to effects on anxiety or motor activity, as indicated 413 

in open field assessment. Future studies using additional behavioural tests such as Morris Water 414 

Maze would also be useful. 415 

Corticosterone concentrations were markedly raised following high fat feeding but treatment 416 

with dapagliflozin or liraglutide (both alone and in combination) reversed this effect. Raised 417 

glucocorticoid concentrations not only induce insulin resistance but also contribute to deficits in 418 

hippocampal function (Stranahan et al. 2008b). Indeed, reducing corticosterone concentrations can 419 

prevent diabetes-induced impairment of hippocampus-dependent learning (Stranahan et al. 2008c). 420 

Immunohistochemical staining revealed that HF treated mice displayed significantly enhanced 421 

doublecortin and synaptophysin expression indicating possible role of drug treatment to promote 422 

recovery of neurogenesis and synaptic density. It is possible that combination therapy over a longer 423 

time period may have resulted in superior neurogenesis and cognitive function compared to 424 

monotherapy. To our knowledge, this is the first study to report beneficial effects of dapagliflozin on 425 

cognitive function, neurogenesis, and synaptic density. Whilst positive neuroprotective and growth 426 

factor like effects of dapagliflozin on learning and memory are unlikely to occur as direct effect of 427 

SGLT2 inhibition in the brain itself, SGLT2 inhibitors are lipid-soluble and should cross the blood-428 

brain-barrier (Bakris et al. 2009). However, similar to DPP4 inhibitors, it is plausible that 429 

neuroprotective effects observed for dapagliflozin could be attributed to increased GLP-1 430 

concentrations which can then cross the blood-brain-barrier and/or actions of dapagliflozin to lower 431 

corticosterone concentrations. Whilst we cannot rule out that part of the neuroprotective effects may 432 
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be dependent on improved peripheral glycaemia, further detailed studies to delineate mechanism for 433 

this improvement in cognitive function with dapagliflozin would be useful. 434 

In summary, compared with either agent alone, DAPA-Lira combination therapy was 435 

associated with superior glucose-lowering and significant reduction in body weight, indicating 436 

powerful and complementary approach to effectively manage hyperglycaemia. Part of this benefit 437 

appears to derive from the ability of liraglutide to decrease islet alpha cells. Other prominent effects 438 

included normalisation of hypertriglyceridaemia and enhancements of both insulin secretion and 439 

action. Furthermore, DAPA-Lira combination therapy, and indeed dapagliflozin monotherapy, were 440 

effective in reversing memory impairment in diabetic mice. Moreover, changes in glucagon and 441 

GLP-1 following dapagliflozin treatment were associated with changes in IL-6, suggesting possible 442 

role of IL-6 in mediating some of the actions of SGLT2 inhibition. This study supports recent papers 443 

showing clinical effectiveness of combination therapy with SGLT2 inhibition and stable GLP-1 444 

mimetics in T2DM patients (DeFronzo 2017). Taken together, our results highlight an important 445 

personalised approach in utilising liraglutide in combination with dapagliflozin for further clinical 446 

evaluation in the treatment of diabetes and associated neurodegenerative disorders. 447 
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Figure legends 1 

Figure 1: Effects of once-daily administration of DAPA-Lira on (A) body weight, (B) cumulative 2 

energy intake, (C) glucose and (D) insulin concentrations. HF mice received saline vehicle (0.9% 3 

wt/vol; p.o.), dapagliflozin (1 mg/kg; p.o.), dapagliflozin (1 mg/kg; p.o.) plus liraglutide (25 4 

nmol/kg; i.p) or liraglutide alone (25 nmol/kg; i.p) over 28 days. Lean control mice received saline 5 

vehicle once-daily. Metabolic parameters were measured every 3 to 4 days. Values are means ± 6 

SEM for groups of 8-10 mice. *p<0.05, **p<0.01 and ***p<0.001 compared to HF controls. 7 

∆∆
p<0.01 compared to DAPA-Lira. 8 

 9 

Figure 2: Effects of once-daily administration of DAPA-Lira on (A and B) glucose tolerance and (C 10 

and D) insulin response to glucose. HF mice received saline vehicle (0.9% wt/vol; p.o.), 11 

dapagliflozin (1 mg/kg; p.o.), dapagliflozin (1 mg/kg; p.o.) plus liraglutide (25 nmol/kg; i.p) or 12 

liraglutide alone (25 nmol/kg; i.p) over 28 days. Lean control mice received saline vehicle once-13 

daily. Glucose and insulin concentrations were measured prior to and after oral administration of 14 

glucose (18 mmol/kg) in 12-hour fasted mice. Glucose and insulin AUC values post-injection are 15 

also shown. Values are means ± SEM for groups of 8-10 mice. *p<0.05, **p<0.01 and ***p<0.001 16 

compared to HF controls. 
∆∆
p<0.01 and 

∆∆∆
p<0.001 compared to DAPA-Lira. 17 

 18 

Figure 3: Effects of once-daily administration of DAPA-Lira on (A and B) insulin sensitivity, (C) 19 

HOMA-IR, (D) HOMA-β, (E) HbA1c and (F) plasma glucagon. HF mice received saline vehicle 20 

(0.9% wt/vol; p.o.), dapagliflozin (1 mg/kg; p.o.), dapagliflozin (1 mg/kg; p.o.) plus liraglutide (25 21 

nmol/kg; i.p) or liraglutide alone (25 nmol/kg; i.p) over 28 days. Lean control mice received saline 22 

vehicle once-daily. Parameters were measured at the end of the study period. For insulin sensitivity, 23 

glucose concentrations were measured prior to and after injection of insulin (25 U/kg; i.p.) in non-24 
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fasted mice. Glucose AAC values post-injection are also shown. Values are means ± SEM for 25 

groups of 8-10 mice. **p<0.01 and ***p<0.001 compared to HF controls. 
∆
p<0.05, 

∆∆
p<0.01 and 26 

∆∆∆
p<0.001 compared to DAPA-Lira. 27 

 28 

Figure 4: Effects of once-daily administration of DAPA-Lira on (A) fat mass, (B) lean mass, (C) 29 

triglycerides and (D) total-cholesterol. HF mice received saline vehicle (0.9% wt/vol; p.o.), 30 

dapagliflozin (1 mg/kg; p.o.), dapagliflozin (1 mg/kg; p.o.) plus liraglutide (25 nmol/kg; i.p) or 31 

liraglutide alone (25 nmol/kg; i.p) over 28 days. Lean control mice received saline vehicle once-32 

daily. Parameters were measured at the end of the study period. Values are means ± SEM for groups 33 

of 8-10 mice. *p<0.05 and ***p<0.001 compared to HF controls. 
∆∆
p<0.01 and 

∆∆∆
p<0.001 34 

compared to DAPA-Lira. 35 

 36 

Figure 5: Effects of once-daily administration of DAPA-Lira on (A) adipose weight, (B) liver 37 

weight, (C) pancreatic weight, (D) total GLP-1, (E) ALT, (F) corticosterone, and (G) IL-6 38 

concentrations. HF mice received saline vehicle (0.9% wt/vol; p.o.), dapagliflozin (1 mg/kg; p.o.), 39 

dapagliflozin (1 mg/kg; p.o.) plus liraglutide (25 nmol/kg; i.p) or liraglutide alone (25 nmol/kg; i.p) 40 

over 28 days. Lean control mice received saline vehicle once-daily. Parameters were measured at 41 

the end of the study period. Values are means ± SEM for groups of 8-10 mice. *p<0.05, **p<0.01 42 

and ***p<0.001 compared to HF controls. 
∆∆
p<0.01 and 

∆∆∆
p<0.001 compared to DAPA-Lira. 43 

 44 

Figure 6: Effects of once-daily administration of DAPA-Lira on recognition index for (A) HF, (B) 45 

DAPA, (C) DAPA-Lira, (D) Lira, (E) lean mice and (F) difference score. HF mice received saline 46 

vehicle (0.9% wt/vol; p.o.), dapagliflozin (1 mg/kg; p.o.), dapagliflozin (1 mg/kg; p.o.) plus 47 

liraglutide (25 nmol/kg; i.p) or liraglutide alone (25 nmol/kg; i.p) over 28 days. Lean control mice 48 
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received saline vehicle once-daily. Parameters were measured at the end of the study period. Values 49 

are means ± SEM for groups of 8-10 mice. *p<0.05, **p<0.01 and ***p<0.001 compared to HF 50 

controls. 
∆
p<0.05 compared to DAPA-Lira. 51 

 52 

Figure 7: Effects of once-daily administration of DAPA-Lira on (A) beta cell area, (B) insulin 53 

content, (C) insulin mRNA expression, (D) alpha cell area, (E) glucagon content and (F) glucagon 54 

mRNA expression. HF mice received saline vehicle (0.9% wt/vol; p.o.), dapagliflozin (1 mg/kg; 55 

p.o.), dapagliflozin (1 mg/kg; p.o.) plus liraglutide (25 nmol/kg; i.p) or liraglutide alone (25 56 

nmol/kg; i.p) over 28 days. Lean control mice received saline vehicle once-daily. Parameters were 57 

measured at the end of the study period. Values are means ± SEM for groups of 8-10 mice. *p<0.05, 58 

**p<0.01 and ***p<0.001 compared to HF controls. 
∆∆
p<0.01 and 

∆∆∆
p<0.001 compared to DAPA-59 

Lira. 60 

 61 

Figure 8: Effects of once-daily administration of DAPA-Lira on (A-E) brain 62 

immunohistochemistry, (F) doublecortin neuroblast, and quantification levels of synaptophysin 63 

expression in (G) polymorph layer, (H) stratum radiatum, (I) stratum pyramidale and (J) stratum 64 

oriens layer. HF mice received saline vehicle (0.9% wt/vol; p.o.), dapagliflozin (1 mg/kg; p.o.), 65 

dapagliflozin (1 mg/kg; p.o.) plus liraglutide (25 nmol/kg; i.p) or liraglutide alone (25 nmol/kg; i.p) 66 

over 28 days. Lean control mice received saline vehicle once-daily. Parameters were measured at 67 

the end of the study period. Values are means ± SEM for groups of 6 mice.  *p<0.05, **p<0.01 and 68 

***p<0.001 compared to HF controls.  69 

 70 
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