

A qPCR MGB probe based eDNA assay for European freshwater pearl mussel (Margaritifera margaritifera L.)

Carlsson, J. E. L., Egan, D., Collins, P. C., Farrell, E. D., Igoe, F., & Carlsson, J. (2017). A qPCR MGB probe based eDNA assay for European freshwater pearl mussel (Margaritifera margaritifera L.). DOI: 10.1002/aqc.2788

Published in:

Aquatic Conservation Marine and Freshwater Ecosystems

Document Version: Peer reviewed version

Queen's University Belfast - Research Portal:

Link to publication record in Queen's University Belfast Research Portal

Publisher rights

Copyright 2017 John Wiley & Sons, Ltd. This work is made available online in accordance with the publisher's policies. Please refer to any applicable terms of use of the publisher.

General rights

Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

1	Jeanette E.L. Carlsson ¹ , Patrick C. Collins ^{1,2} , Edward D Farrell ¹ , Damian Egan ³ , Fran Igoe ⁴ & Jens Carlsson ¹
2	
3	A qPCR MGB probe based eDNA assay for freshwater pearl mussel (Margaritifera margaritifera L.) in an Irish
4	River
5	
6	¹ Area 52 Research Group, School of Biology & Environmental Science/Earth Institute,
7	University College Dublin, Belfield, Dublin 4, Ireland.
8	
9	² Queen's University Marine Laboratory (QML), 12-13 The Strand, Portaferry, Co. Down, Northern Ireland,
10	BT221PF UK.
11	
12	³ School of Biology & Environmental Science, University College Dublin, Belfield, Dublin 4, Ireland.
13	
14	⁴ FRAN'S ADDRESS
15	
16	Corresponding Author:
17	Email: nettan11@gmail.com, jeanette.carlsson@ucd.ie,
18	Telephone: +353 (01) 716 2395
19	
20	
21	Abstract 250 words
22	
23	
24	Keywords 4 – 6 Conservation, Detection, Ireland, Quantitative PCR
25	
26	Introduction max 2000 words
27	
28	Freshwater pearl mussel Margaritifera margaritifera L, are large (~14 cm), long lived (>100 years) bivalves
29	that are native to clean, fast-flowing, soft-water rivers and streams across Western and Northern Europe (Bauer
30	1986, 1992; Moorkens 1999; Young et al. 2001). Due to a degeneration habitat quality M. Margaritifera have

31	declined significantly across their range and are classified as critically endangered by the IUCN. Although large
32	populations still exist, recruitment is low and the isolation of the subpopulations ensures low to no gene
33	exchange occurs (Moorkens, 2011).
34	
35	Within Western Europe, this has precipitated protection and conservation actions under national and
36	international legislation including the listing of <i>M. margaritifera</i> under Annex II and V of the Habitats Directive
37	(92:43: EEC). This has ensured that many rivers with <i>M. Margaritifera</i> sub populations have been designated as
38	Special Areas of Conservation (SAC). The species is further protected under national legislation and is legally
39	protected in Ireland under Schedule 1 of the Wildlife Act (Protection of Wild Animals) (Statutory Instrument
40	No. 112, 1990) and the European Communities (Natural Habitats) Regulations (Statutory Instrument No. 94,
41	1997).
42	
43	Although recent estimates have suggested a total 1282 sub populations, this is expected to be reduced to 204 sub
44	populations by 2100. The island of Ireland currently supports 139 sub populations, with an expected number of
45	subpopulations being reduced to 6 by 2100 (Mookhens et al., 2011). However, currently the species is still
46	widespread in Ireland, although abundances have declined (Geist 2005). These subpopulations may provide a
47	potential source for re-colonisation, given proposed improvements in future water and habitat quality-levels as
48	outlined under the European Water Framework.
49	
50	There is a recognised linkage between healthy stocks of salmonids such as brown trout (Salmo trutta L.) and
51	Atlantic salmon (S. salar L.) and the endurance, growth and propagation and of M. margaritifera sub
52	populations (Bauer 1979; Ziuganov and Nezlin 1988; Ziuganov et al. 1994). Studies have suggested a symbiotic
53	releationship between salmonids and <i>M. margaritifera</i> - the mussels maintain water quality required by the
54	salmonids and have been shown to reduce senility in salmon, thereby extending their life expectancy (Ziuganov
55	2005!). The salmonids gills host <i>M. margaritifera</i> glochidium, a larval stage of <i>M. margaritifera</i> that requires
56	salmonids for dispersal. The chances of a glochidium successfully finding a host in waters with healthy
57	salmonid stocks is as low as 0.0004%, with only 5% of these successfully attaching which can only survive for
58	(Young and Williams 1984;). The pearl mussels have evolved to live in ultra- oligotrophic waters, where
59	obligate salmonid host populations (e.g. brown trout) were never high and depend on the anadromous sea trout
60	and salmon. Reductions in anadromous salmonid populations therefore have a drastic and immediate impact on

1.1

the successful attachment of glochidium and by extension recruitment and population viability of *M*. *margaritifera* (Bauer 1979). Therefore, any recovery *M. margaritifera* populations is dependent on and
concomitant with the promotion of healthy salmonid populations. As an added value, the presence of *M. margaritifera* beds aids the legal designation and maintenance of high quality salmonid nursery habitats for
through complementary legal protection.

M. margaritifera are important members of the food web in soft-water nutrient poor ecosystems; transferring 67 68 nutrients and energy from the water column to the sediments through filter feeding, stimulating production 69 across trophic levels (Spooner and Vaughn 2006). A previous study (Stoeckle et al. 2015) developed M. 70 margaritifera specific primers anchored in 16S mitochondrial (mt)DNA region and successfully deployed the 71 assay on environmental (e)DNA samples from Central Europe. However, while 16S sequences from different 72 organisms are abundant in public repositories, it would be advantageous to focus on the barcode of life gene 73 (mtDNA COI - http://www.barcodeoflife.org) as repositories of COI sequences contain representatives from 74 many more organisms than any other gene sequence repository. Further improvements of eDNA assays include 75 adding species specific probes with higher fidelity (e.g. minor grove binding, MGB probes) than both assays 76 based solely on species specific primers or those also incorporating TaqMan® probes not using the MGB group (Kutyavin et al. 2000). 77 78 79 The aim of the current study was to develop an eDNA assay that can detect the presence and relative

80 abundances of *M. margaritifera* without hard sampling. This approach may allow for the detection of previously

81 unrecorded populations that would require recognition and a measure of protection. Remnant populations may

82 exist at densities too low for observation by traditional studies; acting as a potential source of recruits for

83 repopulation. The approach would also allow for the identification of *M. margaritifera* hotspots; zones that

- 84 support relatively a larger proportion of the mussel population.
- 85

86 Methods

- 87
- 88 eDNA qPCR assay development

89	All DNA tissue originated from a naturally diseased individual <i>M. margaritifera</i> . Found on the bank of the
90	River Munster Blackwater (Fran Igoe personal comments). The tissue sample was received and total DNA was
91	extracted from these tissue samples using the Qiagen Dneasy kit (Qiagen, Valencia, CA). Extracted DNA was
92	used as template for assay validation and standard curves for qPCR. Species-specific primers for M.
93	margaritifera (forward primer: 5'- TTG TTG ATT CGT GCT GAG TTA GG-3', and reverse primer: 5'- GCA
94	TGA GCC GTA ACA ATA ACA TTG-3') and 5'-6-FAM labelled TaqMan® minor groove binding probe (5'-
95	CCT GGT TCT TTG CTG GGT-3') targeting region within the mtDNA cytochrome oxidase I (COI) region
96	were designed using PRIMER EXPRESS 3.0 (Applied Biosystems-Roche, Branchburg, NJ). The total amplicon
97	size, including primers, was 83 bp. Probe and primer sequences were matched against the National Centre for
98	Biotechnology Information (NCBI - http://www.ncbi.nlm.nih.gov/) nucleotide database with BLASTn (Basic
99	Local Alignment Search Tool) to confirm the species specificity for M. margaritifera in in-silico assays. The
100	specificity and amplification capability of the assay was confirmed by conventional PCR amplification and
101	DNA visualisation on a 1.5% agarose gel stained with SYBR® Safe - DNA Gel Stain (Life Technologies). In
102	addition, to the qPCR eDNA assay for <i>M. margaritifera</i> , we included a previously developed eDNA qPCR
103	assay (Gustavson et al. 2015) for brown trout (S. trutta) as a positive control for presence of amplifiable eDNA
104	in water samples.
105	
106	eDNA filtering and extraction of field samples
4.07	

- 108 Blackwater River in sterile 3 L PET bottles and kept frozen until analysed. Water samples were thawed in
- ambient temperature and 1 L per sample was filtered through individual 0.45 μm Whatman nitrate filters. The
- 110 amount of water filtered was recorded for each water sample to the closest cL. Filters were subsequently
- 111 dehydrated with 100% EtOH before storage at -20°C. Each filter was cut into halves (half for analysis and half
- 112 for archival storage) and shredded to increase surface area for eDNA extraction using Qiagen QIAshredder
- 113 (Qiagen, Valencia, CA). Total eDNA was extracted using a Qiagen DNeasy kit (Qiagen, Valencia, CA).
- 114 Extracted eDNA was stored at -20°C until further processing.
- 115
- 116 *eDNA assay deployment*
- 117 Concentrations of eDNA were determined by qPCR using an Applied Biosystems ViiATM 7 (Life Technologies,
- 118 Inc., Applied Biosystems, Foster City, CA) quantitative thermocycler. Amplification reactions for each species

119	included: 15 µl of TaqMan® Environmental Master Mix 2.0 (Life Technologies., Applied Biosystems, Foster
120	City, CA), 3 μ l of each primers (final concentration of 0.2 μ M), probe (final concentration of 0.2 μ M), ddH2O,
121	and DNA template (3 μ l), forming the 30 μ L reaction volume. The qPCR run method used warm-up conditions
122	of 50°C for 2 min and 95°C for 10 min, followed by 40 cycles between 95°C for 15 s and 60°C for 1 min. The
123	standard curve for M. margaritifera was generated with quantified (NanoDrop®-1000, Thermo Scientific,
124	Wilmington, DE) DNA extractions from a tissue sample (DNA concentrations of 122.0 pg/L) using seven 10:1
125	serial dilutions as template for qPCR. The standard curve for <i>M. margaritifera</i> ($y = -3.4058x + 38.238$, $R^2 = -3.4058x + 38.238x + 38.238$, $R^2 = -3.4058x + 38.238x + 38.238$, $R^2 = -3.4058x + 38.238x + 38.288$, $R^2 = -3.4058x + 38.288x + 38.288$
126	0.9997, efficiency = 96.62%) was generated using 3 μ l DNA template in a total reaction volume of 30 μ l,
127	respectively. The lowest concentrations of DNA (dynamic range) equalling 0.122 pg/L in the standard curves
128	were detected at Cq (quantification cycle) 34.8 (average over three technical replicates, $SD = 0.073$). Results
129	from the standard curve (Fig. 1.) indicate a dynamic range and lowest eDNA detection level at Cq 38.238
130	(equivalent to a <i>M. margaritifera</i> DNA concentration of 0.333 pg/L). All field samples were quantified in
131	duplicates (two technical replicates), to ensure consistency, with two laboratory negative controls and M.
132	margaritifera. Three water samples within the Munster Blackwater River system were used as template for S.
133	trutta qPCR to validate the presence of amplifiable eDNA. The average Cq across technical replicates (n=2)
134	were used for quantification.
135	
136	Results and Discussion
137	

- 138 The present study successfully developed an eDNA assay with very high sensitivity for *M. margaritifera*. All
- 139 analysed samples yielded detectable eDNA (with Cq within the dynamic range) for both *M. margaritifera* and *S.*
- 140 trutta (presence of S. trutta eDNA was validated in three sample locations), indicating that amplifiable target
- 141 eDNA was present in all water samples. Resulting Cq values from the qPCR assays were transformed to
- 142 pgDNA/L (based on the standard curve, Fig 1.). The concentrations of eDNA ranged from 0.462 pg/L in Rowls
- 143 Aldworth West Bridge (right bank sample) to the highest of 109.884 pg/L in the Leader's Bridge Allow (left
- 144 bank sample). Environmental DNA concentrations were relatively stable across transects within location (right
- 145 bank, middle and left bank samples). Average eDNA concentrations (across transects) ranged from the lowest at
- 146 in Rowls Aldworth West Bridge (1.056 pg/L) to the highest at Cullen Bridge (79.412 pg/L). Two graphs were
- 147 plotted to visualise eDNA concentrations (Figs. 2 and 3). These results indicate variable eDNA concentrations
- 148 among localities. The developed eDNA assay can be used to assess concentrations of eDNA which should be

Commented [JC1]: What do we do here. We do not need to have tons of locations. Just one field sample and one negative field sample...

149	related to the biomass of <i>M. margaritifera</i> and could be used for monitoring the status of <i>M. margaritifera</i> in
150	individual locations and river systems. However, utilising the quantifying capabilities of eDNA assays requires
151	careful planning, standardised and coordinated sampling efforts (exact GPS positions, dates, time of day, water
152	levels, weather conditions, details about where in the water body samples were acquired from, etc.) to ensure
153	that samples are of the highest quality. Nevertheless, the eDNA assay developed here can be used for rapid
154	detection of <i>M. margaritifera</i> presence throughout Ireland and the natural range of <i>M. margaritifera</i> . Wide scale
155	deployment of the assay can help detecting cryptic populations in watersheds where M. margaritifera has not
156	previously been reported or where <i>M. margaritifera</i> are considered to have gone extinct.
157	
158	This might aid and inform conservation efforts through the translocation of existing, although previously
159	unreported, unviable subpopulations of M. Margaritifera in suboptimal habitats to either recently refurbished or
160	pre-existing optimal habitats (clean water and salmonids). This will ensure gene transfer between sub
161	populations and maintain genetic diversity in existing sub populations. The transferral of genetic material is
162	pertinent given the additional stresses of climate change. Unfortunately, given the low levels of funding and
163	political priority for conservation, this approach requires a hierarchical valuation of <i>M. margaritifera</i> habitats
164	and the focusing of efforts on SAC designated viable habitats.

166 Acknowledgements

167 This project was supported The LEADER programme 2007-2014. P.C.C and J.C acknowledge funding from

168 Science Foundation Ireland (SFI 12/IP/1308). The authors acknowledge Nuala Riordan, IRD Duhallow and

169 DuhallowLIFE for collection of samples and Michael Twohig, IRD Duhallow board chairman for storage and170 transport of samples.

171

173 Conflict of Interest: The authors declare that they have no conflict of interest.

175 References MAX 30

176	Moorkens EA (1999) Conservation management of the freshwater pearl mussel Margaritifera margaritifera. Part					
177	1: Biology of the species and its present situation in Ireland. Irish Wildlife Manuals, 8, 4-31.					
178	Bauer G (1979) Untersuchungen zur Fortpflanzungsbiologie der Flußperlmuschel im Fichtelgebirge. Arch					
179	Hydrobiol 98: 523-532.					
180	Bauer G (1986) The status of the freshwater pearl mussel Margaritifera margaritifera L. in the south of its					
181	European range. Biol Cons 38: 1–9.					
182	Bauer G (1992) Variation in life span and size of the freshwater pearl mussel. J Anim Ecol 61: 425-436.					
183	Stoeckle BC, Kuehn R, Geist J (2015) Environmental DNA as a monitoring tool for the endangered freshwater					
184	pearl mussel (Margaritifera margaritifera L.): a substitute for classical monitoring approaches? Aquat					
185	Conserv DOI: 10.1002/aqc.2611.					
186	Geist J (2005) Conservation genetics and ecology of European freshwater pearl mussels (Margaritifera					
187	margaritifera L.). Dissertation, Technischen Universität München.					
188	Gustavson MS, Collins PC, Finarelli JA, Egan D, Conchúir RÓ, Wightman GD, King JJ, Gauthier DT, Whelan					
189	K, Carlsson JEL, Carlsson J (2015) An eDNA assay for Irish Petromyzon marinus and Salmo trutta					
190	and field validation in running water. J Fish Biol 87: 1254-1262.					
191	IUCN (International Union for the Conservation of Nature) (1991) Invertebrate red list. IUCN, Gland,					
192	Switzerland.					
193	Kutyavin IV, Afonina IA, Mills A, Gorn VV, Lukhtanov EA, Belousov ES, Singer MJ, Walburger DK, Lokhov					
194	SG, Gall AA, Dempcy R (2000). 3'-minor groove binder-DNA probes increase sequence specificity at					
195	PCR extension temperatures. Nucleic Acids Res 28: 655-661.					
196	Young MR, Cosgrove PJ, Hastie LC (2001) The extent of, and causes for, the decline of a highly threatened					
197	naiad: Margaritifera margaritifera. In: Bower G and Wachtler K (eds) Ecology and Evolution of the					
198	Freshwater Mussels Unionoida. Ecological Studies, no. 145. Springer-Verleg, Berlin, pp 337-357.					
199	Spooner DE, Vaughn CC (2006) Context-dependent effects of freshwater mussels on stream benthic					
200	communities. Freshwater Biol 51: 1016-1024.					
201	Young MR, Williams JC (1984) The reproductive biology of the freshwater pearl mussel Margaritifera					
202	margaritifera (Linn.) in Scotland. I. Field studies. Arch Hydrobiol 99: 405-422.					

Fig. 1. Standard curve used to quantify Margaritifera margaritifera eDNA concentrations. This curve is based on known concentrations and dilution series (10X) from a starting concentration of 0.122pg/L, Cq – quantification cycle.

Fig. 2. Average concentrations (error bars indicate 95% C.I within locations) of Margaritifera margaritifera eDNA among water samples from the Munster Blackwater river system.

Commented [jc2]: Spara John's Bridge, Rowls Vilken mer?

- Fig. 3. Average concentrations (error bars indicate observed max and min eDNA concentrations within locations) of Margaritifera margaritifera eDNA among water samples from the Munster Blackwater river system.

Appendix. Margaritifera margaritifera eDNA concentrations within and among sites in the Munster Blackwater river system. (loc – location number, site L – left bank sample, site M – mid river sample, site R – right bank sample, Cq - quantification cycle, T1 – technical replicate 1, T2 – technical replicate 2).

• ·	Ţ	•,		C T2	Average	Average eDNA Conc across technical	Average eDNA Conc across location
Location name	Loc	site	CqTT	Cq12	Cq	replicates pg/Ll	pg/L
Allow	1	L	29.662	30.049	29.8555	96.410	62.796
		М	30.796	30.786	30.791	51.220	
		R	31.216	31.042	31.129	40.757	
Kanturk Castle							
Brogeen	2	L	35.053	34.082	34.5675	7.973	8.405
		М	36.844	35.107	35.9755	3.078	
		R	33.478	33.957	33.7175	14.165	
Grenane Park Allow	4	L	37.733	37.176	37.4545	1.132	2.660
		М	37.856	N/A	37.856	0.863	
		R	34.924	35.06	34.992	5.984	
John's Bridge Allow	7	L	32.672	33.373	33.0225	22.660	36.946
		М	32.806	32.355	32.5805	30.552	
		R	31.426	31.858	31.642	57.624	
Metal Bridge Allow	8	L	35.783	35.661	35.722	3.653	4.941
		М	34.412	35.289	34.8505	6.585	
		R	35.77	35.002	35.386	4.585	
Freemount Bridge							
Allow	9	R	31.772	31.471	31.6215	58.428	46.389
		М	32.498	32.361	32.4295	33.836	
D 1 411 4		L	31.841	32.052	31.9465	46.903	
Rowls Aldworth West Bridge	12	L.	N/A	N/A			1.056
in est Bridge		M	37 233	N/A	37 233	1 315	11000
		R	38 779	37 166	37 9725	0.798	
Hayes Crossroad		ĸ	50.775	57.100	51.9125	0.790	
Bridge	14	R	33.235	33.555	33.395	17.615	24.708
		М	34.458	34.378	34.418	8.821	
		L	32.133	31.711	31.922	47.686	
Cullen Bridge	16	R	30.779	30.881	30.83	99.775	79.412
-		М	31.304	31.367	31.3355	70.892	
		L	31.385	31.428	31.4065	67.570	