
Approximation Complexity of Maximum A Posteriori Inference in Sum-
Product Networks

Conaty, D., Maua, D. D., & de Campos, C. P. (2017). Approximation Complexity of Maximum A Posteriori
Inference in Sum-Product Networks. In Proceedings of The 33rd Conference on Uncertainty in Artificial
Intelligence AUAI.

Published in:
Proceedings of The 33rd Conference on Uncertainty in Artificial Intelligence

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2017 AUAI.
This work is made available online in accordance with the publisher’s policies. Please refer to any applicable terms of use of the publisher.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:06. Nov. 2017

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Queen's University Research Portal

https://core.ac.uk/display/96662846?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://pure.qub.ac.uk/portal/en/publications/approximation-complexity-of-maximum-a-posteriori-inference-in-sumproduct-networks(8be5b4e0-01ea-49b8-bcd8-0dc951c5eb88).html

Approximation Complexity of Maximum A Posteriori Inference in
Sum-Product Networks

Diarmaid Conaty
Queen’s University Belfast
Belfast, United Kingdom

Denis D. Mauá
Universidade de São Paulo

São Paulo, Brazil

Cassio P. de Campos
Queen’s University Belfast
Belfast, United Kingdom

Abstract

We discuss the computational complexity of
approximating maximum a posteriori infer-
ence in sum-product networks. We first show
NP-hardness in trees of height two by a reduc-
tion from maximum independent set; this im-
plies non-approximability within a sublinear
factor. We show that this is a tight bound, as
we can find an approximation within a linear
factor in networks of height two. We then show
that, in trees of height three, it is NP-hard to ap-
proximate the problem within a factor 2f(n) for
any sublinear function f of the size of the input
n. Again, this bound is tight, as we prove that
the usual max-product algorithm finds (in any
network) approximations within factor 2c·n for
some constant c < 1. Last, we present a sim-
ple algorithm, and show that it provably pro-
duces solutions at least as good as, and poten-
tially much better than, the max-product algo-
rithm. We empirically analyze the proposed
algorithm against max-product using synthetic
and real-world data.

1 INTRODUCTION

Finding the mode of a probability distribution is a key
step of many solutions to problems in artificial intel-
ligence such as image segmentation (Geman and Ge-
man, 1984), 3D image reconstruction (Boykov et al.,
1998), natural language processing (Koo et al., 2010),
speech recognition (Peharz et al., 2014), sentiment anal-
ysis (Zirn et al., 2011), protein design (Szeliski et al.,
2008) and multicomponent fault diagnosis (Steinder and
Sethi, 2004), to name but a few. This problem is often
called (full) maximum a posteriori (MAP) inference, or
most likely explanation (MPE).

Sum-Product Networks (SPNs) are a relatively new class
of graphical models that allow marginal inference in lin-
ear time in their size (Poon and Domingos, 2011). This is
therefore in sharp difference with other graphical models
such as Bayesian networks and Markov Random Fields
that require #P-hard effort to produce marginal infer-
ences (Darwiche, 2009). Intuitively, an SPN encodes an
arithmetic circuit whose evaluation produces a marginal
inference (Darwiche, 2003). SPNs have received increas-
ing popularity in applications of machine learning due to
their ability to represent complex and highly multidimen-
sional distributions (Poon and Domingos, 2011; Amer,
2012; Peharz et al., 2014; Cheng et al., 2014; Nath and
Domingos, 2016; Amer and Todorovic, 2016).

In his PhD thesis, Peharz showed a direct proof of NP-
hardness of MAP in SPNs by a reduction from maximum
satisfiability; his proof however is not correct as it en-
codes clauses as products (Peharz, 2015, Theorem 5.3).1

Later, Peharz et al. (2016) noted that NP-hardness can
be proved by transforming a Bayesian network with a
naive Bayes structure into a distribution-equivalent SPN
of height two (this is done by adding a sum node to rep-
resent the latent root variable and its marginal distribu-
tion, and product nodes as children to represent the con-
ditional distributions). As MAP inference in the former is
NP-hard (de Campos, 2011), the result follows.

In this paper, we show a direct proof of NP-hardness of
MAP inference by a reduction from maximum indepen-
dent set, the problem of deciding whether there is a sub-
set of vertices of a certain size in an undirected graph
such that no two vertices in the set are connected. This
new proof is quite simple, and (as with the reduction
from naive Bayesian networks) uses a sum-product net-
work of height two. An advantage of the new proof is
that, as a corollary, we obtain the non-approximability of
MAP inference within a sublinear factor in networks of
height two. This is a tight bound, as we show that there

1The proof has been recently rectified in an Erratum note.

HEIGHT LOWER BOUND UPPER BOUND

1 1 1
2 (m− 1)ε m− 1
≥ 3 2s

ε

2s

Table 1: Lower and upper bounds on the approximation
threshold for a polynomial-time algorithm: s denotes the
size of the instance, m is the number of internal nodes, ε
is a nonnegative number less than 1.

is a polynomial-time algorithm that produces approxima-
tions within a linear factor in networks of height two. For
networks of height three or more we prove that it is NP-
hard to approximate the problem within any factor 2f(n)

for any sublinear function f of the input size n, even if
the SPN is a tree. This bound is tight, as we show that
the usual max-product algorithm by Poon and Domingos
(2011), which replaces sums with maximizations, finds
an approximation within a factor 2c·n for some constant
c < 1. Table 1 summarizes these results. As far as we are
concerned, these are the first results about the complexity
of approximating MAP in SPNs.

We also show that a simple modification to the max-
product algorithm leads to an algorithm that produces
solutions which are never worse and potentially sig-
nificantly better than the solutions produced by max-
product. We compare the performance of the proposed
algorithm against max-product in several structured pre-
diction tasks using both synthetic networks and SPNs
learned from real-world data. The synthetic networks en-
code instances of maximum independent set problems.
The purpose of these networks is to evaluate the qual-
ity of solutions produced by both algorithms on shal-
low SPNs which (possibly) encode hard to approximate
MAP problems. Deeper networks are learned from UCI
datasets using the LEARNSPN algorithm by Gens and
Domingos (2013). The purpose of these experiments
is to assess the relative quality of the algorithms on
SPNs from realistic datasets, and their sensitivity to ev-
idence. The empirical results show that the proposed
algorithm often finds significantly better solutions than
max-product does, but that this improvement is less pro-
nounced in networks learned from real data. We expect
these results to foster research in new approximation al-
gorithms for MAP in SPNs.

Before presenting the complexity results in Section 3, we
first review the definition of sum-product networks, and
comment on a few selected results from the literature in
Section 2. The experiments with the proposed modified
algorithm and max-product appear in Section 4. We con-
clude the paper with a review of the main results in Sec-
tion 5.

2 SUM-PRODUCT NETWORKS

We use capital letters without subscripts to denote ran-
dom vectors (e.g. X), and capital letters with subscripts
to denote random variables (e.g., X1). If X is a random
vector, we call the set X composed of the random vari-
ables Xi in X its scope. The scope of a function of a
random vector is the scope of the respective random vec-
tor. In this work, we constrain our discussion to random
variables with finite domains.

Poon and Domingos (2011) originally defined SPNs as
multilinear functions of indicator variables that allow
for space and time efficient representation and marginal
inference. In its original definition SPNs were not
constrained to represent valid distributions; this was
achieved by imposing properties of consistency and com-
pleteness. This definition more closely resembles Dar-
wiche’s arithmetic circuits which represent the network
polynomial of a Bayesian network (Darwiche, 2003), and
also allow inference in the size of the circuit.

Later, Gens and Domingos (2013) re-stated SPNs as com-
plex mixture distributions as follows.

• Any univariate distribution is an SPN.

• Any weighted sum of SPNs with the same scope and
nonnegative weights is an SPN.

• Any product of SPNs with disjoint scopes is an SPN.

This alternative definition (called generalized SPNs by
Peharz (2015)) implies decomposability, a stricter re-
quirement than consistency. Peharz et al. (2015) showed
that any consistent SPN over discrete random variables
can be transformed in an equivalent decomposable SPN
with a polynomial increase in size, and that weighted
sums can be restricted to the probability simplex without
loss of expressivity. Hence, we assume in the following
that SPNs are normalized: the weights of a weighted sum
of SPNs add up to one. This implies that SPNs specify
(normalized) distributions. A similar result was obtained
by Zhao et al. (2015). We note that the base of the in-
ductive definition can also be extended to accommodate
any class of tractable distributions (e.g., Chow-Liu trees)
(Rooshenas and Lowd, 2014; Vergari et al., 2015). For
the purposes of this work, however, it suffices to consider
only univariate distributions.

An SPN is usually represented graphically as a weighted
rooted graph where each internal node is associated with
an operation + or ×, and leaves are associated with vari-
ables and distributions. The arcs from a sum node to
its children are weighted according to the corresponding
convex combinations. The remaining arcs have implic-
itly weight 1. The height of an SPN is defined as the

+

× × ×

X1

0.4

X1

0.9

X2

0.7

X2

0.2

0.2
0.5

0.3

Figure 1: A sum-product network over binary variables
X1 andX2. Only the probabilities P(Xi = 1) are shown.

maximum distance, counted as the number of arcs, from
the root to a leaf of its graphical representation. Figure 1
shows an example of an SPN with scope {X1, X2} and
height two. Unit weights are omitted in the figure. Note
that by definition every node represents an SPN (hence
a distribution) on its own; we refer to nodes and their
corresponding SPNs interchangeably.

Consider an SPN S(X) over a random vector X =
(X1, . . . , Xn). The value of S at a point x =
(x1, . . . , xn) in its domain is denoted by S(x) and de-
fined recursively as follows. The value of a leaf node
is the value of its corresponding distribution at the point
obtained by projecting x onto the scope of the node. The
value of a product node is the product of the values of
its children at x. Finally, the value of a sum node is the
weighted average of its children’s values at x. For exam-
ple, the value of the SPN S(X1, X2) in Figure 1 at the
point (1, 0) is S(1, 0) = 0.2 · 0.3 · 0.4 + 0.5 · 0.4 · 0.8 +
0.3 · 0.8 · 0.9 = 0.4. Note that since we assumed SPNs to
be normalized, we have that

∑
x S(x) = 1.

Let E ⊆ {1, . . . , n} and consider a random vector XE
with scope {Xi : i ∈ E}, and an assignment e = {Xi =
ei : i ∈ E}. We write x ∼ e to denote a value of X
consistent with e (i.e., the projection of x on E is e).
Given an SPN S(X) representing a distribution P(X),
we denote the marginal probability P(e) =

∑
x∼e S(x)

by S(e). This value can be computed by first marginal-
izing the variables {Xj : j 6∈ E} from every (distribution
in a) leaf and then propagating values as before. Thus
marginal probabilities can be computed in time linear
in the network size (assuming that univariate distribu-
tions are represented as tables). The marginal probability
P(X2 = 0) = 0.7 induced by the SPN in Figure 1 can
be obtained by first marginalizing leaves without {X2}
(thus producing the value 1 at the respective leaves), and
then propagating values as before.

In this work, we are interested in the following computa-
tional problem with SPNs:

Definition 1 (Functional MAP inference problem).

Given an SPN S specified with rational weights and an
assignment e, find x∗ such that S(x∗) = maxx∼e S(x).

A more general version of the problem would be to al-
low some of the variables to be summed out, while oth-
ers are maximized. However, the marginalization (i.e.,
summing out) of variables can performed in polynomial
time as a preprocessing step, the result of which is a MAP
problem as stated above. We stick with the above defi-
nition for simplicity (bearing in mind that complexity is
not changed).

To prove NP-completeness, we use the decision variant
of the problem:

Definition 2 (Decision MAP inference problem). Given
an SPN S specified with rational weights, an assignment
e and a rational γ, decide whether maxx∼e S(x) ≥ γ.

We denote both problems by MAP, as the distinction to
which particular (functional or decision) version we refer
should be clear from context. Clearly, NP-completeness
of the decision version establishes NP-hardness of the
functional version. Also, approximation complexity al-
ways refers to the functional version.

The support of an SPN S is the set of configurations of
its domain with positive values: supp(S) = {x : S(x) >
0}. An SPN is selective if for every sub-SPN T corre-
sponding to a sum node in S it follows that the supports
of any two children are disjoint. Peharz et al. (2016) re-
cently showed that MAP is tractable in selective SPNs.

Here, we discuss the complexity of (approximately) solv-
ing MAP in general SPNs. We assume that instances
of the MAP problem are represented as bitstrings 〈S, e〉
using a reasonable encoding; for instance, weights and
probabilities are rational values represented by two inte-
gers in binary notation, and graphs are represented by (a
binary encoding of their) adjacency lists.

3 COMPLEXITY RESULTS

As we show in this section, there is a strong connection
between the height of an SPN and the complexity of MAP
inferences. First, note that an SPN of height 0 is just a
univariate distribution (where MAP is trivial). So con-
sider an SPN of height 1. If the root is a sum node, then
the network encodes a sum of univariate distributions
over the same variable, and MAP can be solved trivially
by enumerating all values of that variable. If on the other
hand the root is a product node, then the network encodes
a distribution of fully independent variables. Also in this
case, we can solve MAP easily by optimizing indepen-
dently for each variable. So MAP in networks of height 1
or less is solvable in polynomial time.

Let us now consider SPNs of height 2. As already dis-
cussed in the introduction, Peharz et al. (2016) briefly
observed that the MAP problem is NP-hard even for tree-
shaped networks of height 2. Here, we give the following
alternative, direct proof of NP-hardness of MAP in SPNs,
that allows us to obtain results on non-approximability.
Theorem 1. MAP in sum-product networks is NP-
complete even if there is no evidence, and the underlying
graph is a tree of height 2.

Proof. Membership is straightforward as we can evalu-
ate the probability of a configuration in polynomial time.

We show hardness by reduction from the NP-hard prob-
lem maximum independent set (see e.g. (Zuckerman,
2007)): Given an undirected graph G = (V,E) with ver-
tices {1, . . . , n} and an integer v, decide whether there
is an independent set of size v. An independent set is a
subset V ′ ⊆ V such that no two vertices are connected
by an edge in E.

Let Ni denote the neighbors of i in V . For each i ∈ V ,
build a product node Si whose children are leaf nodes
Si1, . . . , Sin with scopes X1, . . . , Xn, respectively. If
j ∈ Ni then associate Sij with distribution P(Xi = 1) =
0; if j /∈ Ni ∪ {i} associate Sij with P(Xj = 1) = 1/2;
finally, associate Sii with distribution P(Xi = 1) = 1.
See Figure 2 for an example. Let ni = |Ni| be the
number of neighbors of i. Then Si(x) = 1/2n−ni−1

if xi = 1 and xj = 0 for all j ∈ Ni; and Si(x) = 0
otherwise. That is, Si(x) > 0 if there is a set V ′ which
contains i and does not contain any of its neighbors. Now
connect all product nodes Si with a root sum node parent
S; specify the weight from S to Si as wi = 2n−ni−1/c,
where c =

∑
i 2

n−ni−1. Suppose there is an indepen-
dent set I of size v. Take x such that xi = 1 if i ∈ I and
xi = 0 otherwise. Then S(x) = v/c. For any configu-
ration x of the variables, let I(x) = {i : Si(x) > 0}.
Then I(x) is an independent set of size c · S(x). So
suppose that there is no independent set of size v. Then
maxx S(x) < v/c. Thus, there is an independent set if
and only if maxx S(x) ≥ v/c.

Consider a real-valued function f(〈S, e〉) of the encoded
network S and evidence e. An algorithm for MAP in SPNs
is a f(〈S, e〉)-approximation if it runs in time polyno-
mial in the size of its input (which specifies the graph,
the weights, the distributions, the evidence) and out-
puts a configuration x̃ such that S(x̃) · f(〈S, e〉) ≥
maxx∼e S(x). That is, a f(〈S, e〉)-approximation al-
gorithm provides, for every instance 〈S, e〉 of the MAP
problem, a solution whose value is at most a factor
f(〈S, e〉) from the optimum value. The value f(〈S, e〉) is
called the approximation factor. We have the following
consequence of Theorem 1:

Corollary 1. Unless P equals NP, there is no (m − 1)ε-
approximation algorithm for MAP in SPNs for any 0 ≤
ε < 1, where m is the number of internal nodes of
the SPN, even if there is no evidence and the underlying
graph is a tree of height 2.

Proof. The proof of Theorem 1 encodes a maximum in-
dependent set problem and the reduction is a weighted
reduction (see Definition 1 in (Bulatov et al., 2012)),
which suffices to prove the result. To dispense with
weighted reductions, we now give a direct proof. So sup-
pose that there is a (m−1)ε-approximation algorithm for
MAP with 0 ≤ ε < 1. Let x̃ be the configuration returned
by this algorithm when applied to the SPN S created in
the proof of Theorem 1 for a graph G given as input of
the maximum independent set problem. We have that

S(x̃) · c · (m− 1)ε ≥ c ·max
x

S(x) = max
I∈I(G)

|I| ,

where c =
∑

i 2
n−ni−1, I(G) is the collection of inde-

pendent sets of G, n is the number of vertices in G and
ni is the number of neighbors of vertex i in G. Conse-
quently, this algorithm is a nε-approximation for max-
imum independent set (note that n = m − 1 by con-
struction). We know that there is no nε-approximation
for maximum independent set with 0 ≤ ε < 1 unless P
equals NP (Zuckerman, 2007), so the result follows.

Corollary 1 shows that there is probably no approxi-
mation algorithm for MAP with sublinear approximation
factor in the size of the input. The following result shows
that this lower bound is tight:

Theorem 2. There exists a (m − 1)-approximation al-
gorithm for MAP in sum-product networks whose under-
lying graph has height at most 2, where m is the number
of internal nodes.

Proof. Consider a sum-product network of height 2. If
the root is a product node then the problem decomposes
into independent MAP problems in SPNs of height 1; each
of those problems can be solved exactly. So assume that
the root S is a sum node connected either to leaf nodes
or to nodes which are connected to leaf nodes. Solve
the respective MAP problem for each child Si indepen-
dently (which is exact, as the corresponding SPN has
height at most 1); denote by xi the corresponding so-
lution. Note that Si(x

i) is an upper bound on the value
Si(x

∗), where x∗ is a (global) MAP configuration. Let
w1, . . . , wm−1 denote the weights from the root to chil-
dren S1, . . . , Sm−1. Return x̃ = argmaxi wi · Si(x

i). It
follows that (m−1)S(x̃) ≥ maxx∼e S(x). Note that this
is the same value returned by the max-product algorithm
by Poon and Domingos (2011).

+

S

×S1

X1

1

X2

0

X3

0

X4

0

×S2

X1

0

X2

1

X3

0

X4

1/2

×S3

X1

0

X2

0

X3

1

X4

0

×S4

X1

0

X2

1/2

X3

0

X4

1

1/6 1 /3

1/6
1/3

1 2

34

Figure 2: A sum-product network encoding the maximum independent set problem for the graph on the right. Only
the values for P(Xi = 1) are shown.

+

×

X1

0

X2

0

X3

1

X4

1/2

×

X1

1

X2

1

X3

1

X4

1/2

×

X1

1

X2

0

X3

0

X4

1/2

×

X1

0

X2

1

X3

1

X4

1/2

×

X1

0

X2

0

X3

0

X4

1/2

×

X1

1

X2

1

X3

0

X4

1/2

×

X1

0

X2

1

X3

0

X4

1/2

×

X1

0

X2

1/2

X3

0

X4

0

×

X1

1

X2

1/2

X3

1

X4

0

×

X1

1

X2

1/2

X3

0

X4

1

×

X1

0

X2

1/2

X3

1

X4

0

×

X1

0

X2

1/2

X3

0

X4

1

×

X1

1

X2

1/2

X3

1

X4

1

×

X1

0

X2

1/2

X3

1

X4

1

Figure 3: A sum-product network encoding the Boolean formula (¬X1∨X2∨¬X3)∧(¬X1∨X3∨X4). We represent
only the probabilities P(Xi = 1), and omit the uniform weights 1/14 associated with the root sum node.

Thus, for networks of height 2, we have a clear divide:
there is an approximation algorithm with linear approx-
imation factor in the number of internal nodes, and no
approximation algorithm with sublinear approximation
factor in the number of internal nodes. Allowing an ad-
ditional level of nodes reduces drastically the quality of
the approximations in the worst case:

Theorem 3. Unless P equals NP, there is no 2s
ε

-
approximation algorithm for MAP in SPNs for any 0 ≤
ε < 1, where s is the size of the input, even if there is no
evidence and the underlying graph is a tree of height 3.

Proof. First, we show how to build an SPN for deciding
satisfiability: Given a Boolean formula φ in conjunctive
normal form, decide if there is a satisfying truth-value
assignment. We assume that each clause contains exactly
3 distinct variables (NP-completeness is not altered by
this assumption, but if one would like to drop it, then
the weights of the sum node we define below could be
easily adjusted to account for clauses with less than 3
variables).

Let X1, . . . , Xn denote the Boolean variables and

φ1, . . . , φm denote the clauses in the formula. For i =
1, . . . ,m, consider the conjunctions φi1, . . . , φi7 over the
variables of clause φi, representing all the satisfying as-
signments of that clause. For each such assignment, in-
troduce a product node Sij encoding the respective as-
signment: there is a leaf node with scope Xk whose
distribution assigns all mass to value 1 (resp., 0) if and
only if Xk appears nonnegated (resp., negated) in φij ;
and there is a leaf node with uniform distribution over
Xk if and only if Xk does not appear on φij . See Fig-
ure 3 for an example. For a fixed configuration of the
random variables, the clause φi is true if and only if one
of the product nodes Si1, . . . , Si7 evaluates to 1/2n−3.
And since these products encode disjoint assignments, at
most one such product is nonzero for each configuration.
We thus have that

∑
ij Sij(x) = m/2n−3 if φ(x) is true,

and
∑

ij Sij(x) < m/2n−3 if φ(x) is false. So introduce
a sum node S with all product nodes as children and with
uniform weights 1/7m. There is a satisfying assignment
for φ if and only if maxx S(x) ≥ 23−n/7.

We “amplify” the approximation error by multiplying
independent copies of the SPN built so far. So take

the SPN above and make q copies of it with disjoint
scopes: each copy contains different random variables
Xt

k, t = 1, . . . , q, at the leaves, but otherwise represents
the very same distribution/satisfiability problem. Name
each copy St, t = 1, . . . q, and let its size be st. Denote
by s′ = maxt st (note that, since they are copies, their
size is the same, apart from possible indexing, etc). Con-
nect these copies using a product node S with networks
S1, . . . , Sq as children, so that S(x) =

∏q
t=1 St(x).

Note that maxx St(x) ≥ 23−n/7 if there is a satisfying
assignment to the Boolean formula, and maxx St(x) ≤
m−1
m ·23−n/7 if there is no satisfying assignment. Hence,

maxx S(x) ≥ (23−n/7)q if there is a satisfying assign-
ment and maxx S(x) ≤ ((m − 1)23−n/(7m))q if there
is no satisfying assignment. Specify

q = 1 +
⌊
(ln(2) ·m · (s′ + 2)ε)

1
1−ε

⌋
,

which is polynomial in s′, so the SPN S can be con-
structed in polynomial time and space and has size s <
q(s′ + 2). From the definition of q, we have that

q > (ln(2) ·m · (s′ + 2)ε)
1

1−ε .

Raising both sides to 1− ε yields

q > qε ln(2)·m·(s+2)ε = m ln(2(q(s
′+2))ε) > m ln 2s

ε

.

Since 1
m ≤ ln m

m−1 for any integerm > 1, it follows that

q ln

(
m

m− 1

)
> ln 2s

ε

.

By exponentiating both sides, we arrive at(
m

m− 1

)q

> 2s
ε

hence 2s
ε

(
m− 1

m

)q

< 1 ,

Finally, by multiplying both sides by (23−n/7)q , we ob-
tain

2s
ε

(
23−n(m− 1)

7m

)q

<

(
23−n

7

)q

.

Hence, if we can obtain an 2s
ε

-approximation for
maxx S(x), then we can decide satisfiability: there is a
satisfying assignment to the Boolean formula if and only
if the approximation returns a value strictly greater than
(23−n(m− 1)/(7m))q .

According to Theorem 3, there is no 2f(s)-approximation
(unless P equals NP) for any sublinear function f of the
input size s. The following result is used to show that
this lower bound is tight.

Theorem 4. Let S+ denote the sum nodes in SPN S, and
di be the number of children of sum node Si ∈ S+. Then
there exists a (

∏
Si∈S+ di)-approximation algorithm for

MAP with input S and evidence e.

Proof. There are two cases to consider, based on the
value of S(e), which can be checked in polynomial time.
If S(e) = 0, then we can return any assignment con-
sistent with e, as the result will be exact (and equal to
zero). If S(e) > 0, then take the max-product algo-
rithm by Poon and Domingos (2011), which consists of
an upward pass where sums are replaced by maximiza-
tions in the evaluation of an SPN, and a downward pass
which selects the maximizers of the previous step. De-
fine pd(S, e) recursively as follows. If S is a leaf then
pd(S, e) = maxx∼e S(x). If S is a sum node, then
pd(S, e) = maxj=1,...,t wj ·pd(Sj , e), where S1, . . . , St

are the children of S. Finally, if S is a product node with
children S1, . . . , St, then pd(S, e) =

∏t
j=1 pd(Sj , e).

Note that pd(S, e) corresponds to the upward pass of
the max-product algorithm; hence it is a lower bound
on the value of the configuration obtained by such al-
gorithm. We prove that the max-product algorithm is a
(
∏

Si∈S+ di)-approximation by proving by induction in
the height of the SPN that

pd(S, e) ≥

 ∏
Si∈S+

1

di

max
x∼e

S(x) .

To show the base of the induction, take a network S of
height 0 (i.e., containing a single node). Then pd(S, e) =
maxx∼e S(x) trivially. So take a network S with chil-
dren S1, . . . , St, and suppose (by inductive hypothesis)
that pd(Sj , e) ≥ (

∏
Si∈S+

j

1
di
)maxx∼e Sj(x) for every

child Sj . If S is a product node, then

pd(S, e) =
t∏

j=1

pd(Sj , e)

≥
t∏

j=1

 ∏
Si∈S+

j

1

di

max
x∼e

Sj(x)

=

 ∏
Si∈S+

1

di

 t∏
j=1

max
x∼e

Sj(x)

=

 ∏
Si∈S+

1

di

max
x∼e

S(x) ,

where the last two equalities follow as the scopes of prod-
ucts are disjoints, which implies that the children do not
share any node. If S is a sum node, then

pd(S, e) = max
j=1,...,t

wj · pd(Sj , e)

≥ max
j=1,...,t

 ∏
Si∈S+

j

1

di

wj ·max
x∼e

Sj(x)

= max
j=1,...,t

(
t

t
∏

Si∈S+
j
di

)
wj ·max

x∼e
Sj(x)

≥ max
j=1,...,t

t∏
Si∈S+ di

· wj ·max
x∼e

Sj(x)

=
t ·maxj=1,...,t wj maxx∼e Sj(x)∏

Si∈S+ di

≥

 ∏
Si∈S+

1

di

max
x∼e

S(x) .

The first inequality uses the induction hypothesis. The
second inequality follows since 1/(t ·

∏
Si∈S+

j
di) ≥

1/(t ·
∏

Si∈S+,Si 6=S di) = 1/
∏

Si∈S+ di. The last in-
equality follows as maxj wj ·maxx∼e Sj(x) is an upper
bound on the value of any child of S. This concludes the
proof.

We have the following immediate consequence, showing
the tightness of Theorem 3.
Corollary 2. There exists a 2ε·s-approximation algo-
rithm for MAP for some 0 < ε < 1, where s is the size of
the SPN.

Proof. Assume the network has at least one sum node
(otherwise we can find an exact solution in polynomial
time). Given the result of Theorem 4, we only need to
show that there is ε < 1 such that

∏
Si∈S+ di < 2ε·s,

with S+ the sum nodes in SPN S and di be the number
of children of sum node Si ∈ S+. Because s is strictly
greater than the number of nodes and arcs in the network
(as we must somehow encode the graph of S), we know
that s >

∑
Si∈S+ di. One can show that 3x/3 > x for

any positive integer. Hence,∏
Si∈S+

di ≤
∏

Si∈S+

3di/3 =
∏

Si∈S+

2di log2(3)/3

= 2
log2(3)/3·

∑
Si∈S+ di < 2s log2(3)/3 < 2ε·s ,

for some ε < 0.5284.

The previous result shows that the max-product algo-
rithm by Poon and Domingos (2011) achieves tight upper
bounds on the approximation factor. This however does
not rule out the existence of approximation algorithms
that achieve the same (worst-case) upper bound but per-
form significantly better on average. For instance, con-
sider the following algorithm that takes an SPN S and ev-
idence e, and returns amap(S, e) as follows, where amap
is short for argmax-product algorithm. If S is a sum node
with children S1, . . . , St, then compute

amap(S, e) = arg max
x∈{x1,...,xt}

t∑
j=1

wj · Sj(x) ,

where xk = amap(Sk, e), that is, xk is the solution of the
MAP problem obtained by argmax-product for network
Sk (argmax-product is run bottom-up). If S is a prod-
uct node with children S1, . . . , St, then amap(S, e) is the
concatenation of amap(S1, e), . . . , amap(St, e). Else, S
is a leaf, so return amap(S, e) = argmaxx∼e S(x).

The argmax-product has a worst-case time complexity
quadratic in the size of the network; that is because the
evaluation of all the children of a sum node with the argu-
ment which maximizes each of the children takes linear
time (with a smart implementation, it might be possible
to achieve subquadratic time). For comparison, the max-
product (with a smart implementation to keep track of
solutions and evaluations) takes linear time. While this
is a drawback of the argmax-product algorithm, worst-
case quadratic time is still quite efficient. More impor-
tantly, argmax-product always produces an approxima-
tion at least as good as that of max-product, and possibly
exponentially better:
Theorem 5. For any SPN S and evidence e, we have
that S(amap(S, e)) ≥ S(PD(S, e)), where PD(S, e)
is the configuration returned by the max-product al-
gorithm. Moreover, there exists S and e such that
S(amap(S, e)) > 2mS(PD(S, e)), where m is the num-
ber of sum nodes in S.

Proof. It is not difficult to see that S(amap(S, e)) ≥
S(PD(S, e)), because the configuration that is selected
by max-product at each sum node is one of the config-
urations that are tried by the maximization of argmax-
product (and both algorithms perform the same operation
on leaves and product nodes). To see that this improve-
ment can be exponentially better, consider the SPN Si in
Figure 4. Let pd(Si, e) be defined as in the proof of The-
orem 4. One can verify that pd(Si, e) = 5/16, while

Si(amap(Si, e)) = 3 · 11/48 = 11/16 > 2 · 5/16 .

Now, create an SPN S with a product root node connected
to children S1, . . . , Sm as described (note that the scope
of S is X1, . . . , Xm). Then,

S(amap(S, e)) = (11/16)m

> 2m(5/16)m = 2m · pd(S, e) .

The result follows as (for this network) pd(S, e) =
S(PD(S, e)).

As an immediate result, the solutions produced by
argmax-product achieve the upper bound on the com-
plexity of approximating MAP. We hope that this sim-
ple result motivates researchers to seek for more sophis-
ticated algorithms that exhibit the time performance of
max-product while achieving the accuracy of argmax-
product.

+

Si

Xi

1

Xi

0

Xi

0

Xi

0

5/16
11/48 11/48

11/48

Figure 4: Fragment of the sum-product network used to
prove Theorem 5.

4 EXPERIMENTS

We perform two sets of experiments to verify empiri-
cally the difference between argmax-product and max-
product. We emphasize that our main motivation is to
understand the complexity of the problem and how much
it can be approximated efficiently in practice. In the light
of Theorem 5, one may suggest that a MAP problem in-
stance is easy to approximate when argmax-product and
max-product produce similar approximations.

In the first set of evaluations, we build SPNs from ran-
dom instances for the maximum independent set prob-
lem, that is, we generate random undirected graphs with
number of vertices given in the first column of Table 2
and number of edges presented as percentage of the max-
imum number of edges (that is, the number of edges
in a complete graph). For each graph, we apply the
transformation presented in the proof of Theorem 1 to
obtain an SPN. The number of nodes of such SPN is
given in the third column of the table. The fourth col-
umn shows the ratio of the values of the configura-
tions found by argmax-product and max-product (that
is, S(amap(S, e))/S(PD(S, e))), averaged over 100 ran-
dom repetitions. Take the first row: On average, the re-
sult of argmax-product is 1.58 times better than the re-
sult of max-product in SPNs encoding maximum inde-
pendent set problems with graphs of 5 vertices and 10%
of edges (which creates SPNs of 31 nodes: 5 · 5 = 25
leaves, 5 product nodes and one sum node, same struc-
ture as exemplified in Figure 2). The standard deviation
for these ratios are also presented (last column in the ta-
ble). It is clear that argmax-product obtains results that
are significantly better than max-product, often surpass-
ing the 2m = 2 ratio lower bound in Theorem 5. While in
theory argmax-product can be significantly slower than
max-product, we did not observe significant differences
in running time for these SPNs with up to 6481 nodes
(either algorithm terminated almost instantaneously).

In the second set of evaluations, we use realistic SPNs

Vertices % Edges Nodes Ratio StDev

5 10 31 1.58 0.76
5 20 31 1.72 0.78
5 40 31 1.61 0.75
5 60 31 1.57 0.60

10 10 111 1.89 0.95
10 20 111 2.16 1.09
10 40 111 2.12 1.01
10 60 111 2.04 0.89
20 10 421 1.94 0.88
20 20 421 2.89 1.72
20 40 421 3.02 1.24
20 60 421 2.60 1.04
40 10 1641 2.64 1.42
40 20 1641 3.37 1.45
40 40 1641 2.33 0.73
40 60 1641 2.27 0.76
80 10 6481 3.96 1.81
80 20 6481 2.10 0.49
80 40 6481 1.07 0.26
80 60 6481 1.04 0.20

Table 2: Empirical comparison of the quality of approx-
imations produced by argmax-product and max-product
in SPNs encoding randomly generated instances of the
maximum independent set problem.

that model datasets from the UCI Repository.2 The SPNs
are learned using the GoSPN library,3 a freely avail-
able implementation of the ideas presented in (Gens and
Domingos, 2013). For each dataset, we use a random
sample of 90% of the dataset for learning the model and
save the remaining 10% to be used as test. Then we per-
form two types of queries. The first type of query con-
sists in using the learned network to compute the mode
of the corresponding distribution, that is, running both al-
gorithms with no evidence. In the second type, we split
the set of variables in half; for each instance (row) in
the test set, we set the respective evidence for the vari-
ables in the first half, and compute the MAP configura-
tion/value for the other half. This allows us to assess
the effect of evidence in the approximation complexity.
The results are summarized in Table 3. The first three
columns display information about the dataset (name,
number of variables and number of samples); the mid-
dle four columns display information about the learned
SPN (total number of nodes, number of sum nodes, num-
ber of product nodes and height); the last three columns
show the approximation results: the ratio of probabilities
of solutions found by argmax-product and max-product

2Obtained at http://archive.ics.uci.edu/ml/.
3http://www.github.com/RenatoGeh/gospn

Dataset No. of No. of No. of No. of No. of Height No Evidence 50% Evidence
variables samples nodes nodes + nodes × Ratio Ratio StDev

audiology 70 204 13513 28 27 12 1.0000 1.0029 0.0133
breast-cancer 10 258 1357 23 24 24 1.1572 1.1977 0.1923
car 7 1556 16 2 3 3 1.1028 1.0514 0.0514
cylinder-bands 33 487 3129 61 62 62 1.1154 1.1185 0.0220
flags 29 175 787 25 26 26 1.3568 1.3654 0.0363
ionosphere 34 316 603 43 44 42 1.1176 1.1109 0.0273
nursery 9 11665 20 2 3 3 1.6225 1.2060 0.2926
primary-tumor 18 306 804 113 114 114 1.0882 1.0828 0.0210
sonar 61 188 1057 101 102 26 1.2380 1.2314 0.0261
vowel 14 892 23 2 3 3 1.0751 1.0666 0.0229

Table 3: Empirical comparison of the quality of approximations produced by argmax-product and max-product in
SPNs learned from UCI datasets with height at least 2.

in the test cases with no evidence, the same ratio in test
cases with 50% of variables given as evidence, and the
standard deviation for the latter (as it is run over differ-
ent evidences corresponding to 10% of the data). We
only show datasets where the learned SPN has at least
one sum node, since in the other cases the MAP can be
trivially found and a comparison would be pointless. The
results suggest that in these SPNs learned from real data,
the difference between argmax-product and max-product
is less prominent, yet non negligible. We also see that the
complexity of approximation is not considerably affected
by the presence of evidence.

5 CONCLUSION

We analyzed the complexity of maximum a posteriori
inference in sum-product networks and showed that it
relates with the height of the underlying graph. We
first provided an alternative (and more direct) proof of
NP-hardness of maximum a posteriori inference in sum-
product networks. Our proof uses a reduction from max-
imum independent set in undirected graphs, from which
we obtain the non-approximability for any sublinear fac-
tor in the size of input, even in networks of height 2 and
no evidence. We then showed that this limit is tight, that
is, that there is a polynomial-time algorithm that pro-
duces solutions which are at most a linear factor for net-
works of height 2. We also showed that in networks of
height 3 or more, complexity of approximation increases
considerably: there is no approximation within a factor
2f(n), for any sublinear function f of the input size n.
This is also a tight bound, as we showed that the usual
max-product algorithm by Poon and Domingos (2011)
finds an approximation within factor 2c·n for some con-
stant c < 1. Last, we showed that a simple modification
to max-product results in an algorithm that is at least as

good, and possibly greatly superior to max-product. We
compared both algorithms in two different types of net-
works: shallow sum-product networks that encode ran-
dom instances of the maximum independent set prob-
lem and deeper sum-product networks learned from real-
world datasets. The empirical results show that while the
proposed algorithm produces better solutions than max-
product does, this improvement is less pronounced in
the deeper realistic networks than in the shallower syn-
thetic networks. This suggests that characteristics other
than the height of the network might be equally impor-
tant in determining the hardness of approximating maxi-
mum a posteriori inference, and that further (theoretical
and empirical) investigations are required. We hope that
these results foster research on approximation algorithms
for maximum a posteriori inference in sum-product net-
works.

Acknowledgements

The second author received financial support from
the São Paulo Research Foundation (FAPESP) grant
#2016/01055-1 and the CNPq grants #303920/2016-5
and #420669/2016-7. We thank Renato Geh for making
his source code freely available and promptly answering
our questions.

References

Amer, M. R. (2012). Sum-product networks for model-
ing activities with stochastic structure. In Proceedings
of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pages 1314–1321.

Amer, M. R. and Todorovic, S. (2016). Sum prod-
uct networks for activity recognition. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
38(4):800–813.

Boykov, Y., Veksler, O., and Zabih, R. (1998). Markov
random fields with efficient approximations. In Pro-
ceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, pages 648–
655.

Bulatov, A., Dyer, M., Goldberg, L. A., Jalsenius, M.,
Jerrum, M., and Richerby, D. (2012). The complexity
of weighted and unweighted #CSP. Journal of Com-
puter and System Sciences, 78(2):681–688.

Cheng, W.-C., Kok, S., Pham, H. V., Chieu, H. L., and
Chai, K. M. A. (2014). Language modeling with sum-
product networks. In Proceedings of the 15th Annual
Conference of the International Speech Communica-
tion Association.

Darwiche, A. (2003). A differential approach to in-
ference in Bayesian networks. Journal of the ACM,
50(3):280–305.

Darwiche, A. (2009). Modeling and Reasoning with
Bayesian Networks. Cambridge University Press.

de Campos, C. P. (2011). New complexity results for
MAP in Bayesian networks. In Proceedings of the
Twenty-Second International Joint Conference on Ar-
tificial Intelligence, pages 2100–2106.

Geman, S. and Geman, D. (1984). Stochastic relaxation,
Gibbs distributions, and the Bayesian restoration of
images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6(6):721–741.

Gens, R. and Domingos, P. (2013). Learning the struc-
ture of sum-product networks. In Proceedings of 30th
International Conference on Machine Learning, pages
873–880.

Koo, T., Rush, A. M., Collins, M., Jaakkola, T., and
Sontag, D. (2010). Dual decomposition for parsing
with non-projective head automata. In Proceedings of
the 2010 Conference on Empirical Methods in Natural
Language Processing, pages 1288–1298.

Nath, A. and Domingos, P. (2016). Learning tractable
probabilistic models for fault localization. In Proceed-
ings of the Thirtieth AAAI Conference on Artificial In-
telligence, pages 1294–1301.

Peharz, R. (2015). Foundations of sum-product networks
for probabilistic modeling. PhD thesis.

Peharz, R., Gens, R., Pernkopf, F., and Domingos, P.
(2016). On the latent variable interpretation in sum-
product networks. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1–14.

Peharz, R., Kapeller, G., Mowlaee, P., and Pernkopf, F.
(2014). Modeling speech with sum-product networks:
Application to bandwidth extension. In IEEE Inter-
national Conference on Acoustics, Speech and Signal
Processing, pages 3699–3703.

Peharz, R., Tschiatschek, S., Pernkopf, F., and Domin-
gos, P. (2015). On theoretical properties of sum-
product networks. In Proceedings of the 18th Interna-
tional Conference on Artificial Intelligence and Statis-
tics, pages 744–752.

Poon, H. and Domingos, P. (2011). Sum-product net-
works: A new deep architecture. In Proceedings of
27th Conference on Uncertainty in Artificial Intelli-
gence, pages 337–346.

Rooshenas, A. and Lowd, D. (2014). Learning sum-
product networks with direct and indirect variable in-
teractions. In Proceedings of the 31st International
Conference on Machine Learning, pages 710–718.

Steinder, M. and Sethi, A. (2004). Probabilistic fault
localization in communication systems using belief
networks. IEEE/ACM Transactions on Networking,
12(5):809–822.

Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kol-
mogorov, V., Agarwala, A., Tappen, M., and Rother,
C. (2008). A comparative study of energy min-
imization methods for Markov random fields with
smoothness-based priors. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 30(6):1068–
1080.

Vergari, A., Mauro, N. D., and Esposito, F. (2015). Sim-
plifying, regularizing and strengthening sum-product
network structure learning. In Proceedings of the Eu-
ropean Conference on Machine Learning and Knowl-
edge Discovery in Databases, pages 343–358.

Zhao, H., Melibari, M., and Poupart, P. (2015). On
the relationship between sum-product networks and
bayesian networks. In Proceedings of the 32nd In-
ternational Conference on Machine Learning, pages
116–124.

Zirn, C., Niepert, M., and Strube, Heiner Stucken-
schmidt, M. (2011). Fine-grained sentiment analysis
with structural features. Proceedings of the 5th Inter-
national Joint Conference on Natural Language Pro-
cessing, pages 336–344.

Zuckerman, D. (2007). Linear degree extractors and the
inapproximability of max clique and chromatic num-
ber. Theory of Computing, 3:103–128.

