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FairGV: Fair and Fast GPU Virtualization
Cheol-Ho Hong, Ivor Spence, and Dimitrios S. Nikolopoulos, Senior Member, IEEE

Abstract—Increasingly high performance computing (HPC) application developers are opting to use cloud resources due to higher
availability. Virtualized GPUs would be an obvious and attractive option for HPC application developers using cloud hosting services.
Unfortunately, existing GPU virtualization software is not ready to address fairness, utilization, and performance limitations associated
with consolidating mixed HPC workloads. This paper presents FairGV, a radically redesigned GPU virtualization system that achieves
system-wide weighted fair sharing and strong performance isolation in mixed workloads that use GPUs with variable degrees of
intensity. To achieve its objectives, FairGV introduces a trap-less GPU processing architecture, a new fair queuing method integrated
with work-conserving and GPU-centric coscheduling polices, and a collaborative scheduling method for non-preemptive GPUs. Our
prototype implementation achieves near ideal fairness (≥ 0.97 Min-Max Ratio) with little performance degradation (≤ 1.02 aggregated
overhead) in a range of mixed HPC workloads that leverage GPUs.

Index Terms—GPU virtualization; trap-less architecture; fair queuing, coscheduling and hybrid scheduling strategies.

F

1 INTRODUCTION

R ECENT advances in heterogeneous computing, best ex-
emplified by the ubiquity of systems with graphics

processing units (GPUs) and multi-core CPUs, have cat-
alyzed high performance computing (HPC) including scien-
tific, engineering, data-intensive, and financial applications.
GPUs in particular have facilitated high performance and
energy efficiency in HPC systems via making massive multi-
threading easily accessible to programmers. Heterogeneous
computing with GPUs has also accelerated performance-
sensitive components of system software dramatically, in
areas such as network and cybersecurity, database manage-
ment, and file systems [1], [2].

Increasingly HPC application developers are moving
their applications to cloud hosting services such as Ama-
zon EC2 and the Google Cloud platform due to higher
availability [3]. Application developers can benefit from
these cloud platforms without having to maintain large in-
house HPC facilities or queuing for long times to access
external facilities. In 2010, Amazon EC2 announced the
Cluster GPU Instance. This virtual machine (VM) instance
type provides access to NVIDIA GPUs with up to 1,536
cores, and supports OpenGL, DirectX, CUDA, and OpenCL
libraries. Leveraging virtualized GPUs in cloud computing
is obviously an attractive choice for HPC developers, while
virtualizing and sharing GPUs for higher utilization and
lower cost of ownership is an attractive choice for cloud
hosting data centers.

Unfortunately, efficient virtualization and sharing of
GPUs between HPC applications is challenging. As more
HPC applications move to the Cloud, the diversity of HPC
workloads running in cloud servers also increases. Current
GPU virtualization software is not ready to support effec-
tive sharing of GPUs between HPC workloads, particularly

• Cheol-Ho Hong, Ivor Spence, and Dimitrios S. Nikolopoulos are with
the School of Electronics, Electrical Engineering and Computer Science,
Queen’s University Belfast, Belfast BT7 1NN, United Kingdom.
E-mail: {c.hong, i.spence, d.nikolopoulos}@qub.ac.uk.

Manuscript received November 23, 2016; revised May 04, 2017.

workloads with varying intensity of GPU access requests.
When such mixed workloads are consolidated, tenants may
experience unfairness and unpredictable performance varia-
tion due to inefficient virtualization stacks, synchronization
bottlenecks, and non-preemptive scheduling. Such limita-
tions prevent cloud hosting service providers from giving
access to GPUs on a pay-per-use basis.

Among the limitations that prevent effective sharing
of GPUs, non-preemptive scheduling can be addressed by
adopting most recent GPUs that support hardware-based
preemption [4]. These GPUs can save and restore the context
of GPUs, which include the contents of register files and
on-chip memory, upon requests from the system software.
However, as a GPU is composed of massive computation
cores each of which has its own context, the amount of data
to be saved and restored at a single time reaches to sev-
eral hundreds of KB. Unfortunately, this causes significant
throughput degradation up to 35% in GPU applications [5].
Therefore, we believe that non-preemptive GPUs are still
relevant for performance-sensitive applications, and ad-
dressing non-preemptive scheduling remains an important
issue.

Prior research in GPU virtualization falls short of ad-
dressing the limitations regarding fairness and performance.
First, small (e.g., sub-millisecond level) but frequent GPU
requests, which are common in a wide range of classical
HPC applications and emerging applications in real-time
analytics, can burden virtualization stacks by frequent con-
text switching between user and hypervisor spaces. Previ-
ous research invokes system or hypervisor calls on every
GPU request [6], [7], [8], [9], [10], [11], [12], [13], which
causes significant per-request trapping costs for small GPU
requests. Second, workloads with high CPU-GPU interac-
tivity can cause synchronization bottlenecks between the
CPU and GPU schedulers. Previous research suggests that
coscheduling of a VM and its corresponding virtual GPU
can improve performance [10]. However, co-scheduling in
itself fails to achieve good fairness because of interference
between the CPU and GPU schedulers. Finally, variable
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request sizes in mixed workloads, which are challenging
to handle on non-preemptive GPUs, are either ignored [6],
[10], or addressed with reverse engineering methods which
are not supported by many GPUs [8], [9], [12], [14]. None
of the existing GPU virtualization solutions takes all these
factors into account, thus failing to attain acceptable fairness
combined with strong performance isolation.

This paper presents new methods to achieve nearly ideal
fairness and high utilization for workloads with mixed GPU
access intensity running on virtualized GPUs. We achieve
two objectives: Under ideal fairness, each tenant receives a
weighted fair share of the GPU resource, according to the
price paid for this resource. Under high utilization, each
tenant experiences predictable performance with strong
performance isolation. For realizing fair and efficient GPU
virtualization, we introduce FairGV, a new system that
combines a highly optimized GPU virtualization framework
with a novel fair-share scheduler. FairGV implements a
radical redesign of GVirtuS [7] to improve performance
and scalability for HPC workloads with mixed intensity
of GPU requests. FairGV also introduces a fine-grain fair
queuing algorithm that considers the diverse traits of mixed
workloads. FairGV can be used on both non-preemptive
and preemptive GPUs and addresses the limitations that
previous research in the area has encountered, regardless
of support for preemption. We demonstrate that FairGV can
achieve near ideal fairness (≥ 0.97 Min-Max Ratio) and high
utilization (≤ 1.02 aggregated overhead) in a broad range of
mixed HPC workloads.

The contributions of this paper are summarized as fol-
lows:

• We introduce a trap-less GPU processing architecture to
significantly improve the performance and scalability of
mixed workloads with small, short-running, and repeti-
tive GPU requests. This new architecture enables FairGV
to process GPU requests directly from user space without
trapping to the OS kernel or the hypervisor.

• We propose a new fair queuing method to achieve near
ideal fairness without performance degradation in GPU
virtualization. This method uses GPU-centric coschedul-
ing to effectively tackle the challenge of running work-
loads with high CPU-GPU interactivity, while maintain-
ing strong work-conserving properties both in GPU and
CPU schedulers. This policy can be applied to both non-
and preemptive GPUs.

• We develop a collaborative scheduling method that is
combined with a novel and accurate accounting mech-
anism for achieving fairness between short- and long-
running GPU kernels on non-preemptive GPUs. The ac-
counting mechanism is not dependent on reverse en-
gineering and uses a simple interposition technique to
measure the request size with an error of less than 3%.

• We implement existing GPU schedulers including Credit
and Strict-co scheduling in the same framework, to thor-
oughly evaluate and analyze the fairness and performance
impact on a wide range of mixed HPC workloads that use
GPUs.

The remainder of this paper is structured as follows:
Section 2 describes background and related work. Section 3
elaborates on the design and algorithms of FairGV. Section 4

provides the implementation details. Section 5 shows our
experimental results. Section 6 presents a discussion point.
Section 7 concludes the paper.

2 BACKGROUND AND RELATED WORK

GPU virtualization techniques use three approaches: API re-
moting, para & full virtualization, and hardware-supported
virtualization [15]. We elaborate on the three approaches
and introduce representative solutions in each approach. We
then compare GPU scheduling methods. Table 1 shows a
comparison of GPU virtualization solutions in terms of the
architecture and scheduling method.

API remoting: This approach virtualizes GPUs at the
library level in the GPU execution stack. As GPU vendors
tend to not provide the source code of their GPU drivers,
API remoting offers a guest OS a GPU wrapper library in
order to intercept GPU calls before the calls reach the GPU
driver. The intercepted calls are forwarded to the host OS
and processed remotely.

GViM [6], GVirtuS [7], rCUDA [13], Pegasus [10],
vCUDA [11], and VADI [16] are based on API remoting.
They adopt a split device model where the frontend and the
backend are located in the guest and the host respectively.
A wrapper library in the guest intercepts GPU calls and
delivers them to the frontend. The frontend transfers the
intercepted calls to the backend in the host, and the backend
executes the GPU calls on behalf of the guest. Most of
the aforementioned solutions provide a shared memory
mechanism for communication between the guest and the
host. An exception is rCUDA, which aims at utilizing remote
GPUs and uses TCP/IP-based communication for both local
and remote GPU virtualization [17].

Existing API remoting solutions adopt communica-
tion modules provided by the hypervisor. These modules
can burden the virtualization stack with frequent context
switching between user and hypervisor spaces. FairGV sub-
stantially improves the performance of API remoting by in-
troducing the trap-less architecture presented in Section 3.1.

We select GVirtuS [7] for our exploration of ideal fairness
and high utilization of virtualized accelerators because it
is the only GPU virtualization framework available that
is both open source and supports the latest version of
CUDA and OpenCL [18]. In GVirtuS, when the connection
between the frontend and the backend is first established,
the backend spawns a child process to differentiate the GPU
context from those of other applications. We refer to this
spawned process as a vGPU (virtual GPU) in the rest of this
paper. Also, we will refer to a VM that runs GPU kernels as
a GPU VM.

Para & full virtualization: This approach enables GPU
virtualization at the driver level utilizing either a custom
GPU driver based on reverse engineering [19], [20] or an
open source driver [21]. In this approach, the host exposes
emulated virtual GPUs to the guest driver, which regards
them as real GPUs. Para virtualization modifies the guest
GPU driver for improved performance while full virtual-
ization does not modify the guest GPU driver and fully
emulates GPUs instead.

GPUvm [12] provides both full and para virtualization
in the Xen hypervisor using a custom GPU driver. In full
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GVirtuS rCUDA vCUDA Pegasus GPUvm gVirt NVIDIA GRID FairGV

Category API remoting API remoting API remoting API remoting Para-virt Full-virt Hardware-virt API remoting

Supported GPUs NVIDIA NVIDIA NVIDIA NVIDIA NVIDIA Intel NVIDIA NVIDIA

Trap-less architecture No No No No No Partially yes Yes Yes

Scheduling discipline — — — Credit Credit Round-robin — Fair queuing

GPU-CPU coscheduling — — — Yes (CPU-centric) No No — Yes (GPU-centric)

Non-preemptive scheduling — — — No Yes Yes — Yes

TABLE 1
Comparison of GPU virtualization solutions in terms of the architecture and scheduling method.

virtualization, GPUvm makes every GPU access generate a
page fault so that the hypervisor can emulate the access.
This approach shows poor performance because of frequent
trapping. GPUvm improves performance by adopting a
para-virtualization method that utilizes batch execution.

gVirt [21] implements full virtualization for Intel on-chip
GPUs in the Xen hypervisor, to accelerate 2D and 3D graph-
ics workloads. gVirt allows each VM to access the frame
and command buffers in the GPU without intervention from
the hypervisor. At the same time, privileged instructions are
trapped and emulated by the hypervisor for isolation. This
approach is called mediated pass-through. A KVM version
gVirt called KVMGT also exists [22].

GPU instructions of para & full virtualization are inter-
nally processed by the hypervisor, which causes frequent
context switching between user and hypervisor spaces. Al-
though gVirt implements mediated pass-through that al-
lows non-privileged instructions to bypass the hypervisor,
Tian et al. [21] report that certain applications still suffer
from mediation overhead with frequent trapping events.

Hardware-supported virtualization: In this approach,
a guest is allowed to access GPUs directly with hardware
features for I/O virtualization, which remap direct memory
accesses and interrupts to the guest. Intel VT-d and AMD-
Vi only support a single VM to exploit a GPU. NVIDIA
GRID [23] can support sharing of a single GPU between
multiple guests and is implemented in a few NVIDIA GPUs
that target cloud computing environments.

Hardware-supported virtualization achieves near-native
performance. However, imposing GPU scheduling policies
on this approach is difficult because GPU operations bypass
the hypervisor. For the same reason, important virtualiza-
tion features such as execution checkpointing, live migra-
tion, and fault-tolerant execution are hard to implement [24].

Scheduling methods: GPU scheduling methods are es-
sential to fair and effective distribution of GPU resources
between tenants in a shared computing environment.

Pegasus [10] achieves high performance for CPU-GPU
interactive applications under a CPU-centric coscheduling
approach. However, the CPU-centric policy can hamper
fairness because of frequent interference between the CPU
and GPU schedulers. Furthermore, Pegasus does not con-
sider fairness on non-preemptive GPUs. FairGV improves
the fairness of Pegasus with GPU-centric coscheduling (Sec-
tion 3.2.3) and non-preemptive scheduling (Section 3.3).

GPUvm [12] adopts the BAND scheduler of Gdev [9],
which is based on Credit scheduling. The BAND sched-
uler considers non-preemptive GPUs by waiting for the
completion of GPU kernels and assigning a credit value to

the task based on its GPU usage. gVirt [21] also waits for
the ring buffer to be emptied by the GPU to support non-
preemptive GPUs. These implementations are dependent on
a reverse-engineered or open source driver, which are not
supported by many GPUs. FairGV’s accounting mechanism
is not dependent on a custom or open source driver thanks
to its interposition technique explained in Section 3.3.1.

3 DESIGN

In this section, we introduce the design of FairGV, which
is our proposed model for strong fairness and high uti-
lization of virtualized GPUs. First, we introduce a trap-less
GPU processing architecture to significantly improve the
performance and scalability of short-running but repetitive
GPU requests. Next, we develop a fine-grain fair queu-
ing algorithm to fairly and effectively schedule a diverse
range of GPU applications in terms of GPU computation
intensity and CPU-GPU interactivity. Finally, we introduce
a collaborative scheduling method combined with a novel
and accurate accounting mechanism for fairness between
short- and long-running kernels on non-preemptive GPUs.

FairGV is based on GVirtuS. However, our design is
not specific to GVirtuS and can be applied to other GPU
virtualization frameworks, as well as different hypervisors.
In this section, we present our design in more detail in the
context of GVirtuS and the KVM hypervisor.

3.1 Trap-Less Architecture

To achieve high performance, GPUs process requests di-
rectly from user space using memory-mapped I/O. System
calls are hardly used by GPUs, typically just for maintenance
and initialization purposes. This is because trapping to the
OS kernel in a system call carries significant instruction
execution overhead and the indirect cost of cache pollution,
which can be thousands of CPU cycles [25]. For a range of
GPU applications that issue short-lived and frequent GPU
kernel execution requests, these overheads can significantly
degrade system efficiency.

Existing API remoting approaches including GViM [6],
GVirtuS [7], Pegasus [10], and vCUDA [11] provide a wrap-
per library that invokes system or hypervisor calls on every
GPU request and reply. For example, GViM and Pegasus is-
sue hypervisor calls to use Xenbus and Xenstore [26], which
provide shared ring buffers and event channels. vCUDA
also adopts the VMchannel residing in the KVM hypervisor
for implementing notification channels. OS kernel-based
approaches including Gdev [9], GPUvm [12], gVirt [21],
and KVMGT [22] use custom open-source drivers such
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Fig. 1. Performance of KVMGT running glxgears and a suite of scenes
in glmark2.
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Fig. 2. Overhead of matrixMul measured by GVirtuS and FairGV with
different kernel sizes. The corresponding matrix sizes for each ker-
nel size are (160,160)(160,160) for 21 µs, (160,320)(320,160) for 51
µs, (160,480)(480,160) for 102 µs, (160,640)(640,160) for 172 µs,
(160,800)(800,160) for 285 µs, and (160,960)(960,160) for 391 µs.

as Nouveau [19] or Intel GPU drivers for virtualization.
However, they also heavily use the kernel-level drivers for
each GPU request and reply. Figure 1 shows the relative
performance of KVMGT running the glxgears and glmark2
OpenGL applications in an Intel HD Graphics 4600. Owing
to KVMGT’s mediated pass-through where non-privileged
instructions bypass the hypervisor (Section 2), the texture,
pulsar, and terrain scenes in glmark2 achieve near native
performance. However, other applications still suffer from
performance degradation with frequent trapping events as
reported by Tian et al. [21]. Because of frequent trapping
into the OS and the hypervisor, these approaches can be
problematic for small and repetitive GPU requests.

Figure 2 shows the overhead of matrixMul in the
NVIDIA SDK measured by GVirtuS with its shared mem-
ory module and FairGV with different kernel sizes in an
NVIDIA TitanX. The overhead is calculated by dividing
the execution time in a VM by the time taken in native
Linux. The kernel size was adjusted by changing the size of
the matrices of matrixMul. When the kernel size is 391 µs,
GVirtuS does not incur any overhead. However, with small
kernel sizes, it causes significant overhead (from 1.05 at 285
µs to 1.45 at 21 µs) because it executes four system calls
on each GPU request for buffer synchronization. This result
validates that with small GPU requests, frequent trapping
can become a major bottleneck. A significant number of
important GPU applications is known to execute small (10 –
250 µs) and frequent GPU kernels [14]. With the advance of
GPU micro-architectures, request execution time is expected
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Fig. 3. Trap-less GPU processing architecture of FairGV.

to drop even further, which will in turn inflate the trapping
overhead.

FairGV makes the GPU processing architecture trap-less
by using three mechanisms:

First, FairGV uses a dedicated inter-VM shared memory
region in user space to remove the necessity of trapping
to the OS or the hypervisor for communication. For this
purpose, FairGV allocates a shared memory segment on the
host and dynamically maps the memory region into the
virtual address space of each vGPU and its GPU applica-
tion. As the page tables of each entity are modified at the
initialization phase, there is no need to trap the OS or the
hypervisor on each GPU request and reply.

Second, a bounded lock-free queue [27] is adopted as a
shared memory data structure. Shared memory is typically
managed by locks. However, in order to manage locks,
system calls that can hold the status of locks are required.
Context switching by such system calls is known to take on
the order of micro-seconds for a contested lock [28]. To re-
move such overheads, FairGV creates two lock-free rings for
both communication directions, the request and response
rings, as depicted in Figure 3. Each ring is composed of
descriptors, and each descriptor contains a request (or reply)
command and an offset to the data buffer where the actual
data to be transferred is stored. Through the lock-free data
structure, neither vGPUs nor GPU VMs will read or write
the same buffer concurrently, which eliminates the overhead
of system calls that manage locks.

Finally, FairGV adopts a polling mechanism when a
vGPU or a GPU VM checks whether the shared ring has
a new message. FairGV avoids an event notification mech-
anism such as a virtual interrupt because a notification
interrupt causes an expensive VM Exit operation [29], which
transfers the control from the guest OS to the hypervisor.
During the execution of programs with small and repetitive
GPU requests, the notification rate is expected to be high
and reduce overall performance. Therefore, FairGV adopts
polling, which continuously inspects the shared ring in user
space.

The whole process of accessing the GPU is illustrated
in Figure 3. Throughout this process, FairGV can deal with
GPU requests directly from user space without trapping to
the OS kernel or the hypervisor. Therefore, in Figure 2, the
overheads of FairGV are shown to be nearly zero regardless
of the GPU kernel size, which means the execution time in
FairGV is quite close to the execution time of the same GPU
request in a native environment. The three mechanisms in
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FairGV require additional processing time for transferring
and checking messages, but the overhead can be hidden
because the vGPU and the virtual CPU (vCPU) of the GPU
VM can execute on different cores.

3.2 FairGV Scheduling Method
FairGV combines three scheduling policies including fair
queuing, work-conserving, and GPU-centric coscheduling
to deal with workloads with mixed intensity of GPU re-
quests. Fair queuing is a basic scheduling policy of FairGV,
which attains fairness when sharing a limited resource.
However, fair queuing alone is not sufficient to achieve high
fairness and utilization with mixed workloads. Therefore,
FairGV adaptively activates work-conserving and/or GPU-
centric coscheduling according to the workload characteris-
tics.

Work-conserving is applied to non GPU-intensive work-
loads in order to improve GPU utilization. Work-conserving
keeps the GPU busy by allowing a vGPU temporarily hav-
ing no GPU request to yield its allocated GPU to another
vGPU ready to be scheduled. GPU-centric coscheduling is
adaptively applied to CPU-GPU interactive workloads to
improve the fairness. In this policy, the GPU scheduler has
the capability to request coscheduling, instead of the CPU
scheduler. GPU-centric coscheduling preserves the fairness
policy of fair queuing by eliminating the interference from
the CPU scheduler. In summary, the three policies adap-
tively work together to achieve high fairness and utilization
for various workloads. The three policies can be applied to
both non-preemptive and preemptive GPUs.

3.2.1 Fair Queuing Algorithm
FairGV is based on a standard fair queuing algorithm, which
is widely used for sharing CPUs and I/O devices [30]. We
choose fair queuing for two reasons: First, it does not require
a priori knowledge of the length of the time slice. Given non-
preemptive GPUs, a vGPU may overrun its time slice, which
would render scheduling decisions based on that time slice
inaccurate. Standard fair queuing overcomes this problem.
Second, standard fair queuing prevents a vGPU that wakes
up from a lengthy sleep period from accumulating signifi-
cant unspent GPU time and monopolizing the GPU.

FairGV assigns a weight value, a start tag, and a finish
tag to each vGPU and schedules vGPUs in increasing order
of start tags. A weight value reflects the vGPU’s relative use
of GPU resources; it is assigned by the system administrator
according to the price paid for GPUs. The start tag and the
finish tag represent accumulated virtual run time before and
after using the GPU respectively; virtual time is weighted
run time and indicates computational progress based on
the weight. When a vGPU has finished its requests, its start
tag is updated as the value of its finish tag. The finish tag
of vGPU i, Fi, after the jth time quantum is calculated as
follows: Fi = Si +

Li,j

ωi
where Si denotes the start tag, Li,j

indicates the execution length (measured in time units, i.e.,
milliseconds) at the jth time quantum, and ωi represents
the weight. The finish tag is increased in inverse proportion
to the weight of the vGPU. A vGPU with a high weight
value will therefore have a start tag increasing relatively
slowly. As FairGV schedules vGPUs in increasing order of
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Fig. 4. Example of start tag, finish tag, and global virtual time calculation.

start tags, this vGPU will be selected more frequently in
proportion to the weight. The algorithm also maintains a
global virtual time in order to assign a new start tag to a
vGPU that wakes up. The start tag of an unblocked vGPU is
updated as the current virtual time, which is the minimum
of the start tags of active vGPUs. With this method, the
vGPU cannot monopolize the GPU while it catches up on
the start tags of other runnable vGPUs.

Figure 4 illustrates an example of start tag, finish tag,
and global virtual time calculation in FairGV. Consider two
vGPUs, 1 and 2, with weight values 1 and 2 respectively.
Let us suppose that the length of every time slice is 10 ms,
and vGPU 1 is scheduled first when vGPUs have the same
start tags. After the first quantum, the start tag of vGPU 1
becomes 10 because the finish tag is calculated as 10 (i.e.,
F1 = S1 +

L1,1

ω1
= 0+ 10

1 = 10), and the start tag is updated
as the value of the finish tag. The scheduler proceeds to
select vGPU 2 because its start tag is less than that of vGPU
1. After the first run, the start tag of vGPU 2 becomes 5 (i.e.,
F2 = S2 +

L2,1

ω2
= 0 + 10

2 = 5). As the start tag of vGPU 2
is less than that of vGPU 1, vGPU 2 is selected again. This
procedure is repeated, and each vGPU receives GPU time in
proportion to its weight. After vGPU 1 is blocked at time 70,
it becomes runnable at time 105. Then, the start tag of vGPU
1 is forced to have the current virtual time, 35, which is the
minimum of the start tags in the system. vGPU 1 will be
scheduled in the next turn because of having the minimum
start tag, but it cannot claim resources from its idle period.

On preemptive GPUs, a short time slice value in fair
queuing (e.g., 1 ms) will cause considerable loss of through-
put because of the cost of context switching. To mitigate this
overhead, FairGV sets the time slice value to 30 ms when
preemptive GPUs are used. For non-preemptive GPUs, this
restriction can be relaxed, and we set the value to 6 ms
to improve the responsiveness of interactive applications.
The both time slice values can be adjusted by the cloud
administrator.

3.2.2 Work-Conserving Scheduling
To improve the total GPU utilization, the GPU sched-
uler in FairGV supports work-conserving where a vGPU
voluntarily yields the GPU during its time slice when it
has no requests to issue. Such a vGPU accommodates a
non-saturating workload that sleeps frequently or is CPU-
intensive. To implement work conservation, when a vGPU
checks the request ring and finds no requests, it yields
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next vcpu← next vCPU to be run;
next vgpu← find vgpu(next vcpu);
if next vgpu 6= NULL then

send schedule info to CPU(next vgpu);
end

Algorithm 1: CPU scheduler part of Pegasus.

curr vgpu← current running vGPU;
target vgpu← target vGPU informed by the CPU;
max credit← find max credit value(target vgpu);
target credit← credit value(target vgpu);
if target credit ≥ max credit then

GPU context switch(curr vgpu, target vgpu);
else

continue running(curr vgpu);
end

Algorithm 2: GPU scheduler part of Pegasus.

the GPU after a predefined spinning time. We will refer
to this policy as hybrid spinning. In our prototype, the
vGPU releases the GPU after spinning 100K times. The time
is configured after considering the communication latency
between the host and the guest. Fair queuing changes the
status flag of this vGPU to blocked and later unblocks it
when a new request is available in the request ring. FairGV
also helps the CPU scheduler implement a work-conserving
policy. When a GPU VM does not have a new message in
the response ring because its vGPU is not online, the VM
voluntarily releases the CPU instead of continuously polling
the ring. The same predefined spinning time as that of the
GPU scheduler is used in this hybrid spinning.

3.2.3 GPU-Centric Coscheduling Policy
Some GPU applications continuously submit asynchronous
kernel launch functions to the GPU. In these applications,
synchronous calls are used rarely, mainly just for copying
data between the host and the device before and after
consecutive kernel launch and completion. In FairGV, asyn-
chronous GPU calls are queued at the request ring (Sec-
tion 3.1) and executed asynchronously. Therefore, the GPU
VM scheduled by the CPU scheduler can proceed regardless
of whether or not its vGPU is currently online. However,
other applications execute at least one synchronous call
per kernel launch. They typically perform a device to host
copy operation after a kernel launch, and this copy is a
synchronous operation. We refer to these applications as
CPU-GPU interactive applications. A synchronous call re-
quires the GPU VM to wait for the result returned from the
GPU. Therefore, if the corresponding vGPU is not scheduled
immediately, the GPU VM cannot make progress for a
significant amount of time, leading to severe performance
degradation.

Coscheduling of a GPU VM and its corresponding vGPU
can solve this problem. Coscheduling was originally pro-
posed in [31], and is widely used in several CPU schedulers
for hypervisors [32] in order to address the performance im-
plications of synchronization between vCPUs. Pegasus [10]
applies a Strict coscheduling policy for virtualized GPU
scheduling. The Strict coscheduling policy makes a GPU
VM and its corresponding vGPU run on physical cores
simultaneously. Therefore, Strict coscheduling allows the
GPU VM to progress immediately when a synchronous call

prev vgpu← previous vGPU to be preempted;
next vgpu← next vGPU to run;
GPU context switch(prev vgpu, next vgpu);
if CPU GPU interactive(next vgpu) = true then

next vcpu← find vcpu(next vgpu);
send schedule info to CPU(next vcpu);

end

Algorithm 3: GPU scheduler part of FairGV.

next vcpu← vCPU informed by GPU scheduling;
cpu← current cpu number of next vcpu;
if next vcpu = IDLE then

wakeup vcpu(next vcpu);
end
resched cpu(cpu);

Algorithm 4: CPU scheduler part of FairGV.

is submitted. In this scheduling scheme, the CPU sched-
uler sends a coscheduling request to the GPU scheduler
when the next vCPU has a runnable vGPU as shown in
Algorithm 1. The GPU scheduler then preempts the current
running vGPU and schedules the next vGPU informed by
the CPU scheduler. Strict coscheduling prevents uncondi-
tional coscheduling because unfairness can occur between
vGPUs when low weight vGPUs are scheduled frequently.
For this purpose, the GPU scheduler performs a fairness
condition check shown in Algorithm 2. The condition is that
the credit value of the target vGPU should be higher than
the maximum credit value of other vGPUs. If this condition
is met, the current vGPU context is preempted.

Strict coscheduling in Pegasus can improve the perfor-
mance of workloads with frequent CPU-GPU interaction,
but suffers from two limitations. First, Strict coscheduling
and its sibling, AugC [10], cannot achieve good fairness.
This is because the CPU scheduler frequently interferes in
the scheduling policy of the GPU scheduler. The GPU sched-
uler part in Pegasus is based on Credit scheduling [26], and
this policy can maintain good fairness only when the time
slice of each vGPU is fully and exactly consumed. When the
CPU scheduler preempts the current running vGPU, the de-
scheduled vGPU is put at the tail of its priority list without
fully spending its time slice. This situation can compromise
overall fairness [33]. The coscheduling condition check in
Algorithm 2 prevents excessive and unconditional vGPU
preemption, but it cannot promise good fairness because it
allows a certain amount of preemption. Second, multiple
coordination requests issued from different cores at the
same time cannot be accepted. Under the coscheduling
condition check policy, only one GPU VM that has the max-
imum credit value can be accepted by the GPU scheduler.
Unselected GPU VMs should then wait even though they
need their vGPUs.

To address these issues, we propose a new GPU-centric
coscheduling policy. The key idea is to pass the capability
to request coscheduling to the GPU scheduler, instead of
the CPU scheduler. The GPU scheduler can then retain the
primary responsibility for preserving the fair share of each
vGPU while protecting the performance of workloads with
frequent CPU-GPU interaction. Furthermore, as the GPU
scheduler requests only one vCPU candidate for coschedul-
ing at each instance, the execution of GPU VMs is balanced
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and not interleaved in time. This eliminates unnecessary
waiting of VMs that require synchronized GPU executions.

The GPU scheduler part in FairGV is based on the fair
queuing policy explained in Section 3.2.1. The GPU sched-
uler sends a coordination request to the CPU scheduler
when it changes the current vGPU context as shown in
Algorithm 3. The request is delivered to the CPU scheduler
in KVM via a new system call that receives the next vCPU as
a parameter. Upon the request, the CPU scheduler unblocks
the requested vCPU and tickles the core where the vCPU has
become runnable in order to schedule the vCPU as shown
in Algorithm 4.

The vCPU associated with the next vGPU should be
scheduled immediately by the CPU scheduler for effective
coscheduling. The CPU scheduler in KVM, the Completely
Fair Scheduler (CFS), implements a class of weighted fair
queuing [34], similar to that of FairGV. When FairGV tickles
the core where the target vCPU becomes runnable, CFS
selects a vCPU with the lowest virtual time in the run
queue. To ensure that the target vCPU is selected, FairGV
takes advantage of hybrid spinning (Section 3.2.2) where a
vCPU of a GPU VM is blocked when the GPU VM does
not have an item to process in the response ring. When the
next vGPU (next vgpu in Algorithm 3) was de-scheduled
in its previous preemption point, the next vCPU (next vcpu
in Algorithm 4) would be also blocked by hybrid spinning,
because its vGPU became offline. When the next vCPU is
unblocked at the current scheduling point, it can have the
lowest virtual time allocated by the fair queuing algorithm
of the CPU scheduler. Therefore, the target vCPU can be
scheduled immediately for coscheduling. This mechanism
is non-intrusive, because FairGV does not force the CPU
scheduler to schedule the target vCPU. Otherwise, the CPU
scheduler may hamper fairness between CPU workloads.

In addition, FairGV implements a hybrid scheduling pol-
icy where CPU-GPU interactive workloads are selectively
coscheduled (Algorithm 3). Coscheduling is not effective
and may cause some overhead against non CPU-GPU inter-
active applications, because such applications mainly issue
asynchronous GPU calls. To selectively apply coscheduling,
FairGV characterizes GPU workloads in the host by measur-
ing the frequency of synchronous calls. When a vGPU sub-
mits more than 10 synchronous calls per 10 ms, we classify
the vGPU as CPU-GPU interactive and apply coscheduling.
To deal with fluctuating phase changes in GPU workloads,
FairGV continuously monitors communication between the
CPU and the GPU. FairGV feeds this information to the GPU
scheduler in order to decide whether to coschedule a vGPU
and its corresponding vCPU.

When there is more than one vCPU in the GPU VM,
FairGV associates a vGPU with its corresponding vCPU
by tracking the CPU a request is coming from, between
all vCPUs in the GPU VM. The frontend sends its CPU
number (i.e., virtual CPU number) to the backend through a
descriptor when it submits GPU requests. The GPU sched-
uler knows which vCPU to coschedule by tracking this
information.

3.3 Non-Preemptive Scheduling
FairGV targets supporting fair GPU scheduling for both
non-preemptive and preemptive GPUs. GPUs were non-

void Backend::GpuExecute(Handler *handler, ...) {
    unsigned long long startTime = NOW();
    Result *result = handler->Dispatch(request, parameter);
    cudaDeviceSynchronize();
    unsigned long long endTime = NOW();
    unsigned long long executionTime = endTime - startTime;
    ...
}

Fig. 5. Pseudo code of the accounting mechanism in FairGV.

preemptive until recently, which implies that GPU requests
are processed serially in a GPU on a first come, first served
basis. GPUs could only preempt executions at the boundary
of GPU kernel calls. The problem with this approach is
that certain kernels are composed of an amount of com-
putation work, and such kernels can cause unfairness and
poor responsiveness in a shared environment. To overcome
this limitation, GPU architectures that support hardware-
based preemption were suggested, and finally preemptive
GPUs have emerged in the market recently [4]. However,
context switching in such GPUs is very expensive and
recent research [5] reports that hardware-based preemption
decreases the total throughput up to 35% in a wide range
of GPU applications. Owing to this reason, we expect that
certain HPC clouds will still employ non-preemptive GPUs
for throughput-sensitive applications. Therefore, supporting
non-preemptive GPUs for fair sharing in virtualization is
still an important issue and remains a challenging endeavor.

3.3.1 Accounting Mechanism
For non-preemptive GPUs, a scheduling method needs to
precisely measure how long each request occupies a GPU
and to take this into account when scheduling vGPUs.
Scheduling vGPUs without respective request accounting
causes unfairness in a time slice-based scheduler because of
interference between short- and long-running kernels inside
the GPU. Let us suppose that a VM continuously executes
short running GPU kernels (e.g., 10 µs) whereas another
VM issues long running GPU kernels (e.g., 100 ms). As a
kernel launch operation is asynchronous, each VM can issue
as many GPU kernels as possible during its time slice. The
issued GPU kernels are then buffered in the hardware queue
of the GPU and are processed sequentially. However, as
the GPU is non-preemptive, the long running kernels will
be uninterrupted and monopolize the GPU, thus causing
severe unfairness between the two VMs. To achieve fairness,
we need to account for each GPU request and deliver this
information to the GPU scheduler.

OS kernel-based approaches address this problem via
reverse engineering. TimeGraph [8] and Gdev [9] replace
the black-box NVIDIA driver with the Nouveau [19] or
pscnv [20] driver, a reverse engineered driver for NVIDIA
GPUs. They configure the custom driver to generate an
interrupt after a group of requests is processed in the
GPU. Disengaged scheduling [14] infers the direct-mapped
interface by making the candidate memory region read-only
and catching the resulting page faults. However, reverse
engineering can be a difficult task as new GPUs are gradu-
ally introduced in the market. For example, no open source
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Benchmark NVIDIA (μs) FairGV (μs) Error (%)

matrixMul 207 214 3

BlackScholes 377 381 1

scan 171 176 3

convolutionSeparable 391 397 2

TABLE 2
Average execution time of the first 20 kernels measured by the NVIDIA

Profiler and FairGV.

driver can fully support the recent Maxwell architecture of
NVIDIA since its introduction in February 2014. API remot-
ing approaches including Pegasus [10] and GViM [6] avoid
reverse engineering as they reuse the vendor GPU driver,
but they just allow a vGPU to run for a time slice, which
causes a severe fairness problem for mixed workloads.

To achieve fairness in the execution of short- and long-
running kernels, FairGV employs a simple interposition
technique to account for the time each GPU request oc-
cupies. The measured time is used by the GPU scheduler
(Section 3.2.1), for selecting a vGPU to run. The technique
FairGV develops is not dependent on reverse engineering
and can be applied to any GPU virtualization platform.
FairGV inserts an additional device synchronization func-
tion (e.g., cudaDeviceSynchronize() in CUDA and clFinish()
in OpenCL) after a vGPU dispatches a request, as depicted
in Figure 5. The synchronization function waits until the
GPU has completed the submitted request. Therefore, when
the function returns, the vGPU can measure the execution
time of the submitted request. Table 2 shows the average
execution time of the first 20 kernels of selected applications
in the CUDA SDK, which are measured by the NVIDIA
Profiler and FairGV respectively. The results indicate that
the interposition technique of FairGV is quite accurate, with
an error of less than 3% of the actual run time.

Because GPU software stacks are generally not open
source, the operation of device synchronization functions
is unclear. We infer that the function continuously checks
a reference counter in the memory-mapped I/O region,
and the counter tracks the completion of each request.
This assumption is based on reverse engineered results that
recognize the semantics of data structures in user space [8],
[19], [35]. Because of this additional processing, we observe
that inserting a device synchronization function after every
GPU request causes a drop in performance of up to 7%. To
alleviate this, we introduce a sampling technique, described
in more detail in Section 3.3.2.

3.3.2 Collaborative Scheduling
When FairGV operates on non-preemptive GPUs, the
scheduling discipline of FairGV is configured as non-
preemptive. In this discipline, each vGPU has an accounting
function (explained in Section 3.3.1) for measuring GPU us-
age. When the usage exceeds the length of a predefined time
slice (i.e., 6 ms), the vGPU informs the GPU scheduler of the
usage and voluntarily releases the GPU. The scheduler then
executes its account update function and selects the next
vGPU to run.

FairGV uses the interposition mechanism to measure the
GPU usage of each request (Section 3.3.1). This mechanism
introduces overhead up to 7%. To address this problem, we

introduce a sampling technique that can predict the number
of requests that may use up the entire length of the time
slice. When a vGPU is selected to run, it measures the execu-
tion times of the first several requests (5 in our system) and
obtains the average completion time. During this sampling
period, if the sum of the lengths of the requests exceeds
the length of time slice, the vGPU is forced to release the
GPU. Based on the obtained value, the accounting function
infers the number of remaining requests to fill the time slice
value. The vGPU then runs without interposition until it
reaches its last request. A device synchronization function
then follows the last request to exactly measure the total
execution time. As the execution times of successive GPU
kernels of a program tend to be similar, this mechanism
preserves accurate accounting while substantially reducing
the overhead. Additional samples can improve accounting
accuracy, but may sacrifice performance. Accounting inac-
curacy or a considerable surplus or shortage of run time
caused by sudden phase changes in the application can
be compensated by fair queuing in subsequent scheduling
points.

FairGV in non-preemptive scheduling specifically tar-
gets the efficient execution of fine-grain GPU kernels, with
typical execution times under 500 µs, similarly to all GPU
virtualization systems published in the literature [9], [10].
Many important HPC applications, such as particle simu-
lation, molecular dynamics, and medical imaging, as well
as emerging applications in the domain of real-time data
analytics for computational finance, smart traffic, and cy-
bersecurity repetitively or continuously execute short-lived
kernels that require low latency processing [14]. FairGV’s
cooperative scheduling is beneficial for improving fairness
and GPU utilization without compromising latency in these
scenarios.

FairGV also copes with repetitive coarse-grain kernels
exceeding the length of the time slice. When such a kernel
uses up its time slice, fair queuing assigns the corresponding
vGPU a high start tag value after the kernel finishes its
execution. The corresponding vGPU will not be selected
again until other vGPUs with fine-grain kernels catch up
on the start tag. In this way, fairness is preserved between
long- and short-running kernels.

Unfortunately, offending, greedy, or buggy applications
can submit very long running kernels into their vGPUs (e.g.,
60 seconds). This puts cooperative scheduling in jeopardy.
To address this issue, FairGV implements a GPU kernel
slicing technique that can split a long running GPU kernel
into small ones. The literature shows this technique to be
feasible with low performance overhead and significant
benefits in terms of responsiveness [36]. We have adopted
the implementation details from GPES [37]. When a vGPU
has a long running kernel, FairGV divides the kernel into
a set of sub-kernels so that a sub-kernel is executed by
a specified number of thread blocks. How to decide an
appropriate number of thread blocks will be discussed in
more detail in Section 5.5.

4 IMPLEMENTATION

FairGV is implemented in the KVM hypervisor. The im-
plementation is depicted in Figure 6. FairGV is based on
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Fig. 6. Implementation detail of FairGV.

GVirtuS and reuses the GVirtuS wrapper library in the guest
OS, and the GPU call handler in the host OS by which the
vGPU executes CUDA/OpenCL operations. Also, FairGV
performs significant changes to the frontend and the back-
end of GVirtuS to implement the trap-less architecture and
other support for scheduling. We additionally implement
our GPU scheduling methods on top of the redesigned
framework. This section provides implementation details
regarding the inter-VM shared memory, GPU scheduling,
and coordination mechanisms.

4.1 Inter-VM Shared Memory

As explained in Section 3.1, FairGV establishes a shared
memory segment between the host and a guest when the
guest boots. For this purpose, we develop a virtual device
in QEMU, which is a user space interface of KVM and emu-
lates peripherals, to map a shared memory region created by
the host into the guest address space. The virtual device can
be controlled by the guest with a loadable kernel module.
The shared memory creation process is as follows: First,
the backend creates a POSIX shared memory object using
shm open() and transfers the object handle to the frontend
by a network transport. Second, the frontend informs the
virtual device in QEMU about the handle so that the vir-
tual device can open and map the same region by using
shm open() and mmap(). Finally, the frontend can use the
region by mapping the virtual device into memory.

4.2 GPU Scheduling

The GPU scheduler implements fair queuing by maintaining
vGPUs in a time-ordered red-black tree, similarly to the CPU
scheduler of KVM [34]. A red-black tree is a self-balancing
binary tree, which offers good worst-case run time. The GPU
scheduler stores vGPUs having lowest start tags toward the
left side of the binary tree and selects the left-most node
at a scheduling point. The GPU scheduler and each vGPU
are implemented as user-level processes in the host. They
are also bound to a dedicated core. For context switching,
the GPU scheduler requests the CPU scheduler to swap the
current and next vGPUs through a new system call. The
CPU scheduler then blocks the current vGPU and wakes the
chosen one up to proceed. As there are no other runnable
processes in the dedicated core, the next vGPU can be
executed without delay.

4.3 Coordination Mechanism
As explained in Section 3.2.3, the GPU scheduler sends a
coscheduling event to the CPU scheduler when the selected
workload is CPU-GPU interactive. In this case, the CPU
scheduler awakes the vCPU of the selected vGPU in order to
coschedule the two. For this procedure, the GPU scheduler
sends the target vCPU information through a new sys-
tem call. Upon message reception, the system call handler
unblocks the target vCPU by changing the status flag to
runnable and tickles the target core by calling resched cpu().

5 EVALUATION

We implemented FairGV on an Intel Xeon E5-2620 v3 plat-
form with six 2.4 GHz cores, 15 MB of L3 cache, and 32
GB of main memory. The GPU used in this evaluation is
an NVIDIA TitanX with 3,072 cores, which is based on
the NVIDIA Maxwell architecture and does not support
hardware-based preemption. Our experiments employ the
NVIDIA 352.55 driver and the CUDA 6.5 library, which is
supported by the current version of GVirtuS.

5.1 Experimental Workload
We collected benchmarks from Rodinia 3.0 [38] and the
CUDA SDK 6.5, which provide applications from a diverse
range of HPC domains. The list of benchmarks is provided
in Table 3. BS, CS, HG, MM, and SCAN are from the CUDA
SDK while the remaining ones come from the Rodinia suite.
We lengthened the execution time of each program to about
10 seconds by increasing the problem size or the iteration
count, which minimizes the GPU initialization cost when
we repeatedly execute programs for evaluation. We profiled
each program in Table 3 by measuring the average kernel
size and the frequency of GPU calls per unit of time between
the host and the device. When a vCPU issues more than 10
synchronous calls per 10 ms, we characterize the program as
CPU-GPU interactive as explained in Section 3.2.3. This class
of applications demands a coscheduling method.

5.2 Trap-Less Architecture Evaluation
The performance overhead (or speedup) when using GVir-
tuS, rCUDA, and FairGV is depicted in Figure 7. The
overhead is calculated by dividing the execution time of
a program in a VM by the time taken by the program in
native Linux. We ran each benchmark program 30 times and
obtained the average value to report the overhead.

GVirtuS with its shared memory module can suffer from
performance degradation when the kernel size is under
250 µs (CFD, HS, SRD1, MM, and SCAN). Trapping to
the OS kernel per request causes high overhead as ex-
plained in Section 3.1. rCUDA uses TCP/IP for inter-VM
communication [17]. For high network performance, we
enabled virtio, which is a para-virtualized network driver
for KVM and offers up to 30 Gbps of inter-VM bandwidth
in our system. Compared to GVirtuS, rCUDA does not show
performance degradation in HS and MM, which mainly
execute asynchronous calls, despite their small kernel sizes.
In rCUDA, asynchronous calls are transferred to the host
asynchronously and buffered in the queue while the GPU
is running [13]. Therefore, the trapping overhead can be



IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 0, NO. 0, JUNE 2017 10

Benchmark Domain CPU-GPU interactive Kernel size
(μs)

Total calls 
per 10 ms

Asynchronous 
calls per 10 ms

Synchronous
calls per 10 ms

Run time in VM
(s)

cfd (CFD) Fluid Dynamics Yes 198 136.891 49.761 87.130 8.0

heartwall (HW) Medical Imaging Yes 10,201 12.028 0.794 11.233 1.3

hotspot (HS) Physics Simulation No 133 59.534 59.520 0.014 7.8

laveMD (LMD) Molecular Dynamics No 1,908,357 0.064 0.002 0.061 3.4

nw (NW) Bioinformatics No 11,032 2.743 2.666 0.076 1.4

pathfinder (PF) Grid Traversal No 592 0.105 0.027 0.078 1.8

srad_v1 (SRD1) Image Processing Yes 46 891.115 247.525 643.589 9.3

BlackScholes (BS) Finance Processing Yes 377 52.673 26.318 26.355 7.6

convolutionSeparable (CS) Image Processing Yes 391 38.515 19.223 19.281 5.2

histogram (HG) Image Processing Yes 431 79.150 39.561 39.588 10.1

matrixMul (MM) Math Processing No 207 44.275 44.241 0.033 5.8

scan (SCAN) Array Processing Yes 171 109.462 54.705 54.757 8.8

TABLE 3
Description of the evaluated benchmark applications.
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Fig. 7. Basic standalone performance.

overlapped with GPU computation. rCUDA exhibits perfor-
mance degradation in applications with small kernel sizes
and frequent synchronous calls (i.e., CFD, SRD1, and SCAN)
because they burden the network virtualization stack. SRD1
specifically generates significant overhead due to very small
(46 µs) and repetitive (644 sync calls per 10 ms) requests.

FairGV addresses this issue by introducing the trap-
less architecture. The overhead of FairGV in most of these
programs is close to ideal (1.0). Because the vGPU and its
vCPU execute in parallel, occasionally, FairGV introduces
slight speedup (e.g., CFD and BS), which means that FairGV
actually achieves more efficient scheduling than Linux.
This result also shows that the interposition technique in
FairGV does not cause performance degradation due to
the sampling technique introduced in Section 3.3.2. PF in
FairGV shows a little higher overhead than other bench-
marks, because of frequent file access operations during its
execution. This is caused by the I/O performance overhead
in virtualization and addressing it is beyond the scope of
this paper.

5.3 GPU Schedulers for Comparison

We implemented state of the art GPU schedulers including
Credit and Strict coscheduling to evaluate their impact on our
workloads in terms of fairness and performance. The im-
plementation of Credit scheduling is adopted from the CPU
scheduler of Xen [26]. We created two variants, Credit-poll
and Credit-hs. Credit-poll adopts continuous polling when
checking the response ring whereas Credit-hs uses FairGV’s

hybrid spinning for the CPU scheduler (Section 3.2.2). The
algorithm of Strict coscheduling is from Pegasus [10] and
is based on Credit scheduling. The policy makes a vCPU
and its corresponding vGPU run on physical cores simul-
taneously to solve synchronization bottlenecks. It sends a
coscheduling request from the CPU scheduler to the GPU
scheduler when a GPU VM is selected to run whereas
FairGV generates the request from the GPU scheduler (Sec-
tion 3.2.3). Both the Credit scheduler and the Strict cosched-
uler adopt simple time-sharing based on a time slice.

5.4 FairGV Scheduling Method Evaluation
This section evaluates FairGV’s basic scheduling policies
including fair queuing, work-conserving, and coscheduling.

5.4.1 Fairness and Performance Metric
To quantify fairness between multi-tenants in the Cloud, we
use the Min-Max Ratio (MMR), as introduced in Pisces [39],
which provides a min-max fairness notation for multi-
tenancy. The MMR is defined as min xi

max xi
, where xi is the

normalized throughput of vGPU i. xi is calculated as Ti

Oi
,

where Ti is the measured throughput of vGPU i, and Oi is
the ideal fair throughput of the vGPU. The index ranges
from 0 (completely unfair) to 1 (completely fair). For a
performance metric, we use the aggregated overhead (or
equivalently, speedup). We obtain this metric by dividing
the ideal aggregated throughput by the measured aggre-
gated throughput. In this experiment, we run the same
benchmark program in all VMs: 1) to prevent existing
schedulers based on simple time-sharing from introducing
unfairness with different kernel-sized workloads and 2) to
harmonize the performance metric that we use for the MMR,
as each benchmark reports a different performance metric
depending on its application domain (e.g., the execution
time in seconds or processed options or pixels per second).

5.4.2 vCPU Weight Assignment
We vary the weight of each vGPU to evaluate weighted
fair sharing. In this setup, the CPU weights of GPU VMs
should be calculated accurately to guarantee minimum CPU
allocations to the VMs. If the CPU weight is too low, the
GPU VM cannot run for sufficiently long time to submit
GPU requests to its vGPU. A GPU VM requires at least the
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the Min-Max Ratio (MMR) and the overhead respectively.
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same amount of CPU time as the corresponding vGPU will
consume. If the GPU VM has an additional CPU workload,
it should be given additional weight for processing that
workload.

5.4.3 Evaluation in a Non-Congested Setup
To understand the basic scheduling capability in a non
congested execution environment, we deploy three VMs on
the same core. As every benchmark in Table 3 is a single-
threaded application, each VM launches only one vCPU
together with its vGPU. The ratio of the vGPU weights for
VM1–VM3 is configured to 1:2:3. We select four applications
with a long execution time from Table 3: MM, HS, BS, and
SRD1. BS and SRD1 are CPU-GPU interactive applications
whereas the others are not. Other programs with long
running times show similar patterns to the selected ones, ac-
cording to CPU-GPU interactivity. We ran each benchmark
program 30 times and obtained the average value measured
when all programs were run concurrently. As the relative
standard deviation of the execution times is less than 7%, the
obtained average value can be used to compare performance
and fairness.

Figure 8 shows the completion time, MMR, and aggre-
gated overhead of each application. For the non CPU–GPU
interactive workloads (MM and HS), Credit-poll and -hs
can achieve high fairness (≥ 0.9 MMR) with low overhead
(≤ 1). The GPU VM in these applications performs mainly
asynchronous calls in which the CPU and the GPU sched-
ulers can work independently of each other. High fairness
between vGPUs is then achieved by the fairness policy
of Credit scheduling. Strict coscheduling fails to achieve
reasonable fairness because it can only handle CPU-GPU
interactive applications properly. For non-interactive appli-
cations, Stric coscheduling causes unnecessary and frequent
vGPU context switching due to coordination requests from
the CPU scheduler. As the GPU scheduler is mainly respon-
sible for preserving the fair share of each vGPU, frequently
changing vGPU contexts by the CPU scheduler causes un-
fairness. FairGV operates using non-coscheduling by hybrid
scheduling for non CPU-GPU interactive applications. It
achieves nearly ideal weighted fair sharing (≥ 0.99 MMR),
similarly to other Credit scheduling policies.

Considering CPU-GPU interactive workloads, Credit-
poll suffers from fairness and performance deterioration.
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Fig. 10. GPU utilization of co-running VMs running BS and a non-
GPU-saturating version of MM, using FairGV with and without the work-
conserving policy

When the corresponding vGPU is not online, the GPU VM
spins uselessly checking the response ring for the replies
of synchronous calls. Strict coscheduling solves this prob-
lem by running the vCPU and its vGPU together, which
can dramatically improve performance and fairness. Credit-
hs can also deal with this situation properly because the
waiting VM yields the CPU to other GPU VMs that may
have pending replies. As SRD1 is far more CPU-GPU in-
teractive than BS (644 vs 26 sync calls per 10ms), Credit-
hs exhibits high overhead in SRD1; frequent synchronous
calls may cause excessive vCPU context switching, which
is an expensive operation. FairGV can achieve nearly ideal
weighted fair sharing (≥ 0.99 MMR) with the least overhead
among all schedulers because it makes accurate coschedul-
ing decisions in the GPU scheduler. These decisions cause
neither unnecessary vCPU switching, which may harm per-
formance, nor vGPU switching, which may harm fairness.

5.4.4 Evaluation in a Congested Environment
This section evaluates the schedulers under congestion,
where the GPU device is shared by multiple VMs at the
same time. For this purpose, we deploy six VMs in three
cores and run BS and SRD1 respectively. The weight ratio of
VM1–VM6 is configured as 1:2:2:3:3:4. We pinned two adja-
cent VMs in the same core, thus making the total ratio across
the cores (1+2):(2+3):(3+4), to observe the performance and
fairness impact of the unbalanced weight combination.

Figure 9 shows the completion time, MMR, and ag-
gregated overhead of each application. In this evaluation,
Strict coscheduling cannot achieve fairness at all because
GPU scheduling is significantly affected by CPU scheduling.
On the same core, a vCPU with a high weight achieves
better performance as the number of coscheduling requests
issued by the GPU VM is in proportion to its vCPU weight
(Section 5.4.2). Pegasus suggests the fairness condition check
algorithm to prevent excessive vGPU switching (Algo-
rithm 2), but it does not work properly in a congested
execution environment. Credit-hs exhibits high fairness and
performance in the case of BS, but not in SRD1. Because
SRD1 is highly CPU-GPU interactive, yielding operations
occur frequently in each GPU VM, thus spending signifi-
cant amounts of time in vCPU context switching. FairGV
shows quite high fairness (≥ 0.97 MMR) with low overhead
(≤ 1.02) under congestion.

5.4.5 Work-Conserving Scheduling Evaluation
Figure 10 shows the total GPU utilization of co-running VMs
running BS and a non-GPU-saturating version of MM, using

Grid size Kernel size (ms) Number of sub-
kernels

Number of thread 
blocks Slowdown (%)

600 x 600 19,506

1 360,000 0.0

64 5,625 0.0

128 2,813 1.0

256 1,407 4.3

512 704 11.8

1,024 352 23.9

2,048 176 47.8

3,072 118 71.1

4,096 74 94.6

900 x 900 81,030

1 810,000 0.0

64 12,657 0.0

128 6,329 0.0

256 3,165 0.0

512 1,583 0.2

1,024 792 6.2

2,048 396 17.5

3,072 264 30.7

4,096 166 44.5

TABLE 4
Slowdowns of sliced MM with two inputs of grid sizes with 600× 600

and 900× 900 respectively, in terms of the number of sub-kernels and
the number of thread blocks per sub-kernel.

FairGV with and without the work-conserving policy. In
this evaluation, we modified MM to contain sleep functions,
which decrease the percentage of time MM spends on the
CPU. We adjusted the sleep to total execution time ratio
from 50% to 80%. FairGV without the work-conserving pol-
icy exhibits low GPU utilization as the sleep ratio increases,
compared to FairGV with the work-conserving policy. In
non work-conserving execution, the GPU is wasted while a
vGPU checks the request ring having no requests with con-
tinuous polling. FairGV eventually adopts hybrid spinning
which preserves work-conserving scheduling on the GPU
and improves GPU utilization.

5.5 Non-preemptive Scheduling Evaluation
This section evaluates FairGV’s support for non-preemptive
GPUs including collaborative scheduling and kernel slicing.

5.5.1 Collaborative Scheduling Evaluation
Figure 11 shows the normalized run times of MM and HS
executing in a VM with the Credit-poll and FairGV policies
when another background VM executes MM while adjust-
ing the kernel size from 21 – 1,605 µs. In this experiment,
we observe the fairness impact on mixed workloads with
different kernel sizes. The kernel size of background MM
is adjusted by changing the size of input matrices. Because
Credit-poll is a simple time sharing scheduler, the normal-
ized run times of MM and HS are adversely affected as the
kernel size of background MM increases. When the kernel
size of background MM is smaller than the kernel sizes of
MM (207 µs) and HS (133 µs), the normalized run times
stay under 2.0 in both programs, which means that MM and
HS are occupying more GPU resources than background
MM. In the opposite case, background MM significantly
increases the execution times of both programs. However,
FairGV shows robust fairness because FairGV’s collabo-
rative scheduling is based on accurate time accounting,
which accounts for each respective GPU request correctly
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Fig. 11. Normalized run times of MM and HS executing in a VM with the Credit-poll and FairGV policies, when another background VM executes
MM while adjusting the kernel size from 21 – 1,605 µs.

(Section 3.3.1). In FairGV, each vGPU has an accounting
function and measures the GPU usage after the completion
of a request. When the total usage reaches the time slice
value, the vGPU voluntarily releases the GPU and informs
the GPU scheduler of this usage. This procedure realizes
fair-sharing between workloads with different kernel sizes.

5.5.2 Kernel Slicing Evaluation
FairGV implements a GPU kernel slicing technique for
preventing offending, greedy, or buggy applications from
monopolizing the GPU as explained in Section 3.3.2. In
this section, we observe the overhead of this technique and
heuristically determine an appropriate number of thread
blocks per sub-kernel to minimize the overhead. For this
purpose, we slice the kernel of MM into multiple sub-
kernels for two inputs of grid sizes with 600 × 600 and
900× 900 respectively. Table 4 shows the slowdowns of the
two large inputs, whose execution times are about 20 and
80 seconds respectively. From this result, we can identify
that 1) a larger kernel (900 × 900) generally incurs less
overhead than a smaller kernel (600 × 600) given the same
number of sub-kernels, 2) there exists a trade-off between
fine-grained kernels and overhead, and 3) when the number
of thread blocks per sub-kernel is more than about 1,500,
the slowdown can be confined to less than 5%. From this
observation, FairGV splits a long running kernel into small
ones so that the number of thread blocks executed in each
sub-kernel is no less than 1,500. FairGV identifies a kernel as
very long running when the grid size is more than 600×600,
but this value is configurable.

6 DISCUSSION

Beyond the trap-less GPU processing design and scheduling
methods, FairGV tries to achieve device memory partition-
ing for each GPU VM. As the GPU device driver is a black
box, it is hard to explicitly partition the device memory
between vGPUs. Programmers may write GPU kernels that
use the entire device memory space, or the total memory
use of all co-running vGPUs may exceed the total device
memory capacity. These situations will result in blocking of
vGPUs. To address this issue, FairGV prevents a vGPU from
allocating memory beyond its allowed amount through
inspecting the device memory (de-)allocation functions (e.g.,
cudaMalloc() and cudaFree() in CUDA, and clCreateBuffer()
and clReleaseMemObj() in OpenCL) at the backend.

7 CONCLUSION

As current GPU virtualization software cannot provide
acceptable fairness and performance isolation, tenants in
cloud computing may experience unfairness and unpre-
dictable performance variation due to contention with other
users. In this paper, we investigated the trap-less GPU pro-
cessing architecture, the new fair queuing method, and the
collaborative scheduling algorithm for providing system-
wide weighted fair sharing and performance isolation in
GPU virtualization. Our FairGV prototype implementation
achieves near ideal fairness (≥ 0.97 Min-Max Ratio) with
high GPU utilization (≤ 1.02 aggregated overhead) in a
range of mixed HPC workloads.
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