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Vibration-assisted conduction in a molecular wire
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We present a detailed study of the conduction properties of a molecular wire where hopping
processes between electronic sites are coupled to a vibrational mode of the molecule. The latter is
sandwiched between two electronic leads at finite temperatures. We show that the electro-mechanical
coupling can lead to a strong enhancement of the lead-to-lead conduction. Moreover, under suitable
driving of the molecular vibrational mode, the device can act as a transistor passing sharply from
enhanced conduction to short-circuit configuration.

Molecular electronics was initially dedicated to the
study of transport properties of molecules sandwiched
between electronic leads [1]. It was originally conceived
as an alternative platform to silicon electronics but it
has matured lately as a rich and promising field of re-
search beyond its initial scope [2, 3]. Numerous theo-
retical works have been dedicated to enlighten the be-
havior of such metal-molecule-metal junction depending
on the microscopic description of the molecule. Most
of them have focused on models including solely con-
nected electronic sites for building devices such as cur-
rent rectifiers [4] or thermal transistors [5] for example.
Rich features were predicted such as stochastic pumps
[6, 7] or laser-induced phase-controllable transport [8]
to mention only some recent results. Based on the rich
nature of the molecule under study, more recently an
additional ingredient was added to the microscopic de-
scription of these devices: the coupling of the conduc-
tion mechanism to the vibrational degrees of freedom
of the molecule, which is expected to play a crucial
role on the transport properties of these systems [9, 10].
This configuration was first considered in order to cool
(through side-band cooling) the mechanical/vibrational
degree of freedom of the molecule [11, 12]. The study of
the impact of this coupling on transport was also consid-
ered, showing negative differential conductance [13–16]
or other vibration-assisted transport phenomena [17–
21]. However, this extended literature on the subject is
only, to our knowledge, based on Anderson-Holstein-like
models.

The Anderson-Holstein model consists of electronic
sites sandwiched between two electronic leads while the
vibrational mode is coupled to an electronic eigenstate,
raising or lowering its energy depending on the vibra-
tional state [22]. In this paper we consider a system
where the molecular vibration is not coupled to an elec-
tronic eigenstate but to the hopping mechanism taking
place between two microscopic electronic sites. Conse-
quently, as it will be detailed, by controlling the vibra-
tion properties of the molecule, we can tune the flux of
electrons passing through the device. This allows for an
enhancement of the conduction even when no voltage
bias is applied between the electronic leads. Moreover,

the process that we highlight makes possible a switching
mechanism in which the flowing current is deterministi-
cally turned on and off.

The remainder of this paper is organized as follows:
Sec. I introduces the system and the working conditions
considered throughout our work. In Sec. IA, we adi-
abatically eliminate the vibrational degree of freedom
to end up with an effective dynamics for the conduct-
ing part of the system. This analysis is then comple-
mented by tracing out the degrees of freedom of the
leads (Sec. I B). Sec. II is dedicated to the dynamics and
related exchange statistics with the electronic leads. We
detail the unraveling approach used to access the statis-
tics of exchange taking place between the system and
one of the electronic leads. We then pass to a systematic
study of the mean current flowing through the device as
a function of the electronic-lead configuration. For such
a study, we focus on the low-temperature regime. We
then switch to the study of more realistic conditions.
We illustrate the conduction enhancement and demon-
strate the transistor regime (Sec. III). In Sec. IV we
summarise our results and comment on possible direc-
tions along which our study can be furthered.

I. DESCRIPTION OF THE PHYSICAL
SYSTEM

As illustrated in Fig. 1, the system being considered
consists of two coupled parts: (i) an electronic wire and
(ii) a vibrational mode. Here, we first focus on the
Hamiltonian part of the dynamics of each subsystem
and their coupling. Our model aims at capturing the
salient features of the energy of a molecular wire. Such
system consists of a three-modular molecular junction
encompassing a left (L), right (R) and central (C) re-
gion. The L and R part of the junction are connected,
through leads, to an external potential, thus putting the
junction out of equilibrium and allowing for the circula-
tion of an electronic current. We neglect any fluctuation
of the electronic site energies. The conductance of the
junction depends on the conformation of the molecule
itself: by putting part C out of the plane containing
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Figure 1. Schematics of the system representing the molecu-
lar wire connected to two electronic leads at given tempera-
ture TR and TL. The vibrational mode is represented by the
harmonic oscillator in-between the two electronic sites and
we define Ω(x̂) the oscillator-controlled hopping between εL
and εR.

both L and R (which we assume to be coplanar), the
resistance offered by the junction to the current can be
varied in light of the modifications induced to the over-
lap of the electronic wave-functions that is responsible
for the conduction.

In what follows, we will focus on the case of small fluc-
tuations around an otherwise stable molecular confor-
mation (i.e. a stable relative angle between the central
and peripheral parts of the molecular junction). The rel-
ative angle between the in-plane and out-of-plane parts
of the junction would thus oscillate around the macro-
scopically stable configuration, such oscillations being
treated quantum mechanically. A minimal model that
is able to capture the essential conformational influences
over electric conductance is as follows. We consider two
single-occupation sites whose energy is given by the on-
site Hamiltonian

Ĥw = εLŝ
†
LŝL + εRŝ

†
RŝR, (1)

where we have neglected the Coulomb interaction and
have assumed units such that ~ = 1. In Eq. (1) ŝ(†)

L/R is
the annihilation (creation) operator of an electron occu-
pying the left (L) and right (R) site. For simplicity we
restrict ourself to εR − εL = ∆ > 0. We have assumed
that the electrons do not hop directly between sites, an
assumption invoked only to simplify our approach but
that does not affect the phenomenology that will be il-
lustrated here. Our model also includes a vibrational
mode, which is described under harmonic approxima-
tion as

Ĥv = ωv

(
â†â+

1

2

)
+
√

2Fx̂. (2)

Here, ωv is the vibrational frequency, â (â†) is the mode
annihilation (creation) operator, and x̂ =

(
â+ â†

)
/
√

2

is the associated position-like operator. We consider the
case of a harmonic oscillator driven by a constant force
of strength F , which may be applied on the molecule
via a scanning tunnelling microscope (STM) cantilever,
inducing a shift in the equilibrium position of the vibra-
tional mode. Electronic and vibrational subsystems are
coupled according to the model

Ĥw-v = Ω(x̂)(ŝ†RŝL + ŝ†LŝR). (3)

Eq. (3) describes phonon-assisted inter-site hopping at a
rate Ω(x̂), which in turn depends on the position of the
oscillator, i.e. the molecular conformation. The mini-
mal scenario corresponding to the coupling in Eq. (3)
can be realized by three π-orbitals in the edge of a tri-
angle. Two orbitals with identical polarisation direction
play the role of the electronic sites L and R respectively.
The third one, inversely polarised, moves normally to
the direction L−R and plays the role of the vibrational
mode. Through this motion, the third orbital will get
closer/further from the conducting electrostatic cloud
formed by the co-polarised orbital L and R. This will
reduce or increase their overlap and, as a consequence,
suppress or enhance the conduction. The total Hamil-
tonian of the system is thus

Ĥ = Ĥw + Ĥw-v + Ĥv. (4)

The assumption of small oscillations around a stable
configuration justifies a series expansion of the hopping
rate as Ω(x̂) ≈ Ω0 + Ω1x̂. This gives rise to a standard
hopping mechanism connecting the two sites being con-
sidered, and a phonon-assisted one, occurring at rate
Ω1, that depends explicitly on x̂.

A. Vibrational mode damping and adiabatically
eliminated model

Thermal excitations might induce oscillations around
the stable molecular conformation. We thus consider a
thermal reservoir coupled to the vibrational mode. This
leads to the dynamical model

∂tρ̂m = −i[Ĥv, ρ̂m] + Lv[ρ̂m], (5)

where ρ̂m is the density matrix of the system and we
have introduced the Lindblad dissipator

Lv[•] =
γn̄

2
D[â†, •] +

γ(n̄+ 1)

2
D[â, •], (6)

where γ is the coupling strength to the bosonic bath, n̄
is the mean number of excitations in the bath (related to
the bath’s temperature by n̄ = (exp [~ωv/kBTv]−1)−1),
and D[Ô, •] = (2Ô • Ô† − {Ô†Ô, •}). I suggest to re-
move this whole part and say that we consider
the harmonic oscillator as damped at rate γ and
thermally driven by a stochastic force Fl that is
added to F (with thermal statistics, as in Brow-
nian motion) so that the Langevin equation for
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the annihilation operator of the oscillator (and
we write the formal expression of it) reads as in
(7) but with the extra force. Or we can embed
such a thermal contribution into F The equation
of motion of the annihilation operator of the vibrational
mode reads Mauro: are we actually showing how
this equation is found? Where is the dependence
on temperature?

∂tâ = −iωvâ− i
Ω1√

2

(
ŝ†LŝR + ŝ†RŝL

)
− γ

2
â+ F. (7)

We assume that the oscillatory mode reaches its steady-
state in a time much shorter than the characteristic time
of the evolution of the system, so that we can advocate
for the validity of the adiabatic approximation, accord-
ing to which the state of the oscillator can be assumed to
be stationary and unaffected by the coupling to the elec-
tronic wire. Its degrees of freedom can thus be traced
out to seek for an effective reduced dynamics of the elec-
tronic system. From Eq. (7), the steady-state position
of the oscillator is

x̂st = − Ω1ωv
ω2
v + γ2/4

(
ŝ†LŝR + ŝ†RŝL + F

)
. (8)

The Heisenberg evolution of the wire operator is

∂tŝX = −iεX ŝX + i (Ω0 + Ω1x̂) ŝY ŝ
Z
X , (9)

where ŝZX = [ŝX , ŝ
†
X ] and with X and Y are either R

or L. Replacing x̂ with its steady-state solution x̂st in
Eq. (8), we have

∂tŝX ' −iεX ŝX + iΩŝY ŝ
Z
X − iδŝZY ŝX , (10)

where δ = Ω2
1ωv/(ω

2
v + γ2/4)/2

√
2 and Ω = Ω0 −

ωv
√

2
ω2

v+γ2/4Ω1F . Eq. (10) can be interpreted as the Heisen-
berg equation for the operator ŝX evolving according to
the effective Hamiltonian

Ĥeff = εLŝ
†
LŝL + εRŝ

†
RŝR + Ω(ŝ†RŝL + ŝ†LŝR)− δŝZRŝZL ,

(11)
which does not contain the oscillator’s degrees of free-
dom.

The adiabatic elimination induces a significant change
of the coherent part of the dynamics of the electronic
subsystem, but also of the incoherent part. Indeed, the
reduced electronic density matrix ρ̂ evolves according to
the master equation

∂tρ̂ = −i[Ĥeff, ρ̂] + Leff[ρ̂] (12)

with Leff that describes the effective dissipation induced
by the vibrational mode on the wire subsystem

Leff[•] = Γv[ŝ†LŝR • ŝ†LŝR +D[ŝ†LŝR, ρ] +L↔ R] , (13)

with Γv = γδ(2n̄+ 1), n̄ = exp [~ωv/kBTv]− 1)−1, and
Tv the equilibrium temperature of the oscillator. This
incoherent part of the wire subsystem dynamics encom-
passes two processes. The first one, corresponding to

the first term in Eq. (13) (and the analogous one where
label L is swapped with R), randomly swaps the coher-
ence between single occupancy states, while the second
term (and analogous with L ↔ R) allows for the inco-
herent hopping between both sites. It is worth noticing
that this last process leads to an enhancement of the
conduction through the wire. Moreover the strength of
such an incoherent process depends directly on the tem-
perature of the bath attached to the vibrational mode
through the mean occupation number n̄. Such deco-
herence induced by the molecular vibration conserves
the number of excitations, stating that, under the as-
sumptions considered here, there is no energy exchange
between the wire and the vibronic system.

B. Coupling to electronic leads

We find it convenient, for the continuation of our anal-
ysis, to move to the eigenbasis of the effective Hamilto-
nian in Eq. (11), which involves non-local states [25, 26],
so as to get the diagonal operator

ˆ̃Heff =

3∑
X=0

εX ĉ
†
X ĉX , (14)

where εX = −δ, (εL+εR+2δ∓
√

∆2 + 4Ω2)/2, εL+εR−δ
are the system energies (ordered so that ε0 < ε1 < ε2 <
ε3), corresponding to the non-local states |X〉. In what
follows, we use a notation such that the states |AB〉
(A,B ∈ {0, 1}) represents configurations with A and B
electrons in the left and right site, respectively. We call
these local-basis states.

A close analysis reveals that the first and last eigen-
states in the non-local basis are identical to those of
the local one, that is ĉ†0ĉ0 = |0〉〈0| = |00〉〈00| where no
electrons are in the system and ĉ†3ĉ3 = |3〉〈3| = |11〉〈11|
where one electron is on each sites. Notice that the
Hamiltonian in Eq. (11) does not couple subspaces with
a different total number of electrons in the sites. The
intermediate states |01〉 and |10〉 are instead coupled to
give rise to the non-local states |1, 2〉 as(

|1〉
|2〉

)
= U−1

(
|01〉
|10〉

)
(15)

with U the change-of-basis matrix

U =
2Ω

1− α

(
1− α 1 + α
β −β

)
, (16)

where we have introduced the parameters α =
∆/
√

∆2 + 4Ω2 and β = 2Ω/
√

∆2 + 4Ω2.
Let us now connect each electronic site to a lead. The

picture we have in mind can be sketched as in Fig. 1,
where each electronic site is individually coupled to its
own fermionic bath. The Hamiltonian of each lead is

Ĥν =
∑
i

ενi ĉ
†
νiĉνi, (17)
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where ν ∈ {L,R} refers to the left or right lead and ĉνi
(ĉ†νi) the fermonic destruction (creation) operator for
the ith mode in the ν bath. The coupling between the
electronic sites and each lead is of the hopping form

Ĥν-w = Γν
∑
i

(ĉ†νiŝν + ĉνiŝ
†
ν). (18)

We will now eliminate the leads’ degrees of freedom.
Writing Eq. (18) in the eigenbasis of the electronic sub-
system, we have

ˆ̃Hν-w =
Γν
2

2∑
a=1

∑
i

[
T ν2,a

(
ĉ†νiĉa + ĉνiĉ

†
a

)
+T ν1,a

(
ĉ†νiĉ

†
3ĉa + ĉνiĉ

†
aĉ3

) ]
(19)

with TR = U and TL =

(
0 1
1 0

)
U . The first (second)

line of Eq. (19) describes the transition between the wire
ground state |0〉 (highest energy state |3〉) and an inter-
mediate state (either |1〉 or |2〉). As in Refs. [25, 26], as-
suming the Born-Markov approximation, we eliminate
the degrees of freedoms of both leads, giving rise to two
effective dissipators L̃ν , i.e. one per lead, as defined in
Appendix IV. For simplicity we assume the leads to act
as two similar Markovian baths with Fermi distribution
at chemical potential µν given by

fν(ε) =
1

e(µν−ε)/kBTν + 1
(ν = L,R). (20)

The number of excitations in the leads is taken to be
the same (that is nL(ε) = nR(ε) = n) and we choose
the coupling strength ΓL = ΓR = Γ/nπ. In this way,
the only difference between the two leads consists in the
respective chemical potentials µR 6= µL. We decompose
the dissipation due to the leads, taken in the local pic-
ture as L̂ = L̂A + L̂C , where the first refers to usual
amplitude damping channel and the second one to de-
coherence. Both are explicitly defined in Appendix IV
[Eq. (31) and (36) respectively]. Notice that L̂C is not of
a dephasing type because it changes the system energy
as well as coherences.

Despite a rather simple system, the dynamics taking
place (and especially the dissipation acting on the sys-
tem) is rich. We will now focus on such dynamics in
order to determine the exchange taking place between
the system and the leads.

II. WIRE DYNAMICS AND EXCHANGE
STATISTICS

In this Section we discuss the evolution of the elec-
tronic subsystem driven by its effective dynamics and
connect it to the exchange statistics with the leads,
using the thermodynamics of trajectories (Sec. II A).
We then develop a systematic approach to identify the
regime maximizing the enhancement effect provided to
the current crossing the devices (Sec. II B) arising from
the presence of the vibrational mode.

A. Evolution of the electronic system and
exchange statistics

In order to find the stationary state of the system we
restrict ourselves to the evolution of the diagonal ele-
ments of the density matrix ρ̂ in the local basis. How-
ever, due to the interaction and possible hybridization of
intermediate levels, terms such as |10〉〈01| and |01〉〈10|
are also crucial. The dynamics of the electronic system
can be tracked by writing its density matrix in vector
form as ρ =

(
〈00|ρ̂|00〉, 〈01|ρ̂|01〉, 〈10|ρ̂|10〉, 〈11|ρ̂|11〉,

〈01|ρ̂|10〉, 〈10|ρ̂|01〉
)T , and the master equation as

∂tρ = Wρ. (21)

The form of the superoperator W , which is not essen-
tial for the discussions to follow, is provided in Ap-
pendix IV. The resulting dynamics is similar to the
one found in Ref. [26], albeit with specific features that
should be stressed. Among them, the most significant is
that the incoherent hopping induced by the vibrational
mode acts directly on both the coherences (〈01|ρ̂|10〉
and 〈10|ρ̂|01〉) of the electronic density matrix, and the
occupations of the intermediate states (〈01|ρ̂|01〉 and
〈10|ρ̂|10〉).

To determine the exchange statistics taking place
between the system and the leads we now use the
formalism of thermodynamics of trajectories [27–29]:
We define a counting process of the net exchange of ex-
citations between the system and the right leads such as
K :=

∑2
a=1

∑
b={0,3}K

R
a↔b−JRa↔b, where Kν

a↔b (J
R
a↔b)

refers to an increment related to excitations leaving
(entering) the system to (from) the lead ν inducing a
transition between level a and b. The introduction of
such process modifies the dynamics of the electronic
density matrix, which now obeys the biased master
equation ∂tρ̂s = W [ρ̂s] + Ls[ρ̂s] where the biasing
contribution to the evolution L̂s is defined in Eq. (39)
and where ρ̂s =

∑
K e
−sKPK ρ̂ is the biased density

matrix with PK a projector over the subspace where the
selected counting process results in K excitations being
exchanged. As done previously, we consider the evolu-
tion of the vector of relevant density matrix elements
ρs =

(
〈00|ρ̂s|00〉, 〈01|ρ̂s|01〉, 〈10|ρ̂s|10〉, 〈11|ρ̂s|11〉,

〈01|ρ̂s|10〉, 〈10|ρ̂s|01〉
)T , which occurs as ∂tρs =

(W + Ls)ρs, where Ls is given in Appedix IV.
One interesting feature of this system is that even the

evolution of the coherences may induce changes on the
counting statistics. At this stage, we can formally access
the large deviation function θ(s) (scaled cumulant gen-
erating function) encoding the full counting statistics
for the steady-state regime, defined as

θ(s) = lnTr{ρ̃s} = ln
(
xT ρ̃s

)
, (22)

where ρ̃s is the steady-state form of the biased den-
sity matrix ρs(t), ρ̃s its vectorized version, and x =
(1, 1, 1, 1, 0, 0)T . Through the diagonalization of the
propagator Ws = W + Ls, one can access directly
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θ(s). The latter is aptly determined as the eigenvalue of
Ws with the longest decay time. More directly we can
access also the first cumulant of the chosen exchange
statistics using a bypassing approach not requiring nu-
merical coarse-graining, similar to the one introduced
in Ref. [29]. Given that κ1 = −∂sθ(s)|s=0 we have, as
the first cumulant (moment), the mean current flowing
through the system

κ1 = −Tr {L′0[ρ̃]} = −xTL′0ρ̃ (23)

with L′0 = ∂sLs|s=0.
The second cumulant is related to the variance of the

current crossing the device defined as κ2 = ∂2
sθ(s)|s=0

and can be determined as

κ2 = Tr {L′′0 [ρ̃] + 2L′0[ρ̃′]} = xT
(
L′′0 ρ̃ + 2L′0ρ̃′

)
, (24)

where ρ̃′ = ∂sρ̃s|s=0 is the steady-state solution of the
first order biased density matrix evolving according to

∂tρ
′ = Wρ′ +

(
L′0 −

(
xTL′0ρ

)
11
)
ρ, (25)

and where 11 is the identity matrix. Notice that, by
definition, we have Tr {ρ̂′} = xTρ′ = 0.

According to this framework [29], after finding the
steady state solution of the density matrix ρ̃ we can
access the mean current, while by solving ρ̃ and ρ̃′ we
access the variance of the current flux.

B. Systematic study of the different regimes

In order to understand the dynamics taking place we
now assume that the incoherent hopping strength Γv is
independent of the other parameters. The idea here is
to find out which range of parameters gives rise to the
largest enhancement due to the presence of the vibra-
tional mode. In order to do so we distinguish between
six different cases depending on the leads configuration,
as summarized in the table reported in Fig. 2 a., where
we have set Ω = r∆. For simplicity we consider here the
case where the electronic leads are at zero temperature,
leading to the following simplification

fν(ε) →
Tν→0

Θ(µν − ε), (26)

where Θ(x) is the Heaviside function of argument x. In
this condition we find that cases 1 and 3, with no bias
voltage applied between the two leads and with their
chemical potential respectively below ε1 and above ε2,
give a zero mean current. Conversely case 2, where µ
lies between ε1 and ε2, corresponds to a non-zero net
flux from L to R. This case is of special interest as
it allows for conduction without need of bias voltage.
In fact, such a net flux is also present without taking
into account the molecular vibration. This unusual be-
haviour originates from the joint effect of coherence in
the many-body states |1〉 and |2〉 and the local coupling
to the electronic leads. Coherence in the delocalised
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Figure 2. a. Table summarizing the six different cases con-
sidered in the body of the manuscript. We have defined
Ω = r∆ with the value taken by r reported in the third
column of the table. b. Illustration of the energy diagram
corresponding to case 5. c. Mean current at maximal en-
hancement as Ω = r∆ as listed in table a. under the presence
of the vibrational mode (Γv/Γ = 10) (thick full lines) and
without the vibrational mode (Γv/Γ = 0) (dashed lines).
Each color refer to a specific case as indicated.

states |1〉 and |2〉 allows for an electron on the left sites to
be found in the right lead. This effect vanishes for large
lead temperatures, and relates to observed coherent phe-
nomena in nanoelectronics [30–32]. The presence of the
vibrational mode gives rise to a significant enhancement
on the conduction process, as shown in Figs. 2.c and 3,
where we present the effect of incoherent hopping on the
conduction as a function of ∆, Ω and Γv for case 2. As
we can see in Fig. 3.a, the maximum net enhancement
κ1−κ0

1 (with κ0
1 the mean current neglecting the vibra-

tional mode, i.e. for Γv = 0) occurs for Ω = 2∆. The
enhancement increases as Ω and ∆ tend to zero. This
comes from the fact that for Ω → 0 we have clearly
κ1 → 0 if Γv = 0 (blue dashed line in Fig. 2.c), while
for Γv 6= 0 and Ω = r∆, κ1 tends to be constant (blue
full line in Fig. 2.c). Consequently, in this case, for
small ∆ and Ω, the conduction process is dominated by
incoherent hopping induced by the vibrational mode. In
Fig. 3.b we show how the incoherent hopping strength
impacts the relative enhancement 10 log10(κ1/κ

0
1) at the

maximal net enhancement Ω = 2∆. The enhancement
diverges as Ω → 0 due to the fact that κ0

1 → 0, in
this regime, as discussed. The incoherent hopping ef-
fect on the conduction quickly saturates for relatively
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Figure 3. Enhancement induced by incoherent hopping. a.
Net enhancement κ1 − κ0

1 (with κ0
1 the mean current for

Γv = 0) due to the vibrational mode as a function of the
energy splitting ∆ = εR − εL (vertical axis) and the cou-
pling strength Ω (horizontal axis). The black full line and
dashed line represent the maximum and zero enhancement
at Γv/Γ = 10 respectively. b. Maximal enhancement in dB
(10 log10(κ1/κ

0
1) for ∆ = Ω/2) as a function of Ω for various

incoherent hopping strength Γv/Γ (0.01, 0.1, 1 and∞). The
situation presented in the figure corresponds to the case 2 in
Fig. 2.

small Γv/Γ ≈ 1. In this case we find that the relation
Ω = r∆ gives rise to the smallest Fano factor (κ2/κ1)
depending on Ω and ∆, which is smaller than 1 and
converging monotonously to 1 while increasing Ω and ∆
as κ1 converges to κ0

1, as presented in Fig. 2.c in blue.
This indicates anti-bunching on the statistics of the net
number of electrons exchanged with the right lead, cor-
responding to non-classical current fluctuations.

The remaining three cases all include a bias voltage
(cf. Fig. 2). In all of them we have observed a simi-
lar conduction net enhancement provided by the pres-
ence of the vibrational mode as visible in Fig. 2.c. The
only difference with respect to case 2 and Fig. 3.a is
the ratio between Ω and ∆ associated to the maximal
enhancement, which are as listed in Fig. 2.a. However,
while the net enhancement is very similar in all such
cases, the qualitative behaviours are not necessary sim-
ilar. For example, case 4 presents reversed conduction
flux (κ1 < 0) in some region of the parameter space
(for Ω ≥ r∆) as visible in Fig 2.c. Cases 5 and 6,
conversely, present always a positive current increasing
with Ω, whereas in case 2 an almost constant current
is observed for Ω = r∆. Considering the reduction of

the Fano factor, its behaviour does not generally corre-
spond to the maximal enhancement. Except for case 2,
the smallest Fano factor does not coincide to Ω = r∆
with r as listed in Fig. 2.a. The smallest Fano factor
was observed in both cases 5 and 6 for Ω/∆ = 4.

As the main objective of our investigation was the
demonstration of conduction enhancement arising from
the presence of the vibrational mode, we will not go
deeper into the analysis of the six cases presented herein.
It is worth noticing that for F = 0, undriven vibrational
mode, Ω = Ω0 and Γv ∝ Ω2

1, connecting to the micro-
scopic description. Instead, we now focus on a more
physical configuration where the interdependence of the
parameter is fully taken into account.

III. CONDUCTION ENHANCEMENT AND
SWITCHING EFFECT

In this Section we will draw a less systematic but
more practical picture of the situation under scrutiny
to highlight the relevance of the effect induced by the
vibrational mode on the electric conduction. From a de-
vice perspective we will illustrate how the enhancement
takes place under realistic conditions and how the con-
trol of the vibrational mode can lead to a control of the
electronic flux.

Fig. 4 shows the mean current 〈I〉 = κ1 passing
through the wire as a function of the applied biased V ,
which is the most natural and accessible control param-
eter to adjust, and for different values of the incoherent
hopping strength Γv. In the inset we represent the cor-
responding Fano factor. We notice the appearance of
a plateau in the conduction in correspondence of the
passage from one of the cases described in the previ-
ous Section to the next. The smoothing of the edges of
those plateaux directly results from the finite tempera-
ture used for the electronic leads. Panel a corresponds
to a case where the coherent hopping strength Ω be-
tween the left and right sites is one order of magnitude
less than for the lower panel b, while keeping the ratio
∆/Ω identical. From these two graphs we can clearly
see that the enhancing effect is stronger as we decrease
Ω (and ∆). The picture regarding the Fano factor, on
the other hand, is less straightforward. For high Ω, the
changes are relatively small and monotonic with respect
to Γv. For smaller Ω the changes induced by varying Γv
are more complex. The spike observed close to V = 0
for some line, corresponds to cases where the mean cur-
rent κ1 changes sign. Notice that the dependence on the
bias voltage is normalized with respect to Ω to focus on
the enhancing effect provided by the vibrational mode.
This renormalisation is at the origin of a more impor-
tant smoothing effect of the edge due to the tempera-
ture. Notice also that at zero bias we have conduction
taking place, and this conduction process is not intrin-
sic to the presence of the vibrational mode even if it is
strongly enhanced by it.

However Ω is, in principle, not easily accessible, in
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Figure 4. Net exchange as a function of the bias voltage
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green and red curves). Inset represents corresponding Fano
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εL = µ = 0, and Γ = 1

particular in light of its dependence on other relevant
parameters of the system. Indeed, we have

Ω = Ω0 −
ωv
√

2

ω2
v + γ2/4

Ω1F, (27)

where ωv is the vibrational frequency, γ its damping
rate and F is the driving force (if any), Ω0 is the bare
hopping rate, independent of the molecular vibrational
properties (0th order expansion of Ω(x̂)), while Ω1 is the
coupling strength between the oscillator position and
the electronic hopping. It is worth reminding that, as
shown previously, a key requirement to maximize the
enhancement is to get the ratio ∆/Ω as in Fig. 2 a.
with ∆ and Ω as small as possible. Given Eq. (27), fine
tuning of Ω can be done through modulating the am-
plitude F of the driving force applied to the oscillator.
The other parameter directly connected to the oscillator
properties is the incoherent hopping strength

Γv =
γ(n̄+ 1/2)Ω2

1ω
2
v√

2(ω2
v + γ2/4)2

. (28)

From Eq. (28) we see that raising the temperature of
the bath Tv leads to a direct increase of Γv. This de-
pendence on the temperature is related to noise-assisted
transport phenomena, which are attracting significant
interest among the community [35–37]. Among oth-
ers, this phenomenon was suggested to be at the ori-
gin of high efficient energy harvesting in photo-synthetic
molecular complexes [33, 34].

0

0.025

0.050

0.075

0.100

0.125

Figure 5. Mean current crossing the device (κ1 = I) as
a function of the voltage bias V and the driving force F .
The elected parameters are such as µ = εL = Γ = γ = 1,
Ω1 = 0.5, TL = TR = Tv/100 = 0.01/kB , ∆ = 3Ω0 = 0.3
and ωv = 0.01 .

Consequently, by playing with a driving force F ap-
plied to the oscillator and the temperature of the cor-
responding bath Tv, one can independently manipulate
both Ω and Γv. Notice also that the energy level of
the system depends on δ =

Ω2
1ωv

2
√

2(ω2
v+γ2/4)

. This inter-
dependence of the key parameters makes the previous
systematic approach difficult to sustain in this context.

Nevertheless, Eq. (27) suggests that, for the ampli-
tude Fcrit = Ω0

(
ω2
v + γ2/4

)
/
(√

2ωvΩ1

)
of the driving

force, the effective Hamiltonian of the wire Eq. (11)
leads to a short-circuit scenario where the two elec-
tronic sites become uncoupled, thus inhibiting the con-
duction through the wire. In Fig. 5 we plot the mean
current through the device as a function of the volt-
age bias V and the driving force F . As V is varied,
we clearly identify the two situations illustrated in the
previous Section. More specifically: for F = 0 we have
a strongly conducting regime for high V . If, starting
from this point in the parameter space, we increase
slightly the applied driving force toward Fcrit, we see
a strong modification of the conduction, which leads to
the short-circuit regime. Differently from the mecha-
nism highlighted in Ref. [8], the switching on and off of
the conduction does not require a complex driving of the
electronic sites, although both our scheme and Ref. [8]
allow for a non-zero conduction even if no voltage bias
is applied between the electronic leads [cf. Fig. 5]. Con-
sequently, beside allowing for an independent control of
the key parameters Γv and Ω (through the control of
F and Tv, respectively), in our model the conduction
can be switched on and off through a simple shift of the
vibrational mode equilibrium position.
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IV. CONCLUSION

We have presented a detailed study of the conduction
properties of a molecular wire coupled to a vibrational
system via electronic hopping exchange. This descrip-
tion is inspired by the idea that physically the vibra-
tional mode does not need to change the energetic struc-
ture of the electronic part but can just perturb the ex-
change taking place on this subsystem. We showed that
the presence of the vibrational system can give rise to
strong enhancement of the wire conductivity. Moreover
through the control of the vibrational properties (tem-
perature and position) one can accurately control the
electronic flux crossing the device. An increase of the
temperature enhances the conduction, while the control

of the equilibrium position of the oscillator can switch
on and off the conduction.

With this work, we establish how vibrational coupled
hopping affects the electronic properties of a molecular
wire. These crucial results pave the way to a better un-
derstanding and more complete description of electronic
properties of these promising devices.
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Appendix 1: Dissipation of the wire to the leads
and biased contribution to the evolution

In this appendix we detail the calculation leading to
the Lindblad form dissipator induced by coupling the
wire subsystem to fermionic leads as explained in sec-
tion IB. Based on Refs. [25, 26] we determine the
the dissipator in the manybody picture such as L̃ν =∑2
a=1

∑
b={0,3} L̃νa↔b (with ν = R or L)

L̃νa↔0[•] =
π

4
Γνnν(εa)|T ν2,a|2

[
fν(εa)

(
2ĉ†a • ĉa −

{
ĉaĉ
†
a, •
})

+ (1− fν(εa))
(
2ĉa • ĉ†a −

{
ĉ†aĉa, •

}) ]
(29)

L̃νa↔3[•] =
π

4
Γνnν(εa)|T ν1,a|2

[
fν(εa)

(
2ĉ†aĉ3 • ĉ†3ĉa −

{
ĉ†3ĉaĉ

†
aĉ3, •

})
+ (1− fν(εa))

(
2ĉ†3ĉa • ĉ†aĉ3 −

{
ĉ†aĉ3ĉ

†
3ĉa, •

})]
,(30)

where nν(ε) is the density of state in the lead ν (R or L) at a given energy and fν(ε) = 1/ [exp ((ε− µν)/kBTν) + 1]
the Fermi distribution of a given lead ν having µν as chemical potential. Notice that the total dissipation is related
to the leads dissipation L̃ = L̃R + L̃L plus L̃eff = U−1LeffU the one induced by the vibrational mode (Eq. (13)).
Each dissipation induced by the leads can be decomposed in terms of amplitude damping and coherence damping
channels such as L = LA + LC , with for the amplitude part

LA [•] =
∑

XY={LO,LF,RO,RF}

[
αXY

(
L̂XY • L̂†XY −

1

2

{
L̂†XY L̂XY , •

})
+ βXY

(
L̂†XY • L̂XY −

1

2

{
L̂XY L̂

†
XY , •

})]
,

(31)
with L̂LO = |10〉〈00|, L̂LF = |10〉〈11|, L̂RO = |01〉〈00| and L̂RF = |01〉〈11| and for the coupling strength we have

αLO =
Γ

2

[
(1−A)

2
(
fL(ε1)B2 + fR(ε1) (1−A)

2
)

+ (1 +A)
2
[
fL(ε2)B2 + fR(ε2) (1 +A)

2
]

(32)

αLF =
Γ

2

[
(1−A)

2
(
fL(ε1) (1−A)

2
+ fR(ε1)B2

)
+ (1 +A)

2
(
fL(ε2) (1 +A)

2
+ fR(ε2)B2

)]
(33)

αRO =
Γ

2

[
B2 (fL(ε1) + fL(ε2)) +

(
fR(ε1) (1−A)

2
+ fR(ε2) (1 +A)

2
)]

(34)

αRF =
Γ

2

[(
fL(ε1) (1−A)

2
+ fL(ε2) (1 +A)

2
)

+B2 (fR(ε1) + fR(ε2))

]
. (35)

For simplicity we assume the leads density of states to be homogenous and identical nL(ε) = nR(ε) = n as for
the coupling strength ΓL = ΓR = Γ/nπ. The coefficients βXY are obtained replacing in the definition above
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fν(ε)→ 1− fν(ε). The effective decoherence is written as

LC [•] =
∑

XY={LO,LF,RO,RF}

AB={RO,RF,LO,LF}

[
αcXY

(
L̂XY • L̂†AB −

1

2

{
L̂†ABL̂XY , •

})
+ βcXY

(
L̂†AB • L̂XY −

1

2

{
L̂XY L̂

†
AB , •

})]
.

(36)
It is worth to notice that those dissipator acting on the coherence are not of a dephasing form because they change
the energy of the system. They give rise to or suppress coherences between the 2 intermediate states through
absorption or emission of quanta of energy with the leads. The coupling strength attached to those channels are
such as

αcO = αcLO = αcRO =
Γ

2

[
(1−A)

(
fL(ε1)B2 + fR(ε1) (1−A)

2
)
− (1 +A)

(
fL(ε2)B2 + fR(ε2) (1 +A)

2
)]

(37)

αcF = αcLF = αcRF =
Γ

2

[
(1−A)

(
fL(ε1) (1−A)

2
+ fR(ε1)B2

)
− (1 +A)

(
fL(ε2) (1 +A)

2
+ fR(ε2)B2

)]
. (38)

In order to retrieve the exchange statistics we define as done in the text (section IIA) a counting process K which
is related to a biased contribution of the evolution Ls where

Ls[•] =
∑

b={O,F}

∑
a={L,R}

[(
e(−1)bs − 1

)(
αRcb |a〉〈b| • |b〉〈ā|+ αRab|10〉〈b| • |b〉〈10|

)

+
(
e(−1)b+1s − 1

)(
βRcb |b〉〈a| • |ā〉〈b|+ βRab|b〉〈a| • |a〉〈b|

)]
(39)

with ā is the complementary of a (R for L and reciprocally).

Appendix 2: Superoperator of the effective electronic dynamics

Here we provide the explicit form of the superoperator responsible for the effective open-system dynamics of the
electronic system discussed in Sec. II. With the definitions of the previous Appendix, we have

W =


− (α0,0 + α0,2) βRO βLO 0 βcO βcO

αRO − (βRF + βRO)− Γv Γv αRF − 1
2 (βcO + βcF ) − 1

2 (βcO + βcF )
αLO Γv − (βLO + βLF )− Γv αLF − 1

2 (βcO + βcF ) − 1
2 (βcO + βcF )

0 βRF βLF − (α3,0 + α3,2) βcF βcF
αcO − 1

2 (βcO + βcF ) − 1
2 (βcO + βcF ) αcF −i∆− Γv − 1

2β Γv
αcO − 1

2 (βcO + βcF ) − 1
2 (βcO + βcF ) αcF Γv i∆− Γv − 1

2β


(40)

with β = βLO + βLF + βRF + βRO and ∆ = εR − εL. The explicit definition of each coefficient is given in
Appendix IV. Notice that each coefficient α and β can be easily rewritten in terms of leads contribution such as
αXY = αRXY + αLXY .

The effective dissipator of the biased master equation resulting form the inclusion of counting processes has the
following matrix representation, instead

Ls =


0 βRRO (e−s − 1) βRLO (e−s − 1) 0 βRcO (e−s − 1) βRcO (e−s − 1)

αRRO (es − 1) 0 0 αRRF (e−s − 1) 0 0
αRLO (es − 1) 0 0 αRLF (e−s − 1) 0 0

0 βRRF (es − 1) βRLF (es − 1) 0 βRcF (es − 1) βRcF (es − 1)
αRcO (es − 1) 0 0 αRcF (e−s − 1) 0 0
αRcO (es − 1) 0 0 αRcF (e−s − 1) 0 0

 . (41)
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